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ABSTRACT In this paper, an anti-disturbance control for UAVs formations in a three-dimensional envi-
ronment using relative information is proposed. To accurately describe the UAV cluster motion error in a
three-dimensional environment, an error estimation model based on the UAV model is established to realize
the UAV state estimation based on relative information. The control law to achieve the stability of the UAV
formation under bounded perturbation is also derived using the backstepping control strategy. Next, to realize
that the UAV formation can achieve optimal control under performance constraints, an algorithm based on
model predictive control is proposed, and an ant colony algorithm is used to accelerate the solution process.
Then, the stability of the UAV formation under the action of this algorithm is investigated. Finally, the
superiority and effectiveness of the algorithm compared with the traditional backstepping control method
are verified through comparative simulations.

INDEX TERMS UAV, formation control, distributed model predictive control, backstepping control.

I. INTRODUCTION
As an unmanned operational intelligence capable of multi-
ple functions, Unmanned Aerial Vehicles (UAVs) are widely
used in military and civilian applications due to their low
cost, ease of integration and modular design [1], [2], [3], [4],
[5]. UAVs formations are gradually replacing single UAV in
complex missions due to their greater endurance and ability
to handle complex missions compared to single UAV. The
key technology for UAVs formations to achieve complex
missions is formation cooperation control.

Currently researchers have studied more formation con-
trol for the case with complete communication links.
Leader-Follower [6],virtual structure [7], behavior-based [8],
Consensus-Based [9] and other formation strategies are
widely used for formation control with communication links.
[10] designed formation controllers based on second-order
kinematic models using feedback linearization as well as
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sliding mode compensators to design robust adaptive con-
trollers to deal with parameter uncertainties during formation
control while ensuring zero dynamic errors in the system.
In [11], Zhao et al. used model predictive control to achieve
formation control of rotorcraft UAVs by fully considering
multiple constraints in the unmanned formation flight pro-
cess. In [12], in order to expand the number of forma-
tions, a virtual structure-based control law was designed to
realize operational experiments of large-scale formations of
UAVs by a single operator. And Jonathan designed forma-
tion control strategy for inter-intelligent body damping in
order to eliminate the effect caused by inter-aircraft damp-
ing in the literature [13] and implemented hardware-in-the-
loop formation control simulation. To further eliminate the
interference of unmodeled dynamics for the system and
improve the formation tracking performance, [14] designed
neural adaptive sliding mode control controller to implement
formation control.

However, changes in the UAV formation mission envi-
ronment or mission conditions can cause damage or even
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unavailability of the communication link. Therefore, it is
important to study vision-based formation control. In the
past decade, there have been many vision-based formation
control studies [15], [16], [17], [18], [19], [20], [21]. How-
ever, in [15], [16], [17], and [18], the formation height
variation was neglected and only the formation control in
two-dimensional planes was studied, and the formation con-
trol for complex nonlinear models in three-dimensional space
was not considered enough. Although [19], [20] consider the
formation control problem in a 3D environment, formation
control in a perturbed environment has not been sufficiently
studied in [19] and [20]. In addition, [21] and [22] also
considered formation control in a 3D environment, but only
the formation of three UAVs was simulated and the control of
followers who could not observe the state of the pilot aircraft
was not sufficiently considered. Although the above work
has considered the UAV formation problem in vision-based
situations, the formation control problem for multiple UAVs
in complex environments has been less studied.

On the other hand, fixed-wing multi-UAVs need to achieve
formation control in a short period of time when performing
missions. In contrast, model predictive control(MPC) can
achieve optimal control in the predicted time domain and
has been widely used for formation control [23], [24], [25],
[26]. [23] used single-layer recurrent neural networks and
two-layer recurrent neural networks to achieve formation
control in ideal and perturbed environments,respectively.In
contrast, [24], [25] used neural dynamic optimization model
predictive control based on [23] to achieve formation control
for nonlinear models. [26] differs from the above methods in
that the state variables are constrained to a constant design
tube through dual time-scale neuro dynamic optimization,
aided by state feedback gain scheduling. However, all the
above strategies based on model predictive control to achieve
formation control have an explosive computational burden
with the increase of parameters as well as the prediction time
domain.

Inspired by the above work, the formation control problem
of multiple UAVs in a jammed environment and without
communication is studied. A distributed model predictive
control algorithm based on the backstepping control method
strategy is designed to ensure that the followers can follow
the virtual navigator to form a predetermined formation; and
an ant colony algorithm is used to reduce the solution time.
The main contributions are as follows:

1) Although the formation control problem of multiple
UAVs was studied in [6], [12], and [14], the state information
of UAVs can all be transmitted by a stable communication
link, and the formation control designed in this paper is able
to achieve formation control based on vision only.

2) Unlike [14], [23], [24], [25], [26] which use neural
networks to estimate model uncertainty or solve the control
signal, the paper uses the backstepping control method to
design the control law and uses ant colony algorithm to solve
it in the prediction time domain, which effectively reduces the
computational burden and solving time.

3) The formation control algorithms designed in [21] and
[22] all require the pilot to be within the follower’s field of
view, which implies that the state of the pilot is known. The
formation controller designed in this paper only needs to track
the state of the UAV in the neighborhood to achieve formation
control.

4) Compared with [21] and the authors’ previous work
[27], this paper achieves formation control of multiple UAVs
in complex environments with wind disturbances.

The rest of the paper is organized as follows. Section 2
establishes a stand-alone motion model of UAV, and the
neighborhood UAV state estimation model. In section 3,
we derive a three-dimensional error state model through the
stand-alone motion model and design the DMPC controller
and give the algorithm process. And then, we present the anal-
ysis process of the sufficient conditions for the convergence
of the single-machine error model and the stability of the
formation system. Section 4 conducts simulation and numer-
ical analysis of three examples through MATLAB. Finally,
in section 5, we draw conclusions and give suggestions for
future work.

II. PROBLEM MODELING
In order to introduce the UAV formation movement and mod-
eling process, we introduce three coordinate frames I,V i,Li,
and as the inertial coordinate frame,the follower velocity
frame of the UAV i, and the line of sight frame. The origin
of the follower velocity frame and the line of sight frame is
the mass point of the UAV. The relative relationship between
the coordinate frames is shown in Figure 1.

FIGURE 1. Coordinate frames.

A. SINGLE UAV MOTION MODEL
Assuming that there are Nv fixed-wing UAVs in the
formation, the dynamics between UAVs are decoupled, the
influence of the roll of the UAVs is not considered, and the
influence of the external wind effect is ignored. By consid-
ering vVii =

[
vi 0 0

]T as the follower velocity vector with
respect to the frame V i, we have

vIi = ṗi = CI
Viv

Vi
i
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=

 vi cos γi cosχivi cos γi sinχi
−vi sin γi

 (1)

where

CI
Vi =

 cos γi cosχi − sinχi sin γi cosχi
cos γi sinχi cosχi sin γi sinχi
− sin γi 0 cos γi


is the rotation matrix of I with respect to Vi, vi is the speed
of the i th follower UAV, and χi is the yaw angles of fol-
lower UAV, and γi is the pitch angle of follower UAV. pi =[
xi yi zi

]T is the position vector of the UAV in the inertial
coordinate frame.

By denoting DI vi as the velocity differential in inertial
frame, ωVii =

[
ωxi ωyi ωzi

]T as the angular velocity vector

in the follower velocity frame, aVii =
[
aVixi a

Vi
yi a

Vi
zi

]T
as the

acceleration vector in the follower velocity frame, we have
the following Coriolis equation:

DI vi =

 a
Vi
xi
aViyi
aVizi

 = DVivi + ω
Vi
i × vi

=

 v̇i0
0

+
ωxiωyi
ωzi

×
 vi0

0

 =
 v̇i
ωzivi
−ωyivi

 (2)

By denoting xi =
[
xi yi zi vi χi γi

]T
∈ R6 as the states

of followers, and by using (1) and (2), the motion equation of
follower can be express as followers:

ẋi =


ẋi
ẏi
żi
v̇i
χ̇i
γ̇i

 =


vi cos γi cosχi
vi cos γi sinχi
−vi sin γi

aVixi
a
Vi
zi/vi

−a
Vi
yi/vi


(3)

By considering ui =
[
aVixi a

Vi
yi a

Vi
zi

]T
∈ R3 as the input of

the system, we have the expression of the UAV state space as
follows:

ẋi (t) = f (xi (t) ,ui (t))

where f (·) is the corresponding nonlinear function.

B. NEIGHBORHOOD UAV STATE ESTIMOTION MODEL
To better describe the state estimation model, a schematic
diagram of the relative relationship between the UAVs is first
given, as shown in Figure 2.

By assuming l ij =
[
lij 0 0

]T as the vector of position
of UAVj with respect to line of sight frame Li, we have the
position vector of UAVj in the intertial frame

pj = pi + C
Vi
Li · l ij (4)

FIGURE 2. The relative kinematics of the leader-follower.

where CVi
Li =

 cos γij cosχij cos γij cosχij − sin γij
− sinχij cosχij 0

sin γij cosχij sin γij cosχij cos γij

.
By introducing 1t as sampling period, and the velocity of
UAVj at time k can be obtained from equation (4) as

v̂Ij (k)

=

 v
I
j1
(k)

vIj2 (k)
vIj3 (k)

 = pj (k +1t)− pj (k)

1t

= vIi (k)−

 lij (k) cos γij (k) cosχij (k)−lij (k) sinχij (k)
lij (k) sin γij (k) cosχij (k)

/1t

+

 lij (k +1t) cos γij (k +1t) cosχij (k +1t)−lij (k +1t) sinχij (k +1t)
lij (k +1t) sin γij (k +1t) cosχij (k +1t)

/1t

(5)

Then, the yaw angle of the UAVj can be expressed as

χ̂j = arctan

(
vIj2 (k)

vIj1 (k)

)
(6)

According to equation (6) and equation (7), the UAV pitch
angle can be obtained as

γ̂j = arc tan

(
vIj3 (k)

vIj2 (k)
· sin χ̂j

)
(7)

According to equations (5), (6), (7) and (8), the UAVj state
vector is obtained as

xj (k) =
[
xj (k) yj (k) zj (k) vj (k) χj (k) γj (k)

]T

=



xi (k)+ lij (k) cos γij (k) cosχij (k)
yi (k)− lij (k) sinχij (k)

zi (k)+ lij (k) sin γij (k) cosχij (k)∥∥∥vIj (k)∥∥∥
arctan

(
vIj2 (

k)

vIj1 (
k)

)
arc tan

(
vIj3 (

k)

vIj2 (
k)
· sin χ̂j

)


(8)
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The above model is the basic model for solving the UAV
formation control, and the basic relationship between neigh-
boring UAVs is constructed by the establishment of the UAV
state estimation model. However, in practical application, it is
also necessary to consider the error state relationship between
UAVs and the design of the controller. Based on this, the
error state space will be modeled and the controller design
of the formation error system will be carried out in Section 2,
in order to obtain the effective control of UAV formation in a
limited time.

III. DISTRIBUTED MODEL PREDICTIVE CONTROLLER
DESIGN
To address the problem that there is no accurate modeling of
the three-dimensional spatial UAV formation error model in
the existing literature, this chapter first establishes the UAV
formation error model based on the UAV state estimation
model in the previous chapter. After that, by introducing the
error model, the design of the model prediction controller is
carried out and the cost function based on the error model is
given.

Without loss of generality, we give two assumptions of the
algorithm as follows:
Assumption 1: Only the leader can obtain the reference

line. Follower UAVs can identify other UAV numbers, and
obtain relative information of UAVs in the neighborhood
without delay according to the information flow transmission
topology.
Assumption 2: The algorithm only considers the effect

of wind speed on the position of the UAV and does not
consider the sensor error. And the wind speed is assumed to
be bounded.

A. STATE ERROR MODEL
In order to better realize formation control, this paper firstly
establishes the UAV error state model in three-dimensional.

By assuming xr =
[
xr yr zr vr χr γr

]T
∈ R6 as

the reference state of UAVi, the error between UAVi and its
reference state in the frame Vi can be described as follows:

ėir = g (eir ,ui,w)

Linearization leads to

ėir = Aeir + Bui +Hw (9)

where, as shown at the bottom of the page. w =[
w1 w2 w3

]T is the bounded systematic error vector, i.e.,
|w| ≤ α1, |ẇ| ≤ α2, the exact form of which will be shown
in the following.

B. FORMATION CONTROL DESIGN
The DMPC-based control design can be described as, at time
k , the UAVi solves the optimal control problem with the pre-
dicted number of steps starting from the initial error eir (k).
Eq. (9) is discretized and described as

ėir = Ãeir + B̃ui + H̃w (10)

where

Ã = eAT , B̃ =
(∫ T

0
eAtdt

)
B, H̃ =

(∫ T

0
eAtdt

)
H,

where T is the sampling time and the value will be given in
the simulation section.

In the UAV formation, we design different cost function for
leader and followers,which can be expressed as follows:

1) cost function of leader as (11), shown at the bottom of
the next page

2) cost function of followers as (12), shown at the bottom
of the next page
where ‖x‖P =

(
xTPx

)1/2 represents the quadratic form of
the vector.Nf represents the set of followers.Ni represents the
set of UAVs in the neighborhood of the UAVi. eir (k + l |k )
indicates the error state which the UAVi starts from time k

A =
[
A11 A12
A13 A14

]

=


0 0 0 cos γr cosχr −vr cos γr sinχr −vr sin γr cosχr
0 0 0 cos γr sinχr vr cos γr cosχr −vr sin γr sinχr
0 0 0 sin γr 0 vr cos γr
0 0 0 0 0 0
0 0 0 −1

/
v2r 0 0

0 0 0 1
/
v2r 0 0



B =
[
B11
B21

]
=


0 0 0
0 0 0
0 0 0
1 0 0
0 1

/
vr 0

0 0 −1
/
vr

 ,

H =
[
H11
H21

]
=

[
I3
03

]
,
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and applies the control sequence ui (k + l |k ) in turn to obtain
within the number of predicted steps. X i is the set of state
constraints of UAV iwhich can be expressed as follows:X i =

{xi (k) ||vi (k)| ≤ vmax, |χi (k)| ≤ χmax, |γi (k)| ≤ γmax }.
U i is the input constraint set of the system,which can be

described as follows:

U i

=

ui (k)
∣∣∣∣∣∣
‖aix‖≤axmax,

∥∥aiy∥∥≤aymax, ‖aiz‖ ≤ azmax,

‖1aix‖ ≤ 1axmax,
∥∥1aiy∥∥≤1aymax,

‖1aiz‖ ≤ 1azmax


where

[
axmax aymax azmax

]
∈ R3 indicates the max-

imum value of control input in three directions and[
1aix 1aiy 1aiz

]
∈ R3 indicates the maximum value of

control input change in three directions. The weight matrix
satisfies P i > 0,Qi > 0,Ri > 0,Gi > 0.

C. ALGORITHM FLOW
We use leader-follower strategy to realize formation control
and there is a fixed information flow topology in the forma-
tion. In order to distinguish the leader from other UAV in the
formation, we use UAV1 to represent the leader. The basic
principle of the algorithm is shown in Figure 3.

The process of DMPC can be described as follows:
Step 1: Bind UAV number and priority. Bind the reference

to UAV1.
Step 2: At t = k , the UAV in formation are in a constant

cruise state. Determine the UAV in the neighborhood, and
measure the relative state quantities between the UAV. For the

FIGURE 3. Schematic diagram of algorithm principle.

follower UAV: take the current state as the initial state of the
UAV, and take the measured state quantity of the UAV in the
neighborhood as the reference state quantity. Calculate the
current time error as the initial state of rolling time domain
planning, which can be described as follows eir (k |k ) =
eir (t = k).
Step 3: Calculate the optimal input sequenceU∗i (k)which

can be described as:
U∗i (k) =

{
u∗i (k |k ) , u

∗
i (k+1 |k ) , . . . , u

∗
i (k + N − 1 |k )

}
according to (11) or (12). The first item of the optimal input
sequence u∗i (k |k ) is used as the input of the UAV at t = k+1.

Step 4: At t = k + 1, based on the new error state
eir (t = k + 1) of the formation, repeat Step 2.

D. SYSTEM STABILITY ANALYSIS
In the process of solving the UAV formation problem, the
stability of the formation plays an important role, which not
only reflects the performance of the controller, but also is

min
uti

Jl (k) = min
uti

N−1∑
l1=0

(
‖eir (k + l |k )‖Pi +

∥∥ui (k + l |k )− uref (k + l |k )∥∥Ri)

+

N−2∑
l2=0

‖1ui (k + l |k )‖Qi + ‖eir (k + N |k )‖Gi

s.t. ẋi (k) = f (xi (k) ,ui (k)) , k = k0, k0 + 1, . . . , k0 + N − 1

ėir (t) = g (eir (t) , ũi (t))

xi (k) ∈ X i

ui (k) ∈ U i (11)

min
uti

Jf _if (k) = min
uti

N−1∑
l1=0

∑
j∈Nif

∥∥eij (k + l |k )∥∥Pi +∑
j∈Nif

∥∥ui (k + l |k )− uj (k + l |k )∥∥Ri


+

N−2∑
l2=0

‖1ui (k + l |k )‖Qi +
∑
j∈Ni

∥∥eij (k + N |k )∥∥Gi
s.t. ẋi (k) = f (xi (k) ,ui (k)) , k = k0, k0 + 1, . . . , k0 + N − 1

ėir (t)=g (eir (t) , ũi (t))

xi (k) ∈ X i

ui (k) ∈ U i (12)
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an important guarantee for the UAV formation system to
achieve the expected formation. The main idea of stability
analysis is to find a suitable Lyapunov function and prove its
degressivity.

According to the above ideas, in the process of cluster
stability proof, the following two problems need to be con-
sidered: one is the stability of the error state of the single-
machine system, and the coefficient relationship is given to
ensure the stability of the single-machine system; the sec-
ond is the stability of the formation system. In the follow-
ing part, we first give and prove sufficient conditions for
single-machine error stability. Then the cost function is used
as the Lyapunov function of the system to prove the stability
of the formation system.
Theorem 1: There exists k1, k2 ∈ R, k1, k2 > 0, such that

when the virtual input satisfies

ui = B−121

−AT12 · e1 + A−112 ·

(
−H · ẇ− k1 · A12 · e2
−k1 ·H · w

)
−A22 · e2 − k2 · e2


(13)

the system (9) is asymptotically stable, where:

e1 =
[
ex ey ez

]T
, e1 =

[
ev eχ eγ

]T
.

Proof: From (9) we have[
ė1
ė2

]
=

[
03 A12
03 A22

] [
e1
e2

]
+

[
03
B21

]
ui +

[
H11
03

]
w

We can rewrite the above equation in the following form:[
ė1
ė2

]
=

[
A12 · e2 +H11 · w
A22 · e2 + B22 · ui

]
(14)

By assuming e1d as the expected value of e1, we can
describe the error δ1 as follows:

δ1 = e1d − e1 (15)

By taking the time derivative of the above equation. one
can get:

δ̇1 = ė1d − ė1 (16)

Choose the Lyapunov function as

V1 =
1
2
δT1 · δ1 (17)

By considering (14) and (17), we have

V̇1 = δT1 · δ̇1
= δT1 · (ė1d − A12 · e2 −H11 · w) (18)

Since V̇1 = δ
T
1 · δ̇1 < 0, we have:

δ̇1 = ė1d − A12 · e2 −H11 · w→−k1 · e1

where k1 > 0, By assuming e2d as the expected value of e2,
we have

e2d = A−112 (ė1d −H11 · w+ k1 · δ1) (19)

The error δ2 for e2 can be expressed as:

δ2 = e2d − e2 (20)

Substituting (19) and (20) into (18),we have

V̇1 = −k1 · δT1 · δ1 + δ
T
1 · A12 · δ2 (21)

By substituting (14), (15) and (19) into (20), and taking the
time derivative of it, we have

δ̇2 = A−112 ·

(
ë1d −H11 · ẇ+ k1 · e1d−
k1 · A12 · e2 − k1 ·H11 · w

)
−A22 · e2 − B22 · ui (22)

Let the Lyapunov function with δ2 be

V2 = V1 +
1
2
δT2 · δ2 (23)

By taking the time derivative of (23) and substituting (18)
into it, we have

V̇2 = −k1 · δT1 · δ1 +
(
δT1 · A12 + δ̇

T
2

)
· δ2 (24)

When taking δT1 · A12 + δ̇
T
2 = −k2 · δ

T
2 , where k2 > 0,

(24) less than 0 holds constant, and the system input can be
found by substituting into equation (21) as (25), shown at the
bottom of the page.

By substituting (25) into (22), we have

δ̇2 = −AT12 · δ1 − k2 · δ2 (26)

By taking the time derivative of (15) and substitut-
ing (19)and (20) into it, we have

δ̇1 = −k1 · δ1 + A12 · δ2 (27)

Combining equation (24) and equation (25),we have[
δ̇1
δ̇2

]
=

[
−k1 · I A12
−AT12 −k2 · I

] [
δ1
δ2

]
(28)

By assuming Ã =
[
−k1 · I A12
−AT12 −k2 · I

]
, δ =

[
δ1 δ2

]T ,
we can get:

δ̇ = Ãδ (29)

According to equation (28), the system eigenvalue λi, i ∈
{1, 2, .., 6} is obtained as satisfying:

6∑
i=1

λi = −3 · (k1 + k2) ,
6∏
i=1

λi = (k1k2)3 + |A12|2 (30)

ui = B−121

[
AT12 · δ1 + A

−1
12 ·

(
ë1d −H11 · ẇ+ k1 · ė1d−
k1 · A12 · e2 − k1 ·H11 · w

)
− A22 · e2 + k2 · δ2

]
(25)
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According to (30), any two eigenvalues of the system
have the same sign. And according to formula (9),(29) and
Gerschgorin’s theorem, the system eigenvalue λi < 0, i ∈
{1, 2, .., 6} holds constantly when k1, k2 > 0 is satisfied.
Considering that for the system (14), its ideal reference

satisfies: e1d = ė1d = 0, e2d = ė2d = 0, substituting into
(25),the simplification leads to the input as

ui=B−121

−AT12 · e1 + A−112 ·

(
−H11 · ẇ− k1 · A12 · e2
−k1 ·H11 · w

)
−A22 · e2 − k2 · e2


(31)

Theorem 1 gives a sufficient condition when the single
machine error system is stable, and Theorem II is given below
to prove that when the perturbation is bounded, using the
cost function as the system Lyapunov function can make the
system stable.
Theorem 2: If the UAV formation system is consistently

boundedly convergent, then there exist constants M1 =

h1 (α1, α2) ,M2 = h2 (α1, α2) independent of the moment k
such that cost function satisfies (32) and (33) when k →∞.∑

i∈Nv

Ji (k + 1)−
∑
i∈Nv

Ji (k) < M1 (32)

∑
i∈Nv

Ji (k) < M2 (33)

Proof: (1) Proof of equation (30)
Solving the differential equation of (29), we have[

δ1 (k)
δ2 (k)

]
= L−1diag

{
eλik

}
L
[
δ1 (0)
δ2 (0)

]
(34)

where:[
−k1 · I A12
−AT12 −k2 · I

]
= L−1diag {λi}L, λi, i ∈ {1, 2, . . . , 6}

is the eigenvalue of the system (29) and L is the matrix
of eigenvector sets corresponding to the eigenvalues. From
Theorem 1, the system eigenvalue λi < 0, i ∈ {1, 2, . . . , 6}
holds, so when k →∞, the following equation holds

lim
k→∞

[
δ1 (k)
δ2 (k)

]
= lim

k→∞

(
L−1diag

{
eλik

}
L
[
δ1 (0)
δ2 (0)

])
= 06×1 (35)

According to (15), (20) and e1d = ė1d = 0, e2d = ė2d =
0, equations (11) and (12) can be transformed into

min
uti

Jl_i1 (k)

= min
uti

N−1∑
l1=0

(
‖δi (k + l |k )‖Pi + ‖ui (k + l |k )‖Ri

)
+

N−2∑
l2=0

‖1ui (k + l |k )‖Qi + ‖δi (k + N |k )‖Gi (36)

min
uti

Jf _i (k)

= min
uti

N−1∑
l1=0

∑
j∈Ni

∥∥δij (k + l |k )∥∥Pi + ‖ui (k + l |k )‖Ri


+

N−2∑
l2=0

‖1ui (k + l |k )‖Qi +
∑
j∈Ni

∥∥δij (k + N |k )∥∥Gi
(37)

Firstly, equation (36) is solved and the sequence of optimal
solutions of this equation is:

Ũ i (k) =
{
ũ∗i (k + l |k )

}
, l = 0, ..,N − 1.

The optimal state trajectory of the corresponding system is
as well as the calculated error trajectory as

X i (k) =
{
x∗i (k + l |k )

}
, l = 0, ..,N − 1

δ∗i (k) =
{
δ∗i (k + l |k )

}
, l = 0, ..,N − 1

At moment k + 1, the solution of the construction prob-
lem (36) is

ũi (k + l |k + 1 )

=


ũ∗i (k + l |k ) ,

l = 0, 1, 2, . . .N − 2
Cδi (k + N |k )+ Dw̄ (k + N |k ) , l = N − 1

where:

C = B−121

[
AT12 − k1A12 − (k1 + k2 + A22)

]
,

δi =
[
δ1 δ2

]T
,

D = B−121

[
−A−112 H −k1A−112 H

]
, w̄ =

[
ẇ w

]T
.

Then, at moment k + 1, its corresponding state sequence as
well as the error sequence are

X i (k + 1) = {xi (k + 1+ l |k )} , l = 1, . . . ,N

=

{
x∗i (k + 2 |k ) , x∗i (k + 3 |k ) , . . . ,
x∗i (k + N |k ) , xi (k + N |k + 1 )

}
δi (k + 1) = {δi (k + 1+ l |k )} , l = 0, . . . ,N − 1

=

{
δi (k + 2 |k ) , δi (k + 2 |k ) , . . . ,
δi (k + N |k ) , δi (k + N |k + 1 )

}

From the cost functions of the two moments, we have

Jl_i1 (k + 1)− J∗l_i1 (k)

= ‖δi (k + N |k )‖Pi + ‖ui (k + N |k )‖Ri
+ ‖1ui (k + N − 1 |k )‖Qi
+ ‖δi (k + N |k + 1 )‖Gi − ‖δi (k |k )‖Pi
− ‖ui (k |k )‖Ri − ‖1ui (k |k )‖Qi

< ‖δi (k + N |k )‖Pi+ÃGiÃ+C(Ri+Qi)C
+ ‖w̄ (k + N |k )‖D(Ri−Qi)D
+ ‖w̄ (k + N − 1 |k )‖DQiD

Let M1 = ‖α‖D(Ri−Qi)D + ‖α‖DQiD + εi, where εi is
the error term that can be adjusted according to the system
accuracy needs, independent of time. So we have

J∗l_i1 (k + 1)− J∗l_i1 (k) ≤ Jl_i1 (k + 1)− J∗l_i1 (k) < Mi1
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So at any moment, the system error state satisfies

‖δi (k)‖Pi < εi

According to the above equation, when M1 =
∑
i∈Nv

Mi1 at

any moment the system error and the cost function satisfy∑
i∈Nv

‖δi (k)‖Pi <
∑
i∈Nv

εi∑
i∈Nv

Ji (k + 1)−
∑
i∈Nv

Ji (k) < M1

(2) Proof of equation (37)
From the proof (1), we have

ui (k + l |k ) = Cδi (k + l |k )+ Dw̄ (k + l |k )

is a feasible solution of (36), then construct a feasible solution
(38) in the predicted time domain N .

ui (k + l |k ) = Cδi (k + l |k )+ Dw̄ (k + l |k ) ,

l = 1, . . . ,N − 1 (38)

Then the cost function J∗l_i1 (k) corresponding to the opti-
mal solution sequence satisfies

J∗l_i1 (k) ≤ Jl_i1 (k) (39)

Also for

Jl_i1 (k) = δ
T (k |k ) P̄ iδ (k |k )+ δT (k |k ) R̄iW (k |k )

+WT (k |k ) F̄iW (k |k )+1δT (k |k )C

⊗ Ḡi ⊗ C1δ (k |k )

+1δT (k |k )C ⊗ G̃i ⊗ D1W (k |k )

+1W (k |k )D⊗
_

Gi ⊗ D1W (k |k )

where, as shown at the bottom of the next page. Let Mi2 =
N−1∑
l=0
‖α‖DTi FiDi+D

T
i GiDi

+ εi, where εi is a constant error term,

independent of time. We have

J∗l_i1 (k) ≤ Jl_i1 (k) < Mi2

According to the above equation, when M2 =
∑
i∈Nv

Mi2 ,

we have ∑
i∈Nv

Ji (k) < M2

So the UAV error state system is consistently boundedly
convergent.

IV. SIMULATION
In this section, the UAV formation is simulated. The simula-
tion parameters are set as shown in Tables 1 and 2 below, and
the initial states of the UAVs under the inertial system and the
expected relative positions of each UAV to UAV1 are given
in Table 2.

The desired formation is to form a diamond shape with
distance units in m and velocity units in m/s. The number of
simulations is 150 and the sampling time is 0.1 s. Assuming

TABLE 1. Simulation parameters table.

TABLE 2. Initial condition and desired relative position of followers.

that according to the literature, for the problem of formation
flight of UAVs in three dimensions, external disturbances can
be assumed to have the same form as in that literature [28].

w =

 0.7 sin (0.5t)m/s
0.6 sin (0.7t)m/s
0.9 sin (0.6t)m/s


The UAV relative information transfer matrix L is

L =


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0


where an element value of 1 indicates a relative information
interaction. To verify the superiority of the algorithms in
this paper in accomplishing formation control and task reten-
tion, two algorithms are used for comparative simulation.
Algorithm I, which relies only on inverse control to achieve
formation and task retention (i.e., only equation (31) is used
as an input to the system); and Algorithm II, which uses the
complete algorithm of this paper.

A. PARAMETER COMPARISON
In order to compare the cost function and the convergence rate
of the formation at different values of k1 and k2, the values of
the cost function and the error state plots are first given for k1
and k2 at different values.

From Fig.4 we can see that the cost function of the system
has a great difference when k1 and k2 are taken at different
values. In Fig. 5 and Fig. 6, the position errors as well
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as, k1 and k2 in Case4 are able to ensure that the position
errors converge as soon as possible, but the errors in velocity,
yaw angle and pitch angle converge more slowly. On the
contrary, k1 and k2 in Case1 can ensure faster convergence
in velocity, yaw angle and pitch angle, but slower conver-
gence in position error. So using the appropriate k1 and k2
can make the system converge quickly with a small cost
function.

B. STRAIGHT FLIGHT
In this section, the formation control effects of the two algo-
rithms are simulated for comparison at uniform linear flight.
The simulation results are shown in Fig. 7 to Fig. 12.

Fig.7 and Fig.8 shows the position error, velocity error, and
angle error of the trajectory-tracking UAV. It is obvious that
there is a control time delay in the Backstepping Control,
which leads to a slow convergence of the error and serious

P̄ i =



P i 0 0 · · · 0

0
. . . 0 · · ·

...
... 0

(
eÃ(k+l)

)T
P ieÃ(k+l) 0 0

0
... 0

. . . 0

0 0 · · · 0
(
eÃ(k+N−1)

)T
P ieÃ(k+N−1)



R̄i =



C iRiD 0 0 · · · 0

0
. . . 0 · · ·

...
... 0

(
eÃ(k+l)

)T
C iRiD 0 0

0
... 0

. . . 0

0 0 · · · 0
(
eÃ(k+N−1)

)T
C iRiD


,

F̄i =



DTi FiDi 0 0 · · · 0

0
. . . 0 · · ·

...
... 0 DTi FiDi 0 0

0
... 0

. . . 0
0 0 · · · 0 DTi FiDi


,

Ḡi =



Gi 0 0 · · · 0

0
. . . 0 · · ·

...
... 0

(
eÃ(k+l)

)T
GieÃ(k+l) 0 0

0
... 0

. . . 0

0 0 · · · 0
(
eÃ(k+N−1)

)T
GieÃ(k+N−1)


,

G̃i =



Gi 0 0 · · · 0

0
. . . 0 · · ·

...
... 0

(
eÃ(k+l)

)T
Gi 0 0

0
... 0

. . . 0

0 0 · · · 0
(
eÃ(k+N−1)

)T
Gi


,

_

Gi = G̃i =



Gi 0 0 · · · 0

0
. . . 0 · · ·

...
... 0 Gi 0 0

0
... 0

. . . 0
0 0 · · · 0 Gi


,

126502 VOLUME 10, 2022



Q. Chen et al.: UAV Formation Control Under Communication Constraints Based on Distributed MPC

TABLE 3. Parameters values.

FIGURE 4. Cost function of different parameters.

FIGURE 5. Position error.

FIGURE 6. Velocity, angle error.

jitter during tracking. Compared with the Backstepping Con-
trol, the algorithm proposed in this paper can effectively
shorten the convergence time and reduce the tracking error,
which can be attributed to the continuous optimization of
the coefficients in the Backstepping Control by the MPC.
As seen in the Fig.9, compared with the Backstepping Con-
trol, the algorithm in this paper can effectively achieve the
convergence of the system in a shorter time and the input
sequence produces less fluctuation. From Fig.10, we can see
the algorithm proposed in the paper is able to achieve con-
vergence of the system error while ensuring fast convergence

FIGURE 7. Position error.

FIGURE 8. Velocity, angle error.

FIGURE 9. Control input.

of the system. Fig.11 shows the flight trajectory of UAV in
3D space under the action of the algorithm in this paper, and
the pentagram represents the virtual pilot. From the trajectory,
the four UAVs can achieve a reduced inter-formation spacing,
realize diamond-shaped formation flight, and have a better
formation maintenance effect. In order to further compare
the control effects of the two algorithms for formation UAVs,
a variable radius formation flight is set. The solution time of
each UAV shown in Fig.12 is less than the sampling time of
0.1s.

C. VARIABLE TURNING RADIUS FLIGHT
In this section, the formation control of the two algorithms is
simulated for comparison during variable radius curve flight.
The simulation results are shown in Fig.13 to Fig.18.
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FIGURE 10. Costfunction of UAV.

FIGURE 11. Formation flight trajectory.

FIGURE 12. Solution time.

Fig.13 and Fig.14 shows the position tracking errors of the
two algorithms during the flight of the variable radius curve.
It can be seen that the inverse control produces severe jitter
for the tracking error of the trajectory and it is difficult to
converge to the desired value in the same time. The algorithm
in this paper, on the other hand, can effectively achieve track-
ing of trajectories and effectively reduce the error fluctuations
to achieve tracking of complex trajectories. Fig.15 shows the
input curve in the tracking state of complex curve. In contrast,
the inverse control continues to fluctuate and change drasti-
cally, and the peak of fluctuation is large. The algorithm in
this paper is able to achieve the tracking of complex trajecto-
ries after the initial fluctuations while quickly achieving the

FIGURE 13. Position error.

FIGURE 14. Velocity, angle error.

FIGURE 15. Control Input.

convergence of errors, reducing the input peaks as well as
reducing the fluctuations. As can be seen from Fig.16, the
algorithm proposed in the paper still ensures faster formation
control at smaller values of the cost function under complex
tracking paths. Fig.17 shows the results of complex trajectory
tracking in UAV 3D space under the action of the algorithm in
this paper. The pentagram represents the virtual pilot and the
circle indicates the follow random. From the trajectory, even
in the complex situation, four UAVs can effectively realize
the formation and achieve diamond-shaped formation flight.
As can be seen from Fig.18, the solution time remains smaller
than the sampling time in complex path tracking.

D. MULTI UAVs
To further verify the effectiveness of the algorithm, this
section sets up the simulation of the algorithm for forma-
tion control of multiple UAVs in complex paths. The initial
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FIGURE 16. Costfunction of UAV.

TABLE 4. Initial condition and desired relative position of followers.

FIGURE 17. Formation flight trajectory.

conditions of the followers have as well as the desired posi-
tion settings are shown in Table 4.

And it can be seen from Fig.19 and Fig.20 that the position,
velocity and angle errors of the follower UAV can converge
to the desired value in a short time, which verifies the fast
performance of the algorithm. Meanwhile, the input of the
system can converge quickly after the fluctuation in the early
stage (see in Fig.21). In Fig.22, the pentagram represents the
pilot aircraft, and the diamond and circle of the same color
represent different UAVs. From this figure, it can be seen that
the algorithm of this paper can effectively achieve the control

FIGURE 18. Solution time.

FIGURE 19. Position error.

FIGURE 20. Velocity, angle error.

FIGURE 21. Control input.

of large-scale formation UAVs in complex 3D environment.
As we can see in Fig.23, the algorithm’s solution time also
satisfies the system requirements in a multi-UAV formation.
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FIGURE 22. Formation flight trajectory.

FIGURE 23. Solution time.

However, to make the formation converge to the ideal value
as soon as possible, the algorithm has a large amplitude for
some airframes in the early stages and the solution time also
has sampling moments much larger than the average solution
time, which will be implemented for improvement in the next
paper.

V. CONCLUSION
In this paper, the distributed model predictive control algo-
rithm is proposed for the formation control of formation
UAVs in three-dimensional space using relative information.
Firstly, a neighboring UAV state estimation model is estab-
lished, an error model of UAV formation in a 3D environment
is established according to the neighboring state estimation
model, and a distributedmodel predictive control algorithm is
proposed according to the error estimation model. This paper
establishes corresponding cost functions for UAVs in differ-
ent situations. While giving sufficient conditions for system
stability, the stability of UAV formation is proved. The simu-
lation results show that the algorithm can effectively achieve
four UAVs’ formation control and path tracking under differ-
ent situations. Finally, to further verify the effectiveness of
the algorithm for large-scale UAV cluster control, formation
control simulations of eight UAVs in a perturbed environment
are conducted, and the results verify the effectiveness of the
algorithm. However, when implementing formation control,
only the convergence of the formation is considered as soon
as possible, resulting in a situation where the input amplitude

is large. Future work will focus on improving the algorithm’s
ability to be used in practice and resist complex perturbations.
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