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ABSTRACT High Frequency communication is a proven method of beyond line of sight (BLOS) commu-
nications for decades. With the advent of Wideband HF (WBHF), the ability to communicate data and more
specifically TCP over HF is being researched worldwide. HF-TCP, an optimised TCP for HF links provides
improved TCP communication over challenging High Frequency (HF) communication systems. It relies on
the modification of Forced Retransmission Timeout (fRTO) and Mean Segment Size (MSS) to improve the
reliability of communication sessions. Calculating the fRTO for a communication session that would provide
the optimum result over a communication link is a complex task due to the timers that manage the session and
the HF channel characteristics. In this paper, the use of Machine Learning (ML) techniques to dynamically
predict fRTO and MSS to improve the fRTO calculation process for all communication instances is proposed.
To achieve this, a Predictor Model is used to predict fRTO and MSS while an Optimiser model optimises the
Predictor model’s output. Decision Tree Regression was proven to be the most accurate among the various
ML algorithms tested with 82 percent prediction accuracy. The performance of HF-TCP with proposed
predicted fRTO and MSS is compared with that of standard TCP and the performance of the Predictor and
Optimiser models is also analysed. The results show 72 percent of instances have an improvement in link
efficiency when using HF-TCP with predicted fRTO and MSS over standard TCP.

INDEX TERMS HF communications, HF-TCP, TCP/IP, wireless communications.

I. INTRODUCTION distances. While HF provides communication capability over

High Frequency (HF) communications have been the only
communication medium for beyond line of sight wireless
communications other than satellite. Satellite denied envi-
ronments have become a known risk for various capabilities
including the most commonly used GPS. Capability to
destroy or jam satellites has been demonstrated on many
occasions [1]. HF remains the only ground-based communi-
cation method over very long distances in cases where satel-
lite communications are not available. The ability of HF to
reach beyond line of sight (BLOS) is due to the property of HF
signals to bounce off the ionosphere thereby reaching longer

The associate editor coordinating the review of this manuscript and

approving it for publication was Anandakumar Haldorai

large distances, it is also a medium that is highly susceptible
to electromagnetic interference noise due the frequency band
it operates in. The noise sources includes man made noise
from operating machinery to environmental noise such as
solar winds. It is possible to reduce man made noise by
operating from quieter locations but environmental noise is
beyond human control. Moreover, the HF channel is stan-
dardised for 3 kHz channel bandwidth which is appropriate
for most voice communications but highly limited in the
amount of data that can be encoded as per Nyquist theorem
[2]. For this reason, the use of HF has been limited to voice
and very low bandwidth data communication like low speed
serial data. Additional layer 2 protocols such as STANAG
5066 provide some level of reliability at the cost of bandwidth
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which is already limited. STANAG 5066 F.12 provides the
recommendation based RFC 3135 [3] for a proxy server but
has limitations such as interoperability and other constraints
highlighted in a study conducted by Isode [4].

Wide Band HF (WBHF) is being trialed and in the pro-
cess of being standardised across the globe. WBHF promises
channel bandwidths of up to 48 kHz which increases
prospects of using higher data rates [5]. Higher data rates
open up possibilities of utilising HF for other capabilities
where most of the communication is data based. This includes
Internet Protocol (IP) which is by far the most utilised
protocol for wired and wireless communications. Although
higher bandwidths are available with WBHEF, the problem
of reliability remains a challenge due to environmental fac-
tors. Transmission Control Protocol over Internet Protocol
(TCP/IP) is resistant to errors to a certain degree but can-
not cope with HF links that have low reliability and higher
delays [6]. In order to overcome the poor error and delay
tolerance of TCP/IP, modifications are required to the way
TCP operates. DMello et al. [7] have conducted analysis and
research on TCP behaviour over HF and proposed modifica-
tion to TCP in order to improve tolerance while being back-
ward compatible to standard TCP. DMello et, al. proposed
HE-TCP as a solution to improve reliability by introducing
the fRTO parameter that can improve communications suc-
cess rates when using TCP. fRTO is a set of two indepen-
dent parameters, F1 and F2 which are used in HF-TCP to
control timeouts. F1 is used to set the RTO timer itself and
F2 is the fixed value the RTO timer resets to whenever it
expires. F1 and F2 rely on the link condition to set the fRTO
parameters that is most suitable for each operating condition.
The impacts and benefits of fRTO has been detailed by
DMello et al. [7] in their paper.

These conditions are interleaving delay, Bit Error Rate
(BER), transmission rate and the Mean Segment Size (MSS)
of the TCP/IP session. Of these, interleaving delay, Bit
Error Rate (BER) and transmission rate are calculated as per
MIL-STD-110D [8]. fRTO is then calculated for different
MSS to identify the best value for the transmission that com-
prises of minimum transmission time and high probability of
success.

Due to the numerous permutations a link can operate under,
there are a total of approximately eight billion combina-
tions and outcomes. Such computation needs high processing
power and algorithms to provide a performance comparable
to standard TCP. To over come these shortcomings, this paper
proposes the use of Machine Learning (ML) algorithms to
predict fRTO and MSS for a given over the air operating
condition.

Our contribution provides,

o A Machine Language technique to overcome the over

heads of calculating fTRO for HF-TCP; and

o Optimisation of HF-TCP parameters for the best

performance.

A ML model has been developed that is capable of pre-
dicting the fRTO parameter for successful transmission in the
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least amount of time. The data size calculation has also been
included for prediction to optimise the fRTO values further.

Our proposed solution makes use of two ML models, the
Predictor Model and the Optimiser Model. The Predictor
Model chooses the fRTO and MSS values for successful
transmission and these values are then optimised using the
Optimiser Model such that the transmission duration is min-
imised. Transmission duration is the time taken by HF-TCP to
transfer data from the source to destination. This includes the
session initiation, maintenance and tear-down time. Trans-
mission duration is referred here because that is the delay
experienced at the application layer. The throughput remains
constant at layer 1 and 2 of the Open System Interconnec-
tion (OSI) model once the link is established whereas trans-
mission duration can vastly vary when retransmission rate
is high. Although throughput and transmission duration are
interrelated, transmission duration provides a more accurate
interpretation of performance. Our proposed solution is able
to provide 82 percent prediction accuracy and 72 percent of
the time an improvement of up to 81 percent in transmission
duration.

There are various ML development packages that are either
standalone development environments or libraries that can
be used by popular programming languages like Python to
implement machine learning. Scikit-Learn and Keras are
among the popular ML libraries for Python [9], [10]. Ten-
sorFlow is a framework developed by Google specialising
in neural networks [11]. Other packages include Cloudera
Oryx, CUDA-Convent, Convnet]S and many more. Matlab
and opencv too provide support for ML development. A com-
parison of Matlab and opencv was conducted by Ahmed and
Waleed [12]. Each of the libraries and packages are usually
targeted to certain types of applications and they differ in
the computing resources they utilise for computation like the
Mzxnet for heterogeneous distributed systems, R for predictive
modelling and NLTK for language processing [13], [14], [15].

Scikit-Learn is an open source library for Python used
for data mining and machine learning applications [9].
It provides a wide variety of algorithms and a robust ML
development pipeline. Scikit-Learn has been extensively used
in ML based research [16], [17], [18], [19]. As Scikit-Learn
provides access to a variety of algorithms to enable full scaled
testing for comparison and also as Scikit-Learn- has been
used for other comparative modelling research, Scikit-Learn
library for developing ML models in Python has been used.

OMNet++ is a simulation platform used for radio based
simulation for research including HF simulation [20], [21].
HE-TCP was also developed with simulations conducted on
OMNet++ [22]. To obtain consistent and comparable results,
OMNet++ was used for simulations.

Scikit-Learn is used to build the ML models and
OMNet++ as the simulation platform.

The rest of the paper is organised as follows, related works
is discussed in Section II and then present the proposed solu-
tion in Section III which consists for a workflow utilising the
two ML models. Section IV provides details on the algorithm
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and selection criteria used to build the models. Section V
describes the simulations conducted on the proposed solution
and Section VI presents the results and evaluation. Conclu-
sion is covered in Section VII.

Il. RELATED WORKS

Machine Learning is a subset of Artificial Intelligence (Al)
studies [23]. ML has been a major research topic due to the
large application base where it can be implemented [24].
ML has been used in various situations where the ML algo-
rithms learns from sample data to predict outputs based on
inputs that may not part of the sample dataset [25].

Regression and classification are the two main types of
ML techniques used depending on what kind of prediction is
expected form the ML algorithm [25]. Classification or clas-
sifiers are used when prediction is based on class labels. For
example facial recognition algorithms that predict similarities
between two images. Regression algorithms are used where a
value is required to be predicted. For example weather param-
eters like temperature. Within the two ML techniques there
are various algorithm types like decision trees, k-neighbor,
Bagging Regressor, etc.

ML has been implemented in various situations in com-
munications with promising results. The application of ML
in wireless networks is not new. Jagannath et al. [26] have
provided a comprehensive survey of the state of the art in
the application of machine learning techniques to address key
problems in different aspect of wireless communications in
Internet of Things (IoT) implementations. Wang et al. [27]
in their paper on HF and its future have indicated the use
of ML for future developments of HF systems because of
the unpredictable nature of the transmission medium. They
propose the use of Al, especially machine learning and deep
learning to make HF systems smarter in frequency selection
and other aspects of HF communications. Samuel et al. [28]
have proposed a technique to implement multiple input mul-
tiple output (MIMO) in HF systems using ML for cognitive
engine models. They claim their solution provides increased
channel capacity in HF communications when using ML.
Other interesting works include channel selection and Data
Scheduling Approach for High-Frequency Communications
in Jamming Environment by Wen et al. [29] in which the
authors propose a Q-learning method to enhance commu-
nications in difficult jamming conditions resulting in better
performance of HF in jamming situations.

ML benefits are recently being explored in research works
surrounding Long-Term Evolution (LTE) and 5G networks
where end user throughput is predicted in order to provide
better service [30]. Supervised ML algorithms for Radio
Frequency (RF) interference flagging are also being explored
in the field of astronomy [31]. Improvements in RF path loss
predictions during design and operations are examined by
Zang et al. [32].

For decades, HF has been used for beyond line of sight
communications. However, advances in Al technologies
allow ML to improve HF communications’ performance and
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efficiency, making it widely available for military and other
applications such as HAM radio.

The use of TCP in HF communications has been chal-
lenging and various attempts have shown limited success.
Some improvements have been presented that improves the
possibility of using TCP over HF [20] but a complete solution
has not yet been developed. Improving TCP to adapt to an HF
environment has been proposed by DMello et al. [22]. Their
solution present HF-TCP which is a backward compatible
TCP with an innovative method in the way TCP manages
Retransmission Timeout (RTO) timers and the Maximum
Segment Size (MSS). HF-TCP is further evaluated in their
research presenting the improvements over standard TCP [7].
Due to the nature of a HF transmission, HF-TCP faces a
challenge for predicting the best fRTO and MSS for a given
transmission scenario. Accurate prediction of fRTO is essen-
tial in obtaining higher success rates and quicker transmission
to provide better data rates.

This paper builds upon the HF-TCP implementation devel-
oped in [7] and implement ML to make predictions for fRTO
and MSS. Our implementation of ML for predicting the fRTO
and MSS will complement HF-TCP and provide a complete
HF-TCP solution with the prediction engine supported by two
models.

Ill. MACHINE LEARNING FOR HF-TCP

HEF-TCP is an improved version of the standard TCP that
is backward compatible [22]. It implements the ability to
control the mean segment size (MSS) and the retransmis-
sion timeout (RTO) timer. In standard TCP, the RTO is
dynamically calculated based on algorithms. In our proposed
HF-TCP implementation, the RTO, which is made up of F1
and F2 and called fRTO and the MSS are predicted by a
process using two models which are trained on simulated
data. Machine learning models were developed to predict
fRTO parameters to be used in HF-TCP for data transfers
using the minimum possible time. These ML models were
built using Scikit-Learn libraries and Python [9].

[7] presents a technique to obtain fRTO and MSS values
using simulation and data analysis. However, it was observed
that there can be more than one instance where a combination
of fRTO and MSS will result in a successful communication
for a given transmission scenario. Each of these instances
could have different values of transmission duration. There-
fore, it is a timely concern to develop methods to select the
fRTO corresponding to the minimum duration value.

With only a Predictor Model, it cannot be ensured that
the duration for the predicted fRTO and MSS is minimised.
Since a conditional prediction cannot be conducted on the ML
models, the Predictor and Optimiser Model with an iterative
algorithm to find optimum parameters for a given transmis-
sion is used. The Predictor Model predicts fRTO and MSS
for successful communication. The Optimiser Model then
predicts the duration for the predicted fRTO and MSS. The
iteration continues by reducing the duration by one seconds
for each run until no further reduction in duration can be
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FIGURE 1. HF-TCP with ML model flowchart.

obtained. As the TCP duration is rounded to the nearest
second, a decision has been made to reduce the predicted
transmission duration during the iterations by one-second
intervals.

The Predictor Model developed is used to predict fRTO
and MSS given the fixed modem parameters for a particular
link condition and the data to be transmitted. The Optimiser
Model performs predictions to minimize the transmission
duration. To implement the models with HF-TCP, persis-
tent models are created. A persistent model is a model that
has already been trained. This persistent model is loaded
in memory and can be queried without the need to re-train
and run the model. Processing with persistent models is very
quick. The persistent models were developed using Python
in Scikit-Learn and saved as a file which can then be loaded
on demand and retained in memory for multiple predictions.
Model development is discussed in Section I'V.

Fig. 1 shows the flow diagram of implementation of
HF-TCP with ML. The process starts with a data transfer
request from the application. This provides the data size to be
transmitted. As the HF-TCP is backward compatible, based
on the gateway, a decision is made whether the data will be
transmitted over HF. If the data is going to be transmitted to
the end point over HF, fRTO and MSS needs to be calcu-
lated. The modem parameters are based on the link quality.
The application provides the data size. With the modem
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parameters and the data size, the first prediction is made,
called PM1 for F1, F2 and MSS. In Fig.1 block B shows the
input and block C shows the output for this step.

PM1: Predictor Model (Run =1)

Inputs  Data, Delay, Rate, Duration=0

Flpa, F2py and MSSpan

Output

The outputs obtained is the predicted best values for F1,
F2 and MSS where duration value is minimum. Although
the values predicted are for minimum duration, there exists
some error factor. To reduce this error factor, the F1, F2 and
MSS values are optimised by iteration through both models
in subsequent runs. In the next run, the Optimiser Model is
used.

OM1: Optimiser Model (Run=1)
Data, Delay, Rate, Flle, F2p]y11, MSSPMl

Inputs

Output  Durationoari

At this stage the F1, F2, MSS and the Duration for the
transmission are available. For OM1 the input is shown as
block D and output is shown as block E in Fig. 1. The duration
obtained from the OM1 is then further optimised. To perform
the optimisation both models are used. The reasoning as to
why the optimisation process is necessary and effective is
discussed in Section III. First, the Predictor Model is run
again but this time with a duration one second less than the
duration predicted by the Optimiser Model, Durationop .

PM2: Predictor Model (Run = 2)

Data, Delay, Rate and Durationopn — 1
Flpmo, F2pae and MSSpe

Inputs

Output

Inputs to the PM2 run are shown as block F while
output is shown as block C in Fig. 1. PM2 run predicts
Flpyo, F2pyn and MSSpyo with Durationpy; — 1. The
predictions are again provided as inputs shown as block D
to the Optimiser Model resulting in OM2 which predicts
Durationppyz as shown in block E of Fig. 1. Algorithm 1
shows the computation of F1, F2 and MSS.

IV. MODEL DEVELOPMENT

In Machine Learning, model development and maintenance
is performed using a model pipeline. The model pipeline is
a sequential process of activities that defines how data is
collected, processed, modelled and predicted. There has been
a lot of research on Machine Learning Pipeline development
but for the purpose of this paper, a simpler approach is
adopted as noted by Quemy et al. [33] in their paper on ML
pipeline optimisation.
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Algorithm 1 Computing fRTO and MSS
Environment Definition:

define struc modem{delay, rate}
define Predict Model{model query parameters}
duration < 0
x <0
Procedure:
1: Predict PM 1{modem, data_ size, duration}
2: PM1 — Flppyy, F2pp1, MSSpyri
3: Predict OM 1{modem, data_ size, PM 1}
4: OM1 — durationpp|
5. Predict PM2{modem, data_ size, durationppy;1 — 1}
6: PM2 — Flpypo, F2pyo, MSSparo
7: Predict OM2{modem, data_ size, PM2}
8: OM?2 — durationoy
9: while durationpy> < durationgy; do
10: Predict PM (x){modem, data_ size,
durationop1(x—1) — 1}
11: PM2 — Flpye), F2pme), MSSpmx)
12: Predict OM (x){modem, data_ size, PM (x)}

13: OM?2 — durationomx)

14: if durationop(xy > durationopr(x—1) then
15: break

16: end if

17: x <—x+1

18: end while
19: F1 = Flpyi—1)
20: F2 = F2pp(x—1)
21: MSS = MSSpmx—1)
Outputs:

F1, F2and MSS

Our model pipeline consisted of five blocks as shown in
Fig. 2. Data Gathering, Data Processing, Feature Selection
and Algorithm Selection are discussed in the following sec-
tions while Model Evaluation is conducted in Section VI

A. DATA GATHERING
HF-TCP has been developed on the OMNet++ [34] sim-
ulation platform. OMNet++ has continued to be used to
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FIGURE 2. ML model development pipeline.

gather data that was used to train our model. The simulation
setup used and the parameters are the same as those used
in HF-TCP development environment [7], [22]. Due to the
large amount of data, the simulation was run for groups of
parameter values at a time. All data was collected and stored
in a comma separated value (csv) format for processing flex-
ibility. Using the csv format for data gives us the flexibility
to process it using a variety of tools including excel, R and
Matlab. The dataset consisted of approximately five hundred
thousand samples.

B. DATA PROCESSING
The data was then processed to make it suitable to be input
into a model. To achieve that, the data was parsed to ensure
there were no missing data. Outliers were handled by either
re-running the data to maintain accuracy or eliminating it.
Delay and rate can only have certain fixed values as defined
by MIL-STD-110D [8]. The parameter, success, too can have
only two values. Since delay, rate and success are not con-
tinuous variables, but have pre-defined values, these param-
eters are considered as categorical values. Categorical values
cannot be used in all ML models. Since a regression model
has been used, in order to convert our categorical values to
numerical values, One-Hot Encoding (OHE) [16] technique
is utilised. OHE creates more columns equal to the number of
different values a parameter can have. For example, since the
delay parameter can have four fixed values of 0.12s, 3.49s,
6.87s and 10.24s as per MIL-STD-110 [8]; Four columns are
required to represent the data. The data record row will have
an entry of ‘1’ in the respective column for a delay value.
All other records for that row will hold a value of ‘0’. Table 1
shows an example of OHE implementation for delay where
delay has four values. The row represented by ‘0 0 0 1’ is
allocated to one value of delay while ‘0 0 1 0’ is allocated to
another value of delay. In this way the four categorical delay
values are converted to numerical equivalents for the model.
Using the same OHE technique, rate and success param-
eters are also converted to numerical values since rate is a
defined constant as per MIL-STD-110D [8] and success hold
two values, successful or unsuccessful.

C. FEATURE SELECTION & IMPORTANCE

A ML model consists of one or more features and targets.
Features are input variable and targets are the resultant output.
Different input variables or features have different levels
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TABLE 1. OHE used on delay values for modelling.

Delayl Delay2 Delay3 Delay4

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

of impact on prediction of the target. This impact is called
feature importance. Feature importance is calculated using
permutations of feature values analysed against the model
score. Feature importance is a score assigned to features
related to the impact it has on predicting the target. Feature
importance assists in understanding the data and the model
which aids in making optimal feature selection. Certain fea-
tures can be eliminated in models if the feature does not
contribute or contribution is minimal in predicting the target.
To keep model processing to a minimum, some features are
eliminated. In our case, all features have been used to build
the model since our prediction makes use of all features. The
same dataset has been used to create a Predictor Model and an
Optimiser Model that have been trained differently to provide
different predictions. The Predictor Model chooses the fRTO
and MSS values for successful transmission and these values
are then used on the Optimiser Model to optimise the fRTO
and MSS such that the transmission duration is the least.
Our models contains eleven features and three targets. While
calculating the feature importance of categorical values, the
feature importance is averaged across the binary columns.
Hence there is one value for delay, rate and success. This
effectively gives us five features and three targets.

1) PREDICTOR MODEL

Table 2 shows the feature importance scores for the features
in our Predictor Model. Duration and data are observed to
be significant contributors to prediction of F1, F2 and MSS.
Delay contributes mostly to F1 prediction while rate and
success have marginal contribution to prediction.

2) OPTIMISER MODEL

Table 3 shows the feature importance for the Optimiser
Model. The data size and MSS are clearly the most important
features used to predict the duration of transmission in the
Optimiser Model.

D. ALGORITHM SELECTION

The next step in the model pipeline is the selection of the
algorithm that will process the data to build our model. Since
our targets are numerical continuous valuables, a regression
model has been chosen over a classification type model. Since
MIL-STD-110D defines a set of operating parameters for any
given link condition, the range of operating parameter values
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TABLE 2. Feature importance score for predictor model.

Feature | F1 F2 MSS
Duration ‘ 0.588 0.570 0.638
Data Size ‘ 0.128 0.162  0.085
Delay ‘ 0.028 0.026  0.022
Rate ‘ 0.030  0.020  0.043
Success ‘ 0.040 0.055 0.020

TABLE 3. Feature importance score for optimiser model.

Feature | Duration
Data Size | 0.194
Delay | 0.056
Rate | 0.066
Success | 0.031
Fl | 0.029
F2 | 0.107
MSS | 0.177

is known. Regression analysis is therefore chosen as the ML
method for our models.

For the Predictor Model, since there are three target vari-
ables, a multi-output regression algorithm with a base esti-
mator has been chosen for use. The multi-output regressor
generates multiple models depending on the number of target
variables using the base estimator and then combines them to
form one model. Two types of multi-output regression models
are used, Multioutput Regressor and Regressor Chain [35].
For each of these, experiments with various base estimators
are conducted to compare and select the best performing base
estimator with each multi-output regression algorithm.

The Model is assessed based on the following key param-
eters that provides the knowledge of how the models are
performing. Each of the parameters are briefly discussed
below,

e Model Training Score: The model training score is the
measure of the fit between the modelling algorithm and
the data. It indicates how well the model explains the
training data. In our evaluation, it is expressed as a
percentage value with higher percentage being better.

e Accuracy: Accuracy score is the measure of how accu-
rate the predictions are compared to the true values.
Accuracy for the model is calculated on training and test
dataset. The dataset used for the model evaluation is split
with 80 percent of the data forming the training dataset
and the other 20 percent is the test dataset. Accuracy
is the resultant score calculated based on the deviation
between the predicted and true values in the test dataset
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and is represented as a percentage. Higher the percent-
age, better the accuracy.

e R-Squared: Coefficient of determination, R-Squared,
is a measure of how well a dependent variable can be
predicted based on the independent variable. It has a
minimum value of 0 to a maximum value of 1. The
higher the value, the better the prediction.

o Explained Variance Score (EVS): EVS is the measure of
variance that the model accounts for during its predic-
tion. It can be estimated [9], [36] as,

(y’,)?) —1— Var[y _ﬂ
Var [y]
where,
v is predicted output value,
y is the true value, and
V,r 1s the standard deviation.
EVS has a value between 0 and 1 with 1 being the best
possible score.

These attributes were calculated for each of the five base
estimators with Multioutput Regressor and Regressor Chain
regression algorithms. As seen in Table 4 and Table 5, the
Decision Tree Regressor and Bagging Regressor provided
best results for each of the attributes when used with Multi-
output Regressor and Regressor Chain regression algorithms.
Between the Decision Tree Regressor and Bagging Regres-
sor, Bagging Regressor took six times longer to execute
than the Decision Tree Regressor. Regressor Chain takes
into account relationship between features while Multiout-
put Regressor treats each feature independently. Comparing
the results of Multioutput Regressor and Regressor Chain,
Regression Chain took almost twice as long to execute on
average and had lower performance as compared to the
Multioutput Regressor. Based on the comparison results,
Multioutput Regressor with Decision Tree Regressor as the
base estimator is chosen to build the Predictor Model.

In the case of Optimiser Model which is a single-output
model, the same set of five base estimators are used to com-
pare them against the attributes. Table 6 shows the results of
the comparison. The Decision Tree Regressor and Bagging
Regressor provided the best results for each of the attributes
but because the Bagging Regressor takes almost six times
longer to execute on average, the Decision Tree Regressor
is chosen as the base estimator to build the Optimiser Model
as well.

E. MODEL BUILD
Sci-kit Learn [9] is used to build the models which provides
the libraries and a platform for complex machine Learn-
ing development. The development and evaluation is done
using Python. sklearn.tree.DecisionTreeRegressor class is
used along with sklearn. multioutput. MultiOutputRegressor
class to build our models based on the algorithm selection
criteria discussed in Section I'V-D.

The problem of over-fitting and under-fitting is analysed
when using a model. Over-fitting is a problem when the
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TABLE 4. Multioutput regressor - comparison of algorithms for predictor
model.

Algorithm | Model Accuracy R- EVS- EVS- EVS-

Score Squared F1 F2 MSS
9% 81% 078 069 0.76 0.90

Bagging
Regressor

Decision 80% 82 % 0.78 0.69 0.76 0.90
Tree

Regressor

Hist 59 %
Gradient
Boosting
Regressor

K- 71 %
Neighbour
Regressor

65% 059 053 061 0.62

5% 067 060 067 0.73

Gradient
Boosting
Regressor

38% 53% 038 034 040 041

TABLE 5. Regressor chain - comparison of algorithms for predictor model.

Algorithm | Model Accuracy R- EVS- EVS- EVS-

Score Squared F1 F2 MSS

Bagging 8% 43% 0.46 069 054 06
Regressor

Decision 2% T70% 0.42 070 063 03
Tree
Regressor

Hist 33%  58% 0.32 053 052 03
Gradient
Boosting
Regressor

K 8% 69 % 0.54 0.60 059 045
-Neighbour
Regressor

Gradient 26% 49 % 0.26 034 035 0.15
Boosting
Regressor

model learns in too much detail thereby learning noise in
the data. Under-fitting is when the model does not have
enough information to learn. Both over-fitting and under-
fitting scenarios impact the accuracy of the model and the
predictions it makes. For a decision tree, the depth of the
tree can be controlled to avoid over-fitting or under-fitting.
When no restrictions are placed on the algorithm, our model
generates a depth of 50 to 60 levels. On experimenting with
various depths, the decision tree was decided to be pruned at
a maximum of 50 levels. At a depth of 50, our model provides
the highest accuracy. The reason the maximum depth did
over-fit the model was also due to the data processing that was
performed earlier as explained in Section IV-B. Supervised
learning is used and the evaluation is conducted on a 80-20
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TABLE 6. Comparison of algorithms for optimiser model.

Model
Score

EVS-
Duration

Algorithm Accuracy R-

Squared
98 % 0.98 0.98

Bagging 99 %
Regressor
Decision 99 %

Tree
Regressor

Hist 94 %
Gradient
Boosting
Regressor

K- 53 % 22 % 0.35 0.22
Neighbour
Regressor

Gradient 74 %
Boosting
Regressor

99 % 0.99 0.98

91 % 0.94 0.94

75 % 0.75 0.74

split of the model data into training and test components. The
model is trained on 80 percent of the data and made to predict
the other 20 percent. The prediction results are then compared
with the real values to estimate the models accuracy and error
parameters. For regression models it is important to train the
model with feature values that cover the entire range from
maximum to minimum for each feature. Prediction beyond
the threshold values from what the model is trained on are
inaccurate as the model has not learnt about the input and
output relationship outside the range.

V. EVALUATION

To evaluate the proposed solution a performance analysis
was conducted on the Predictor and Optimiser models and
also the performance of the solution using the two models as
discussed in Section III. The results of the analysis are then
discussed in Section VI.

Simulations are conducted in scenario where over the air
characteristics are maintained and controlled by the modem
as per MIL-STD-110D. The MIL-STD-110D provides error
recovery using modulation type and interleaving such that
the Signal to Noise Ratio (SNR) achieved is to a degree
acceptable by the model to interpret the signal received. The
modulation type and interleaving depth then mandate the data
rate the modem is able to transmit on. The details of how
this is achieved is referenced in the MIL-STD-110D. The
simulations are run for a subset of combinations of allowed
data rates and interleaving depth that translates into delay.
A random set of data blocks are selected for each simulation.

A. MODEL SUITABILITY
The solution proposed in this paper for predicting fRTO
and MSS values for a transmission utilises two models, the
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Predictor Model and the Optimiser Model. Each of the two
models have a different set of inputs and outputs. The per-
formance of each model is examined separately. The perfor-
mance of the model is evaluated based on the accuracy of
prediction. This is achieved by comparing the results of the
predicted values against the actual value. In Python using
Scikit-Learn, split the dataset randomly into two parts with
a ratio of 80:20 where 80 percent of the data is used to train
the model called training dataset and 20 percent of the data is
used for testing called test dataset. These two data sets are
kept separate from each other throughout the performance
measuring process.

The training dataset is firstly used to train the model. The
features are then separated and extracted from the test dataset
and used on the trained model to predict the target values.
The predicted targets are then compared with the true target
values from the training database. The relationship between
the predicted values and the true values is used to calculate
the accuracy of the model.

1) PREDICTOR MODEL
The Predictor Model is built to predict three key criteria,
namely, F1, F2 and MSS. F1 and F2 values together make up
fRTO. F1 is defined as the maximum RTO value. When the
RTO timer reaches the F1 value, it is reset to a value, F2. Both
F1 and F2 can have a maximum value of 240 seconds. MSS is
the mean segment size of the HF-TCP transmission and given
the nature of transmission in an HF-TCP implementation, the
MSS value remains constant throughout the transmission.
The Predictor Model is a multioutput model as the tar-
gets are F1, F2 and MSS. In ML, multioutput models are a
combination of three individual models, one for each target.
Multioutput Regressor has been used due it its accuracy over
Regressor Chain as discussed in Section IV-D. Each of the tar-
gets are assessed individually and also the model is assessed
as a complete entity. The graphs showing the deviations in
values is limited to one thousand samples for legibility. The
calculation of accuracy and standard deviation are performed
on the entire dataset.

2) OPTIMISER MODEL

The Optimiser Model is used to optimise the F1, F2 and MSS
values obtained from the Predictor Model to achieve the low-
est transmission time. The model outputs the value Duration
only and is built using DecisionTreeRegressor which is the
same base algorithm used for the Predictor Model. The com-
parison against other models is discussed in Section IV-D.

B. ML FOR HF-TCP

To evaluate the performance of the complete solution, data
is collected from a standard TCP run and from HF-TCP
when using the ML models as discussed in Section III. The
simulations are run on OMNet++ for both scenarios to pro-
vide consistent results for comparison. Both simulations are
conducted with a different input to as compared to what the
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models have been trained on. This eliminates the possibility
of the models predicting on known scenarios.

1) STANDARD TCP

The first simulation is conducted with a standard TCP. The
simulation gathers data on the success of a transmission and
the time taken to complete the simulation for each set of
inputs. The inputs are recorded in a csv format and processed
to identify the success and duration of transmission.

2) HF-TCP WITH ML MODEL

The next simulation is conducted with the same set of inputs
as done in the standard TCP run, that is delay, data rate and
data size for a network implementing HF-TCP with our ML
models providing predicted F1, F2 and MSS values. The
prediction is done using the process described in Section III.
Again, the data is collected and recorded in a csv format and
processed to only include success and duration of transmis-
sion for each set of input parameters. On average the time
taken to make a prediction for a single transmission is in
the order of 0.64 milliseconds. The prediction speed even
after multiple iterations in some scenarios, is attributed to the
persistent models. It is important to note that the prediction
is required only once at the start of every new TCP session.
The operational complexity is therefore deemed to be mini-
mum given the frequency of computation and utilisation of
persistent models.

VI. RESULTS

The results obtained from the simulations are placed into two
groups. Firstly, individual model performance and suitability
is discussed by examining the predicted and test values of
target outputs for each of the models. The results presented
are obtained from simulations as discussed in Section V.

A. MODEL PERFORMANCE
The Predictor and Optimiser models show the following
performance.

1) PREDICTOR MODEL PERFORMANCE

Fig. 3 shows the deviation in values for F1 between the test
and predicted data of the Predictor Model. The y-axis in
seconds shows the deviation with a mean of zero and the scale
going towards positive and negative. For F1, the Predictor
Model predicts with an accuracy of up to 70 percent. The
calculated standard deviation is 28 seconds for F1 in the range
of 0 to 240 seconds. The accurate prediction of F1 and F2
results in the algorithm choosing the best possible values of
MSS for the quickest transmission time.

Fig. 4 shows the deviation in values for F2 between the test
and predicted data sets of the Predictor Model. This graph
too shows the deviation in seconds on the y-axis from a mean
of zero and scaling towards negative and positive values of
seconds. For F2 and accuracy of up to 75 percent is achieved.
The calculated standard deviation being 25 seconds in the
range of 0 to 240 seconds.
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FIGURE 3. Deviation of F1 between test and predicted values.

Fig. 5 shows the deviation in values for MSS between the
test and predicted data sets of the Predictor Model. The y-axis
plots the number of bytes showing deviation from a mean of
zero to positive and negative values. For MSS an accuracy of
up to 90 percent is achieved and the calculated deviation is
46 bytes in the range of 0 to 580 bytes.

2) OPTIMISER MODEL PERFORMANCE

Fig. 6 shows the deviation in values for the value of Duration
between the test and predicted data sets in the Optimiser
Model. The y-axis shows the number of seconds from a mean
of zero and moving towards positive and negative seconds.
To make the graph legible, only one thousand samples from
the entire dataset are shown. For Duration, an accuracy of
up to 98 percent is achieved from the model with a standard
deviation of 647 seconds.

B. ML PREDICTION FOR HF-TCP

The results obtained from the simulations in Section V are
presented in Fig. 7. The x-axis plots the different instances
of successful transmission and y-axis plots the duration of
a successful transmission. The data for the graph has been
sorted on the value duration for ease of analysis and inter-
pretation. The continuous line indicates recorded duration
when using our models with HF-TCP and the dotted line
indicated standard TCP duration for transmission instances.
From the graph it can be observed that that the model pre-
dicted F1, F2 and MSS values for a transmission instance
is significantly lower towards the end of the graph. There
is little or no improvement for the initial instances which
are higher speed and lower delays like any good transmis-
sion characteristics. When the transmission characteristics
degrade with lower speeds and higher delays required for
error recovery using interleaving, significant improvement
in the transmission duration is seen when using the models
with HF-TCP. Standard TCP performance is significantly
degraded and this is due to the inability of standard TCP to
sustain long delays and slow speeds in transmission. In such
scenarios RTO calculations using Karn’s algorithm as in RFC
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FIGURE 6. Deviation of duration between test and predicted values.

6298 [37] fails to provide effective communications. At the
peak, there is an improvement of 81 percent in the time it
takes to complete the transmission.

DMello et. al [7] used manual prediction on a subset of
transmission conditions and present a result where on an
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average 15 percent of the cases resulted in improvement of
transmission time. Using ML helps achieve 72 percent of
cases with improved transmission time on a much larger
subset of cases.

Another important finding is that, although the models
provide improvement over standard TCP in 72 percent of
the cases with a magnitude of 40 percent overall improve-
ment. The standard TCP performs better in 28 percent of
the cases but with only a 0.3 percent overall improvement in
magnitude.

The benefits of the Optimiser Model are also examined.
The intent of the Optimiser Model is to optimise the F1, F2
and MSS values obtained from the Predictor Model such that
the transmission duration is the lowest that can be achieved.
Fig. 8 shows the number of instances and the magnitude
of reduction of duration predicted by the Optimiser Model
for successful transmission instances over what is being pre-
dicted by the Predictor Model. An improvement of up to
110 seconds is achieved in certain instances when using the
Optimiser Model over the Predictor Model for F1, F2 and
MSS values. It is also important to note that the Optimiser
Model always provides either improvement or no change in
what the Predictor Model had predicted. There is never a
deterioration of duration when using the Optimiser Model
over the Predictor Model for F1, F2 and MSS values.
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VIi. CONCLUSION

The Predictor and Optimiser models together provide F1,
F2 and MSS values that enables the transmission of suc-
cessful data in least amount of time. Although the Predictor
Model can be utilised by itself, the Optimiser Model provides
further improvement to the final solution. Better transmis-
sion duration translates into improved link utilisation and
improved throughput. Although this paper provides experi-
mental results for HF environments and discusses TCP in the
context of HF communications, the solution provided can be
easily adapted for similar networks with low bandwidth and
or longer delays.

Future improvement in WBHF and modulation to reduce
errors and improve bandwidth will further complement the
proposed solution in the paper. As discussed, erroneous
nature of HF links is a natural phenomenon and even with
higher bandwidths, the delay introduced to overcome the
errors will continue to pose a challenge for standard TCP.
Modifications of standard TCP timers to suit a transmission
condition as proposed in this paper with HF-TCP will be
required if TCP communications is to be achieved on links
with challenges such as those experienced with HF links.
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