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ABSTRACT This paper proposes a dual-band dual-circularly polarized (CP) aperture-coupled patch antenna
with controlled frequency ratio. By simply etching a modified S-shaped slot at the central of a circular
patch, dual-band dual-CP operation is realized. In addition, the frequency ratio of the two CP bands can be
controlled by optimizing the length parameters of the S-shaped slot arms. As a result, the frequency ratio can
be tuned from 1.12 to 1.46 according to different requirements. For demonstration, the circularly polarized
patch antenna operating at 3.42 and 3.85 GHz is manufactured and tested. The measured 3-dB axial-ratio
(AR) bandwidth is 1.1% and 2.3% for the right-hand circular polarization (RHCP) and left-hand circular
polarization (LHCP), respectively. The measured gains at the lower and upper bands are 9.4 and 9.8 dBic,
respectively.

INDEX TERMS Circularly polarized, dual-band, patch antenna, slot coupled, controlled frequency ratio.

I. INTRODUCTION

Circularly polarized (CP) antennas have received consider-
able attention since they can not only alleviate multipath
propagation affects and decrease polarization mismatch loss,
but also suppress the Faraday effects produced by the
ionosphere. Moreover, circularly polarized antennas with
no need for polarization alignment, are widely used in
modern wireless communication. Dual-/multi-band antennas
are often employed in global navigation satellite system to
ensure the accuracy of the satellite positioning. Dual-band
dual-sense CP antennas are typically designed in two bands
as transmitting and receiving channels to strengthen the chan-
nels isolation. For example, in the satellite communication
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system, the RF transmitter is required to work with LHCP
operation in a lower band frequency while the RF receiver
with RHCP operation in a higher frequency band.

In recent years, several dual-band CP antennas with
superior performance have been presented [1], [2], [3].
However, they featured only a single RHCP or LHCP
function. To realize dual-band dual-sense CP operation,
two disparate radiating patches operating at inverse sense
were directly connected by the feeding network in [4]
and [5]. Similarly, same-layer parasitic patches [6], [7],
[8], [9] and multi-layer stacked patches [10], [11], [12],
[13], [14] were used to produce dual-band and dual-sense
CP performances. Since independent patch radiators were
employed, it’s possible to control the frequency ratio of the
CP bands. For example, in [14], two different size circular
ring patches on different layers were excited by a dual-band
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FIGURE 1. Configuration of the proposed dual-band dual-CP patch
antenna, (a) 3-D view, (b) bottom view and (c) top view (L; = 6.5,

Ly =6.75,L3 = 4.4,L, =25,Ls =74.5,Lg = 3.8, W; = W, = W5 =222,
W5 = 0.25, W, = 1.8, all in mm).

phase shifter. But these methods will take considerable space
and increase the complexity of the structure. A preferable
option to solve this dilemma is to use slot antenna [15],
[16]. Wideband and dual-sense performance can be realized
by such simple slot antenna structures. However, the main
disadvantage for this kind antenna is the large back-side
radiation. To improve the antenna directivity, a patch antenna
fed by a dual-coupled line [17] has been proposed. Dual-band
dual-CP, low backside radiation and simple structure have
been successfully realized. Since only one patch is employed,
it is challenging to independently control the frequencies of
the two CP bands.

Against this background, this paper presents a new patch
antenna with a modified S-shaped slot. This slot generates
the dual-band dual-CP response and the frequency of
each CP band can be independently controlled by varying
corresponding slot arms. Compared to the existing dual-band
dual-CP antenna, the proposed antenna can realize the two
CP bands independently controlled with a single radiator.
The antenna is fabricated and the measured results show
that it simultaneously realizes a simple structure, independent
frequency control of the dual-CP band and high gain. This
paper is organized as follows. The dual-band and dual-CP
generation mechanism of the antenna is described in detail
in Section II, a prototype with simulation and measurement
results are reported in Section III. Finally, the conclusion is
given in Section I'V.

Il. ANTENNA DESIGN

A. ANTENNA CONFIGURATION

The geometry of the proposed antenna is illustrated in
Fig. 1. The antenna consists of two substrates with relative
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FIGURE 2. Design procedure of the proposed antenna.

permittivity 2.55, loss tangent 0.0029 and thickness 0.8 mm.
A circular patch with a modified S-shaped slot is printed
on the top surface of the upper substrate. The traditional
aperture-coupled feeding structure which is composed of a
microstrip feeding line and a slot is used. They are printed
on the bottom and top surface of the lower substrate, respec-
tively. The input signal transmits through the microstrip line
to the slot and then coupled to the patch radiator. The air gap
between the two substrates is 4.2 mm.

The modified S-shaped slot is composed of two parallel
arranged rectangular slots rotated 15° from the y-axis and
a rectangular slot connecting them in the center. The
arrangement of the S-shaped slot can introduce a perturbation
to excite two orthogonal modes with a 90° phase-shift
for CP performance. And the dual-band operation can be
also generated. Moreover, we introduce another two parallel
arranged rectangular slots rotated 15° from the x-axis to
freely control the frequencies of the two CP operating bands.
As shown in Fig. 1, the 15° y-axis rotated parallel arranged
rectangular slots, the 15° x-axis rotated parallel arranged
rectangular slots, and the center rectangular slot are denoted
as Slot 1, Slot 2 and Slot 3, respectively.

B. DESIGN PROCEDURE

To illustrate the working principle of the proposed antenna,
the evolution of the antenna is shown in Fig. 2. The
proposed antenna originates from a traditional slot-coupled
patch antenna. The patch radiator here is selected to be a
circular one rather than a rectangular one. Apparently, this
antenna is linear-polarized (LP). Firstly, etch two parallel
arranged rectangular slots rotated 45° from the y-axis on
the patch radiator and Patch I is realized. Secondly, rotate
these two rectangular slots 30° counter-clockwise to obtain
Patch II. This means the two parallel arranged rectangular
slots of Patch II is 15° rotated from the y-axis. This rotation
introduces a perturbation for the two orthogonal modes
and then elliptical polarized operation is achieved. Thirdly,
introduce an extra rectangular slot to connect the two parallel
slots and the Patch III is realized. This rectangular slot is very
essential for dual-sense CP operation.

VOLUME 10, 2022



X. J. Lin et al.: Simple Structure Dual-Band Dual-Circularly Polarized Antenna With Controlled Frequency Ratio

IEEE Access

N~
NN,
Vo P
s L \ .
R N S WP PN //
) T‘\ A ,//
o ] \¢/ \“.\ /.'
10| £ ~v -/
= = =22 mm \ / /
- - L=25mm Ls
= +L=28 mm
15 1 . . |
2.5 3.0 35 4.0 4.5
Frequency (GHz)
(@)
0
=
\\ D R
-l Ve
\‘ . e s
re=e TS A0
T ¥ SO 7
= o N\ .
] \ -y ¢ ./
2 ~ /
]): \ I “ ., /t
-10 .
R R=16mm T\‘ . S
< - rEtzsmm |\ ] \
= *R=17mm fz . b
sl . . A/
2.5 3.0 35 4.0 4.5
Frequency (GHz)
(b)
0
~ Slot 1

Patch 11

= = Slot-coupled patch antenna

S, (dB)
7 s
T T
o
o —
\
5N —
y2 A

== <Patch I1
20 1 1 1
2.5 3.0 3.5 4.0 4.5
Frequency (GHz)
(©)
0
\n
A _—
51 N\ ol
N e .
-, S Slot 3
—~ 10 gy '\ ’ . . ’ /
% I \ 7 \ 2 / Patch III
w5t 1! 1\
20 " \
= = Patchll
== <Patch III
225 I I L .
2.5 3.0 3.5 4.0 4.5
Frequency (GHz)
(d

FIGURE 3. Simulated reflection coefficients of, (a) the slot-coupled
antenna with L4 tuned, (b) the slot-coupled antenna with R1 tuned,
(c) the slot-coupled antenna and Patch II, (d) the Patch I and Patch Il

Fig. 3 shows the simulated reflection coefficients of the
slot-coupled patch antenna, Patch II and III. As is known,
for the traditional side-fed patch antenna, there is only one
resonant mode, resulting in limited working bandwidth. For

VOLUME 10, 2022

. --s-J, /,‘\\ ,,"‘-st
N XK

{7 e d,
] J "\ J vy Y \J
Y Jy Jy Jy

LPoperation ~ LPoperation ~RHCP operation LHCP operation
(@ (b) (©) (d

FIGURE 4. Theoretical analysis of the CP generation mechanism.

I, gy -,
N J'\J Ny
Jy 2 v
J’
LP operation RHCP operation  LHCP operation RHCP&LHCP
\\ \\ \\ Q
(a) (b) () (d)

FIGURE 5. Antenna evolution of the proposed CP antenna.

bandwidth enhancement, the slot-coupling fed patch antenna
is proposed by generating another resonant mode [18]. One
is generated by the patch resonator and the other is generated
by the coupling slot. Figs. 3(a) and (b) show the reflection
coefficients of the slot-coupled fed patch antenna against the
parameters Ls and R|. As observed, the frequencies of the
two resonant modes (f; and f>) can be tuned by changing
the length of the patch resonator and the coupling slot.
Apparently, these two resonant modes are linearly-polarized
modes (f; and f>).

As observed in Fig. 3(c), when two parallel arranged
rectangular slots are etched on the patch, the third resonant
frequency (f3) is generated. Once another slot is employed
to connect the two parallel slots, the S-shaped slot is formed
and the fourth resonant frequency (f1) is generated, as seen
in Fig. 3(d). It is worth mentioning that these two resonant
modes (f3 and f4) are circularly-polarized modes. The detailed
CP generation mechanism is analyzed as below.

It is well-known that, any LP current (J) can be decom-
posed into two vertical LP components (Jx and Jy), as shown
in Fig. 4(a). When a slot is introduced which is perpendicular
to the LP current, as seen in Fig. 4(b), the current paths of
Jx and Jy are the same and thus it is still the LP operation.
We can change the current paths of Jx and Jy by rotating
the slot direction. For example, when the slot is rotated
counterclockwise with a certain angle, as seen in Fig. 4(c), the
current path difference is produced between Jx and Jy. Since
Jx flows ahead of Jy, it is no longer the LP operation and
the main current J rotates count-clockwise, which is known
as RHCP. Similarly, when the slot is rotated clockwise with
a certain angle, as seen in Fig. 4(d), Jx lags behind Jy and
LHCP is generated.
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FIGURE 7. Simulated phase and magnitude difference versus frequency.
(a) Patch I (b) Patch III.

C. DESIGN GUIDELINE

Based on the above method, a design guideline of the
proposed antenna with an S-shaped slot can be summarized
as below:

(1) Step 1: Etch two parallel arranged rectangular slots
rotated 45° from the y-axis on the patch radiator, as seen in
Fig. 5(a). Since the slot direction and the excitation current
are perpendicularly to each other, the patch (Patch I) is still
the LP antenna.
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FIGURE 8. Current distributions on the (a) Patch I, (b) Patch II, (c) Patch Il
at 3.2 GHz and (d) Patch Il at 4.7 GHz.

(2) Step 2: Rotate these two rectangular slots counterclock-
wise (Patch II), as shown in Fig. 5(b). Tune the slot angle to
optimize its RHCP performance.

(3) Step 3: Add a horizontal slot to realize LHCP
performance, as shown in Fig. 5(c).

(4) Step 4: Combine the slots together to form an S-shaped
slot (Patch III), as presented in Fig. 5(d), and dual-sense CP
operation can be thus realized.

(5) Step 5: Since the RHCP and LHCP performance can be
optimized by controlling the parameters of the corresponding
Slot 1 and Slot 3, refine each parameter such as the slot length,
angle and width to obtain good impedance matching and AP
performance.

Fig. 6 reveals the axial ratios (AR) of the Patch I, II
and III. For the Patch I, the axial ratio is above 35 dB from
2.5-5.5 GHz. For the Patch II, this value is decreased to
10 dB at about 3.7 GHz. Furthermore, for the Patch III,
the AR reduces to about 3 dB at about 3.2 and 4.7 GHz.
Fig. 7 describes the phase and magnitude difference versus
frequency of the Patch II and III. For the Patch IT at 3.7 GHz,
the magnitude difference is 0 dB and the phase difference is
about 40 degree. While for the Patch III, the magnitude and
phase difference is 0 dB and 100 degree at 3.2 GHz, and 0 dB
and 98 degree at 4.7 GHz. The above results verified that the
S-shaped slot can obtain dual band and dual sense.

To further reveal the antenna working mechanism, the
vector current distributions orientated at t = 0, T/4, T/2, and
3T/4 of the three antennas are shown in Fig. 8. For Patch I
seen in Fig. 8(a), it is apparently a —45° linear polarized (LP)
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FIGURE 9. Simulated reflection coefficients of the proposed antenna
against the parameters (a) Lgjo; and (b) Ljoty-

patch antenna. However, for Patch II, it is no longer a LP
antenna. The currents at t = 0, T/4, T/2, and 3T/4 rotate
counter clockwise as shown in Fig. 8(b), indicating that the
right-hand elliptical polarization is realized at 3.7 GHz. With
regard to Patch III, the right-hand elliptical polarization and
left-hand circular polarization (LHCP) is realized at 3.2 GHz
and 4.7 GHz, respectively. Above results verify the analysis.

Although the Patch III achieves dual-band dual-sense
operation, the axial ratios of these two working bands are
not satisfactory. Therefore, the proposed dual-band dual-CP
antenna is developed by adding another two parallel arranged
rectangular slots rotated 15° from the x-axis. With these two
slots, the frequencies of the two CP operating bands can be
freely controlled, which is detailed presented in the following
section.

D. FLEXIBLE CONTROL OF THE TWO CP BANDS

It’s worth mentioning that as observed in Fig. 8(c) and (d),
the current path at 3.2 GHz mainly flows along the Slot 1
(the 15° y-axis rotated parallel arranged rectangular slots). At
4.7 GHz, the currents around the Slot 1 are not strong and
part of them concentrate on the Slot 3 (the center rectangular
slot). These results indicate that the Slot 1 has large effect on
the performance of the lower frequency band 3.2 GHz. Since
the Slot 3 affects the performance of upper-band 4.7 GHz,
we thus deliberately introduce the Slot 2 shown in Fig. 1 to
extend the current path of 4.7 GHz.
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FIGURE 10. Axial ratio of the proposed antenna against the parameters
(3) Lsiot1 and (b) Lgjotr-

For demonstration, the reflection coefficients and the axial
ratios of the proposed antenna against the length parameters
Lgior1 and Lgop are illustrated in Fig. 9 and Fig. 10,
respectively. As the length of the Slot 1 increases from
6.5 mm to 12.0 mm, the lower-band resonating frequency
and the AR frequency decreases from about 3.4 GHz to
2.9 GHz with the upper-band resonating frequency and the
AR frequency almost unchanged. Similar phenomenon is
observed that as the length of the Slot 2 increases from
1.75 mm to 6.75 mm, the upper-band AR frequency decreases
from about 4.6 GHz to 3.8 GHz. It should be mentioned
that although the resonating frequency and the AR band
frequencies are changed with different Lgor2, the length of the
Slot 2 has larger effect on the upper-band one. Above results
agree well with the analysis. By optimizing the parameters of
the Slot 1 and Slot 2, the frequency ratio of the two CP bands
can be freely controlled.

In this work, the parameters Ly, and Lg, are finally
selected to be 6.5 and 6.75 mm for both good impedance
matching and AR values. Fig. 11 shows the current distri-
bution on the proposed patch at the lower and upper-band
frequencies. As seen, standard RHCP and LHCP operations
are achieved as expected.

Ill. ANTENNA IMPLEMENTATION

Based on the above-mentioned design method, the proposed
dual-band dual-circularly polarized patch antenna is fabri-
cated and measured, with the results shown in Fig. 12. In this
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work, the antenna CP frequency bands are set to be 3.42 and
3.85 GHz as an example to verify the design method. In fact,
the two CP bands can be controlled to the desired frequencies
by optimizing the length and angle of the Slot 1 and Slot 3.
It should be mentioned that according to the simulation
results, the frequency ratio of this design can be easily tuned
from 1.12 to 1.46 with both satisfactory impedance matching
and AR performance.

Fig. 12(a) shows the fabrication prototype and the results
are potted in Figs. 12(b) and (c). The measurement results
agree well with simulation ones. The difference between
the measured and simulated results is mainly due to the
fabrication tolerance and other measurement imperfections.
The measurement was accomplished by Agilent 5071C
network analyzer and Satimo Starlab system. The measured
impedance bandwidth is 21.22 % (3.37-4.17 GHz). And
the measured 3-dB AR bandwidths at the lower and higher
bands are 1.16 % (3.40-3.44 GHz), 2.33 % (3.81-3.90 GHz),
respectively. The measured average gains are 9.4 and
9.8 dBic. Fig. 13 depicts the simulated and measured RHCP
and LHCP radiation patterns in the xoz and yoz plane at
3.42 GHz and 3.85 GHz. Directive radiation patterns with low
cross-polarization levels are obtained.

To address the advantages of the proposed work, some
latest researches are compared and the results are tabulated
in Table 1. The designs in [1], [2], and [3] realized single-
polarized response. In [4], [9], and [13], disparate patches
were employed to realize dual-CP function and wider AR
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bandwidth. However, the dual-band dual-sense CP antenna
realization method is not attractive by using two disparate
stacked radiating patches operating at inverse sense, resulting
in considerable antenna space and increased the complexity.
In [15], wideband CP performance was realized by a simple
slot antenna structure. However, the backside radiation is
relatively high and the two CP bands of the antenna cannot
be controlled. A planar patch antenna was proposed in [17]
but the CP bandwidths are limited. It’s worth mentioning that
all the above dual-band dual-CP antennas cannot realize the
frequency control of the CP bands. In addition, compared to
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TABLE 1. Performance comparison.

S AR Gain Freq.
Ref. Realization bandwidth Polar. (dBic) control
Patch + AMC 5.25% . 291
[1] Single : No
reflector 2% /6.25
. 1.5% . 3.68,
[2] Ring patch 1% Single 331 No
6.9% . 5.0
[3] Slotted patch 10.6% Single /5.0 Yes
Disparate 13.3% 13.2
4 patch array 7.4% Dual /13.9 N-A
Patch array +
. 0.9% 11.7
[9] parasitic 10.3% Dual /118 No
resonators
Dual-layer
1.5% 33
[13] stacked 1% Dual /4 No
patches
32.14% 3.36
[15] Slot antenna 31.49% Dual 419 No
Patch + 0.33% 5.3
71 Coupled line 0.72% Dual /5.7 No
This 1.16% 9.4
work Patch n33ve  Oual e Yes

these designs ([3] and [8] employed a 2 x 2 array structure),
the gain (9.4 and 9.8 dBic) of the proposed design was
the highest one. In all, compared to the above designs, the
proposed work realize a very simple structure and the dual-
band dual-sense CP operation. Moreover, the frequencies of
the two CP bands can be controlled and optimized.

IV. CONCLUSION

A simple dual-band dual-sense antenna with controllable fre-
quency ratio has been proposed in this letter. By introducing a
modified S-shaped slot, dual-dual dual-CP operation has been
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obtained. The measured 3-dB AR bandwidth of the dual-CP
is 1.1% (3.42 GHz) and 2.3% (3.85 GHz), respectively. And
the center frequency of each CP band can be independently
controlled by changing the length of the S-slot arms. The
design procedure and working principle of this antenna have
been revealed in detail. Satisfactory measurement results
have been obtained as expected. The proposed design method
is useful for Antennas & Propagations community.
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