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ABSTRACT In this paper, a new problem of reverse image filtering is addressed. The problem is to reverse
the effect of an image filter given the observation b = g(x). The filter g is modelled as an available black box.
An inverse method is proposed to recover the input image x. The key idea is to formulate this inverse problem
as minimizing a local patch-based cost function. To use gradient descent for the minimization, total derivative
is used to approximate the unknown gradient. This paper presents a study of factors affecting the convergence
and quality of the output in the Fourier domain when the filter is linear. It discusses the convergence property
for nonlinear filters by using contraction mapping as a tool. It also presents applications of the accelerated
gradient descent algorithms to three gradient-free reverse filters, including the one proposed in this paper.
Results from extensive experiments are used to evaluate the complexity and effectiveness of the proposed
algorithm. The proposed algorithm outperforms the state-of-the-art in two aspects. (1) It is at the same level
of complexity as that of the fastest reverse filter, but it can reverse a larger number of filters. (2) It can reverse

the same list of filters as that of a very complex reverse filter, but its complexity is much lower.

INDEX TERMS Inverse filtering, optimization, accelerated gradient descent, total derivative.

I. INTRODUCTION

Solving inverse problems is of critical importance in many
science and engineering disciplines. In image processing,
a typical problem is called image restoration [1] in which the
distortion is modelled by a linear shift invariant (LSI) sys-
tem and additive noise. Other well-known problems include:
dehazing [2], [3] and denoising [4], [5], [6]. In these appli-
cations, an edge-aware filter such as [7], [8], [9], [10], [11],
and [12] plays an important role. In general, solutions to such
problems are model based. For example, in image restoration
an observation model with a known or unknown blurring
filter kernel is assumed, while in dehazing, a physical image
formation model is also assumed. An essential part of such
algorithms is to estimate model parameters such as the fil-
ter kernel in image restoration or the transmission map in
dehazing. Recently, deep neural networks are used in solving
inverse problem in imaging applications such as inverse tone
mapping [13] and de-blurring [14], where a neural network
is trained to solve a specific inverse problem. Other notable
examples of solving inverse problems are computational
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imaging techniques, such computed tomography [15] and
compressive sensing [16]. But they are not related to the work
presented in this paper.

The increasing use of many image processing filters has led
to anew formulation of the inverse problem. Let g(.) represent
an image filter which is usually available as a software tool.
The user of the filter has no knowledge of the exact algorithm.
As such, the filter can be regarded as an available black box
which takes an input image x and produces an output image
b = g(x). The new inverse problem is thus to accurately
estimate the original image x given the observation b and the
black box filter g(.).

Two factors make the study of such a problem theoretically
and practically important.

o Because traditional methods rely on using gradient
information to solve optimization problems, they are not
suitable for solving this new problem because the filter is
unknown and is not limited to be linear. New algorithms,
which do not directly rely on the gradient information,
must be developed.

o The solution of this new inverse problem only relies
on the filter as an available black box. Thus, it can
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TABLE 1. Comparison of the 4 space domain methods and a frequency domain method. The complexity is measured in one iteration. The constant C

represents the complexity of the filter g(.).

Method Update

Para. Complexity

Filter calls

T [17] Tpr1 = Tk + gy,

R [18] Tyl = axy + Aqy
PUOT @i = o + oflipy,
TDA Tyl =T + Aty

F(b)

FR201  F(@ri1) = 5506,0) 7@

A<1 max(O
N/A max (O(nlogn), C)

N/A max (O(n),C) 1
o, A max (O(n),C) 1
N/A max (O(n?),C) 3
(O(n 2
( 1

),C)

potentially deal with a wide range of unknown linear and
nonlinear filters.

A review of four methods on this new problem is presented
in section II. They are three spatial domain methods: the
T-method [17], R-method [18], and P-method [19] and a
frequency domain method called F-method [20]. Except the
T-method, which can be motivated as a fixed-point algorithm,
the other three share a similar idea of formulating a cost func-
tion and use gradient approximation to derive the solution to
the optimization problem. These algorithms have been used
to reverse a wide range filters including some traditional fil-
ters [1] such as: Gaussian filter, disk averaging filter, motion
blur filter, Laplace-of-Gaussian (LoG), and some edge-aware
filters such as: rolling guidance filter (RGF) [21], adaptive
manifolds filter (AMF) [22], structure extraction from tex-
ture via relative total variation (RTV) [23], image smoothing
via iterative least squares (ILS) [24], image smoothing via
Lo minimization (LO) [25], bilateral filter (BF) [7], self-
guided filter guided filter (GF) [8] and GF with the guidance
image generated from filtering an image by a Gaussian filter.

This work is motivated by the P-method and the R-method.
Our goal is to develop a principle-based new algorithm which
is of low complexity and is highly effective (able to reverse
the effect of a wide range of filters). The basic idea for our
development is similar to that of the P- and R-method. The
main differences are in the cost function formulation and gra-
dient approximation. While authors of the P- and R-method
use a global cost function, we use a patch-based local cost
function. We have also used total derivative approximation
(TDA) of the gradient. This differs from the approximation
approach of the P- and R-method. The new algorithm is
thus called the TDA-method. In addition, we have studied
the application of well-known accelerated gradient descent
(AGD) methods [26] which are listed in Table 2. AGD meth-
ods are commonly used in machine learning [27], but their
applications have not been explored in this context. We have
conducted extensive experiments to show that while the pro-
posed TDA-method is of the same level of complexity as that
of the T-method, it is as effective as the P-method but at a
much lower complexity.

Key contributions of this work are as follows.

« In section 3, we present the main theoretical results.

— The development of the TDA-method in
section III-A.
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— A theoretical analysis of the convergent condition
and factors related to the quality of the recovered
image in section III-C for linear filters. We note
that this is perhaps the only type of filter that allows
an analytical analysis. The analysis shows why the
T-method fails to reverse a linear filter and how the
proposed TDA-method overcomes this limitation.

— For nonlinear filters which do not have analytical
representations, we point out that the reverse filter-
ing methods can be regarded as fixed-point itera-
tions and that contraction mapping is a theoretical
tool to study the convergence in section III-C.

— We discuss the relationship between the T-method,
TDA-method, and P-method and their computa-
tional complexity in section III-D. We show that the
TDA-method is related to the T-method in that the
TDA-method has an extra correction step.

— We apply AGD methods to 3 spatial domain reverse
filtering algorithms, including the TDA-method in
section III-E.

« In section 4 we show results of extensive experimental
study of the proposed method.

— The effect of parameter settings such as learning
rate and number of iterations (section IV-A).

— Qualitative and quantitative evaluations to demon-
strate the performance of previous works and the
TDA-method in reversing a wide range of filters
(section I'V-B).

— A study of using AGD methods to accelerate the
image reverse filtering algorithms (section IV-C).

— A case study to illustrate the limitation of gradient-
free image reversing algorithms (section IV-D).

We adopt the following notations. An image is represented
as a matrix x and the filter denoted g(.) operates on the image
and produces the observed image b = g(x). The subscript is
used to represent iteration index. Arithmetic operations are
conducted pixel-wise. ||x|| is the 2-norm of the image at kth
iteration. The Fourier transform of xy, is represented as F(xy).
A pre-print version of this paper appeared at arXiv.org with
the citation index “arXiv:2112.04121” on 8th Dec. 2021.

Finally, we remark that there is a fundamental difference
between the neural network approach and the family of
inverse filters studied in this paper. A neural network is often
trained to solve a particular problem such as de-blurring an
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image due to a particular filter. The training requires a huge
dataset and fine-tuning of parameters. On the other hand, the
family of inverse filters are designed to deal with a wide range
of filters without training and without parameters.

Il. PREVIOUS WORK

We follow the terminology used in [19] which called a par-
ticular reverse filter a method. We briefly comment on each
of them and present a summary in Table 1 where we define
the following variables.

o g =b—glxp).

o i =80k +qi) — 8Xk — qp).

o 1 = g(xk +q;) — g(xk).

The T-method [17], can be formulated as solving a
fixed-point iteration problem [28]

x=x+b—gkx). (D

It is the fastest method among all reverse filtering methods
considered in this paper. When the contraction mapping con-
dition (discussed in section III-B) is satisfied for a particular
filter, the T-method produces good results. Otherwise, the
iteration is unstable, leading to unbounded results. An unsta-
ble example is the reverse of an average filter. In addition,
it was shown in [29] that the T-method can be motivated
from Bregman’s iteration point view. If a blurring filter is the
result of solving a variational problem, then the T-method can
completely recover the original image.

The R-method [18] is developed by minimizing the cost
function:

Jx) =x"(g(x) —b) — %xTx 2

by using approximations/assumptions and gradient descent.
The convergence condition is that g(.) must be Lipschitz
continuous [30]. The T-method can be considered as a special
case of the R-method. This connection provides a gradi-
ent descent interpretation of the T-method, which permits
applying the accelerated gradient descent algorithms. The
R-method can reverse the effect of a wider range of operators
than the T-method. However, because of the assumptions and
approximations, the R-method only performs well for filters
which mildly alter the original image. In a recent paper [31],
similar ideas as that of the R- and T-method are used to
develop an algorithm to remove mild defocus and motion blur
from natural images.

The P-method and the S-method [19] are inspired
by gradient descent methods studied by Polak [32] and
Steffensen [33]. They deliver successful results and converge
for a larger number of linear and non-linear filters than other
methods. However, they have a high computational cost due
to the calculation of the 2-norm of a matrix in each iteration.
The 2-norm is the largest singular value of the matrix and has
a computational complexity of O(n?). Because the P-method
is more stable than the S-method [19], we only consider the
P-method in this work.
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input pixel patch y output pixel b

FIGURE 1. lllustration of filtering a 3 x 3 patch resulting a pixel.

The F-method [20] uses the Newton-Raphson technique
to invert unknown linear filters in the frequency domain.
Approximation of the gradient is also used. Although the
F-method produces good results for some filters and is
reported to have better performance than the T-method and
the R-method, it only deals with linear shift invariant (L.ST)
filters. If the frequency response of the LSI filter has zeros in
the frequency range of [0, 7], then the iteration is unstable.
This is a classical problem in inverse filtering, which can be
dealt with by using a Wiener filter in the Fourier domain [1].
A recent paper [34] described several iterative methods in the
frequency domain. These methods are based on an assump-
tion that the black box filter can be approximately modelled
as a linear filter.

Ill. THE TDA-METHOD, ANALYSIS AND ACCELERATIONS
A. THE PROPOSED TDA-METHOD

To develop the proposed algorithm, we assume the filter
only acts on a patch of the pixels. For notational simplicity,
we represent a patch of pixels as a vector y such that the output
pixel is: b = g(y). We illustrate this in Fig. 1. The vector is

y = (1), ¥2), y3), y@), y(5), y(6), (1), ¥®8), yO)I" (3)

where the pixel to be estimated is y(5) and b is the observed
pixel corresponding to y(5). For this particular case, the filter
function has the property: g : R — R.

We would like to minimize the following cost function to
determine y(5):

fo) = % {b— g0y @)
Using gradient descent, we can write
Yir1 =i — AV Og) &)
where
Vi) = —uk(S)d, (6)
and
up(5) = b — gy, )
The nth element of the vector d is defined as
d(n) = %(vk% ®)

Here the notation %(yk) represents the partial derivative
evaluated at the point y,. Because in each patch we are only
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interested in recovering the center pixel of the patch y(5),
from equation (5) we have

Ye+105) = yi(5) + kuk(5)a (5)@ K- ©))

Since the filter function g is unknown, we cannot calculate
its derivative and have to resort to approximation. We use
the concept of total derivative for the approximation. More
specifically, the total derivative of a function c(x) : RN — R
at a point @ can be approximated as

Z 5(n)

where x(n) and 8(n) are the nth element of x and § respec-
tively.

Using this approximation, we can write the following for
the patch of pixels:

cla+8) — cla) ~ (a) (10)

8 +ur) — gy =~ Zuk( )
n=1
where values of elements of uy = [ur(1), ux(2), ..., ur(9)]
are assumed to be small. Except ux(5) = b — g(yx), other
elements are not used in the following approximation.

A comparison equations (9) with (11) suggests a solu-
tion of avoiding the calculation of the derivative of an
unknown function % The solution is through the two-step
approximation:

(vk) (11)

9

u (5 )8—(5) ; ug (n )a—()~g(yk+uk)—g(vk>

12)

13 ER]

where the symbol “—” represents the operation of
“replaced by”. Replacing uk(S)% by the local average
22:1 uk(n)% can be regarded as using a smoothed esti-
mate which is further approximated by the total derivative.
Using this approximation in equation (9), we can write

Yi(3) + A8y + ur) — i) (13)

We now generalize the above result to the whole image. The
key idea is to replace the image patch y; + u; by the image
xr + q; where g, = b — g(xi). Using this generalization,
we can omit the reference to pixel location in (13) and use
our general notation of x; to represent an image in the kth
iteration. We can write

Ye+1(5) =

Xiy1 = Xk + Mgk +q4) — 8(xk)) (14)

Equation (14) is the proposed algorithm formally presented in
Algorithm 1. It is thus called total derivative approximation
(TDA).

One interesting observation is: the TDA method has a sim-
ilar form as that of gradient descent where one may assume
that g(xx + q;) — g(xx) is the negative gradient of a certain
cost function. So, what is the corresponding cost function and
under what condition is such assumption true?
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Algorithm 1: The TDA Algorithm

Input: g — the filter as a black box, b — observed
image to be processed, A > 0 — a user defined
parameter, and N — number of iterations

Output: x

1k=0

2x0="0b

3 while £k < N do

4 L Xkl = Xk + Mgk +b — g(xx)) — g(xx))

5 k=k+1

To answer these questions, we start with a case where the
signal is 1d and the filter is linear such that the filter model
b = g(x) = Ax, where A is matrix defined by the impulse
response of the linear filter. We then consider a commonly
used cost function

1
() = > |Ib — Ax|)3 (15)
Its gradient is given by

VJx) = -AT (b — Ax) (16)

Next, we perform the following calculation
8k + q;) — glxx) = A(b — Ax) a7

Comparing the above two equations, we can clearly see that
the TDA can be regarded as gradient descent for the 1d linear
filter case when the filter matrix A is symmetric.

However, we should point out that the above analysis is
only true for the 1d case. Although two dimensional linear
filters can be represented in the general form of matrix-vector
multiplication, the matrix and the vector no longer have the
same simple formation as that of the 1d case, see for example,
reference [35] pages 29-30. The gradient of the cost function
is completely different and is rather complicated. As such,
we will not pursue this question further.

B. CONVERGENCE FOR LINEAR FILTERS

It is in general a very difficult task to analyse gradient free
algorithms studied in this work. This is because the large
number nonlinear filters make the analysis non-tractable.
In the following, we focus on studying the properties of the
T-method and the TDA-method for the mathematically sim-
plest class of filters—linear filters. We use frequency domain
representation such that X = F(x) and B = F(b) =
F(g(x)) = GX where G is the frequency response of a linear
filter.

1) FREQUENCY DOMAIN REPRESENTATIONS
We can write the T-method in the frequency domain as fol-
lows

Xi+1 =Xk +B—GXy =B+ (1 — G)Xy (18)
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After k iterations, we can write the above equation in term of
the unknown image X as

X =X — HEI (19)

where Hp = 1 — G, I = (1 — G)X, and H(')C represent
an element-wise raising to the power of k. The result has
two terms: the original image X and the result of iteratively
filtering the image (/) k times by the same filter Hy.

For the TDA-method, we perform similar calculations and
have the following result:

Xe =X —J¢1 (20)

where Jo = 1 — G2, and I = (1 — G)X. The result also has
two terms: X and the result of iteratively filtering the image
(I) k times by using the filter Jy. In the calculation, we set
A = 1 such that the TDA-method is consistent with the
T-method which is parameter-free. Appendix presents the
derivation of equations (19) and (20).

2) ANALYSIS
From the above results, we can write the two iterative reverse
filters in a unified form

Xi = X — Hyl 1)

where Hy = HY and Hy = 1 — G (T-method), Hy =
1 — G? (TDA-method). In order to recover the original image,
a sufficient condition is |Hy| — 0 such that X; — X.

Since Hy is a function of the unknown linear filter G, to per-
form a concrete analysis we consider the filter G to be a class
of non-causal symmetric linear low pass filters such as aver-
age filters and Gaussian filters whose coefficients sum to 1.
The frequency response of such filters, denoted G(w1, w2),
is real and symmetric and has the property G(w;, w2) < 1.

Using these notations, the amplitude response of the filter
is represented as

|Hy (w1, @2)| = [Ho(w1, w2)* (22)
where

Hy(w1, w2) =1 - G(w1, w?) (23)
and

Ho(o1, ) = 1 — GX (w1, 2) (24)

for the T- and TDA-method, respectively. Let the maximum
value of the amplitude response be

To(w], w3) = max |Ho(wi, w2)| (25)
(w1,w2)

where (o], w3) represent frequencies where the amplitude
response is at maximum. The maximum amplitude response
after k iterations, denoted Ty(w}, ), is Ti(w], ®}) =
Té‘ (], ®3). The superscript k represents raising to the power
of k.
We consider the following three cases.
o Case I: To(w], @3) > 1.
T (o}, ) increases exponentially with k. As a result,
the frequency component of the image I(w}, w3) will be
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(a) Average filt, N=3, To =1.3328 (d) Average filt, N=3, To =1

FIGURE 2. Amplitude response |Hy| due to 3 linear low pass filters. Left
column shows the case for the T-method where Hy = 1 — G. Right column
shows the case for the TDA-method where Hy = 1 — G2. The maximum
value of |Hy| is also shown as Tj.

amplified by an unbounded factor. The reverse filter is
unstable.

o Case 2: To(w], @3) < 1.

Ti(w], ;) decreases exponentially with k, which
approaches the limit of zero. As a result, the ampli-
tude response for all frequencies will approach 0, i.e.,
|Hi (w1, w2)| — 0, and the original image is recovered.

o Case 3: To(w], @3) = 1.

Ho(w, o)l < 1 (@ # of,oy # o} and

Ho(w}, w;) = 1. The amplitude response decreases

exponentially |Hi(w1, @2)| = 0 (01 # of, w2 # o).

As a result, the original image can be approximately

recovered except at that particular frequency (@}, ®3).
To illustrate the role of Hy(w1, w;) in determining the behav-
ior of the two reverse filters, we consider three low pass
filters:

o a (3 x 3) average filter,

« a Gaussian filter of standard deviation 0 = 1, and

« a Gaussian filter of standard deviation o = 1.5.

In Fig. 2, we plot |Hy(w1, wp)| for 0 < wi,wy < m.
In this figure, the two frequency axes are normalized for
easy visualization. The left column shows the results for
the T-method, while the right column shows the results of
the TDA-method. We have the following observations and
explanations.

o The T-method is unstable for a simple average filter. This
is because the frequency response G can be negative
at certain frequency band(s) leading to the amplitude
response |Hy| = |1 — G| > 1 at those frequency
band(s). For a symmetric Gaussian filters, theoretically
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its frequency response is also a Gaussian, which is
always positive under the assumption that the length of
the filter is infinite. However, in actual implementation
the length of the filter is usually set as 2 x ceil(20) + 1,
where ceil(x) is the ceiling function. The fixed length
Gaussian filter can be regarded as a truncation of the
ideal infinite length Gaussian filter. The truncation can
create negative value in G leading to |Hg| = |1 —
G| > 1. Experimentally we found that when o < 1,
To(w], @) < 1 which results in a stable filter and a
prefect recovery of the original image. When o > 1,
To(w}, w3) > 1 which leads to an unstable filter.

o The proposed TDA-method is always stable for all three
filters. This is because 0 < G? < 1 and the maximum
value of the amplitude response is less than 1, i.e.,

To(w}, 03) =11 = GX @}, w) <1 (26)

o For stable filters, the quality of the recovered image
depends on the range of the frequency (w1, wp) €
such that |Hx(w1, wp)] < 1. More specifically, for the
case To(w], w3) < 1, if Q covers the whole frequency
plane [0, ] x [0, ], then the original image can be
perfectly recovered. For the case To(w], w3) = 1, if Q
covers more areas of the frequency plane, then the recov-
ered image is of better quality because more frequency
components of the image / are nulled. In addition, the
number of iterations required to force |Hy (w1, wy)| to
approach zero for frequency (w1, w2) € 2 depends on
the shape of |Hp(wi, w;)|. For example, compared to
Fig.2 (d) and (e), Fig.2(f) has a larger flat area of the
frequency plane satisfying |Ho(w1, w2)| = 1. As such it
will take more iterations to recover an image of better
quality for the case of Fig.2(f).

The above analysis is supported by experimental results of
an image (the image “pepper.png”’ in MATLAB) shown in
Fig. 3. We used the above 3 linear filters to blur the original
image and used the T-method and the proposed TDA-method
to recover the original image. We use mean square error
(MSE) to measure the quality of the recovered image as
a function of the number of iterations. From Fig. 3(a-c),
we can see that the T-method is not stable for the average
filter and Gaussian filter with o = 1.5. In fact, this is the
case for any average filter and for a Gaussian filter with
o > 1. The T-method can recover the original image perfectly
for a Gaussian with 0 < 1, which can be attributed to
To(w}, w3) < 1 for this family of filters.

From Fig. 3(d-f), we can see that the TDA-method is stable
for all three filters. This is true for any average filter of any
size and a Gaussian filter of any setting of o. The required
number of iterations to achieve a certain MSE depends on
the filter kernel, which determines to what degree the image
is smoothed. For example, we can see that for the lightly
smoothed image (Fig. 3(d-e) the TDA-method requires about
2000 iterations to achieve a MSE of 107>, while for the
heavily smoothed image (Fig. 3(f)) the TDA-method only
achieves a MSE of 10™# at 2000 iterations. Such observation
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(a) Average filt, N=3

(b) Gauss filt, 6=1

(c) Gauss filt, 6=1.5
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FIGURE 3. Mean square error (in log;o scale, vertical axis) of the
recovered image as a function of number of iterations (horizontal axis).
Top row shows the case for the T-method, while the bottom row shows
the case for the TDA-method.

can be further explained in terms of the area of the frequency
plane where the amplitude response |Hp(w1, w2| =~ 1. The
larger the area such as Fig. 2(f), the more iterations are
required to recover a good quality approximation of the orig-
inal image.

C. CONVERGENCE FROM FIXED-POINT ITERATION POINT
OF VIEW

In this section, we present some general results of the conver-
gence of reverse filtering methods from a fixed-point iteration
point of view. Specifically, a fixed point of T (x) is defined
as x* = T(x*) which can be determined by the iteration
Xk+1 = T (x¢). To have a fixed-point, 7 must be a contraction
mapping which is formally defined as the following. Let
(X, d) be a complete metric space. Thenamap 7 : X — X
is called a contraction mapping on X if there exists ¢ € [0, 1)
such that d(7 (x), T(y)) < qd(x,y) forall x, y € X.

We can clearly see that the reverse filtering methods can be
regarded as fixed-point iterations. The convergence of such
methods can be theoretically studied from the contraction
mapping perspective. For example, for the T-method we have
T(x) = x + b — g(x). Whether or not the mapping is a
contraction depends on the filter ¢ which can be complicated
and does not have an analytical form. Therefore, we do not
pursue such study further.

In addition, the fixed-point perspective allows us to study
these methods from the point of view of solving a system
of nonlinear equations, i.e., finding the solution of the filter
equation g(x) = b. Specifically, let us assume there is a fixed-
point x* = xx41 = Xk, when the iteration converges. For the
T-method, it is easy to see that g(x*) = b which means the
fixed-point is a solution of the filter equation.

For the P-method, the fixed-point satisfies the equation

A |(g(x™ + h(x™*)) — g™ — h(x™)) —0 @
[lg(x* + h(x*)) — g(x* — h(x*))||

where A(x*) = b — g(x*). The above equation implies that
h(x*) = 0 leading to g(x*) = b which is also a solution of
filter equation.

For the TDA-method, the fixed-point satisfies the equation:
gx* +b—g(x*)) = g(x*). In order for the fixed-point to be a
solution of the filter equation, it requires a further assumption
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that the filter is injective: if g(x) = g(y), then x = y.
The requirement is filter dependent and is a limitation of the
TDA-method compared to the other two methods which do
not require such an assumption.

However, from a mathematical point of view, the
fixed-point that satisfies the filter equation may not be the
same as the original image. This is because there could be
multiple solutions of the filter equation. For the fixed-point x*
to be the same as the original image denoted x,, a sufficient
condition is that the filter is injective such that g(x*) = g(x,)
leads to x* = x,. From this point of view, all three methods
require the injective assumption to theoretically guarantee the
recovery of the original image. We point out that it is beyond
the scope of this paper to further discuss the following issues.
For a particular filter whether or not the filter equation has
a unique solution. If not, how to find a solution which is
close to the “desired” image. We must also point out that
our extensive experiments demonstrate that although many
nonlinear filters do not satisfy the injective condition, these
methods still produce good results.

D. RELATION AND COMPLEXITY
We can see in Table 1 that the T-method is a special case of the
R-method and is the simplest of all methods. When the filter
g(.) is linear, we have g(xx + q;) — g(xx) = g(q;). Thus,
compared to the T-method, the TDA-method has a further
step of filtering of ¢, and has a scale factor A.

In addition, we can rewrite the TDA method as follows

Xp+1 = Xk +b — gxx) + gWx1) — b (28)
= Yit1 +80ks1) — b (29)

wherey, .| = T(xg) = x +b — g(xy). The TDA-method can
then be represented as a two-step process as follows

T-step:  yri = T(xk) (30)
and
C-step: Xg+1 =Ypo1 + €x+1 (31)

where ey 1 = g(y;, 1) — b. The C-step adds the error (ejy1)
due to the (k + 1)th T-step back to correct the result y, , | and
uses it as a new estimate of x4 1. The term e is an error
because the goal in this case is to estimate a signal X such that
g(x) ~ b or a certain measurement of the difference g(x) — b
is as small as possible. The result at (k + 1)th T-step is y;
and the error is thus eg1. Therefore, the TDA-method can
be regarded as a generalization of the T-method with an extra
correction step.

The P-method and the TDA-method are related through
the different approximations for the gradient. The computa-
tionally expensive ratio of matrix norms in the P-method can
be regarded as playing the role of a scale parameter A in the
TDA-method.

To illustrate their difference in computational complexity,
a MATLAB implementation of the 3 methods is used to
reverse a Gaussian filter with a kernel size of 7 x 7 pixels
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FIGURE 4. Comparison of running time vs image size when reversing a
Gaussian filter with a kernel size of 7 x 7 pixels and a standard deviation
o = 1 applying one iteration of T-, P- and TDA-method.

TABLE 2. AGD methods.

Gradient descent xj 1 = @ — AV f(xk)

MGD [36] L1 = T + vg
v = Bog—1 — AV f(zg)
NAG [37] L1 = T + Vg

v = o1 — AV f(zk + Bvg_1)

Tl = T — ﬁvf(wk)

v = Bog—_1 + (1 — B)V f(xy)?

RMSProp [38]

Adadelta [39] Tr+1 = Tk — A:I:k

wp_1+e€
Awy = V==V f (k)

v = B + (1 — B)V f(zy)?

up = Bug_1 + (1 — B)Az?

Lr41 = T — )\\/:;L:;E

my = Bimg_1 + (1 - B1)Vf(zr)
Vg = Bavp—1 + (1 — B2) V()2

~ . Vi
Uk = 175,

ADAM [40]

and o = 1. Running time for one iteration vs image size is
presented in Fig. 4. The P-method is significantly slower than
the T- and TDA-method. The difference in running time of
the T- and TDA-method is due to number of Gaussian filters
per iteration. The complexity is summarized in the last two
columns of Tablel.

E. USING ACCELERATED GRADIENT DESCENT

Accelerated gradient descent (AGD) methods [26], which are
summarised in Table 2, were developed to tackle problems
related to gradient descent. They are widely used for training
deep neural networks and have the potential to reduce the
number of iterations needed to achieve convergence and to
increase the robustness against noisy gradients [27]. Since
the T-, P- and the proposed TDA-method can be regarded
as gradient descent algorithms, we test these AGD methods
to see if they can improve the performance of the three
algorithms. The tests are conducted by replacing the gradient
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of each AGD method with the following approximations and
results are presented in section IV-C.

o TDA-method: Vf(xy) = —t

o T-method: Vf(xx) = —q

K
e P-method: Vf(x) = _2|||‘|I;k||||pk

IV. EXPERIMENTS AND RESULTS
In this section, we present an experimental study of the
proposed TDA-method, including

« cffects of setting the learning rate A and the number of
iterations (section IV-A),

« validation of its effectiveness in reversing a wide range
of filters (section IV-B),

e a comparison with
(section IV-B2),

« an experimental study (section IV-C) of using acceler-
ated gradient descent algorithms, and

« a demonstration of the limitation of all current meth-
ods failing to reverse the effect of a median filter
(section IV-D).

When it is not specified, the running time test is conducted
using MATLAB r2021a running in a PC with Intel 17-3930k
CPU and 40GB RAM.

the four existing methods

A. NUMBER OF ITERATIONS, LEARNING RATE AND IMAGE
QUALITY

We present two case studies in which the TDA-method is
convergent and non-convergent, respectively.

1) CONVERGENT CASE

We use a successful example of reversing the effect of a bilat-
eral filter (BF) [7] to demonstrate the relationship. Results
are shown in Fig. 5 where the smoothed image is produced
by using range and spatial parameters o, = 0.3 and o5 = 4.
We can see that the proposed TDA-method is convergent and
details from the original image are gradually restored as the
number of iterations increases. In this figure, we also show the
importance of setting the learning rate. A larger value leads
to a faster improvement in image quality.

2) NON-CONVERGENT CASE

We have shown in last section, the condition for proposed
TDA-method to be stable in the linear filter case. However,
there is no guarantee that the proposed TDA-method, like
previous works, will be convergent to a satisfactory result for
any filters. Therefore, a practical problem is to determine the
criteria for stopping the iteration at a point where the quality
of the output image is the highest.

How do we quantify the output image quality without
knowing the original image? Since we have the input image
b = g(x) and the filter g(.) as a black box, we can calculate
the following relative error:

|16 — g(xp)ll3
e = —————=

32
116113 32
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If ||b — g(xi)5 is small, then under the bi-Lipschitz condi-
tion! we can expect that [|x — x| |% will also be small. Thus,
the relative error is a non-referenced metric which can be used
to determine the stopping point of the iteration to achieve the
best outcome.

Indeed, we can use a two-pass process to determine the
optimum stopping point. In the first pass, we run the algo-
rithm for a fixed number of iterations, record the sequence
{exr}, and find n such that n = ming{e}. In the second pass,
we run the algorithm again for #n iterations to determine the
best outcome. We remark that image quality assessment in
general and non-reference quality assessment in particular is
an active research area [41]. Incorporation results from this
research area to deal with the stopping of the iteration is
beyond the scope of this work.

In addition, it is a common practice in evaluating image
processing algorithms that the original image is assumed to
be known so that metrics such as peak-signal-to-noise ratio
(PNSR) and structural similarity index (SSIM) can be used.
Compared with the relative error, both PSNR and SSIM are
referenced metrics. They are used to evaluate the performance
of the algorithm, especially in comparison of performance of
different algorithms.

In Fig.6, we present a non-convergent example. We use the
above 3 metrics in evaluating the performance of reversing a
RGF [21] by the TDA-method with A = 1. The smoothed
image shown in Fig.6(e) is produced by 4 iterations of a
bilateral filter with oy = 3 and o, = 0.05. We can see that
the TDA-method keeps improving output image quality as
measured by the three metrics up to a point. After that, the
output image quality is getting worse. This is revealed in the
top row of the figure, where there is an optimal number of
iteration for each metric. We want to point out that the optimal
number of iterations determined by the relative error (k = 57)
is fairly close to those determined by using PSNR and SSIM
(k = 53 and k = 72, respectively). Thus, this experiment
supports the use of the relative error in determining the num-
ber of iterations. In the bottom row of Fig.6, we can visually
compare the results of 500 iterations and 57 iterations. The
former (Fig.6(f)) has strong ringing artifacts, while the latter
(Fig.6(g)) is free of such artifacts and restores an acceptable
level of details which can be found in the original image.

3) SUMMARY

When the proposed TDA-method converges, setting a larger
value of X helps speed up the convergence rate. When it does
not converge to a useful result, we can use the relative error to
stop the iteration. Adaptively changing the learning rate will
be discussed in section I'V-C.

Iwe regard the filter g(.) as a function. When it is bi-Lipschitz [30],
it satisfies the condition %dx(xl,xz) < dy(y1,y2) < Kdx(x1, xp). Here
the function is defined as y = g(x), X and Y are sets forx and y, K > 1, and
dy and dy are metric on sets X and Y, respectively. An equivalent definition
is that both g and its inverse g_l are Lipschitz.
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(a) Ground truth (b) Smoothed (©) Niter =5
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(e) Niter = 500 (f) PSNR vs Iter
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FIGURE 5. Results of reversing a bilateral filter using the TDA-method with A = 1. (a) Original image. (b) Smoothed image with BF (25.3dB). (c) Result
after 5 iterations (29.9dB). (d) Result after 100 iterations (37.0dB). (e) Result after 500 iterations (40.9dB). (f) PSNR as a function of Nj;, for three

settings of 1.
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FIGURE 6. Example of finding the optimum number of iterations when reversing a RGF [21] as non-convergent example with the TDA-method.
(a) SSIM per iteration. (b) PSNR per iteration. (c) Relative error per iteration, (d) original image. (e) Smoothed image (30.22dB). (f) Result after

500 iterations (22.93dB). (g) Result after 57 iterations (31.70dB).

B. EVALUATION AND COMPARISONS

We first evaluate the effectiveness of the TDA-method by
comparing its performance in reversing 12 commonly used
filters with that of T- and P-method. We then study three par-
ticular cases to highlight and visualize the performance of the
TDA-method. We do not make experimental comparison with
methods proposed in reference [34], because these methods
assume that the black box filter g(.) is locally linear. This
assumption may not be true for highly nonlinear filters.

1) EVALUATION BASED ON 12 FILTERS

We performed experiments using 300 natural images from
the BSD300 dataset [42]. We filtered each of them using
one of the 12 commonly used image filters listed in Table 3.
We then applied the TDA-method of 200 iterations to restore
the original image. Since different filters produce different
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levels of degradation, we use the percentage of improvement
of PSNR given by the following equation to compare the
performance for different filters

Pr _PETPO L 100
Po

(33)

where py and pg represent respectively the PSNR value for a
filter at the kth iteration and Oth iteration (the input image).
The results for the 300 images are then averaged and their
standard deviations are calculated. We also used the SSIM
directly to measure the output image quality at an iteration
point for each filter. The result is summarized as average
values and standard deviations over the 300 images.

The PSNR results for the TDA-method are shown in Fig. 7.
Sub-figures (a) and (b) show the results using A = 0.5 and
A = 1, respectively. We can see that the performance of the
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TABLE 3. Parameter settings for the 12 filters.

Filter Parameters

RGF [21] Rolling guidance filter o5 =3, o, =0.05, Njter =4
Gauss. Gaussian low pass filter o=5

LoG Laplacian of Gaussian k=7Tx7 o=04

AMF [22] os =17, or=04

RTV [23] Relative total variation A =0.05, o =3, €=0.05, Njter =2
ILS [24] Iterative least squares A=1, p=08, e=1x10"% Niyer=4

LO [25] Lo norm smoothing A=0.01, k=2
BF [7] Bilateral filter e =0.05, o0s=3
Disk averaging filter r=3
Motion blur filter =20, 0=45°
GF [8] Guided filter Wgize =D X H, €=0.1
GF+Gauss. Weize =D X b, €=0.1, oc=5
a) TDA-Method A = 0.5 b) TDA-Method A =1 ¢) T-Method d) P-Method
70 . . . 70 . . : 150 , . : 100 . . . RGP
B -G8
— - LoG
60 1 60 | - 4 e —— AMF
-7 - - —RTV
o fe | - —
— — BF
— — Disk
Motion
— — GF
— — GF+GS

Avg PSNR Improvement (%]
Avg PSNR Improvement [%

Avg PSNR improvement (%]

Avg PSNR Improvement [%]

0 50 100 150 200 0 50 100 150 200 0
Tterations Tterations

50 100 150 200 0 50 100 150 200
Tterations Iterations

FIGURE 7. Improvement of the PSNR per iteration when reversing 12 filters. The result is the average of the PSNR improvements for 300 images in the
BSD300 dataset [42]. (a) TDA-method setting A = 0.5. (b) TDA-method setting A = 1. (c) T-method. (d) P-method.

a) TDA-Method A = 0.5 b) TDA-Method A =1 ¢) T-Method d) P-Method
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FIGURE 8. SSIM per iteration when reversing 12 filters. The result is the average of SSIM value for 300 images in the BSD300 dataset [42].
(a) TDA-method setting 1 = 0.5. (b) TDA-method setting A = 1. (c) T-method. (d) P-method.

TDA-method depends on the filter being reversed. While it
can achieve a substantial improvement for some filters such as
GF and BF after a few iterations, it requires a lot of iterations
for filters such as Gaussian filter and rolling guided filter.
Setting A = 0.5 produces acceptable average improvements.
Setting & = 1 achieves faster improvement in image quality
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for most filters. However such a setting does not work in
reversing the Ly filter. Overall, after 200 iterations, for 6 out
of the 12 filters tested for both settings of A, the TDA-method
achieved quality improvement greater than 10%. For A =
0.5, improvements have been achieved for all 12 filters after
200 iterations, although some improvements are quite small.
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TABLE 4. Average PSNR improvement (Avg.PSNR Impr.) and Standard deviation (SD) after 200 iterations on BSD300 dataset. Entries in red color indicate

that the reverse filter method fails.

TDA (A = 0.5) TDA (A =1) T-method P-method

Avg.PSNR Avg.PSNR Avg.PSNR Avg.PSNR

Impr.[%] SD Impr.[%] SD Impr.[%] SD Impr.[%] SD
RGF [21] 2.1 1.5 -19.5 8.3 -11.7 2.9 -2.5 6.2
Gauss. 6 2.3 6.6 2.5 -38 10.6 11.3 3.8
LoG NaN NaN NaN NaN NaN NaN 255.7 1920.3
AMF [22] 33.1 20.2 40.7 24.2 97.3 36 NaN NaN
RTV [23] 13.5 54 15.4 5.8 15.2 9.1 18.6 6.6
1LS [24] 26 8.2 27.8 9 51.6 144 304 10.6
L0 [25] 53 2.3 -8.4 32 -3.3 43 53 2.2
BF [7] 36.6 15 43.3 17.5 89.3 49.6 53.2 23.9
Disk 19.8 2.8 25.6 35 -703.2 89.8 41.4 11.8
Motion 24.1 4.1 29.7 4.8 -1503 185.8 40 9.9
GF [8] 52.7 20.1 61.4 23.7 137.8 57.5 97.9 49.5
GF+Gauss. 9.4 2.8 11.3 32 349 75 21.6 5.4

’5'"“1'; 7 g

i | E%,l 'l‘;'rl-ri'ﬂ

(d) Original image

(e) SSIF (23.38dB)

(c) Reversed (24.56dB)

-
0 L
ALY
i

(f) Reversed (36.59dB)

FIGURE 9. Recovering small-scale image texture by reversing detail removal filters. (a) Original image 1. (b) Filtered image with RTV
(A =0.05,0 =3, e =0.05, Njte, = 2). (c) Reversed with TDA-method (A = 1, Njze, = 3000). (d) Original image 2. (e) Filtered image with SSIF
(r=5,k=0.1,e = 0.1, Njte, = 2). (f) Reversed with TDA-method (A = 1, Njz, = 500).

To compare the performance of TDA-method with those
of the T- and P-method, we conducted the same experiment
and presented the results in sub-figures (c) (T-method) and
(d) (P-method). The T-method produces very good results
for 5 filters (>20% PSNR improvement), but it also fails to
reverse 5 filters. The P-method, like the TDA-method, is able
to reverse all the filters to some extent but at a very high
computational cost. Therefore, the proposed TDA method is
better than the T-method in terms of its ability to reverse a
wider variety of filters, and is also better than the P-method
in terms of its much lower computational cost.

We also report the average SSIM values per iteration for
each method in Fig.8. These results agree with those on Fig.7.
In addition, we summarize all results at the 200th iteration in
Tables 4 (average improvement in PSNR over 300 images and
standard deviation) and 5 (average SSIM over 300 images and
the standard deviation).

We notice that in Table 4, a negative or NAN value for aver-
age PSNR improvement means the method fails to reverse the
effect of the filter. A higher average value means a better qual-
ity of the restored image. The variance provides information
about fluctuation of image quality improvement within the
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image dataset. A smaller value means the performance of the
reverse filter is less affected by content of the image when the
number of iteration is fixed. We have a similar interpretation
of of the SSIM result presented in Table 4. The SSIM value is
in the interval [0, 1]. When the average SSIM value is close
to 1, the reverse filter produces output image of better quality.
When the average SSIM value is close to 0, the reverse filter
fails to restore the image. Comparing values of these two
tables, we can see that they provide consistent information
about the performance of each reversing filters.

2) SUBIJECTIVE AND OBJECTIVE COMPARISON EXAMPLES
We present details of three examples for comparing different
methods subjectively through visualization and objectively
through PSNR. The purpose of the 1st example is to visualize
the performance of the TDA-method in reversing two highly
nonlinear filters. The 2nd example provides further results the
comparing the TDA-method with 4 current methods. The last
example demonstrates the effectiveness of the TDA-method
in image restoration by comparing it with some classical blind
and non-blind algorithms.
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Example 1: An image filter can sometimes irreversibly
remove details from an image. However, in some cases, those
details are not completely removed, but are just diminished
at a point of being visually imperceptible. In this exam-
ple, we demonstrate the effectiveness of the TDA-method
in recovering the texture information which is imperceptible
after the image is smoothed by the RTV algorithm [23] and
the SSIF algorithm [43]. These two algorithms are highly
nonlinear and are used to smooth out texture. Fig. 9 show that
the texture information has been recovered to some extent in
both images. To produce the results shown in Figures 9(c)
and (f) we used 3000 and 500 iterations of the TDA-method,
respectively.

Example 2: We compare the performance of the
TDA-method with that of the 4 methods described in
section II in reversing a self-guided filter [8]. This filter
is chosen because it can be reversed by all methods. The
filter was configured to produce a texture smoothing effect
by setting the window size to 15 x 15 pixels and € =
0.01. The ground truth and filtered image are shown in
Figures 12 (a) and (b). We can see that textures have been
smoothed while the main structure of the image is pre-
served. Figures 12 (c) to (f) show the result for each method.
Although the difference between results of all methods is
quite small in terms of visual inspection, the TDA-method
has achieved the best improvement in PSNR.

Example 3: We study the performance of the TDA-method
in de-convolution applications [1]. When the filter kernel is
known, the problem is non-blind. Classical non-blind image
restoration algorithms, which require the knowledge of the
kernel, include: Lucy Richardson algorithm (LRA) [45], fast
image de-convolution using hyper-Laplacian priors (HLP)
[46], and Wiener filter (WF) [47]. A well-known blind
restoration algorithm is the maximum likelihood algorithm
(MLA) [44], which does not require the knowledge of the
kernel. The proposed TDA-method is applicable in a situation
where the kernel is unknown but is available as black-box.
As such, it can be regarded as semi-blind. We should point out
that there is a vast literature on the subject of image restora-
tion, we only pick some classical methods in our experiments.

In Fig. 10 we show an example of smoothing using a
Gaussian kernel of size 11 x 11 pixels and a standard deviation
o = 10. In Fig. 11 we repeat the same experiment using a
kernel which models the blurring due to the linear motion
of a camera by 20 pixels with an angle of 10 degrees in a
counter-clockwise direction. In both cases, the TDA-method
can reverse the effect of the linear filter, small details are
recovered and edges are well defined (refer to the green box
on Figures 10 and 11). The TDA-method clearly produces a
more appealing result than MLA and HLP since it does not
produce artifacts and the output image is sharper. The LRA
algorithm produces very good results but requires 10000 iter-
ations to achieve the result.> The Wiener filter is the winner

2]t takes more than 10 minutes on a MacBook Pro computer with 16GB
RAM and a M1 Pro CPU.

VOLUME 10, 2022

TABLE 6. AGD methods, parameter settings.

Method Parameter

GD A=1

MGD A=1, =09, v9=0

NAG A=1, =09, vo=0

RMSprop A=1, =09, vo=0

ADAM A=.1, mop=0, vo=0, B1=09, PB2=0.999
Adadelta A=1, =09, v9=0, up=0

among all methods. However, it requires the blurring kernel
as the input. The impact of not knowing the exact kernel can
be seen in the relatively inferior results of the MLA algorithm
in both cases. Since the exact knowledge of the kernel may
not be available in practice, the proposed method can be
useful because it attempts to reverse the effect of any available
filter as a black box without the need to know its internal
operations.

C. RESULTS OF USING ACCELERATED GRADIENT
DESCENT METHODS

In this section, we present a study of applying AGD methods
to the three reverse filtering algorithms: the proposed TDA-
method, the T-method and the P-method. We summarize the
parameter setting of each AGD method in Table 6. We aim to
study the following questions.

Question 1. When the filter can be reversed, how is the
performance of the reverse filter changed by each of the AGD
methods? We conduct an experiment in which all 3 reverse
filter methods can successfully recover the original image.
We smooth the “cameraman’ image using a Gaussian filter
with a kernel size of 7x 7 and a standard deviationoc = 1. The
three reverse filtering methods and its corresponding AGD
variants are then applied to process the image and the PSNR
values calculated at each iteration are recorded. Results are
presented in Fig. 13. Original methods (without AGD and
referred to as GD) are represented by thick dashed black lines
to simplify the comparison. We can clearly see that for the
T-method, applying the AGD methods of MGD, NAG and
ADAM results in significant improvement, while applying
the other two AGD methods, RMSprop and Adadelta, does
not produce notable improvement. For the P-method, there is
no improvement when using any one of the AGD methods.
Some AGD methods even have a negative impact on its per-
formance. For the TDA-method, both MGD and NAG results
in notable improvement, while the other AGD methods lead
to roughly the same performance as that of without using
AGD. We note that the superior performance of the T-method
for this particular case has been explained in terms of the
frequency response of the iterative filter in section III-B2 and
is demonstrated in figure 3

Question 2. When the filter cannot be reversed by a par-
ticular method because the iteration is an unstable process,
does the AGD help to stabilize the iteration? We conduct an
experiment which is aimed at reversing a motion blur filter.
Animage shown in Fig. 15(a) was smoothed by a filter which

124939



IEEEACC@SS F. J. Galetto, G. Deng: Reverse Image Filtering Using Total Derivative Approximation and Accelerated Gradient Descent

(c) Filtered (30.02dB) (d) MLA (33.27dB) [45]

0.5

0
20

(a) Kernel (b) Ground truth

(e) LRA (49.93dB) [46] (f) HLP (33.87dB) [47] (g) WF (56.39dB) [48] (h) TDA method (42.19dB)

FIGURE 10. Reversing a gaussian filter of size 11 x 11 and ¢ = 10. (a) Kernel (Re-scaled for better visualization). (b) Original image. (c) Filtered image.
(d) MLA. (e) LRA. (f) HLP. (g) Wiener filter. (h) TDA-method.

(e) LRA (50.13dB) [46] (f) HLP (27.80dB) [47] (g) WF (56.07dB) [48] (h) TDA method (38.43dB)
FIGURE 11. Reversing a motion blur filter. (a) Kernel (Re-scaled for better visualization). (b) Original image. (c) Filtered image. (d) MLA. (e) LRA. (f) HLP.
(g) Wiener filter. (h) TDA-method.

TABLE 5. Average SSIM value and standard deviation (SD) after 200 iterations on BSD300 dataset. Entries in red color indicate that the reverse filter
method fails.

TDA (A = 0.5) TDA (A =1) T-method P-method

Avg. SSIM SD Avg. SSIM SD Avg. SSIM SD Avg. SSIM SD
RGF [21] 0.74 0.12 0.62 0.14 0.02 0.01 0.62 0.14
Gauss. 0.57 0.15 0.58 0.15 0.18 0.17 0.58 0.15
LoG NaN NaN NaN NaN NaN NaN NaN NaN
AMF [22] 0.74 0.14 0.78 0.13 0.98 0.02 0.78 0.13
RTV [23] 0.73 0.12 0.75 0.11 0.83 0.05 0.75 0.11
ILS [24] 0.96 0.03 0.96 0.02 0.99 0.01 0.96 0.02

L0 [25] 0.74 0.09 0.64 0.1 0.66 0.1 0.64 0.1
BF [7] 0.92 0.05 0.94 0.04 0.98 0.02 0.94 0.04
Disk 0.86 0.06 0.89 0.04 0 0 0.89 0.04
Motion 0.76 0.07 0.81 0.06 0 0 0.81 0.06
GF [8] 0.98 0.01 0.99 0.01 1 0 0.99 0.01
GF+Gauss. 0.78 0.1 0.8 0.09 0.94 0.03 0.8 0.09

approximates a linear motion of 20 pixels in a 45 degrees Question 3. When the T-method fails, how does the AGD

angle. Results are shown in Fig. 14. The T-method fails to help improve the performance of P- and TDA-method? We
recover the image and none of the AGD methods helps to can see in Fig. 14 that the performance of the P-method and
make the T-method produce useful results. T-method are improved by using MGD, NAG and ADAM.
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(d) F-method [20] (43.41dB)

(e) P-method [19] (56.46dB) (f) TDA-method (57.48dB)

FIGURE 12. Reversing the guided filter [8]. (a) Original image. (b) Filtered or input image. (c) T-method (Nj¢e, = 10). (d) F-method (N, = 20).

(e) P-method (Njz, = 500). (f) Proposed TDA-method (Nj, = 500).
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FIGURE 13. PSNR per iteration when reversing Gaussian filter with T-, P-
and TDA-method applying accelerated gradient descent.

To provide further evidence of the improvement and to further
compare these two methods, we present in Fig. 15 results
after 1000 iterations of algorithms with and without AGD.
It can be seen that the PSNR improved by about 5dB when
the TDA-method is combined with an AGD method, while
that of the P-method is improved by about 1dB. However,
in 1000 iterations the P-method produces 36.54dB, while
the TDA-method produces 34.76dB. We should point out
that due to the huge difference in complexity, to complete
1000 iterations, the TDA-method and the P-method take
about 3.27 seconds and 43.57 seconds, respectively. For the
TDA-method with NAG to produce the result of 36.5dB,
it takes only 14.60 seconds to complete 3048 iterations. This
is about 1/3 of the time which the P-method needs to produce
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T-Method P-Method TDA-Method -
25 -=-=GD

MGD
NAG
———RMSprop
——— ADAM
———— Adadelta

PSNR [dB]

22
100 0 500 1000 0 500 1000
Iterations Iterations
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FIGURE 14. PSNR per iteration when reversing motion blur filter using T-,
P- and TDA-method with accelerated gradient descent.

the same result. As a further comparison, in 14.60 seconds
the P-method could only perform 335 iterations achieving a
PSNR of 30.72dB. Therefore, compared with the P-method,
the TDA-method not only benefited more from the AGD, but
is also faster due to its much lower complexity.

Question 4. For the three methods, what are the ben-
efits when using AGD over a wide range of filters to be
reversed? This is a further study of that presented in IV-B1
by comparing the performance of the 3 methods with AGD.
We conducted experiments using the “cameraman’” image
which is smoothed by 11 filters mentioned in section IV-B1.
We have excluded the LoG filter because all methods with
AGD failed to reverse this filter. We recorded the PSNR
value of the image produced by each filter and the PSNR
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v
£ \'é.i\iﬂ: g -
(e) P w/ MGD (36.45dB) (f) TDA w/ NAG (34.76dB)
FIGURE 15. Example of reversing a motion blur filter with P-method and
TDA-method by applying accelerated gradient descent. (a) Original image.

(b) Blurred image. (c) P-method. (d) TDA-method. (e) P-method with
MGD. (f) TDA-method with NAG.

TABLE 7. PSNR improvement of the TDA-method with AGD techniques.

) g

) D o IS > ¥
Filter F & ¢ = K S 3

S
S @ <= $ < v@

RGF [21] 25 23 -7 2 25 9 25
Gauss. 25 31 33 33 31 29 32
AMF [22] 20 29 34 35 31 33 34
RTV [23] 22 25 24 25 25 23 26
ILS [24] 33 39 38 39 39 33 40
LO [25] 27 27 22 23 28 24 27
BF [7] 28 34 39 32 34 35 38
Disk 22 26 30 30 27 28 27
Motion 19 23 27 27 24 26 23
GF [8] 32 45 47 48 40 40 47
GF+Gauss. 23 25 26 26 25 24 26

of the image after applying each reverse filter method at
50 iterations. The results for the TDA-, P- and T-method are
shown in Tables 7, 8 and 9 respectively, where a negative
number indicates a non-convergent iteration. We can see
that among the AGD methods MGD, NAG and Adadelta
generally produce the best results. Table 7 shows that, for
all smoothing filters, applying AGD to TDA-method results
in improved image quality. In addition, Tables 8 and 9 show
that, in some cases, reversing nonlinear filters such as AMF
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TABLE 8. PSNR improvement of the P-method with AGD techniques.

) &

> S & $ > S
Filter Qb § & \od K QV >
S >

$ S <= $ < V"b

RGF [21] 25 25 0 11 25 13 25
Gauss. 25 31 34 34 31 29 34
AMF [22] 20 34 33 28 31 34 33
RTV [23] 22 25 24 25 25 23 26
ILS [24] 33 40 36 39 39 33 40
L0 [25] 27 27 24 27 28 25 27
BF [7] 28 34 38 37 34 35 40
Disk 22 27 31 31 27 28 28
Motion 19 24 28 27 25 26 24
GF [8] 32 48 47 48 41 40 47
GF+Gauss. 23 26 27 27 25 24 26

) &

> 9 $ > §
Filter $ S & < N N K

S
5 N < $ < V?

RGF [21] 25 14 -4 0 14 6 15
Gauss. 25 38 46 47 37 39 38
AMF [22] 20 44 40 42 41 39 44
RTV [23] 22 29 29 30 29 28 29
ILS [24] 33 43 41 41 41 37 43
L0 [25] 27 28 25 25 29 24 29
BF [7] 28 46 35 35 40 39 46
Disk 22 -14 -90 -106 5 -18 -10
Motion 19 -52 -146  -176 4 -19 -40
GF [8] 32 53 58 73 45 43 53
GF+Gauss. 23 29 34 34 29 30 29

3x3 Median Filter 5x5 Median Filter

= = T
~_ —F
36 \\ 331\ ~__ P
& g_1 —TDA
Z 34 Zos2t
a |
32 31 “ \
\ |
30 - 30
2 4 6 8 10 2 4 6 8 10

Iterations Iterations

FIGURE 16. Values of PSNR per iteration obtained when reversing a
Median filter using the T-, F-, P- and TDA- methods. (a) 3 x 3 Median filter.
(b) 5 x 5 Median filter.

and RTV, the T- and P-method do not benefit from using the
AGD.

D. A CHALLENGING QUESTION

We demonstrate a limitation of the reverse filtering process
by considering median filters. We filter an image using a
median filter with two patch sizes of 3 x 3 and 5 x 5.
We then apply 10 iterations of the T-, F-, P- and TDA-method
to try to reverse the filter effect. Results are shown in
Figures 16 and 17 which show that the PSNR decreases after
each iteration and the visual quality of the image is also
decreasing. Thus, all algorithms failed to reverse the effect
of a median filter which removes some information from the
image. This study raised a challenging question: does such a
family of reversing filters recover lost information due to the
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(d) F (6.93dB) (e) P (29.35dB)

(f) TDA (32.33dB)

FIGURE 17. Limitation example. Results of reversing a 5 x 5 median filter
using 10 iterations. (a) Original image. (b) Filtered image. (c) T-method.
(d) F-method. (e) P-method. (f) TDA-method.

original filter? If so, what is the maximum information loss
that a particular reverse filter can tolerate?

V. CONCLUSION AND FURTHER RESEARCH

In this paper, we presented a new method to solve the
semi-blind inverse filtering problem where the filter is avail-
able as a black box. The proposed algorithm is based on
solving a local patch-based minimization problem by gra-
dient descent where the unknown gradient is approximated
by total derivative. We study issues related to convergence
and output image quality for the case of a linear low pass
filter. Results provide new insights into the proposed method
and the T-method. Because the proposed method and two
other existing methods can be regarded as gradient descent
algorithms, we study the application of some widely used
accelerated gradient descent (AGD) algorithms. We have
demonstrated that applying AGD can usually lead to better
image quality in a smaller number of iterations. However,
the success of each AGD method depends on the filter being
reversed. So the optimum AGD method needs to be found
empirically. Through extensive experiments and compar-
isons, we have demonstrated that the proposed TDA-method
has achieved a good balance between efficiency in terms of
complexity and effectiveness in terms of its ability to reverse
a larger number of filters.

The failure of all gradient-free algorithms to reverse the
effect of a median filter reveals a limitation of this family of
methods and calls for further investigation into the assump-
tions being made in the algorithmic development and possible
ways to develop new algorithms. Another direction for fur-
ther research is to apply numerical techniques such as those
developed for the acceleration of fixed-point iterations to

VOLUME 10, 2022

accelerate iterative reverse filters. In [48], we have presented
some results based on both fixed-point and gradient descent
accelerations.

APPENDIX

We present derivation of equations (19) and (20). We use the
following facts: B = GX and Xo = B = GX. We can write
T-method iteration in the Fourier domain as the following

Xi+1 = Xk + B—GX; (34)
=X-(1-6X —Xk) (35)
=X — Ho(X — Xy) (36)

where Hy = (1 — G). We can rewrite the above equation as
Xir1—X = Ho(Xg — X) 37

Therefore, we have

Xe—X = HE(Xo — x) (38)
= HY(GX — X) (39)
= —H}I (40)

where I = (1 — G)X. Equation (19) is derived.
In the Fourier domain, we can write the TDA-method
iteration as the following

Xiv1 = Xx + GXi + B — GXy) — GX; (41)

=GB+ (1 — GHX (42)
=GX+(1-GHX (43)
=X —(1-GHX +(1—GHX; (44)
=X—(1-GHX —Xp) (45)
=X — Jo(X — Xp) (46)

where Jy = (1 — G?). Equation (20) can be similarly derived
by using the above method.

REFERENCES

[1]1 R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using
MATLAB. Hoboken, NJ, USA: Pearson Prentice-Hall, 2004.

[2] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341-2353, Sep. 2010.

[3] Z.G.Liand]J. H. Zheng, “Single image de-hazing using globally guided
image filtering,” IEEE Trans. Image Process., vol. 27, no. 1, pp. 442-450,
Jan. 2018.

[4] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., vol. 2, Jun. 2005, pp. 60-65.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.

[6] P. Jain and V. Tyagi, “A survey of edge-preserving image denoising
methods,” Inf. Syst. Frontiers, vol. 18, no. 1, pp. 159-170, 2016.

[7] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. 6th Int. Conf. Comput. Vis., 1998, pp. 839-846.

[8] K.He,J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 6, pp. 1397-1409, Jun. 2013.

[9] X. Wei, Q. Yang, and Y. Gong, ‘“‘Joint contour filtering,” Int. J. Comput.
Vis., vol. 126, no. 11, pp. 1245-1265, Nov. 2018.

[10] H. Yin, Y. Gong, and G. Qiu, “Side window guided filtering,” Signal
Process., vol. 165, pp. 315-330, Dec. 2019.

124943



IEEE Access

F. J. Galetto, G. Deng: Reverse Image Filtering Using Total Derivative Approximation and Accelerated Gradient Descent

[11]

[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]

[37]

Z. Sun, B. Han, J. Li, J. Zhang, and X. Gao, “Weighted guided image
filtering with steering kernel,” IEEE Trans. Image Process., vol. 29,
pp- 500-508, 2020, doi: 10.1109/TTP.2019.2928631.

Z.Li,J. Zheng, Z. Zhu, W. Yao, and S. Wu, “Weighted guided image filter-
ing,” IEEE Trans. Image Process., vol. 24, no. 1, pp. 120-129, Jan. 2015.
Y. Endo, Y. Kanamori, and J. Mitani, “Deep reverse tone mapping,” ACM
Trans. Graph., vol. 36, no. 6, pp. 1-10, Nov. 2017.

J. Koh, J. Lee, and S. Yoon, “Single-image deblurring with neural net-
works: A comparative survey,” Comput. Vis. Image Understand., vol. 203,
Feb. 2021, Art. no. 103134.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imag-
ing. Piscataway, NJ, USA: IEEE Press, 1988.

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process.
Mag., vol. 25, no. 2, pp. 14-20, Mar. 2008.

X. Tao, C. Zhou, X. Shen, J. Wang, and J. Jia, “Zero-order reverse
filtering,” in Proc. ICCV, 2017, pp. 222-230.

P. Milanfar, “Rendition: Reclaiming what a black box takes away,” 2018,
arXiv:1804.08651.

A. G. Belyaev and P.-A. Fayolle, “Two iterative methods for reverse image
filtering,” Signal, Image Video Process., vol. 15, pp. 1-9, Apr. 2021.

L. Dong, J. Zhou, C. Zou, and Y. Wang, “Iterative first-order reverse image
filtering,” in Proc. ACM Turing Celebration Conf. China, 2019, pp. 1-5.
Q. Zhang, X. Shen, L. Xu, and J. Jia, “Rolling guidance filter,” in Proc.
ECCV. Cham, Switzerland: Springer, 2014, pp. 815-830.

E. S. L. Gastal and M. M. Oliveira, “Adaptive manifolds for real-time
high-dimensional filtering,” ACM Trans. Graph., vol. 31, no. 4, pp. 1-13,
Aug. 2012.

L. Xu, Q. Yan, Y. Xia, and J. Jia, “Structure extraction from texture via
relative total variation,” ACM Trans. Graph., vol. 31, no. 6, pp. 1-10, 2012.
W. Liu, P. Zhang, X. Huang, J. Yang, C. Shen, and I. Reid, “Real-time
image smoothing via iterative least squares,” ACM Trans. Graph., vol. 39,
no. 3, pp. 1-24, Jun. 2020.

L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via Ly gradient
minimization,” ACM Trans. Graph., vol. 30, no. 6, pp. 1-12, 2011.

M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization.
Cambridge, MA, USA: MIT Press, 2019.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equa-
tions in Several Variables. Philadelphia, PA, USA: SIAM, 2000.

G. Deng and P. Broadbridge, “Bregman inverse filter,” Electron. Lett.,
vol. 55, no. 4, pp. 192-194, Feb. 2019.

N. Weaver, Lipschitz Algebras. Singapore: World Scientific, 2018.

M. Delbracio, I. Garcia-Dorado, S. Choi, D. Kelly, and P. Milanfar, “Poly-
blur: Removing mild blur by polynomial reblurring,” IEEE Trans. Comput.
Imag., vol. 7, pp. 837-848, 2021.

B. T. Polyak, “Minimization of unsmooth functionals,” USSR Comput.
Math. Math. Phys., vol. 9, no. 3, pp. 14-29, Jan. 1969.

J. Steffensen, “‘Remarks on iteration,” Scandin. Actuarial J., vol. 1933,
no. 1, pp. 64-72, 1933.

A. G. Belyaev and P.-A. Fayolle, “Black-box image deblurring and
defiltering,” Signal Process., Image Commun., vol. 108, Oct. 2022,
Art. no. 116833.

A. K. Jain, Fundamentals of Image Processing. Upper Saddle River, NJ,
USA: Prentice-Hall, 1989.

B. T. Polyak, “Some methods of speeding up the convergence of iteration
methods,” USSR Comput. Math. Math. Phys., vol. 4,no. 5, pp. 1-17, 1964.
Y. E. Nesterov, “A method for solving the convex programming problem
with convergence rate O(l/kz),” Doklady Akademii Nauk SSSR, vol. 269,
no. 3, pp. 543-547, 1983.

124944

(38]

(39]
(40]
[41]

[42]

(43]

(44]

(45]

[46]

(47]

(48]

T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neural net-
works for machine learning,” Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, Tech. Rep. 6, 2012.

M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” 2012,
arXiv:1212.5701.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

G. Zhai and X. Min, “‘Perceptual image quality assessment: A survey,” Sci.
China Inf. Sci., vol. 63, no. 11, Nov. 2020, Art. no. 211301.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2. Jul. 2001, pp. 416-423.

G. Deng, F. Galetto, M. Alnasrawi, and W. Waheed, “A guided edge-
aware smoothing-sharpening filter based on patch interpolation model and
generalized gamma distribution,” IEEE Open J. Signal Process., vol. 2,
pp. 119-135, 2021.

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishna-
murthi, W.-C. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light
microscopic images reconstructed by maximum likelihood deconvolu-
tion,” in Handbook of Biological Confocal Microscopy. Springer, 1995,
pp. 389—402.

W. H. Richardson, “Bayesian-based iterative method of image
restoration,” J. Opt. Soc. Amer., vol. 62, no. 1, pp. 55-59, Jan. 1972.

D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
Laplacian priors,” in Proc. Adv. Neural Inf. Process. Syst., vol. 22, 2009,
pp. 1033-1041.

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time
Series: With Engineering Applications, vol. 8. Cambridge, MA, USA: MIT
Press, 1964.

F. Galetto and G. Deng, “Fast image reverse filters through fixed point and
gradient descent acceleration,” 2022, arXiv:2206.10124.

FERNANDO J. GALETTO received the B.Eng.
degree in electronics engineering from the
National Technological University, Cordoba,
Argentina, in 2015, and the M.Eng. degree in
electronics engineering from La Trobe University,
Melbourne, VIC, Australia, in 2019, where he is
currently pursuing the Ph.D. degree. His research
interests include computer vision and underwater
image processing.

GUANG DENG is currently a Reader and an Asso-
ciate Professor of electronic engineering with La
Trobe University, Melbourne, VIC, Australia. His
current research interests include Bayesian signal
processing, lossless image compression, and gen-
eralized linear systems.

VOLUME 10, 2022


http://dx.doi.org/10.1109/TIP.2019.2928631

