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ABSTRACT In the airline industry, the Revenue and Pricing teams generally spend a considerable amount
of time analysing and interpreting the actions of their competitors. Most of the time the analysts have to
use their analytical skills to create ad-hoc methods to interpret or find patterns in the fares. In this field,
it is key to automate the process, avoid human errors, and add new features that provide accurate fares.
Considering this, a gene expression programming algorithm is proposed to carry out this process, returning
an interpretable rule set which acts as a recommender system to ease the daunting process done by the
pricing teams manually. The proposal was applied to a real scenario with the information provided by the
Air Canada airline for five months in Canadian markets. The experimental analysis revealed, by means
of non-parametric statistical tests, that the proposed gene expression programming algorithm was key to
getting the appropriate features and, hence, accurate and highly interpretable results. The proposal obtained
extremely accurate results (around 96% in both accuracy and F1 measure) with a reduction of around 50%
in the rule set in many cases.

INDEX TERMS Gene expression, airline fare war, classification, recommender systems.

I. INTRODUCTION
In recent years, there is a price war not only in airlines but
also in other kind of industries and well-known companies
such as Amazon [4] and Walmart [16]. In this regard, data
mining (DM) techniques have been considered to provide
the right prices according to their competitors, what is called
pricing intelligence or competitive monitoring, which refers
to the awareness of market-level pricing intricacies and the
impact on business [4]. Pricing intelligence and the use of DM
techniques are of special importance in the airline industry
since highly interpretable rules can be used to implement
automatic processes that monitor and obtain the right descrip-
tion of what is happening on the market landscape daily.
Such descriptions may allow to improve any pricing strategy
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and minimize the loss of revenue due to the actions of their
competitors [42].

When talking about the airline industry, pricing refers to
the process of determining the fare classes, along with dif-
ferent products, services and restrictions in an origin and a
destination (O-D) market. Each price point released to the
public is attached to a specific fare class which is identified by
one-letter fare codes depending on the airline. To earn money,
the airlines offer tickets in different fare classes for every
flight, but what is not known by passengers is the fact that
every class (we usually consider it as a service class: econ-
omy, premium, business, and first) has also a subdivision, and
this subdivision varies from airline to airline. This unknown
structure of the fare classes is based on both service amenities
and fare restrictions [27].

The almost universal rapid growth of new low-fare air-
lines with less restricted fare classes in the early 2000s,
along with the response of legacy carriers to match those
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fare classes led to an intensive war of prices which has
become the norm of the industry [27]. Several times a
day, airlines must classify the fares of other airlines into
their fare classes, and this process is the key to maintain-
ing the market’s competitiveness, and protecting their rev-
enue [15]. Thus, the Revenue and Pricing teams expend a
considerable amount of time analyzing and trying to inter-
pret the actions of their competitors, trends and patterns.
This process is extremely complex as the number of restric-
tions, price points, and fares per fare class on the market is
high. As a result, a partial understanding of the real actions
taken by other airlines might be obtained, meaning useless
information.

Nowadays, there is an important lack of commercial frame-
works that provide automatic methodologies for pricing
tasks. It is therefore necessary a new methodology able to
automate pricing analysis, avoid human errors, add new fea-
tures that provide accurate fares, and return an interpretable
rule set that acts as a recommender system to ease the labour
of the Pricing teams. Considering this, a gene expression
programming (GEP) algorithm [11], [47] is proposed. GEP
has been applied to many real-world applications [20], [37],
[47], and it presents simplicity in the encoding, and ver-
satility to explore huge search spaces. The propsoed GEP
algorithm works as a feature learning algorithm that pro-
duces features (metrics) usually considered by the Pric-
ing teams in their analyses: mean, lowest fare file, mode,
standard deviation. New datasets are therefore formed to
improve the predictive power of well-known classification
algorithms without increasing the number of rules in the
models. The experimental results carried out on 18 algo-
rithms revealed statistical differences in terms of accuracy,
F1 measure and interpretability when the proposed gene
expression programming algorithm was applied. Last but not
least, it is important to highlight that the proposed method-
ology was specifically designed to the airline industry as
a recommender for the Pricing teams. Real data provided
by Air Canada were considered to obtain significant (real)
rules.

The novelty of this work is described as follows:
• We propose a gene expression programming algorithm
to mimic a feature learning process, and to modify the
fares as pricing teams do in a daily basis to find signifi-
cant rules.

• We propose an automated methodology for the extrac-
tion of rules to obtain high interpretability when themar-
ket landscape changes due to the release of public fares
by an airline. Additionally, the proposed automation of
existingmethodologies to provide the right fares reduces
the human errors.

This paper is organized as follows: Section II briefly
reviews the related background works. Section III shows
the methodology of our study. Section IV introduces the
performance measures, presents our experimental study and
the discovered rules. Finally, section V summarizes the main
conclusions and future research.

II. BACKGROUND
This section briefly presents reviews of the most important
works related to rules interpretation and some of the most
notable pricing wars work in the airline industry in recent
years.

A. HIGHLY INTERPRETABLE ALGORITHMS
Classification with rule-based systems comes with two
contradictory requirements in the obtained model [7]: inter-
pretability and accuracy. Obtaining high degrees of inter-
pretability and accuracy is a contradictory purpose and,
in practice, one of the two properties prevails over the other.
The interpretability is usually denoted as the capability to
represent the behaviour of the real system in an understand-
able way. The accuracy is the capability on how well the
system can guess the value of the predicted attribute for
new data. To find the best trade-off between them [22] is an
optimization problem that is very difficult to solve efficiently.
According to the applicability domain [35], interpretability
will be preferred to accuracy when the goal is to reveal hidden
patterns in the data and act as a part of positive feedback loop
back to the domain experts. The experts can indeed learn new
dependencies and correlations from those models that can be
easily interpreted. High interpretable models have been con-
sidered for many different tasks. For example, authors in [39]
proposed a model that revealed the reasons why the drug
would or would not work in specific cases to be much more
meaningful and enable the experts to design better therapeutic
drugs in the future. Bhargava et al. [5] proposed a methodol-
ogy to detect malicious executable programs by predicting the
outliers of the threat datasets. School failure has also been a
focus of attention of some researchers [25]. As for themedical
domain, many different authors have considered the use of
high interpretable models on different diseases: metabolic
syndrome [46], rheumatoid arthritis [8], diabetes [44], and
breast cancer [3], among others. Additionally, some other
authors [43] worked on the problem of face detection, being
able to process images extremely fast and achieving high
detection rates through simple and interpretable models.
Therefore, when the goal is to obtain high interpretabil-
ity, rule-based algorithms (Ridor [2], JRip [9], PART [12],
OneR [17]) and decision tree algorithms (JCDT [1], sim-
pleCART [6], BFTree [13], Decision Stump [21], J48 Con-
solidated [30], C4.5 [36], LMT [38], J48 Graft [41]) and
associative classification algorithms (CBA [23], FOIL [32],
PRM [33], FOIL2 [34], CPAR [45]) are usually considered.

B. PRICING WAR INTERPRETATION MODELS
A price war can be defined as a situation in which different
companies compete by reducing prices. Airlines live in a
constant price war and, to compete with other carriers, each
airline must develop its monitoring and strategic method-
ologies to understand the actions that are happening on the
market landscape. In general, airlines focus their analysis on
price movement rather than an understanding of the rules to
interpret the other carrier actions.
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FIGURE 1. Proposed workflow for the extraction of highly interpretable rules.

Time series analysis has been the main technique used
in this regard. Pitfield et al. [31] proposed an analysis of
the pricing behaviour of competitive low-cost carriers in
Europe. Pets and Rietveld [29] presented a methodology to
analyze the pricing behaviour for the London-Paris market,
considering Easy Jet and Ryan in the analysis. However, the
use of time series analysis in pricing war may imply a low
understanding of the insights, mainly due to the number of
restrictions that can appear on the fares. In fact, time series
analysis is a specific technique to show the price movement
through a time period, but this technique lacks the ability to
identify other important characteristics in the fares such as the
routing number, advance purchase, between others. Hence,
some authors have considered the use of different data mining
techniques that improve the usefulness of the analysis. In this
regard,Wolfhart et al. [42] developed amethodology to group
flights for which the price series present similar behaviour.
Haris et al. [15] proposed the use of different methods to
predict trends to perform accurate decisions.

With all the above into consideration, it is important to
highlight that, to the best of our knowledge, no approach
provides a set of rules to understand the market behaviour.
All the existing proposals act as black-box methodologies,
and their final goal is to decide the action to take on prices
accurately.

III. METHOD
The section describes the workflow proposed in our method-
ology (see Figure 1). This workflow includes five different
steps that are described in depth below: gathering and data
preprocessing, feature learning, classification and rules inter-
pretation. All these steps are described below except for the
rule interpretation, which is considered as a study case on real
data in Section IV.

A. DATA GATHERING & PREPROCESSING
This first stage automatically applies a fare quotes process to
gather the fares from a data base for all available historical
public fares. In this stage, data preprocessing is required as
most of the airlines present their fares in text format. This
process might be different from company to company so this
is considered as an open step which result should be a dataset
including attributes and each line denoting travels.

As a matter of clarification, we show a sample data
gathering and preprocessing step carried out for a specific

airline (Air Canada). The original rraw data is a text file
(see Figure 2) with the following attributes:
• Origin (ORG): airport or city where the trip starts.
• Destination (DES): airport or city where the trip ends.
• Fare basis code: alpha numeric code which summarizes
the restrictions of the fares.

• Fare: the amount of the fare.
• Travel-ticket: it is the last day that the fare can be booked
at the price shown and with the same restrictions.

• Advance purchased (AP): the number of day prior the
commence of the trip in which the fare applies with the
same price points and restrictions.

• Min and max stay: this restriction for round trip fares,
which in this work we retrieved just one-way fares, thus,
these restrictions do not apply.

• Routing (RTG): routing number.
• Travel Date: which is the date that applies to a specific
fare.

Due to the attributes mentioned above are received as
text a data preprocessing is required to produce data in the
right input format. Thus, some specific data cleaning and
preprocessing tasks are carried out in this stage to prepare
all the previously described data so the next step in the
proposed workflow could be performed correctly. The fare
cleaning stage applies an intensive cleanup process to remove
several characters and convert the text data into a table format.
It removes some unusable attributes to determine the values
of the attributes FARE and AP as numeric values. Thus, our
method automatically extracts five attributes from the text

FIGURE 2. Fares retrieved in text format.
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TABLE 1. Sample data subset of the transformed input data.

files: ORG, DES, FARE, AP and RTG. During this stage
additional features are also integrated. The Travel Date is
split into three additional attributes, Travel Day (TrDay),
Travel Month (TrMonth) and Travel Year (TrYear). A fourth
attribute is created as a join of the ORG and DES attributes
extracted from the text files which is called Direct Market
(DMKT). Also, a fifth attribute denominated Day of Week
(DOW) is created from the Travel Date. In order to add the
final attribute called Season, we previously did a fare basic
code analysis for Air Canada to identify the season in which
the fares apply; therefore, the automated process reads the
results of the analysis and assigns the season label to each fare
class, which are L for low season, H for high season and Q for
super peak season. After that, the attribute Class is filtered
to consider the five fare classes provided by Air Canada
(K, A, L, T, S), which belong to economy cabin. The K value,
also known as coach discounted, represents the most eco-
nomical fare class that include just the seat in flight with no
ancillary. The A value represents a fare class that is exclusive
for Air Canada, and it is applied to specific flights. Finally,
the values L, T, and S belong to what is known economy
coach fares, and they include some kind of ancillaries like
a documented bag, certain food in the flight, among others.
Small differences can be described for these fare classes as
they depend on advanced purchases. Last but not least, it is
important to highlight that every airline identifies its own
fare classes based on its fare structure (the fare names vary).
As a common standard in the airline industry, the fare classes
are ordered by price points and after certain levels, they
stop competing with the other airlines based on the market
performance.

At the end of this stage, a new dataset is formed as
shown in Table 1. The attribute DMKT is a joint of the
attributes ORG and DES; we decided to keep these three
attributes to find rules that might apply by each of these
attributes. In fact, in the practice, there are markets or
routes which have the same fare structures which are known
as common rate routes. An example of these cases could
be that a route between Toronto and Montreal could have
the same fare structure as Toronto and Ottawa; therefore,
keeping the three attributes the algorithms could find sig-
nificant rules either by just DMKT, ORG or DES and
they can provide or identify useful rules for these type of
markets.

B. HIGHLY INTERPRETABLE MODELS
This section introduces the proposed gene expression pro-
gramming (GEP) algorithm, specifically designed to mimic
the feature learning process that the pricing teams must do on
a daily basis. Here, it selects, groups and modifies some of
the attributes in order to adapt the datasets before it is used
by classification models. The final aim is to provide the best
features to the classification algorithm and to find relevant
rules (a small set of rules), allowing better interpretation and
understanding of the market landscape. The following are the
main processes of the proposed algorithm:

1) ENCODING
The proposed GEP algorithm encodes individuals as sym-
bolic strings (fixed length), which are then expressed as
non-linear entities of different sizes and shapes (expression
trees) [26]. The algorithm considers a function set formed by
attributes from the dataset, and a set of terminals (mmetrics)
usually managed by the pricing teams while analyzing the
fares T = {Mean, Lowest Fare File (LFF), Mode, Standard
Deviation (SD)}. This set of terminals, is really useful to
imitate the actions done by the Pricing teams. Here, the use
of the mean fare, or its standard deviation, can be useful to
find special sales or strategies applied in some of the markets.
The lowest fare filed, which is the lowest fare available to
the public by fare class, might identify specific discounts on
certain dates. Last but not least, the mode fare could identify
similar or equal strategies in different sales that are published
constantly.

In order to improve the understanding of this encoding,
we consider a real scenario (real data provided by Air Canada
as we explained in the first step of the methodology: data
gathering and preprocessing). In this example, the function
set is formed by nine attributes F = {ORG, DES, AP,
RTG, TrDay, TrMonth, TrYear, DOW, Season}. At this point,
it should be remarked that attributes DMKT, FARE and Class
were excluded from the function set since they remain as
constant elements of each solution candidate. The FARE
attribute is excluded for the function set because every solu-
tion candidate needs this attribute in order to calculate the
selectedmeasure from the set of terminals. The Class attribute
is also excluded to preserve the class of every instance on the
new datasets and the DMKT tomaintain interpretability when
the classification results are obtained. The fare class values
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FIGURE 3. Sample chromosome including terminal variables and functions.

provided by Air Canada (K, A, L, T, S) were used in our study
as the attribute Class to be classified.

Figure 3 represents an encoding sample of a chromosome
created by our proposal on the sample dataset. The variable
genes are the attributes and metrics which have been selected
by a random process, and which will be used to modify the
original dataset and obtain a new one. The constant genes
are the ones we previously mentioned, which will be part
of every of the chromosomes generated by the proposed
algorithm. This algorithm aims to integrate a feature learning
process by reading and decoding all the variable genes in the
chromosome. Back to the sample encoding shown in Figure 3,
it defines the first and second genes as elements from the
function set. Therefore, the algorithm will act as a feature
selector for the first gene (attribute ORG) which will be part
of the new dataset without any modification on its values.
After that, the algorithmwill review the next two genes which
are the attribute AP and the metric Mean. Thus, the algorithm
will group the original dataset by using the attributes AP and
two of the constant attributes: DMKT and Class to calculate
the Mean over the attribute FARE creating a new attribute.
This process will be explained in detail in the next procedure.
The process will continue by checking again the next two
genes RTG and Mode, because the first gene is an element
of the set of functions and the second gene is an element of
the terminal set, the transformation process is applied again
by grouping the dataset using the attributes RTG, DMKT and
Class, and it calculates themode fare using the FARE attribute
to create a new feature. Again, this process will be explained
in detail in the next procedure. This feature learning process
will run until all the variable genes are reviewed. At the end
we obtain a new solution candidate (dataset) which it is also
encoded in its chromosome form (see Figure 4).

It is important to highlight that some constraints are
required to be satisfied. For example, the length of the solu-
tion candidates is set up to the formula n = F + T = 13, F
being the number of elements in the terminal set, and T is the
number of elements in the function set. It represents a total of
51,895,935 combinations.

2) INITIAL SET OF SOLUTION CANDIDATES
In order to obtain the initial set of solution candidates our
algorithm runs two sequential processes: the initial encoding
process and the feature learning (FL) process of the solution
candidates. The first process randomly initializes the initial
set of solution candidates by encoding and selecting the
attributes from the set of functions and the terminal set until
the size of the chromosome is reached, as it was previously
shown in Figure 3. After the first process is executed, the

Algorithm 1 Generation of the Initial Population
Input pop-size, chromosome-size, F, T
Output solution candidates

1: S ← F ∪ T
2: solution candidates← ∅
3: for i = 1 to pop-size do
4: chromosome← ∅
5: for j = 1 to chromosome-size do
6: g← get.random.element(S)
7: if g ∈ chromosome and g ∈ F then
8: g = null
9: end if
10: chromosome← chromosome ∪ g
11: end for
12: chromosome← remove.null.values(chromosome)
13: solution candidates← solution candidates ∪ chromo-

some
14: end for
15: return solution candidates

feature learning process is run to transform and create the new
solution candidates (datasets).

Algorithm 1 shows the pseudo-code for the generation
of the initial set of solution candidates in their encoding
form. The algorithm starts with the creation of two variables;
the variable s, which contains the elements of the set of
functions and terminals set, and the variable to keep the
solution candidates obtained. The values in s are the genes
that will form the chromosomes after a random process is
executed to select them. Lines 5 to 11 denote the random
process to select a value from s and which it is assigned to
the variable g; this variable will determine the gene in the j-
th position of the chromosome. In line 7 if the chromosome
already contains the value of g, and if this value is an ele-
ment from the set of functions, the line 8 is executed so the
g variable will be changed as null. This condition is set
to avoid repeated attributes in the same solution candidate.
Finally, g is included into the chromosome. Once the chromo-
some is formed, any null value is removed and it is included
in the solution candidates list. When the number of chromo-
somes created is equal to the predefined pop-size, the process
ends and it returns the solution candidates in their encoding
form.

Algorithm 2 defines the pseudo-code of the feature learn-
ing process. The algorithm receives the initial set of solution
candidates in their encoding form which were previously
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FIGURE 4. Feature learning process of a solution candidate.

Algorithm 2 Feature Learning
Input solution candidates, F
Output t-solutions, e-solutions

1: for ∀ solution candidate ∈ solution candidates do
2: chromosome← solution candidate
3: t-chromosome← ∅
4: t-dataset← ∅
5: while j = 1 to length(chromosome) - 3 do
6: if chromosome[j] ∈ F and chromosome[j + 1] ∈ F

then
7: apply feature selection to chromosome[j]
8: t-chromosome[j]← new encoded attribute
9: t-dataset[j]← new attribute

10: else
11: create a new feature using chromosome[j] and

chromosome[j+1]
12: end if
13: j← j + 1
14: end while
15: e-solutions← e-solutions ∪ t-chromosome
16: t-solutions← t-solutions ∪ t-dataset
17: end for
18: return t-solutions, e-solutions

created by Algorithm 1, and the set of functions (F).
Line 1 represents the general loop to read every chromosome
that is going to be decoded and transformed to obtain the
datasets. Lines 2 to 13 include such decoding and transfor-
mation processes. For each chromosome in the set of solu-
tion candidates, the algorithm analyses every of its genes
(see Lines 5 to 14). Checking j-th gene, it also takes the
j + 1-th gene to determine which action the FL algorithm
should apply. If both genes are elements of F, then the algo-
rithm acts as a feature selector leaving the attribute in j-th
position without any modification to be part of the trans-
formed dataset. If the j-th gene belongs to F, but the j + 1-th
gene does not (it belongs to the set of terminals), then the
algorithm creates a new feature by grouping the attribute in
the j-th position, the element in the j + 1-th position, and
the constant genes. As we previously explained, the FARE is
a numeric attribute which represents the amount of the fare
being the only suitable attribute to calculate the measures,
allowing to create the modified chromosomes by integrating
new attributes. To understand it better, let us go back again to
the sample individual shown in Figure 4, which is an encoded
solution candidate created by the initial Algorithm 1 and its
transformation by Algorithm 2. In this case, we have ORG in

the j-th position and the next gene is the attribute AP, both
being part of the function set. The algorithm selects ORG
attribute as part of the transformed dataset without modifying
its values. When the next iteration is run, AP is in the j-th
position of the chromosome, and the next gene is the Mean.
In this case, the algorithm groups the dataset by using the
attributes Class and AP and calculate the Average fare using
the attribute FARE creating a new attribute that is called
Mean.By.AP, and which is integrated to the new dataset.
As we previously explained the process continues until all the
genes of the chromosome have been decoded (see line 12).
Continuing with the example illustrated in Figure 4, the
Algorithm checks the next genes obtaining RTG and Mode.
Therefore, the algorithm applies again the FL process and cre-
ates a new attribute called RTG.By.Mode. This process stops
when all the variable genes are analysed. The new encoded
chromosome (e-solutions in Algorithm 2) and a transformed
dataset are also created (t-dataset Algorithm 2). The proposed
algorithm finally returns the t-solutions as datasets, and the
new chromosomes in their encoded form e-solutions. Note
that solution candidates have not been evaluated yet.

3) EVALUATION
This procedure is responsible for assigning a fitness value
to each solution candidate (see Equation 1). In the proposed
methodology we have to evaluate how good the resulting
datasets obtained through the FL process are. To do this,
a classification model is applied to each resulting dataset to
provide a fitness function that is based on a combination of
twomeasures: F-score (F1) and interpretability (Nr or number
of rules). F-score rate represents the harmonic mean between
recall and precision values [19], thus, it is calculated from
the precision and recall of the test, where the precision is the
number of true positive results divided by the number of all
positive results, including those not identified correctly, and
the recall is the number of true positive results divided by
the number of all samples that should have been identified
as positive. It is formally defined as F1 =

TP
TP+1/2(FP+FN )

.
Interpretability [14] is a measurement of simplicity of the
resulting model. In a rule-based model, it is quantified in
terms of the number of rules that forms the model (model
size) [14], so the lower this number, the more interpretable
the model is.

Fitness =
F1 ∗ Nr

2
(1)

Algorithm 3 shows the pseudo-code of the evaluation pro-
cess. The fitness function optimizes the solution candidates
according to the transformed attributes given by the GEP
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FIGURE 5. Sample of the generation of two offspring by applying the crossover genetic operator.

Algorithm 3 Evaluation of the Solution Candidates
Input t-solutions, e-solutions
Output Evaluated solution candidates

1: Evaluated solution candidates← ∅
2: for i = 1 to length(t-solutions) do
3: if length(get.original.features(solution candidate[i])) <

4 then
4: fitness← 0
5: else
6: model← create.classification.model(t-solution[i])
7: fitness← get.fitness(model)
8: end if
9: Evaluated solution candidates ← Evaluated solution

candidates ∪ [e-solution[i], fitness]
10: end for
11: return Evaluated solution candidates

(e.g. the average flights’ fare in a specific month), looking for
good attributes and combination of them in terms of accuracy
and interpretability. This algorithm receives a set of solution
candidates as datasets (t-solutions), and the set of solution
candidates in the encoded form (e-solutions). The Algorithm
works as a main loop to evaluate every t-solution created
in Algorithm 2. In each iteration, the proposal verifies if
the solution candidate contains at least four of the original
attributes from the original dataset, evaluating the solution
candidate through a classification algorithm. On the contrary,
if the solution candidate does not contain at least four of
the original attributes (excluding the attribute Class), then a
fitness value of 0 is assigned. The requirement of including
at least four or more of the original attributes is to maintain
interpretability. Finally, the proposed procedure returns the
solution candidates in their new encoded form together with
their respective fitness value. Back to the example shown in
Figure 3, the chromosome contains just three of the original
attributes after the FL process: ORG, DMKT and FARE.
Therefore, a 0 fitness value is assigned to this solution candi-
date.

In order to obtain the rules and calculate the fitness value,
we propose the use of white box classification models.
In this regard, the evaluation process is carried out by con-
sidering classical classification algorithms available in the
well-known Rweka tool [18] and the LAC library [28]:

• Four induction algorithms: JRip [9], which is a
propositional rule learner; OneR [17], which uses
the minimum-error attribute for class prediction;
PART [12], which uses separate- and-conquer method;
and Ridor [2], which is an implementation of the RIpple-
DOwnRule learner.

• Nine decision trees: JCDT [1]; simpleCART [6];
BFTree [13]; Decision Stump [21]; J48 Consoli-
dated [30]; algorithms for generating a pruned or
unpruned trees J48 and C4.5 [36]; LMT [38]; J48
Graft [41].

• Five associative classification algorithms: CBA [23] dis-
covers a subset of association class association rules
and produce a classification model on the extracted
rules. FOIL [32] and FOIL2 [34] greedy algorithms
that learns rules to distinguish positive from nega-
tive examples. CPAR [45] inherits the basic idea of
FOIL in rule generation and integrates the features
of associative classification in predictive rule analysis.
PRM [33] selects the best rule among a set of rules
generated.

4) GENETIC OPERATORS
Here every genetic operator used in the proposed algorithm
is described. First, as for the selection, a roulette-wheel
selection [47] is taken, which consists of mapping the fit-
ness of each solution candidate to a slice of the roulette
wheel proportional to its fitness. Then, the roulette is spun as
many times as there are solution candidates in the population
in order to keep the population size constant. Thus, with
roulette-wheel selection the solution candidates are selected
both according to fitness and the luck of the draw, which
means that some times the best traits might be lost. However,
by combining roulette-wheel selection with the cloning of
the best solution candidates of each generation, we guaran-
tee that at least the very best traits are not lost. This tech-
nique of cloning the best-of-generation solution candidates
is known as elitism and is used by most stochastic selection
schemes.

Two key genetic operators are proposed to obtain new solu-
tion candidates in every generation. The crossover genetic
operator was proposed to intensify the population diversity.
This genetic operator randomly chooses a cut point among
the variable genes of one parent’s chromosome. The same
process is repeated for another parent. Two offspring are
formed by combining the genes of the split chromosomes.
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FIGURE 6. Sample of the generation of a new individual applying the mutation genetic operator.

These offspring include genes from both parents. As a
matter of clarification, let us consider two sample parents
(see Figure 5 encoded by the Air Canada dataset we have
considered along this paper for the explanations). Parent 1
represents a dataset including the mean by season for each
of the direct markets (DMKT). It also includes the advanced
purchase (AP) attribute as the number of days in which the
fare is analysed, and also the month and the day of the week
in which the fare is applied. Parent 2 represents a dataset
including the origin (airport or city where the trip starts),
the mean by AP, and the mode for each routing of each
DMKT. In this sample, the cut point is randomly chosen
at gene 2, returning two offspring with information from
both parents: offpsring 1 represents a dataset including the
mean by season for each of the direct markets (DMKT), the
advanced purchase (AP) attribute as the number of days in
which the fare is analysed, and the mode for each routing of
each DMKT; offspring 2 represents a dataset including the
origin, the mean by AP, and the month in which the fare is
applied.

Additionally, the mutation genetic operator was proposed
to diversify the population. This genetic operator randomly
chooses a gene from the variable genes of one parent’s chro-
mosome, and this gene is replaced with a new random value
(could be a blank space or removal). The new individual is
similar to the previous one (just a small variation is added).
As a matter of clarification, let us consider a sample parent
(see Figure 6 encoded by the Air Canada dataset we have
considered along this paper for the explanations), which
represents a dataset including the mean by season for each
of the direct markets (DMKT), the advanced purchase (AP)
attribute as the number of days in which the fare is analysed,
the mode for each routing, and the day of the week in which
the fare is applied. A removal of the attribute representing the
mean by season is applied, so the new individual represents
a dataset with the advanced purchase (AP) attribute as the
number of days in which the fare is analysed, the mode for
each routing, and the day of the week in which the fare is
applied.

Last but not least, the general workflow of the proposed
GEP-FL algorithm (see Algorithm 4) is described. The first
three steps are needed to produce the initial set of solution
candidates. Then an iterative process is carried out over a
number of iterations (generations) returning the best solution
candidates found after the loop. No additional explanation is
required for this algorithm since all the processes carried out
by it were previously described.

Algorithm 4 GEP-FL Algorithm
Input n-iterations
Output best n solution candidates

1: F = function set
2: T = terminal set
3: Generation of the initial population (see Algorithm 1)
4: Feature Learning (see Algorithm 2)
5: Evaluation of solution candidates (see Algorithm 3)
6: for i = 1 to n-iterations do
7: Roulette-wheel selection
8: Apply genetic operators
9: Evaluation of solution candidates

10: Update population and keep best n solution candidates
11: end for
12: return best n solution candidates

IV. PERFORMANCE MEASURES AND EXPERIMENTAL
STUDY
The aim of this section is to firstly analyse whether there is
a clear improvement when the proposed GEP-FL algorithm
is used. Then, we analyse which classification algorithm is
better for the problem at hand. As we previously described,
the evaluation process could be carried out by any classifica-
tion algorithm proposing a total of eighteen algorithms (see
Section III-B). Finally, we apply the proposed methodology
to obtain highly interpretable rules on a real scenario. Air
Canada gave us a dataset including travels along 5 months.

A. EXPERIMENTAL RESULTS
This first subsection carries out several experiments to
demonstrate the usefulness of the proposed GEP-FL
approach. In this regard, eighteen different classification
algorithms are used in the evaluation procedure. Ten different
executions were done on each algorithm and the average
results of these ten runs are shown in Table 2. The final aim is
to demonstrate that the use of feature learning is appropriate
for this problem, so we compare how the algorithms behave
with and without the use of the GEP-FL approach on three
metrics: accuracy, f-score and interpretability. We also com-
pare this methodology with a classic random search approach
(no crossover and mutation genetic operators) to demon-
strate that the proposed evolutionary approach is appropriate
and produces a clear improvement. In this regard, we first
compare the proposed GEP-FL approach to two different
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TABLE 2. Experimental results obtained by considering different classification algorithms in the evaluation phase.

FIGURE 7. Critical difference diagram showing a statistical comparison of the Accuracy using the Shaffer’s
test.

FIGURE 8. Critical difference diagram showing a statistical comparison of the F1 measure using the
Shaffer’s test.

FIGURE 9. Critical difference diagram showing a statistical comparison of the number of rules using the
Shaffer’s test.

methodologies: a) considering the original data; b) using a
random search approach. In this analysis, all the classification
algorithms were executed using a ten fold cross-validation,
and all the available information after the data gathering a
pre-processing phase has been completed.

Comparing the accuracy results obtained by these three
methodologies (see Table 2), it can be observed that no huge
differences were obtained, so a non-parametric Friedman [10]
test was conducted to statistically determine whether there
are differences among these three methodologies (Original
data, random search, and GEP approach). The p-value com-
puted, that is, p = 0.000063, through the statistic of the
test rejected the null hypothesis that all the methodologies
equally perform in terms of Accuracy with an α value of
0.01. A post-hoc test in therefore applied to obtain significant

differences among the methodologies. The Shaffer’s test (see
Figure 7) demonstrated that GEP-FL is the methodology
that best performs in terms of Accuracy with an α value
of 0.01, existing significant differences with regard to the
original data, and huge differences with regard to the ran-
dom search methodology. In terms of the F1 measure, the
Friedman test returned p-value of p = 0.000015, reject-
ing the null hypothesis that all the methodologies equally
perform with an α value of 0.01. A post-hoc test in then
applied to obtain significant differences among the method-
ologies. The Shaffer’s test (see Figure 8) demonstrated that
GEP-FL is the methodology that best performs in terms
of F1 measure with an α value of 0.01, existing signifi-
cant differences with regard to the original data, and huge
differences with regard to the random search methodology.
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FIGURE 10. Critical difference diagram showing a statistical comparison of the Accuracy using the Shaffer’s
test.

FIGURE 11. Critical difference diagram showing a statistical comparison of the interpretability using the
Shaffer’s test.

FIGURE 12. Critical difference diagram showing a statistical comparison of the F-score measure using the
Shaffer’s test.

TABLE 3. Friedman results for different GEP-FL algorithms in the
evaluation phase.

Finally, as of the number of rules, the Friedman test returned
p-value of p = 0.000040, rejecting the null hypothesis
that all the methodologies equally perform with an α value
of 0.01. The Shaffer’s post-hoc test (see Figure 9) showed
that GEP-FL is the best methodology in terms of number of
rules. The random search methodology also performs really
well.

To sum up, the statistical results showed that the pro-
posed GEP-FL approach improves the classification per-
formance and the interpretability of the models. Therefore,

in order to determine which classification algorithm is the
most suitable to be applied to our methodology we con-
ducted a second statistical analysis based on the differences
among the algorithms (see Table 3). First, the p-values
computed through the statistic of Accuracy, F-score and
interpretability (Nr) tests rejected the null hypothesis that
all algorithms equally behave considering α = 0.01. Then,
the Shaffer’s post-hoc test was performed to detect where
these significant differences were located, considering a
significance level of α = 0.01. The results are sum-
marized through the critical difference diagrams shown
in Figures 10, 11 and 12. As it is shown, JRip is in fourth
position in Accuracy and F-score, whereas it is in fifth
position in terms of interpretability. In none of these three
analyses the JRip algorithm is statistically worse than the best
algorithm (see Figures 10, 11 and 12). With all the above into
considerantion, we take JRip as the algorithm that produces
an overall best performance.
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TABLE 4. Rules discovered when the proposed methodology is executed on a real scenario.

B. DISCOVERED RULES
The aim of this study is to apply the proposed methodology
to a real scenario. In this study, we will apply JRip as the
classification algorithm used in the evaluation phase since it
was the algorithm that statistically outperforms the rest in
the previous section. Table 4 presents the results obtained
by the proposed methodology, denoting by parentheses the
number of cases satisfied and not satisfied by the rule. The
attributes that appear the most are Season and AP.Mode. The
latter is one of the features learned by the GEP-FL algorithm,
which provides interesting rules and easy to be interpreted.
Belowwe provide an interpretation of twelvemost significant
discovered rules:

• Rule number 1 is able to show that the amount bound-
ary for fare class K is $63 for all markets and all
seasons.

• Rule number 2 shows a clear pricing strategy for pub-
lished fares with an advance purchase of 7 days and fare
class K the mode fare is $148.45. Due to the number of
cases applied we can observed that they are tactical fares
which apply just for a restricted number of flights in
which their performance is not optimal; therefore, in this
case a low price with a low advance purchase means that
the carrier is trying to to fill some of these flights. This
type of tactical fares is difficult to detect in a regular
manual process.

• Rule 3 shows that the mode fares with an advance
purchase of 7 days for flights from Winnipeg to other
destinations are at $124.88 for class K.

• Rule 4 shows an interesting pricing strategy in which the
most common price published for trips between Calgary
and Toronto are $129.4 for class K. Due to the number
of cases that this rule applies we can deduce that this
the structural amount for this fare class in this specific
market.

• We can observed from Rule 5 that the structural price
point for the fare class K in a flight between Toronto and
Vancouver with and advance purchase of at least 45 days
is at $145.

• Rule 6 show structural pricing strategy for flights which
origin is Winnipeg and with an advance purchase of
45 days for class A at $145.

• It can be observed in Rule 7 an interesting discovery
from our methodology that fares that belong to class A
and with the restriction of 7 days of advance purchase in
most of the cases are for non-stop. This is a significant
discovery because we can observe a clear use of the fare
class as that is being used for tactical fares which are
difficult to be discovered from manual processes.

• Rule 8 shows that fares with an advance purchase
between 18 and 21 days the most common price point
for class T is $141.

• It can be observed that Rule 9 that fares belonging to
class T for fares that apply all year agnostic of the
advance purchase the price points fluctuates between
$117 and $188. This a a very interesting discovery
because the rule is showing the fare band for this class,
which it is basically the lowest and the highest price
point in which a T fare class can be priced.

• Rule 10 is showing that flights from Montreal for high
season the mode fare agnostic of the advance purchase
for class T is $151.

• Rule 11 shows that the L fare class is available for just
people trying to book flights with at least 21 days from
the departure date.

• Rule 12 shows that most common price point for L fare
class is $151.

At this point, it is key to demonstrate whether the returned
rules are good enough, so these rules are also compared to
those obtained by the well-known FP-Growth [40] algorithm
for mining association rules on the best solution candidates
(datasets) that were obtained from GEP-FL. Comparison
based on the number of rules (see Table 5) clearly demon-
strates that the proposed approach returns a small set of rules
that can be understood by the end-user in an easier way than a
set of thousands of rules as FP-Growth returns. Additionally,
we have analysed the small set of rules returned by our
approach in terms of the Lift quality measure [24], which
measures the importance of the rule. This is a measure of the
performance of a targeting model at classifying cases with an
enhanced response compared to a random choice targeting
model. The obtained rules have a Lift value greater than 4,
which clearly denotes the importance of the rules discovered.
Additionally, the returned rules are not general rules that can

125308 VOLUME 10, 2022



M. A. Barrón et al.: Facing Up Fare War: Generating Competitive Price Models With Gene Expression Programming

TABLE 5. Number of rules obtained by GEP-FL JRip and FP-growth.

be easily obtained. These rules appear in less than 5% of
the transactions, so it is computationally complex to discover
them, and they are not easily obtained by analysing the data.

V. CONCLUSION
The extraction of interpretable rules in airline fares can be
a difficult task not only because it is a multifactor prob-
lem, but also because the numbers of fares published by a
carrier can contain similar restrictions and characteristics in
the fare classes that becomes a very complex task to find
relevant information. To solve this issue, this paper proposed
a pricing methodology to create special datasets by trans-
forming the attributes through the implementation of a GEP
feature learning algorithm. The proposal is able to obtain
high interpretable models with enough number of rules and
smaller number of antecedents per rules without affecting the
classification performance.

The proposed methodology was applied to a real scenario
using data from the biggest airline in Canada, that is, Air
Canada. Based on the results obtained, different conclusions
could be described:

1) The use of an automated methodology that allows to
produce interesting information to pricing teams is fea-
sible, avoiding the human interaction and, therefore,
human errors.

2) The proposed methodology is able to reduce the num-
ber of rules extracted, and decrease the number of
conditions on the rules, which is crucial to increase the
interpretability of the models.

3) The proposed methodology is able to mimic the fea-
ture learning process usually carries out by the pricing
teams.
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