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ABSTRACT Class imbalance problems are prevalent in the real world. In such cases, traditional supervised
algorithms tend to have difficulty in recognizing minority data because the models are likely to maximize
prediction accuracy by simply ignoring minority data. To address the class imbalance problem, various
approaches have been tried, including data preprocessing techniques, cost-sensitive learning, and ensemble
modeling. Recently, several hybrid models combining sampling methods with boosting have been proposed,
such as RUSBoost, LIUBoost, and CUSBoost. In this study, a novel under-sampling-based boosting method
named MPSUBoost is proposed to handle the class imbalance problem. The proposed method is an
integration of modified PSU and AdaBoost. The performance benchmark testing conducted on 35 highly
imbalanced datasets indicated that the proposed method provided performance improvement over three
existing methods (RUSBoost, LIUBoost, and CUSBoost). Moreover, we verified that the samples obtained
by MPSUBOoost effectively represented the given majority data, which led to a competitive advantage in the

imbalanced data, particularly when true positives are imperative.

INDEX TERMS Imbalanced data, undersampling, boosting, data mining, ensemble modeling.

I. INTRODUCTION

In data mining and machine learning, a variety of supervised
algorithms have been proposed for classification problems.
However, there is a major obstacle known as the data imbal-
ance problem between classes when using such algorithms
in real situations [1], [2], [3]. When the sample volume in
one class overwhelms the sample volume in other classes,
traditional classification models tend to maximize prediction
accuracy by being biased to the majority class. In real world
problems when the identification of minor classes is the main
purpose of the algorithm, such as anomaly detection [4] and
spam mail detection [5], the classification of minority classes
is more important than the classification of the majority
class. In this respect, traditional methods suffer from class
imbalance problems, particularly when the misclassification
of minority classes causes a high cost for the users.

Various attempts have been made to solve the data imbal-
ance problem [6]. They can be broadly classified into three
categories depending on how they handle the problem.
The first approach is to artificially balance the distribution
between classes in the training data used for training mod-
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els. Specifically, this method selects fewer samples from
the majority class (undersampling) or generates additional
samples of the minority class (oversampling) to balance the
ratio of the majority class to the minority class. The second
approach seeks to modify existing algorithms, optimizing the
performance of existing learning algorithms by modifying
methods to be more appropriate for specific real-world sit-
uations. Cost-sensitive learning, which assigns a greater mis-
classification cost to the minority class examples than to the
majority class examples, is in this group. Due to the greater
weight placed on minority samples, the models can reduce
the classifiers’ bias towards the majority class and focus on
the minority class to minimize the total misclassification cost.
The third type of approach is feature selection, which aims to
optimize the performance of a classifier by selecting a subset
of proper features. In particular, feature selection might be a
powerful approach to handle most imbalanced classification
problems with high-dimensional data [7]. Feature selection
is focused on handling features that are too disparate, thereby
allowing a classifier to perform optimally. In addition, some
attempts have been made to improve the classification per-
formance by applying two or more of the methods men-
tioned above. For instance, an ensemble approach combines
multiple base classifiers with sampling techniques [8] such

VOLUME 10, 2022


https://orcid.org/0000-0003-1754-5034
https://orcid.org/0000-0003-2486-9483
https://orcid.org/0000-0003-0128-4052

S.-). Kim, D.-J. Lim: MPSUBoost: A Modified Particle Stacking Undersampling Boosting Method

IEEE Access

that weak classifiers learned from balanced training data
can be combined. In general, this hybrid approach demon-
strates powerful results in addressing imbalanced classifica-
tion problems [9], [10], [11].

Reducing the impact of the majority class inevitably leads
to a loss of information [12]. As a result, the recognition
rate of the majority class would be decreased, even though
the model has power of explanation on the minority class
[13]. Underrepresenting the majority class can result in exces-
sive false positives, which is undesirable in many real-world
problems. For example, when detecting spam mail [14], false
positives may mean that important emails, such as a due date
notice for a loan payment, are blocked by being misclassified
as loan advertisements. Another example would be a bot
access prevention algorithm [15] where misclassifying users
as bots and banning them could lead websites to lose loyal
customers.

In this paper, we propose a novel undersampling-and-
boosting-based algorithm referred to as Modified Particle
Stacking Undersampling AdaBoost (MPSUBoost). The pro-
posed model is a hybrid method based on a sampling method
PSU [16] applied to AdaBoost. As elaborated in the follow-
ing sections, PSU is a deterministic undersampling method;
therefore, it is limited to having fixed starting points for
the sampling procedure. To complement this, we modify the
algorithm so that the proposed method can utilize a variety of
samples to minimize the loss of information while securing
the recognition rate of the majority class.

The remaining paper is structured as follows. Section 2 pro-
vides an overview of prior works that discuss how to handle
the class imbalance problem. Section 3 summarizes lim-
itations of prior works and the motivation of this study.
Section 4 describes the MPSUBoost method with computa-
tional procedures. Section 5 provides the experimental results
and compares the performance of MPSUBoost to other
algorithms. Section 6 discusses the classification perfor-
mance of MPSUBoost in connection with data distribution.
Section 7 presents a summary of the results and directions for
future work.

Il. RELATED WORKS

A. DATA-LEVEL APPROACHES

In this group of approaches, sampling methods are classified
differently according to whether samples are deleted from the
majority class (undersampling) or artificially generated and
duplicated from the minority class (oversampling).

1) UNDERSAMPLING

There exist a number of undersampling methods based on
a variety of sampling criteria. The simplest form of under-
sampling is random under-sampling (RUS). RUS randomly
chooses samples from the majority class to make a balanced
dataset. However, RUS leads to a loss of information from
the unselected majority samples due to the characteristics
of randomly selected samples. To reduce information loss,
several undersampling methods have been proposed, such as
the Condensed Nearest Neighbor rule (CNN), Tomek Links
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(TL), NearMiss (NM), and Cluster Centroids (CC) [17], [18],
[19], [20].

Recently, Jeon and Lim [16] proposed a novel undersam-
pling technique referred to as PSU, which is a distance-based
technique that splits majority data into multiple partitions
based on the distance from the centroid. PSU selects a sample
from each partition such that the sample must be the farthest
from other samples that are already selected. By maximizing
the distance sum between resampled samples, loss of infor-
mation and data redundancy will be minimized. However, due
to its deterministic nature, PSU has a limitation in reducing
the loss of information. PSU selects only the same samples
from the majority class no matter how many times sampling
processes are performed.

The aforementioned undersampling methods have been
used in various real-world applications, such as analyzing
tweet sentiment data, detecting web attacks, and predicting
credit card default [21], [22], [23].

2) OVERSAMPLING

Several oversampling methods have been devised to han-
dle class imbalance problems. In [24], a synthetic minority
oversampling technique (SMOTE) was proposed as a method
of creating a new minority class sample by interpolating
two points that are close to each other among the minority
class samples. Simply replicating the same samples of the
minority class multiple times can increase the probability
of an over-fitting issue. SMOTE can prevent this issue by
creating new samples instead of replicating existing ones.
Nonetheless, SMOTE has some drawbacks. It is possible to
introduce outliers by artificially synthesizing minority class
samples without considering the position of the samples of
the majority class. In addition, if the data is high-dimensional,
the computational cost will increase dramatically.

MSMOTE [25] has been proposed to overcome the above-
mentioned shortcomings. This method considers the distri-
bution of minor classes. After dividing the minority class
into three categories (border, safe, and latent noise), samples
belonging to the latent noise category are not used to synthe-
size artificial samples.

Oversampling methods have been used in class imbalance
problems, such as survival prediction of heart failure patients,
emotion classification in a YouTube dataset, and intrusion
detection [26], [27], [28].

B. ALGORITHM-LEVEL APPROACHES
In most class imbalance problems, information about the
minority class is more important than information about the
majority class. Algorithm-level approaches focus on classi-
fying the minority class well by modifying existing learning
algorithms to mitigate bias towards the majority class. Cost-
sensitive learning is a representative modified method of an
algorithm-level approach.

Methods of cost-sensitive learning modify weights of
minority samples by assigning the importance of the minority
class to be greater than the importance of the majority class.
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AdaCost [29] is a cost-sensitive boosting algorithm. Ada-
Cost adds misclassification costs to AdaBoost’s weight
update mechanism. The misclassification cost indicates that
the costs of failing to properly classify the samples in the data
are assigned differently depending on their class (i.e., minor-
ity or majority). This cost assignment leads AdaCost to put
more emphasis on the correct classification of the minority
class than on the majority class. Similarly, Sun et al. [30]
proposed three cost-sensitive learning classifications based
on boosting methods: AdaC1, AdaC2, and AdaC3. All three
methods use modified weight update formulas of AdaBoost
to bias their respective weighting strategies. These methods
attempt to handle the imbalance problem by assigning rel-
atively high importance to samples of the minority class.
However, to obtain the individual importance of each sample,
knowledge of domain experts is required beforehand. In the
real world, it is often difficult to obtain the required domain
expertise.

Algorithm-level approaches have been applied in several
class imbalance problems, such as classifying risk types of
human papillomavirus, face recognition, and predicting prod-
uct failures [31], [32], [33].

C. ENSEMBLE APPROACHES

Longadge and Dongre [34] claimed that applying two or more
approaches gives a better solution to the class imbalance
problem. In general, methods from ensemble approaches
are combinations of a data-level method with the traditional
boosting or bagging method. This approach keeps the respec-
tive advantages of both methods by combining them and
can function as a robust classifier. In the real world, it often
shows strong performance in coping with imbalance prob-
lems, so methods of this group are often used.

SMOTEBoost, RUSBoost, and EasyEnsemble [10] are
typical ensemble approaches. SMOTEBoost [9] introduced
a combined sampling and boosting algorithm to deal with the
imbalance problem. SMOTEBoost merges an effective over-
sampling technique (SMOTE) with AdaBoost [35], result-
ing in a highly effective ensemble approach to learn from
imbalanced data. SMOTE is an oversampling method that
synthesizes samples of the minority class to create balanced
data. SMOTEBoost applies SMOTE to create the necessary
balanced data to train weak classifiers in each iteration.
However, SMOTE has higher computational cost than other
undersampling methods, and SMOTEBoost has high com-
putational complexity because it performs SMOTE in each
iteration. Also, SMOTEBoost is vulnerable to noisy data
because SMOTE may synthesize new noisy samples from real
noisy samples.

RUSBoost [11] combines RUS with AdaBoost to deal
with class imbalance problems. RUSBoost uses RUS to
obtain balanced training data, which is then used for training
weak classifiers in the boosting phase. Even though RUS-
Boost is a relatively simple method relying on randomness,
Seiffert et al. [11] showed that its performance is competi-
tive with those of other ensemble methods. It also has the
advantage of lower computational cost in comparison to many

125460

oversampling-based methods. In this respect, when applying
amodel to big data, RUSBoost may be appropriate. However,
it has the drawback of causing a loss of information due to its
randomness-dependent property.

To minimize the loss of information, CUSBoost [36] was
proposed as a cluster-based undersampling method integrated
with a boosting method. CUSBoost uses cluster-based under-
sampling (CUS) in the boosting phase. CUS is a sampling
method that clusters the majority samples into k clusters using
a k-means clustering algorithm. It then uses random under-
sampling on each of the created clusters to select majority
samples. Similarly, locality-informed undersampling boost-
ing (LIUBoost) [37] attempts to minimize the loss of infor-
mation by incorporating a cost term for every sample, based
on hardness, into the weight update formula.

lll. MOTIVATION

The existing treatments of imbalanced data each have their
own drawbacks. Undersampling methods suffer from a loss
of information due to discarding some of the given sample
distribution. This leads to an underrepresented majority class,
which results in poor predictive performance.

To supplement information loss, various hybrid methods
(e.g., RUSBoost, LIUBoost, and CUSBoost) have been devel-
oped by integrating sampling methods with boosting models.
These methods repeat sampling in each iteration to train mul-
tiple weak classifiers. Nevertheless, RUSBoost and LIUBoost
largely rely on randomness, and it is likely that the underrep-
resented majority class eventually yields poor classification
performance [37].

CUSBoost adopts CUS to reduce its randomness by
extracting majority samples from each cluster. However,
it requires a predetermined number of clusters to be identi-
fied, which is not only arbitrary but also inappropriate when
the dataset is not suitable for clustering.

When integrating the sampling method with the boost-
ing approach, the overall predictive performance is largely
determined by the sampling method adopted. Among several
undersampling methods, PSU has shown a relatively low
level of information loss on highly imbalanced datasets [16].
In this respect, PSU-based boosting methods are expected
to yield better performance than existing methods. However,
PSU was originally designed as a deterministic method. This
indicates that applying the original PSU algorithm to con-
struct a boosting method will lead to the issues described
below.

First, all weak classifiers would learn on the same dataset,
which is against the intention of the sampling-based boost-
ing method. Second, PSU is vulnerable to outliers, which
can deteriorate the predictive performance when combined
with a boosting method. PSU is designed to select the far-
thest majority sample from the previously chosen samples;
thus, it may include outliers in the final set of samples.
Additionally, informative samples might be disregarded or
underrepresented by extreme points. This problem becomes
significant when integrating PSU with a boosting method; the
outliers would be selected in every iteration, and they will end
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up preventing weak classifiers from learning an appropriate
data distribution.

This study customizes the PSU algorithm while maintain-
ing the original property of minimizing information loss. The
proposed method, referred to as MPSUBoost, is based on a
modified PSU algorithm integrated with AdaBoost. We par-
ticularly focus on maximizing the data representability of the
minority class.

IV. METHODOLOGY

A. RETHINKING EXISTING PERSPECTIVES

To extend the conventional PSU algorithm so that it can be
integrated with an ensemble, we propose two modification
ideas: multiple starting points and median distance measure.

1) STARTING POINTS

The PSU algorithm begins with the centroid of the majority
class to split the majority data class into partitions. Due to
its deterministic nature, PSU results in a final sample set
that is unique to the starting point, namely the centroid. This
indicates that if one wants to obtain diverse sample sets,
multiple starting points have to be determined. Figure 1 illus-
trates different sample sets obtained from (a) the centroid,
(b) some points close to each other, and (c) PSU samples.
Note that PSU was performed five times on the starting points
(black points) to obtain the aggregated final sample sets (blue
points). Unsurprisingly, the conventional PSU algorithm (a)
yielded a unique set of samples; therefore, the same samples
were simply selected five times. In (b) and (c), in contrast,
different starting points resulted in correspondingly distinct
sample sets, and a pool of diverse samples was obtained in
aggregate.

The key question is then how to choose ideal starting points
to construct an ensemble model. When the starting points are
close to each other, PSU would end up with samples extracted
from a similar majority region, as seen in (b). This may not be
appropriate for ensemble modeling as a diverse set of samples
are generally sought to take advantage of divergent decision
boundaries. The excluded region of the majority class can
cause significant information loss, which would lead to poor
performance of a strong classifier.

To utilize PSU’s strength of data representability, we pro-
pose using PSU samples as individual starting points on
which PSU is repeated to extract multiple sample sets.
As shown in (c), samples from the original PSU, namely
the blue points in (a), were then used as starting points for
different iterations of PSU to yield the final sample sets.
In this way, a boosting ensemble can be constructed with a
diverse set of samples that better represent the original data
distribution of the majority class.

2) DISTANCE MEASURE

Another unique characteristic of PSU is that it uses the far-
thest distance from the previously chosen samples to select
subsequent samples. Although this approach is intended to
reduce data redundancy, it is possible for outlying data points
to be overrepresented because they tend to be located far from
the overall data distribution. This may ultimately deteriorate
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FIGURE 1. Sampling results from different starting points.

the overall predictive performance. Specifically, the same
outliers will be included in the final sample set, regardless
of different starting points, as they will be most likely rec-
ognized as ‘representative points.” This inadvertently reduces
the resulting ensemble into a strong classifier consisting of a
few similar weak classifiers.

To alleviate the impact of outlying data points in PSU,
we suggest using a median distance to select samples.
If median samples in each partition were selected instead
of the farthest samples, PSU would be less likely to choose
outlying data points because those points are unlikely to
be median points in each partition. Consequently, PSU
would proceed conservatively and become robust to outliers.
Figure 2 compares four different undersampling methods
applied to the same original data. The blue points are the sam-
pled majority data points from the corresponding undersam-
pling methods repeated five times. It is seen in RUS, CUS,
and PSU that data points in the isolated cluster (bottom right
corner) are not represented, while extreme data points are
included in the sample set. In contrast, the proposed method
based on starting points from PSU and the median distance
could sample some points in the separate cluster as well as
a point that seems less extreme, while also avoiding points
extremely far from the overall data distribution. We expect
that the proposed method would be able to identify distinct
data segments from representative starting points, while the
tendency of selecting extreme points would be lessened by
using the median distance.

B. MPSUBoost

Concerning the two methodological modifications (multi-
ple starting points and median distance measure), we pro-
pose a new undersampling and boosting-based algorithm,
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FIGURE 2. Comparison of various undersampling methods.
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FIGURE 3. MPSUBoost procedures.

i.e., MPSUBoost. The algorithmic procedure of the proposed
method is illustrated in Figure 3 and specified in Algorithm 1.
In the preparatory phase, the original PSU method is first
implemented to obtain representative samples of the majority
class (DF). Bach data point (D) in DF is then used as a
starting point in the following model construction phase.
Specifically, when a sample is selected from DX, the distances
from the sample to majority data points are calculated as (1).
Dist, is sorted in ascending order and then grouped into parti-
tions (S;) from which one of each representative sample (X;*)
is selected. Note here that when a sample is selected from a

125462

partition, the sample must be a median point in the partition.
As discussed already, the aim of this modification from the
original PSU method is to prevent extreme data points from
being included in the final sample set. Combined with using
multiple starting points, it is expected that a diverse set of
samples that better represent the original data distribution
can be obtained; this sample set should be less affected by
sparsely distributed outlying points.

Dist, = dy (Df X)) . D, X3 ()

With the sample set obtained for each iteration, MPSUB-
oost builds the weak classifier (#;). The weak classifier
learns on the resampled majority data (Dj°) and minority
data (DM07) with their corresponding weights, i.e., w;® and
wﬁ"””” , respectively. The weak classifier (h;) is built in each
iteration and the weight of each data point (w41 (i)) is
updated by calculating the error (¢;) and the weight update
parameter (o).

€& = Ziv:l wi (@) x T(h(X;) # yi) )
o = I Ete 3)
— €

Wit (D) = wy (1) x exp(—yiashi(Xi)) “

Within this process, the weights of the misclassified data
points increase, while the weights of the correctly classi-
fied data points decrease. After performing all iterations, the
weak classifiers (h1, ..., k) are combined to create a strong
classifier.

It is worth noting that MPSUBoost inherits the determin-
istic nature of PSU, that is, the methodological extensions
applied to MPSUBoost guarantee the same unique strong
classifier will be obtained regardless of the experimental
setting. This property can be an advantage, particularly when
reproducible results are imperative and/or the sensitivity of
the model with additional data points has to be verified.

V. EXPERIMENTAL EVALUATION

A. DATASETS

Three well-known methodologies (RUSBoost, CUSBoost,
LIUBoost) are compared with MPSUBoost by applying them
to the classification problem on highly imbalanced datasets.
A total of 35 datasets were used for performance evaluation;
all were obtained from the KEEL repository [38]. Note that
nine multi-class datasets were divided into 35 binary-class
problems. Table 1 summarizes the description of the datasets.

B. EXPERIMENTAL SETUP
The proposed model is an ensemble approach that addresses
the class imbalance problem. To see the relative performance
of the proposed method compared with other well-known
ensemble methods, we designed an experiment as follows.
o A stratified random split was conducted to perform hold-
out validation. Each dataset was randomly partitioned
into two sets: a training set (70%) and a test set (30%).
The ratio of each class was maintained by using a
stratified random split. Hold-out validation is repeated
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Algorithm 1 MPSUBoost

Input
a) Majority class data DM¥or =
(XMa] Maj)} .
b) Minority class data DMinor
XMm me)}
¢) Iteration count T
d) Number of data N M+ m
Initialization: w,(i) = Vo wherei=1,...,N;
1. Calculate the centr01d of majority class data:
=M x4+ Xy M
2. Calculate L2- norm between C and majority class data:
Dy=dy (C.x1"),....d> (C. X}
3. Sort D> and group them into 7 partitions:
SZ[S17'-'3ST]
4. Set X{ to be the last data point in 51
for/ =2to T do

Maj Maj
(X,

{(X{Win, ylllﬁn)’ o

5. Set X to be the farthest data point in s; in the
resampled dataset: {X], ..., X1}
end for
6. Construct the resampled dataset: DX = {X, ... , X7}
forr=1to T do
7. Orderly select majority data from DR: DR
8. Calculate L2-norm between D{" and majority class
data: Dist; = dy (Df  xMa dy(DR, XM
9. Sort Dist; and group them into m partitions:

S=1[S1,...,Su]
for/ =1tomdo
10. Set X/ to be the median data point in S;
end for
11. Construct a resampled dataset: D7 = {X{¢, ..., X¢}
12. Fit the classifier 4, based on the resampled
dataset D' and DM with their weights
ge and W;Winor
13.  Calculate the error ¢, = Y | wi (i) x I(hy(X;) # yi)
and weight update parameter oy = 1= e
14. Update data weight wyy1 (i) = wy (i) x exp(—y;oh:
Xi)

end for
Output
The strong classifier: sign(Z,T=1 arhy(X;))

100 times to obtain the average performance to further
reduce variations in the random splits.

o For a fair comparison, the base classifier of the com-
parison methods was controlled to be classification and
regression trees (CART), which were generated using
the Scikit-learn package [39]. Also, the maximum num-
ber of weak classifiers for each model is set to 100.
Each model was a combination of a sampling method
and AdaBoost, and the ratio of the majority class to the
minority class sampled from each iteration was set to
1:1. In addition, common hyperparameter settings were
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TABLE 1. Data description.

Number of Number of Minor
Dataset . . X

nstances attributes ratio
ecoli-0-3-4 vs 5 200 8 9.0
ecoli-0-6-7_vs_3-5 222 8 9.1
ecoli-0-2-3-4_vs_5 202 8 9.1
glass-0-4_vs 5 92 10 9.2
ecoli-0-4-6_vs 5 203 7 9.2
ecoli-0-3-4-6_vs_5 205 8 9.2
ecoli-0-2-6-7_vs_3-5 224 8 9.2
ecoli-0-3-4-7_vs_5-6 257 8 9.3
ecoli-0-6-7 vs_5 220 7 10.0
ecoli-0-1-4-7_vs_2-
3.5.6 336 8 10.6
ecoli-0-1_vs 5 240 7 11.0
glass-0-6_vs 5 108 10 11.0
ecoli-0-1-4-7_vs 5-6 332 7 12.3
shuttle-c0-vs-c4 1829 10 139
glass4 214 10 15.5
page-blocks-1- 472 1 15.9
3 vs 4
700-3 101 17 19.2
glass-0-1-6_vs 5 184 10 19.4
shuttle-c2-vs-c4 129 10 20.5
shuttle-6_vs_2-3 230 10 22.0
glass5 214 10 22.8
yeast-2_vs 8 482 9 23.1
kr-vs-k-zero- 2901 7 26.6
one vs_draw
kr-vs-k-
one vs_fifteen 2244 7 278
yeast4 1484 9 28.1
winequality-red-4 1599 12 29.2
poker-9 vs 7 244 11 29.5
yeast-1-2-8-9 vs_7 947 9 30.6
yeast5 1484 9 32.7
winequality-red- 656 12 354
8 vs 6
winequality-red-
8 vs 67 855 12 46.5
poker-8-9 vs 6 1485 11 58.4
shuttle-2_vs_5 3316 10 66.7
kr-vs-k-
zero_vs_fifteen 2193 7 802
poker-8-9 vs 5 2075 11 82.0

used: the number of neighbors was set to 5 for LIUBoost
and the number of clusters was set to 10 for CUSBoost.

« Since we focus the classification performance on the
minority class, balanced metrics (F1-score, AUC, MCC,
G-mean, Precision, and Recall) were used as perfor-
mance measures.

C. RESULTS

Table 2 summarizes the results of the experiment. The aver-
age performances and comparative mean ranks of the four
methods are presented. Note that mean ranks were obtained
by averaging performance ranks of the 35 datasets. The best
average performance and mean rank corresponding to each
measure are highlighted in bold.

Overall, MPSUBoost was found to have competitive per-
formance with the other methods; it was only surpassed by
RUSBoost in terms of average recall but outperformed in all
other measures. It is noteworthy that MPSUBoost performed
better than the other methods, particularly in terms of the
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TABLE 3. Post-hoc test (Wilcoxon) results (p-value) compared with
MPSUBoost.

Benchmark Methods
Measure

RUSBoost LIUBoost CUSBoost
Fl-score 0.0000 * 0.0000 * 0.0002 *
AUC 0.2418 0.0023 * 0.0045 *
MCC 0.0000 * 0.0000 * 0.0002 *
G-mean 0.5317 0.0006 * 0.0190
Precision ~ 0.0000 * 0.0000 * 0.0031 *
Recall 0.6735 0.0034 * 0.0551

F1-score and MCC, which are sensitive to distinguishing the
minority class.

To show whether the differences in the performance mea-
sures were statistically significant, the Friedman chi-square
test was first conducted on the rank values. As a result,
it was confirmed that the methods performed unequally
(p-value < 0.001) for all the measures. A post-hoc Wilcoxon
rank test was then performed as a means of pairwise com-
parison of the methods. Note that the significance level of
each pairwise comparison was corrected using the Bonferroni
correction [40], [41] with the adjusted alpha risk of 0.0083
(~0.05/6). Table 3 summarizes the post-hoc test results
(p-value) of benchmark methods compared with MPSUB-
oost. p-values smaller than the adjusted alpha risk are marked
with an asterisk. Overall, MPSUBoost showed distinctly
superior classification performance on the highly imbalanced
datasets.

In a relative sense, smaller improvements have been
observed in AUC, G-mean, and Recall compared to the other
measures. It is interesting to note that those measures com-
monly put less emphasis on the true positive rate, which
is critical in a highly imbalanced dataset. On the contrary,
MPSUBoost clearly surpassed other methods in terms of the
F1-score, MCC, and Precision. It is therefore recommended
to use MPSUBoost, particularly when false positives cause a
significant cost with a highly imbalanced dataset.

VI. DISCUSSION

It can be seen from the experimental results that MPSUBoost
performs well in terms of the F1-score, namely the harmonic
mean of Precision and Recall, compared to the other meth-
ods. Specifically, MPSUBoost performed better relative to
the other methods in terms of Precision than in terms of
Recall. This implies that the decision boundary constructed
by MPSUBoost may be tightly enveloping the minority class
in a way that true positives could be maximized. On the
other hand, the majority samples are fully represented by the
sampled data points so that weak classifiers could learn on
an unbiased training space consistently in all iterations. This
property allows the weak classifiers to attain comprehensive
insights for classification, whereas those from other methods
are likely to be biased toward the given representation of
the majority region. As a result, MPSUBoost can perform
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FIGURE 4. Distributions of the extent index (x) in Euclidian distance.

a generalizable classification for majority points, while a
reliable decision can be made on minority points. However,
this methodological characteristic might leave some relevant
points unrecognized; nonetheless, it may still have a compet-
itive advantage in scenarios where false negatives are less of
a concern but accurately identifying positives is imperative.
The wide range of the decision region secured for the
majority class possibly comes from the inherent properties of
MPSUBoost. In particular, it is intended to select a sample
for each partition; hence, MPSUBoost can always secure
a certain radial distance from a starting point to a sample
selected in the final partition. Although there is a chance
to pick a sample that is distant from the minority region,
even if that is done, it is likely that a sample selected in
the previous partition would have been close to the minority
region. One could argue that the conventional PSU algorithm
where the farthest distance is adopted for sample selection
further enlarges the majority region; however, it should be
recognized that this extreme approach may also increase
the likelihood of choosing outlying majority points. Unlike
MPSUBoost, RUSBoost and LIUBoost randomly miss the
chance of selecting samples close to the minority region.
Similarly, in the case of CUSBoost, a certain distance from
the minority region to samples, namely cluster centroids, has
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to be reserved. Therefore, obtaining some false positives is
unavoidable.

To examine the size of majority regions established by
MPSUBoost compared with other methods, we introduce
the extent index () ), which is an average distance between
vertices of the convex hull [42] of samples. As the index
measures perimeters as well as diagonals, the wider the area
of the sample space, the higher the index.

Figure 4 contains distributions of the extent indices
obtained throughout the experiment (in all iterations) using
MPSUBoost, RUSBoost, and CUSBoost. Note that the
Euclidean distance' is used in the figure and the sample space
obtained from LIUBoost is the same as RUSBoost; therefore
this is omitted. It is verified that MPSUBoost retained a
certain sample space size that is larger than the other two
methods (see its relatively large minimum size in c), and
such spaces are sustained over multiple iterations (see its
relatively small variance in d). This serves as the basis for
the argument that MPSUBoost tends to yield constantly wide
majority regions (represented by the samples), allowing weak
classifiers to learn on representative under-sampled majority
points. In contrast, RUSBoost shows highly fluctuating sizes
of its sample space (see its relatively large maximum size
in b and small minimum size in c¢ resulting from the high
level of variance in d). Unsurprisingly, this is attributed to the
randomness adopted by the method, where majority points
are underrepresented at some times and overrepresented at
other times. This may have led the feature space to include
biased and outlying distributions of majority points in some
boosting iterations.

VIi. CONCLUSION

In this paper, a new under-sampling-based boosting algo-
rithm, named MPSUBoost, was proposed to address the data
imbalance problem. To overcome the deterministic nature
of the conventional PSU algorithm, we have applied two
modification ideas: multiple starting points and median dis-
tance measure. The performance benchmark conducted on
35 highly imbalanced datasets demonstrated that the pro-
posed method provided statistically significant improvement
over competing methods by effectively selecting majority
samples. In addition, we verified that the samples obtained by
MPSUBoost are sufficiently and consistently representative
of the given majority data.

The unique characteristics of the proposed method can
become weaknesses, depending on the modeling situation.
For example, when the cost of false negatives is greater than
the cost of false positives, MPSUBoost would not be an ideal
option. In addition, care must be taken when the degree of
complexity is high, such as situations with a wide indecision
region in the feature space where majority and minority points
are randomly distributed. In such a case, the tendency of
securing an extensive majority region would increase the
likelihood of misclassifying minority points.

'We find consistent patterns using different distance measures; see
Figure 5 and Figure 6 in the Appendix for the cases where the Minkowski
and Manhattan distances are used, respectively.

125466

In the current setting, sampling median points in each parti-
tion is expected to yield high Precision. However, aggressive
sampling might be more appropriate, especially if majority
points are widely distributed as multiple clusters. The existing
distance metric may then be too conservative to properly
capture majority points located in the outer feature space.

As a direction for future work, methodological extensions
could be considered to advance the proposed method. Above
all, false negatives could be reduced by considering both
majority and minority regions in such a way that the represen-
tation of majority points is less affected by indecision regions
(if any). One can also consider an integration of the proposed
method with dynamic distance measures such that an opti-
mal choice of samples suitable for each partition could be
flexibly utilized to avoid the underrepresentation of majority
points. Furthermore, MPSUBoost should be compared with
over-sampling-based boosting methods and/or other ensem-
ble approaches. One could also explore optimal parameters to
build base classifiers along with the sampling ratio. Finally,
case studies are needed to reflect real-world data imbalance
issues to validate the proposed method.

APPENDIX
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FIGURE 5. Distributions of the extent index (x) in Minkowski distance.
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