
Received 9 November 2022, accepted 24 November 2022, date of publication 28 November 2022,
date of current version 2 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3225448

Meta-Heuristic Algorithms for the Generalized
Extensible Bin Packing Problem With
Overload Cost
RAN DING , BIN DENG , AND WEIDONG LI
School of Mathematics and Statistics, Yunnan University, Kunming 650504, China

Corresponding author: Bin Deng (dengbin96@126.com)

This work was supported by the Postgraduate Research and Innovation Foundation of Yunnan University under Grant 2021Y325.

ABSTRACT In this paper, we consider a generalized extensible bin packing problem with overload cost,
first proposed by Denton et al. in 2010, in which the total size of items packed into a bin is allowed to exceed
its capacity, and the cost incurred each bin is equal to the fixed cost plus the overload cost, the objective is
to minimize the total cost of all bins. According to the characteristics of the problem, we first propose an
improved ant colony optimization algorithm (IACO), which enhances the positive feedback effect of ACO
by improving the update method of pheromone and the adaptive adjustment parameters. We also introduce a
variable neighborhood search method in ACO to improve the convergence of the algorithm and get rid of the
phenomenon of local extrema. Then, we present a discrete particle swarm optimization algorithm (DPSO) to
solve the problem. In order to ensure the uniform distribution and high quality of the initial particle swarm,
we use some heuristic methods in the initialization process of the swarm, so that the initial particle can
cover the entire search space with a large probability, which effectively improves the performance of DPSO
algorithm. Finally, we compare and analyze the performance of these proposed algorithms through two sets
of computational experimental frameworks. Compared with some algorithms in the literature, computational
results signify that the improved ACO algorithm and MDPSO algorithm are more competitive than some
other metaheuristic algorithms.

INDEX TERMS Extensible bin packing, regular working time, scheduling, ant colony optimization algo-
rithm, discrete particle swarm optimization.

I. INTRODUCTION
A. RESEARCH MOTIVATION
In a multiprocessor system, tasks in an order need to be
scheduled to the processors in the shortest possible time.
Each processor has a given capacity and is charged a fixed
power-on/machine-wear cost. However, an overload cost will
be charged if the total size of tasks scheduled to it exceeds
the processor’s service capacity. We aim to minimize the
total cost of processing all tasks. Based on the application
background in production and life, we consider the load bal-
ancing problem on identical parallel machines in this paper,
called the generalized extensible bin packing problem with
overload cost (GEBPOC). This problem was first proposed
by Denton et al. [1], [2], who were inspired by a healthcare

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

delivery application in outpatient surgery centers that dynam-
ically assign patients to operating rooms, with the goal of
minimizing the total cost of opening an operating room and
using overtime to complete a day of surgery when both the
number of scheduled patients and the duration of the proce-
dure are unknown.

B. MODEL DESCRIPTION

min totalcost = mt + c ·
m∑
i=1

max{
n∑
j=1

pjxij − t, 0} (1)

s.t.
m∑
i=1

xij = 1, for j = 1, 2, · · · , n. (2)

xij =

{
1, if job Jj is assigned to machineMi

0, otherwise.
(3)

124858 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2720-3559
https://orcid.org/0000-0002-2196-7769
https://orcid.org/0000-0003-3094-4347
https://orcid.org/0000-0001-9315-1788

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

C. LITERATURE REVIEW
It can be known from literature [3] that GEBPOC is also
NP-hard in the strong sense, so it is unlikely to obtain the opti-
mal schedule through polynomial time-bounded algorithms.
Over the years there has been a great deal of research to
develop efficient approaches for the problem in terms of per-
formance guarantee. In GEBPOC, if c = 1, our problem is
equivalent to extensible bin packing with unequal bin sizes
(EBP-UBS), where an inexhaustible set of unequal bins are
given. Unlike the traditional bin packing, a bin’s capacity in
EBP-UBS is allowed to be exceeded if needed. In addition,
in the study of EBP-UBS, many researchers regard the capac-
ity of each bin and the fixed cost as unitary, or the unit cost
of the part beyond the bin is also 1. [4] considered this type
of problem for the first time, and they studied both offline
and online versions under the assumption that the largest
item size does not exceed the smallest bin size. They shown
that the worst-case ratio of the longest processing time first
algorithm (LPT) is 4 − 2

√
2 in the offline case, and that for

the online version, the list scheduling algorithm (LS) has an
upper bound of 5

4 , and this bound is tight. They also proved
that any online algorithm has an approximation ratio is not
less than 7

6 . [5] studied the online versions of this problem for
m = 2, 3, 4, and proved that the designed online algorithm
obtains tight bounds of 7

6 ,
11
9 ,

19
16 for these three cases, and

when m = 2, this algorithms are the best possible. They
also given an improved algorithm for m = 3. The vec-
tor scheduling problem in asymmetric settings was studied
by [6], who gave a polynomial time approximation scheme
(PTAS) for the EBP-UBS using dynamic programming tech-
niques, where the state space is a vector that depends on the
dimension of 1

ε
.

When c = t = 1 in GEBPOC, the extensible bin packing
problem (EBP) is formed. In [3], Dell’Olmo et al. proved
that the worst-case ratio of the LPT algorithm is 13

12 . When
the number of bins m is fixed, according to the discussion
in [7], there is a fully polynomial time approximation scheme
(FPTAS) for this problem. If m is not fixed, EBP can be
solved by using the (efficient) PTAS idea for the identical
machine scheduling problem in [8]. The online version of
EBP is proved by [9] using the LS algorithm that both its
upper and lower bounds are equal to 5

4 , and a heuristic method
that depends on the parameter x(0 < x < 1) is designed to
improve this bound, the new algorithm Hx assigned tasks to
machines when a machine’s load is less than or equal to Hx ,
and its worst-case ratio is equal to 1.228. For the lower bound
of the online problem, they also found an instance in the
case of m = 2 to proved that the competitive ratio of any
online algorithm will not be less than 7

6 . A fully polynomial
time asymptotic approximation scheme (FPTAAS) for this
problemwas developed by [10]. On the other hand, if t = 1 in
GEBPOC, [11] investigated the bin packing problem with
overload cost (BPOC), where the number of identical bin is
infinite, and they presented the lower and upper bounds of
any deterministic online algorithm for BPOC according to
the value of c. [12] considered the more general case of EBP,

i.e., the generalized extensible bin packing problem (GEBP),
where c = σi and the capacity of all machines is allowed
to be different. They developed an EPTAS based on using
the shifting technique followed by a solution of a polynomial
number of n-fold programming instances. When the number
of machines of each type is not part of the input but part of the
solution, they presented an asymptotic fully polynomial time
approximation scheme (AFPTAS) for a related bin packing
type variant of the problem (denoted by GEBP-BPV) similar
to the variant of EBP.

In the context of surgical scheduling, inspired by the prac-
tical application of dynamically assigning patients to operat-
ing rooms in outpatient procedure centers, [1] considered the
more general case of the EBP problem, where the decision
maker needs to choose the number of bins of size S to be
opened. The fixed cost of each opened bin is cf , and the
overtime cost per unit time is cv. The goal is to minimize the
total cost of opening an operating room andworking overtime
to complete a day of surgery. Afterwards, [2] investigated
some faster approximation algorithms for solving the online
version of the problem (DEBP), and they showed that every
(1 + ρ)-approximation algorithm for the EBP problem pro-
duces a (1 + ρ · Sc

v

cf)-approximation algorithm in this more
general setting. They also considered a two-stage randomized
version of the problem, in which emergency patients need
to be assigned to the operating room along with preassigned
elective patients. This is also the first attempt to account for
random cases in the EBP problem. Based on this stochastic
setting, [13] studied the stochastic extensible bin packing
problem (SEBP).

There is a quite some literature that focuses on the case
of where the fixed cost of each bin is equal to 0, called
the late work minimization scheduling problem, which is
equivalent to the early work maximization problem when
considering optimal solutions. The early work denotes a part
of a job executed before a due date, while the late work
represents a part of a job executed after a due date. Late
work minimization problem was first proposed by [14]. For
the offline late work minimization problem, [15] proved
that is binary NP-hard on two identical machines, and
they designed an optimal online algorithm with competitive
ratio of

√
5 − 1. For the offline early work maximization

problem, [16] proposed a polynomial time approximation
scheme on two identical machines. [17] proved that the
LPT algorithm has a worst case ratio is 10

9 on two identical
machines, and proposed a branch-and-bound algorithm for
the general case with arbitrary due date. When there are m
machines, [18] proposed a pseudo-polynomial time dynamic
programming algorithm and a fully polynomial time approx-
imation scheme. Recently, [19] proposed a more efficient
new dynamic programming algorithm and a FPTAS for the
problem in [18]. Reference [20] presented an efficient poly-
nomial time approximation scheme for the problem in [18].
Reference [21] considered four semi-online scheduling prob-
lems with a common due date to maximize the total early
work. Next, [22] studied several online and semi-online early

VOLUME 10, 2022 124859

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

work maximization problems on two hierarchical machines.
Reference [23] also considered three semi-online early work
maximization problems on two hierarchical machines with
partial information of processing time.

The above algorithms will expose the characteristics of
poor solution accuracy for large scale problem instances.
The rise of some meta-heuristic algorithms has provided new
research and development directions for solving instances
of combinatorial optimization problems such as large scale
identical machine scheduling. In the pursuit of obtaining
high-quality solutions within an effective time frame, meta-
heuristics play an indispensable role. It defines a series of
processing frameworks based on natural laws, biology and
other phenomena, which can be used to solve any optimiza-
tion problem. In recent years, it has aroused great research
interest of scholars. They have successively applied simulated
annealing (SA) [24], particle swarm algorithm (PSO) [25],
ant colony optimization algorithm (ACO) [26], and genetic
algorithm (GA) [27] to solve the identical machine schedul-
ing problem, and achieved certain results. When solving a
particular problem through a meta-heuristic algorithm, it is
necessary to define the expression of the problem. Then the
feasible solution set is iterated based on the initial solution,
the bad solutions are eliminated and the high-quality solu-
tions are retained. Once the algorithm satisfies the termina-
tion condition, the best solution currently found is output.
Note that the solution obtained by these algorithms is not
necessarily optimal, but must be a feasible solution of great
quality and performance.

An ant colony algorithm for the no-wait flow shop schedul-
ing problem with the goal of minimizing makespan is con-
sidered by [28]. Some literatures (e.g., [29], [30], [31],
[32], [33], and [34]) studied the application of ACO algo-
rithm to single-machine scheduling problem with tardiness
penalty. Later, [35] considered the scheduling problem of
minimizing maximum tardiness with m identical machines,
and they applied an ant colony algorithm with four differ-
ent specific heuristics in the construction of solution. As we
all know, there are many parameters in the ACO algo-
rithm, and different parameter settings will lead to differ-
ent results. Reference [36] considered the setting of ACO’s
parameters as a combinatorial optimization problem, and they
solved the problem by the PSO algorithm and proposed an
adaptive parameter setting strategy. In addition, [37] pro-
posed three population solving algorithms for the problem of
fair resource allocation: discrete artificial bee colony algo-
rithm, discrete artificial fish swarm algorithm and discrete
hybrid frog leaping algorithm, and verified the effective-
ness of these algorithms through computational experiments.
Chen et al. [38] used a DPSO algorithm to consider the
minimizing total late work scheduling problem in a flow
shop system with different due dates and learning effects.
Reference [39] considered the two criteria of fairness and
cost respectively for the crew scheduling problem, and pro-
posed an improved honey badger optimization algorithm to
solve this problem through genetic algorithm and Levy flight.

Compared with other algorithms, the algorithm has good
performance.

Reference [40] proposed a DPSO algorithm for minimize
makespan criterion, and they also investigated the effective-
ness of hybrid DPSO by this algorithm with an efficient
local search heuristic. Reference [41] considers a no-wait
flow shop scheduling problem with the goal of minimiz-
ing makespan and total flow time. They proposed a hybrid
DPSO algorithm related to variable neighborhood search,
and explored the selection method of control parameters and
the effect of embedding variable neighborhood search on the
optimization performance of the algorithm. Reference [42]
used particle swarm optimization for parameter optimization
related to improving the ability of soil surface process models
to simulate soil moisture. They also used a particle swarm
optimization algorithm in [43] to calibrate parameters related
to turbulence in the surface layer in the source region of the
Yellow River. Reference [44] takes the total weighted ear-
liness and tardiness penalty as the optimization goal under
the condition of common due date on single machine envi-
ronment, and proposes a DSPO algorithm, and improves the
local search ability of the algorithm and jumps out of the
local extreme value ability by embedding variable neigh-
borhood search. Reference [45] proposed a discrete DPSO
with new information sharing mechanism for minimizing
the makespan problem. Reference [46] proposed a discrete
DPSO based on genetic algorithm crossover operator and
mutation operator, and compared the effectiveness of several
crossover and mutation operators. Taking into account the
objectives of makespan and total flow time. Reference [47]
considered the effect of artificial intelligence particle swarm
optimization method on the calibration of freeze-thaw related
parameters in the improvement of climate-vegetation model
freeze-thaw process. Reference [48] proposed a combined
particle swarm optimization (CPSO) and employs a simu-
lated annealing algorithm to enhance the ability of CPSO to
get rid of local extrema value. For the job shop scheduling
problem, [49] presented a hybrid DPSO with the tabu search
algorithm for the makespan minimization problem. Refer-
ence [50] presented the DPSO for solving the problem of
minimizing the total weighted earliness and tardiness time,
and confirmed that this algorithm outperforms the research
results of related literature.

Compared with other heuristic algorithms, the ACO algo-
rithm has strong robustness in solving performance, that is,
the basic ACO algorithm model can be applied to solve the
problem with a slight modification according to the spe-
cific characteristics of a optimization problem. Moreover,
the DPSO algorithm has the advantages of relatively fast
approaching the optimal solution, effectively optimizing the
parameters of the system, and strong robustness. Therefore,
in this research, we solve GEBPOC based on ACO andDPSO
algorithms, and use the LPT algorithm as a base comparator
algorithm to evaluate our results. To the best of our knowl-
edge, this is the first attempt to solve this problem using a
population algorithm.

124860 VOLUME 10, 2022

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

D. MAIN RESULTS
The main contributions of this paper are mainly summarized
as follows.

1) According to the characteristics of the problem, the
corresponding ant colony model is defined, and the
positive feedback effect of ant colony optimization is
enhanced by improving the state transition rules and
dynamic adaptive parameters. In order to avoid the pre-
mature or stagnant phenomenon of the ant colony algo-
rithm in the search, the variable neighborhood search
method is also introduced to improve the ant colony
algorithm, and further improve the global search ability
and convergence speed of the algorithm.

2) The DPSO algorithm is a new computing technology
based on swarm intelligence theory to solve many dis-
crete optimization problems. In order to ensure the
uniform distribution and high-quality characteristics
of the initial population, some heuristic methods are
adopted in the initialization process of the particle
swarm, so that the initial particle can cover the entire
search space with a high probability, and avoid ineffi-
ciency caused by blind search.

3) A large number of computational experiments are
designed, and the results of the proposedmeta-heuristic
algorithm and LPT algorithm in terms of perfor-
mance ratio, running time, function value, Friedman
rank and convergence are compared, which shows that
these meta-heuristic algorithms have good stability and
strong optimization ability when solving large-scale
instances.

The reminder of the paper is organized as follows: In the
next section, we briefly introduce the concepts and ideas
of ant colony optimization and particle swarm optimization.
Section 3 introduces the improved ant colony algorithm for
GEBPOC. Section 4 presents a discrete particle swarm opti-
mization algorithm for GEBPOC. Section 5 compares and
analyzes the results and effectiveness of the proposed algo-
rithm through computational experiments. A summary of this
paper and an outlook for future research are presented in
Section 6.

II. BASIC ACO AND PSO
A. BASIC ACO
Ant colony optimization algorithm is a population-based evo-
lutionary algorithm proposed by Dorigo et al. [26] by simu-
lating the trail-finding method of ants’ foraging behavior in
nature. As shown in Fig. 1, the behavior of real ants gen-
erating near-optimal trails can be explained by four steps
(a −→ b −→ c −→ d). During the movement of the

FIGURE 1. Dynamic behavior of basic ant colony optimization, and the
gray areas represent the number of pheromones on each trail.

ant colony, it can leave pheromone substances on the trail
for information transmission, and the ants can perceive this
substance and guide their movement direction. When there
are many ants foraging, each ant will randomly choose a trail
at the beginning and release pheromone in the trail. Ants with
a short trail will reach the destination earlier than ants with
a long trail, and the frequency of round trips will also be
faster, the pheromone left on this trail will be correspondingly
more concentrated. But pheromones also evaporate over time.
When the next generation of ants forage, they will choose
the trail of pheromone concentration, and the more ants who
choose this trail, will release more pheromone. Therefore,
the behavior of the ant colony composed of a large num-
ber of ants will show a positive information feedback phe-
nomenon: the more ants walking on a certain trail, the greater
the probability of the latecomers to choose this trail. ACO has
the characteristics of distributed computing, positive feed-
back of information and heuristic search, and is essentially
a heuristic global optimization algorithm in evolutionary
algorithms.

ACO was originally proposed for the traveling salesman
problem (TSP) problem. The following introduces the basic
ant colony system model by taking the traveling salesman
problem (TSP) as an example. Let m and n be the number
of ants in the ant colony and the number of cities in the TSP
problem, respectively, dij represents the distance between city
i and city j, the number of ants in city j at time z is rep-
resented by bj(z). τij(z) represents the residual pheromone
concentration on the trail from city i to city j at time z. In ACO,
the walking trail of ants represents a feasible solution of the
optimization problem, and all trails of the whole ant colony
constitute a solution space of the problem. The general pro-
cedure of the ACO algorithm is as follows:

1) Set the number of ant populations according to the
specific problem, and assume that the pheromone con-
centration on each trail is equal at the initial moment,
i.e., τij(0) = R (R is a constant), and then search in
parallel. After each ant completes a trip, it will release
pheromones on the trail, and the pheromone is propor-
tional to the quality of problem solution.

2) Construct the trail. This step includes the selection of
the initial city and the determination of the next arrival
city. Each ant randomly selects a city as its starting
point, and maintains a trail tabu table to store the cities
the ants pass through in sequence. During the move-
ment of ant k (k = 1, · · · ,m), the trail selection adopts
a random local search strategy, and the direction of
transfer is determined by the pheromone concentration
on each trail. The probability of ant k transferring from
city i to city j at time z is represented by pkij(z), i.e.,

pkij(z) =

[τij(z)]α[ηijz]β∑

s∈allowedk
[τis(z)]α[ηisz]β

, j ∈ allowedk ,

0, otherwise.
(4)

where α is a importance factor of the residual
pheromone on the trail (i, j), β is the importance of

VOLUME 10, 2022 124861

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

the information transferred from city i to city j, and
ηij is the prior knowledge, generally taking ηij = 1

dij
,

which means that the closer cities are more likely to
be selected. Unlike the ant colony in actual life, the
artificial ant colony system has amemory function. The
set of cities that ant k has walked through is recorded
by tabuk , which is called tabu table, and it will make
dynamic adjustments with the evolution process. And
allowedk represents the city set that ant k is allowed
to transfer in the next step, that is, the complement of
tabuk .

3) After n moments, all ants have completed the traversal
of n cities, then set tabuk to empty, calculate the length
of the trail traveled by each ant, and write the shortest
trail. All ants start the next round of search and traversal
from the previous starting point.

4) In order to avoid too much pheromone causing the
residual pheromone to drown the heuristic information,
one need to update the residual pheromone on the trail
after each ant walks a step or traverses n cities. Note
that ants of the same generation are not affected by
the pheromones left by previous ants. The process of
pheromone renewal includes both the evaporation of
previous pheromone and the increase of pheromone on
the trail traversed. The pheromone update formula is as
follows:

τij(z+ 1) = (1−ρ) · τij(z)+
m∑
k=1

1k
ij(z), (5)

1k
ij(z)

=

{
Q
Lk
, if ant k moves from city i to city j,

0, otherwise.
(6)

where 0 ≤ ρ ≤ 1 is the pheromone evaporation coef-
ficient, 1k

ij(z) represents the pheromone increment left
by the kth ant on the trail (i, j) in the current iteration,
Q is a constant, and Lk denotes the distance traveled by
the kth ant in the current iteration trail length.

5) When the algorithm reaches a predeterminedmaximum
number of iterations or a stagnant state occurs, the algo-
rithm terminates and outputs the shortest trail found so
far.

B. BASIC PSO
The particle swarm optimization algorithm was proposed
by Kennedy and Eberhard [25] and is one of the latest
meta-heuristic algorithm based on population intelligence
for optimizing continuous nonlinear functions. Its biological
inspiration is based on the metaphor of social interaction
and communication in a flock of birds or school of fishes.
It is simple and easy to implement, requires few param-
eters to be adjusted, and has the characteristics of strong
global convergence ability and robustness. PSO algorithm has
been widely used in function optimization, neural network

training, fuzzy system control and other fields.In the PSO
algorithm, individuals are regarded as particles with positions
and velocities, where the particle’s position represents a feasi-
ble candidate solution to the problem. Starting from the initial
population, the particles fly continuously in the search space,
each particle searches for the optimal solution in the search
space individually, and records it as the current individual
extreme value, and then shares it with other particles in the
entire particle swarm. Finally, the optimal individual extreme
value found is used as the current global optimal solution of
the entire particle swarm. All particles in the particle swarm
adjust their speed and position according to the current indi-
vidual extremum found by themselves and the current global
optimal solution shared by the entire particle swarm to grad-
ually approach the optimal solution.

Let vk = (vk1, vk2, · · · , vkn) and xk = (xk1, xk2,··· ,xkn)
be the velocity and position of particle k , respectively, and
pBk = (pbk1, pbk2, · · · , pbkn) and gB = (gb1, gb2, · · · , gbn)
denote the optimal position of the individual and the popula-
tion, respectively. Then in the (z+1)th round of iteration, the
update rule for the velocity and position of particle k is as
follows:

vz+1k = wvkk + c1r1(pB
z
k − x

z
k)+ c2r2(gB

z
− xzk), (7)

xz+1k = xzk + v
z+1
k . (8)

where w is the inertia factor weight, which reflects the influ-
ence of the particle’s original speed on the next speed. The
constants c1 and c2 are called cognitive coefficients and social
coefficients, respectively, which reflect the extent to which
particles are affected by their own optimal solution and the
optimal solution of population. Both r1 and c2 are random
numbers in the interval [0, 1], pBzk represents the personal
best solution found by particle k in first z rounds of iterations,
and gBz represents the global best solution obtained by all
particles in first z rounds of iterations. The procedure of the
basic PSO algorithm is shown in Fig. 2.

In fact, particle swarm optimization (PSO) is a new evolu-
tionary algorithm (EA). Similar to the genetic algorithm, PSO
also starts from a random solution, finds the optimal solution
through iteration, and evaluates the quality of the solution
through fitness, but it is simpler than the genetic algorithm
rule. PSO does not have the ‘‘crossover’’ and ‘‘mutation’’
operations of the genetic algorithm. It can find the global opti-
mal solution by following the currently searched local opti-
mal solution. Aswe all know, the genetic algorithmfirst needs
to encode the problem, and after finding the optimal solution,
it needs to decode the problem. In addition, many parameters
are needed in the implementation of the three operators of
selection, crossover and mutation, such as crossover rate and
mutation rate, and the choice of these parameters is mostly
based on experience, which will seriously affect the quality
of the solution.

Compared with genetic algorithm, PSO has the advantages
of simple and easy to implement process, less parameters
to be adjusted, stronger convergence ability and robustness.

124862 VOLUME 10, 2022

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

FIGURE 2. Program diagram of basic particle swarm optimization
algorithm.

Since GEBPOC is strongly NP-hard, the optimal solution
can be found in a reasonable time for small-scale problem
instances, while the computational time of the exact algo-
rithm explodes when the problem is large. In this paper,
we will design a DPSO algorithm based on the discrete char-
acteristics of the problem to find near-optimal or optimal
solutions with acceptable time and memory requirements.

III. IMPROVED ANT COLONY OPTIMIZATION
ALGORITHM FOR GEBPOC
Identical machine scheduling problem and bin packing prob-
lem are typical combinatorial optimization problems. They
are obviously different from TSP problems. Therefore, some
adjustments and modifications must be made to the represen-
tation and update method of pheromone in the basic ACO
algorithm according to the characteristics of the problem,
in order to make it suitable for solving specific problems.
In this section, we define the ant colony model of GEBPOC
according to the characteristics of this problem, and enhance
the positive feedback effect of ACO by improving the state
transition rules and dynamic adaptive parameters. In order
to avoid the premature or stagnant phenomenon of the ant
colony algorithm in the search, we also introduced the vari-
able neighborhood search method to improve the ACO to
further enhance the global search ability and convergence
speed of the algorithm.

A. CONSTRUCTION OF ANT COLONY MODEL
Suppose there are d ants,mmachines and n jobs in the system.
Each step an ant takes to select a target machine for a job, the
ant completes a tour after n times, that is, the schedule process
of n jobs is completed, thereby obtaining a scheduling scheme
for this problem, which is represented by an n-dimensional
vector (d1, d2, · · · , dn), where dj (1 ≤ dj ≤ m) denotes

that job Jj is executed by machine Mdj For example, when
m = 2 and n = 4, the vector (1, 2, 2, 1) corresponds to a
feasible schedule, which means that both jobs J1 and J4 are
assigned to machine M1, while both J2 and J3 are scheduled
on M2.

For GEBPOC, if the load of each machine is greater than
or less than the regular working time t , then such schedule is
the optimal solution of this problem, and the corresponding
objective value is the lower bound LB of this problem, i.e.,

totalcost ≥ max{mt,mt + c ·
m∑
i=1

max{ti − t, 0}} = LB.

(9)

In scheduling problems, the quality of the solution is gen-
erally evaluated by fitness. According to the characteristics
of the problem, we need to consider not only the overtime
of each machine, but also the longest machine load in the
solution space, so we can define the fitness function as

F(sol) = max{ti(sol)} +
m∑
i=1

|ti − t|}. (10)

The ACO algorithm finally outputs the optimal schedule
corresponding to the solution with the minimal fitness value
searched by the ant colony after many iterations.

B. PHEROMONE EXPRESSION FOR GEBPOC
In GEBPOC, how to reasonably express and store pheromone
is the key to the realization of ant colony algorithm. Since the
performance of each machine in the problem is identical, jobs
are processed regardless of which machine executes it, they
are only affected by those jobs that are assigned to the same
machine. In this paper, we refer to this property as a job’s
matching degree (denoted as τij) and store it as the pheromone
concentration to guide the ants in choosing a appropriate
machine for jobs.

If the job set that has been processed on the machineMi is
Si, then for the next new job Jj, whether it can also be arranged
to be processed on Mi needs to be selected with reference to
the pheromone left by the ants and the state transition prob-
ability. We denote the average degree of matching between
job Jj and the assigned job subset Si on machineMi at time t
(amount of information) as σij(z), i.e.,

σij(z) =

{∑
j:Jj∈Si

τij(z)
|Si|
, Si 6= ∅,

1
m , otherwise.

(11)

where |Si| refers to the number of jobs that have been pro-
cessed on machineMi.

C. STATE TRANSITION STRATEGY
In order to better select a suitable machine, ant k needs to
select a machine Mi for job Jj to process it according to the
random probability rule of (4):

s =

{
argmaxs∈allowedk τ

α
ij · η

β
ij , q ≤ q0,

pij(z), otherwise.
(12)

VOLUME 10, 2022 124863

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

pij(z) =

[σij(z)]α[t/(t−(ti+pj))]β∑m

r=1[σri(z)]α[[t/(t−(tr+pj))]β
, ti + pj ≤ t,

0, otherwise.
(13)

where q0 =
logNc

logNmax
∈ [0, 1] is the adaptive threshold of the

ACO algorithm (Nc is the current number of iterations of the
algorithm, Nmax is the preset maximal number of iterations),
q is a uniformly distributed random number in interval [0, 1].
The state transition probability of the ant at time z is repre-
sented by pij(z), which reflects the probability that the ant
assigns the job Jj to Mi at time z according to the residual
pheromone and heuristic information during the search pro-
cess. It can be concluded from the above rules that when q ≤
q0, the ant can choose the next point according to the previous
knowledge, otherwise it will choose the next point accord-
ing to the random probability. The prior knowledge takes
into account the load of the current machine. When the load
of the machine Mi is small, the probability of the machine
being selected is relatively large, and vice versa. Once the
machine load exceeds the regular working time t , the proba-
bility ofMi being selected is almost zero. (Note that the value
of q0 is very small at the beginning of the iteration, which
implies that the ants will randomly search to ensure that the
search space is large enough. As the value of q0 increases
gradually, the ants will conduct deterministic search with a
large probability, and then select the trail traveled by the elite
ants, so that the ants gradually approach the optimal solution
area.)

D. VARIABLE NEIGHBORHOOD SEARCH
In the ant colony algorithm, the search process often falls into
a local optimum phenomenon. For this reason, we introduce
a variable neighborhood search algorithm into ACO to search
the optimal solution generated by the ant colony in each iter-
ation by multiple neighborhood structures. Thus, the search
efficiency of ACO is improved. For GEBPOC, the selection
of the neighborhood structure needs to consider the permu-
tation of jobs on different machines and the machine with
the largest load. In this paper, we present the following three
neighborhood structures (e.g. m = 2, n = 5, t = 7).
• Move. In the solution π , the job J3 processed on M2 is
moved to M1 for execution, and a new solution π1 is
generated (cf. Fig. 3(a)).

• Symmetric swap. (in short, Swap) In solution π , a new
solution π2 is generated by exchanging the job J2 on
M1 with a job J4 on M2 (cf. Fig. 3(b)).

• Asymmetric swap. (in short,Aswap) In the solution π ,
the two jobs J3 and J4 on M2 are exchanged with J2 on
M1, and a new solution π3 is generated (cf. Fig. 3(c)).

After many experiments, it has been shown that the algo-
rithm can show better performance if the algorithm is per-
formed in the sequence of Move, Swap, and Aswap, so we
will introduce these three neighborhood structures in this
sequence. According to the above three neighborhood struc-
tures, the following variable neighborhood search algorithm
is designed by us:

FIGURE 3. Three Neighborhood Structures of VNS.

Algorithm 1 VNS
1: Initialization, Determine the neighborhood structure

Nk (k = 1, 2, · · · , kmax), where kmax represents the num-
ber of neighborhoods. Let itermax be the loop length and
i = 1, and select the best solution in this iteration as the
initial solution π = π0.

2: while i < itermax do
3: A new solution π is obtained by randomly exchang-

ing jobs on any two machines in π0;
4: for k = 1 to kmax do
5: Find the best solution π ′ in the neighborhood

Nk (π);
6: if totalcost(π ′) < totalcost(π) then
7: π = π ′ and k = 1
8: else
9: k = k + 1;

10: end if
11: end for
12: if totalcost(π) < totalcost(π0) then
13: π0 = π

14: else
15: i = i+ 1;
16: end if
17: end while
18: Output the best found solution π0.

E. IMPROVED PHEROMONE UPDATE RULES
The pheromone needs to be updated immediately after the ant
completes a tour, and the update rule is carried out according
to the following equations,

τij(z+ 1) = (1− ρ) · τij(z)+1ij(z), (14)

1ij(z)

=

{
R
L∗ , if Ji and Jj are assigned to a same machine,
0, otherwise

(15)

where L∗ represents the total overtime in the best found
schedule so far.

124864 VOLUME 10, 2022

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

In this paper, we adopt the global pheromone update rule.
After the ant completes a traversal, the pheromone is updated
according to Eqs. (14) and (15), so the amount of informa-
tion between the jobs assigned to the same machine will
increase. Based on the above analysis, we design the follow-
ing improved ant olony optimization algorithm (IACO) for
solving the problem GEBPOC:

Algorithm 2 IACO
1: Initialization, Set the initial pheromone and t = 0. Let

the current number of loops and the maximum number
of iterations be denoted by Nc and Nmax , respectively.
Let the initial amount of information σij(0) = R. m ants
randomly select a job Jj and assign it to any machine
randomly, then tabuk = {Jj} and allowedk = J \ tabuk ,
and the optimal solution is denoted by π∗;

2: Calculate the lower bound LB of problem;
3: while totalcost(π∗) 6= LB and Nc < Nmax do
4: for k = 1 to m do
5: Ant k selects the target machine for each job

according to the random probability selection principle
of (12) until the set allowedk is empty;

6: The schedule obtained by ant k is evaluated using
the fitness evaluation function ((10));

7: Let π0 = π∗ and call the Algorithm 1;
8: end for
9: The pheromone update is performed by (14);

10: Update the current best solution found by ant colony;
11: end while
12: Output the historical best found solution π0.

IV. IMPROVED DISCRETE PARTICLE SWARM
OPTIMIZATION ALGORITHM FOR GEBPOC
In Section 2.2, we have introduced the idea of the basic par-
ticle swarm optimization algorithm (PSO), which presents a
feasible solution to a specific optimization problem through
the position structure of particles, and then uses the iter-
ative process of particle velocity and position changes to
continuously evolve, so as to gradually approach the best
position. However, the performance of PSO for some dis-
crete variables is not very satisfactory, because the original
PSO algorithm can only optimize problems in which the
elements of the solution are continuous real numbers [40].
This section describes how the discrete particle swarm opti-
mization (DPSO) algorithm can solve the problemGEBPOC.
In order to obtain better quality initial particles, we employ
some heuristics in the population initialization process,
so that the particles can cover the entire search space with
a large probability, and denote this modified algorithm as
MDPSO.

It is acknowledged that the PSO algorithm provides a gen-
eral framework for solving optimization problems. However,
for a specific problem, the key lies in the representation of
solution, the definition method of operators, the construc-
tion method of initial solution and the setting of termination

conditions. Some related technologies of the MDPSO algo-
rithm proposed for GEBPOC are introduced as follows:

1) Representation of the solution.
In order to establish a direct relationship between
the solution space of GEBPOC and particles, the
solutions corresponding to the assignment of jobs to
machine are represented by an n-dimensional array
(d1, d2, · · · , dn) similar to that in Section 3.1. For
example, when m = 2 and n = 5, the 4-dimensional
array (1, 2, 2, 1, 1) corresponds to a feasible schedule,
which implies that jobs J1, J4 and J5 are all processed
on machineM1, while jobs J2 and J3 are both executed
by M2.

2) Definition of operators in particle update.
Based on the idea of the basic PSO algorithm in
Section 2.2, we give the following update method for
the new velocity and position of particle k in the
(z + 1)th iteration, combining the characteristics of
the specific problem. In effect, we redefine what each
operator expresses, i.e.,

V z+1
k = V z

k ⊕ (R1 ⊗ (pBzk 	 X
z
k))

⊕ (R2 ⊗ (gBz 	 X zk)), (16)

X z+1k = X zk ⊕ V
z+1
k , (17)

where R1 and R2 are n-dimensional random variables
consisting of 0 and 1. The addition ⊕, subtraction 	,
and multiplication ⊗ operations between tuples need
to be performed during the algorithm iteration. There-
fore, we have to redefine these three operators accord-
ing to the nature of the problem. The technique of
redefining operators in this paper refers to the ideas in
literature [40].
a) Redefinition of the subtract operator 	.

The subtract operator	 is mainly used to express
the difference between the current position (X zk)
and the best position (pBzk or gBz) of particle
k . The difference between two tuples is calcu-
lated by comparing whether the element at each
position in X zk is the same as the element at the
corresponding position in pBzk or gBz. If so, the
element at the corresponding position in the final
tuple is assigned zero; otherwise, the value at the
corresponding position in the tuple pBzk (or gBz)
is reserved as the calculation result. Note that
the jobs corresponding to the positions with the
same elements in X zk and pB

z
k (or gB

z) need to be
arranged according to the longest processing time
(LPT) strategy and assigned to machine in turn
when themachine is idle. The redefinition process
of the subtract operator	 is shown in Fig. 4 (still
take m = 2, n = 5 as an example).

b) Redefinition of the multiply operator ⊗.
The multiply operator ⊗ is mainly used for
the operation between the random variables
R1, R2 and the result of the subtract operation.

VOLUME 10, 2022 124865

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

FIGURE 4. Redefinition of subtract operator 	 (where jobs J2 and J5 are
both assigned to machine M2, while jobs J1, J3 and J4 are assigned to
machines based on LPT rule).

It is also a process of data selection, which
can improve the search ability of DPSO.
This operator first defines R1 and R2 as two
n-dimensional arrays, each of which has a ran-
domly generated value of 0 or 1. A ⊗ B is a
simple multiply arithmetic operation between the
elements of two n-dimensional tuples. If the ele-
ment at the jth position in tuple A is 1, then the
element at the jth position of the operation result
is equal to the element at the jth position in tuple
B; otherwise, if the element at the jth position in
A is 0, then the element at the jth position of the
operation result is also 0, where j = 1, 2, · · · , n.
The process of redefining the multiply operator⊗
is shown in Fig. 5.

FIGURE 5. Redefinition of multiply operator ⊗ (where jobs J2 and J4 are
assigned to M1 and M2, respectively, while jobs J1, J3 and J5 are
assigned to machines based on LPT rule).

c) Redefinition of the add operator ⊕.
The add operator⊕ is the final operation to obtain
the velocity and position of a particle in a new
iteration, and this operator must guarantee that the
obtained result is a reasonable solution. In this
paper, we regard ⊕ as the crossover operator in
genetic algorithm. In fact, we randomly select
two cut points from the particle chain, and then
exchange the chain between these two cut points,
which tends to produce two new particle chains
in the end. During the operation, we generally
randomly select a particle chain as the result of
the add operation. The process of redefining the
add operator ⊕ is shown in Fig. 6.

FIGURE 6. Redefinition of multiply operator ⊕ (one of the two new
particle chains generated will be randomly selected as the result of the
A⊕ B operation).

3) Initialize the population.
The DPSO algorithm in this paper defines the popu-
lation size as 20, that is, there are 20 particles in the
system, and they are all n-dimensional arrays gener-
ated in a random way. In order to enable particles to
cover the entire search space with a large probability,
prevent the algorithm from falling into local optimum,
together with avoid reducing the search efficiency due
to blind search, we adopt some simple heuristic algo-
rithms (such as longest processing time first (LPT),
shortest processing time first (SPT)) in Algorithm 3 to
obtain a higher quality initial population.

4) The termination condition of algorithm.
The DPSO algorithm is essentially a process of grad-
ually replacing and seeking the optimum. A particle k
combines the best solution pBzk searched by itself and
the global best solution gBz searched by the population
to continuously update its speed and position, making it
gradually approach the position of the optimal solution.
When the algorithm triggers the termination condition,
it will stop running and output the schedule correspond-
ing to the current global best solution gBz found by the
population.
In this paper, the MDPSO algorithm stops as soon as
one of the following two situations occurs: the currently
found global best solution gBz has not changed after
200 iterations or the lower bound in (9) is just obtained.

Combined with the introduction of the above related tech-
nologies, we formally present the MDPSO algorithm for
GEBPOC.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
In this section, we compare the performance of some algo-
rithms proposed in the previous two sections through data
experiments.In addition to this, we also compare the results
of IACO and MDPSO with those of several other well-
known meta-heuristics: variable neighborhood search algo-
rithm (VNS) [51], simulated annealing algorithm (SA) [24],
ant colony optimization algorithm (ACO) [26] and particle
swarm algorithm (PSO) [25]. These algorithms have been
proven to have excellent results when solving engineering
optimization problems. We evaluate the ability of these algo-
rithms to solve the GEBPOC problem by setting small-scale
and large-scale instances, respectively. All the instances in
this section are from literatures [52] and [24]. Since the cal-
culation of the objective function value involves the selection
of regular working time t , we set t = dh · Pe to verify the
influence of different values of t on algorithms, where h ∈
{0.2, 0.4, 0.6, 0.8} and P =

∑
j:Jj∈J pj. For convenience,

in the whole experiment, we assume the unit time cost of
overload c = 2. Therefore, the following two experimental
frameworks are finally generated (cf. Table 1), where m, n
and p represent the number of machines, the number of jobs
and the processing time of a job, respectively. U (a, b) means

124866 VOLUME 10, 2022

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

TABLE 1. Parameter settings for computational experiments.

Algorithm 3MDPSO
1: Initialization, Set z = 0 and there are 20 particles in the

population;
2: for k = 1 to N do
3: particle X zk at random;
4: Let pBzk = X zk ;
5: end for
6: gBz = {X zl |l = argmink{totalcost(X

z
k)}};

7: while the maximal number of iterations z < 200 and
totalcost 6= LB do

8: for k = 1 to N do
9: The velocity of particle k is updated by (16);

10: The position of particle k is updated by (17);
11: if totalcost(X z+1k) < totalcost(pBzk) then
12: Let pBz+1k = X z+1k
13: else
14: Let pBz+1k = pBzk ;
15: end if
16: end for
17: if totalcost(gBz) > mink{totalcost(pB

z+1
k)} then

18: Let gBz+1 = {pBz+1l |l =

argmink{totalcost(pB
z+1
k)}}

19: else
20: gBz+1 = pBz+1k ;
21: end if
22: Set z = z+ 1;
23: end while
24: Output the historical best found solution gBz.

that the processing time of each job is distributed randomly
and uniformly in the interval [a, b].

These two sets of experimental frameworks yield 3× 3×
2×4+6×4 = 96 different (m, n, p, h) combination settings
in total. To increase the reliability of the algorithm, 30 sets of
test data were randomly generated for each (m, n, p, h) com-
bination, and the results were averaged. In this way, there are a
total of 2880 computing instances. In this paper, all algorithm
experiments are coded in Python 3.8, and tested on a laptop
with Ryzen Core R7-4800H 2.90GHzCPU and 16GBRAM.

We test the performance of each of these seven algorithms
(LPT, VNS, SA, ACO, IACO, DPSO, and MDPSO) using
the data generated by the above methods. The parameters of
algorithmACO are set as follows: the number of ants d = 20,
α = 1, β = 5, and Nmax = 200. The population size in
DPSO is equal to the number of ants in ACO, and themaximal
number of iterations is also 200, which of course is a parame-
ter involved in several other meta-heuristics. To avoid chance

of results, for each combination of (m, n, p, h), 30 instances
were generated.

B. ANALYSIS OF RESULTS: RATIO AND TIME
In this section, we test the performance ratio and required
execution time of these meta-heuristics. The average results
obtained from experiments E1 and E2 are shown in
Tables 2-5. In each table, the columns ‘‘Ratio’’ calculate the
ratio between the criterion values given by proposed algo-
rithms (the optimal or near optimal) and LB, and they are pre-
sented with 4-digit precision, while the columns ‘‘Avg.time’’
indicate the time consumption of the corresponding approach,
where LPT in milliseconds, other algorithms in seconds.

The results from Table 2 show that the ratio of the intelli-
gent optimization algorithm proposed in this paper is closer to
1.0000 than LPT algorithm when solving the same problem
instance for the case of m = 3, due to the small scale of the
problem, while the LPT algorithm run much faster than other
algorithms in general. For a specific n, the output value will
be closer to the optimal value when a certain algorithm is used
to solve the problem as the value of h increases. In particular,
when h = 0.8, the ratio corresponding to almost all instances
is 1.0000, which means that when the regular working time is
large, the jobs can be processed without overtime. However,
the average running time is not much different. For both ACO
and IACO algorithms, IACO is stronger than basic ACO in
terms of ratio, because the search ability of the global opti-
mal solution of the algorithm is significantly improved after
the variable neighborhood search algorithm is introduced in
IACO, but the running time will be slightly increased, the
average running time of IACO is about 7 times that of ACO.
Compared with the DPSO algorithm, the ratio of MDPSO is
closer to 1.0000, due to some heuristic improvement strate-
gies adopted in the population initialization process, but the
average running time of MDPSO is 2 times slower than
that of DPSO. In most problems (except a few simple prob-
lems), the average solutions obtained by the IACO algo-
rithm and the MDPSO algorithm are better than LPT, VNS,
SA, ACO and DPSO. In addition, the running time of the
above seven algorithms becomes longer as the number of jobs
increases.

Tables 3 and 4 report the comparison results obtained from
the case of m = 4 and m = 5, respectively. The varia-
tion in ratio and average running time of these two cases is
similar to the case of m = 3. As the number of machines
increases, the running time of each algorithm also increases,
but the increase in LPT is larger than that of the other meta-
heuristics. Compared with the results in Table 2, the ratios
corresponding to Tables 3 and 4 to when h = 0.8 are rarely

VOLUME 10, 2022 124867

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

TABLE 2. Results for experiment E1: m = 3.

TABLE 3. Results for experiment E1: m = 4.

equal to 1.0000, which is also due to the increase in the
number of machines. In Table 3, the average running time of
IACO is about 2 times that of ACO, while the average running
time of MDPSO and DPSO differs by only 0.02s. In Table 4,
the average running time of IACO is only 0.27s away from
ACO, and MDPSO runs faster than DPSO in average time.
Although VNS, SA, ACO, and DPSO have smaller aver-
age execution time than IACO and MDPSO, the former are
more prone to falling into local minima. Therefore, in terms
of running time, as the number of machines increases, the
effects of IACO algorithm and MDPSO algorithm begin to
emerge.

The second set of experiments E2 were tested on some
large scale problems, and a longer job processing time was
set. The experimental results are shown in Table. 5. This set
of experiments omits the setting of different regular working
time, since experiment E1 has already verified its effect on
algorithms. The experimental results show that at the level

of the number of jobs, the time consumed by the LPT algo-
rithm is basically not affected by the number of machines,
which is due to the time complexity O(n log n) of LPT.
As the problem size increases, the average performance of
the LPT algorithm becomes weaker. The difference in run-
ning time between LPT algorithm and other meta-heuristics
grows with the number of jobs. This implies that the bigger
instances, the higher improvement in time consumption can
be observed, which is also a big advantage of these pro-
posed meta-heuristic algorithms from the practical point of
view. Secondly, compared to the LPT, VNS, SA, ACO and
DPSO, the improved IACO and MDPSO beats them not only
from the point of view of time efficiency, but also from the
point of view of the ratio and the ability to solve problem
instances in a reasonable time, which means that the decrease
in computational complexity for the improved IACO and
MDPSO algorithms in comparison to the previous algorithms
allowed for predicting the decrease of running time, but the

124868 VOLUME 10, 2022

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

TABLE 4. Results for experiment E1: m = 5.

TABLE 5. Results for experiment E2.

computational experiments showed how significant this
decrease is in practice. More precisely, we observed that both
theoretical and practical improvements are significant for big
instances and both of these improvements are relativelyminor
when scale of instances is small, that is, IACO and MDPSO
algorithms have better stability when solving large scale
instances.

C. ANALYSIS OF RESULTS: FUNCTION VALUE AND
FRIEDMAN RANK
To further illustrate the significant advantages of the
proposed algorithm, we also select 8 instances from
the two sets of experimental frameworks in Table 1,
i.e., (3, 15,U (1, 20), 0.2), (3, 15,U (20, 50), 0.4), (4, 20,U
(1, 20), 0.2), (4, 20,U (20, 50), 0.4), (5, 20,U (1, 20), 0.2),
(5, 20,U (20, 50), 0.4), (10, 50,U (100, 800), 0.1) and (10,
100,U (100, 800), 0.1), we separately recorded the best func-
tion value, worst function value, mean and standard deviation

of each algorithm in 30 runs, since evolutionary algorithms
have a certain degree of randomness in each run. The exper-
imental results are shown in Table 6. Four performance indi-
cators (include ‘‘Best’’, ‘‘Worst’’, ‘‘Mean’’, and ‘‘Standard
deviation (SD)’’) are used to validate the effectiveness of
the proposed IACO and MDPSO in conjunction with other
state-of-the-art optimization algorithms. Moreover, a non-
parametric statistical test called the Friedman ranking test is
applied for a fair performance comparison with other exist-
ing optimization methods. The Feldman ranking test is a
non-parametric multiple hypothesis test of repeated measures
ANOVA that gives the ranking of different algorithms on
each dataset and finally calculates the mean of the ranking
of each algorithm on all datasets, if all algorithms have no
performance difference, then the average ranking of their
performance should be equal.

It can be clearly seen from the information in Table 6 that
our proposed IACO and MDPSO algorithms are better than
LPT, VNS, SA, ACO and DPSO in terms of best fitness,

VOLUME 10, 2022 124869

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

TABLE 6. Best, worst, mean, standard deviation and Friedman ranking results obtained for 30 independent runs of GEBPOC.

worst fitness and average fitness. In particular, MDPSO is
more competitive than IACO in all of these areas. MDPSO
also outperforms more than half of the algorithms in terms
of standard deviation. Therefore, we can see that a more
balanced scheduling scheme can be obtained significantly
by the MDPSO algorithm. It is worth mentioning that, for
each instance, the standard deviation presented in the results
in Table 6 is actually consistent with the Friedman rank-
ing. Although VNS and DPSO ranked first in the 4th and
5th groups of instances, respectively, in the final Friedman
ranking, the MDPSO algorithm was firmly in first place,
followed by IACO and DPSO, respectively, while the LPT
algorithm ranks last. This means that the quality of the solu-
tions obtained by MDPSO and IACO is relatively excellent,
and as the scale of the problem instance increases, the solu-
tion accuracy of LPT will decrease significantly, and VNS,
SA and DPSO will also easily fall into local optimum.

D. ANALYSIS OF RESULTS: SOLUTION COMPARISON AND
CONVERGENCE
In order to more comprehensively present the number of
good-quality solutions output by these algorithms, we also

record the number of corresponding solutions obtained
by comparing some previous algorithms with IACO and
MDPSO, respectively. We only record the results of 30 inde-
pendent runs for the 8 instances selected in the previous sub-
section. The experimental results are shown in Table 7, where
we gives an indication on how many times a given algorithm
reports a better objective value comparing with respect to the
other algorithm. For example, a value num1/num2 in column
DPSO/MDPSO implies that, out of 30 problems generated
by each combination, there are num1 problems for which
DPSO yeilds a better solution than MDPSO, num2 prob-
lems for which MDPSO performs better, and the other
30− num1 − num2 problems for which DPSO and MDPSO
yeild the same total cost.

It can be seen from the comparison results that after
30 experiments on the same set of instances, LPT, VNS, SA,
ACO and DPSO produce significantly less good solutions
than IACO and MDPSO, among which DPSO has the best
performance, with an average proportion of 26.6%, and the
average LPT algorithm with the worst performance is only
10.0%. In addition, the larger the instance size is, the smaller
the number of times the output solutions by other algorithms

124870 VOLUME 10, 2022

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

TABLE 7. Quantitative comparison of good solutions.

FIGURE 7. Comparison of convergence of several metaheuristic algorithms.

beat IACO and MDPSO, which highlights the superiority
of our improved algorithm in solving GEBPOC. Of course,
the experimental results also show that the number of good
solutions output by IACO is less than that of MDPSO.

To further observe the convergence of the above sev-
eral meta-heuristic algorithms, Fig. 7 also shows the
change curve of the minimum total cost after 200 iter-
ations when we select instances (3, 15,U (20, 50), 0.4),
(4, 20,U (20, 50), 0.2), (5, 20,U (20, 50), 0.2) and (10, 100,
U (100, 800), 0.1), respectively. In these four convergence
curves, the algorithms IACO andMDPSO have faster conver-
gence rates than other meta-heuristic algorithms. The point
to be made here is that the global optimization capability of
IACO is stronger than that of VNS, SA, ACO and DPSO.
For example, it can be seen from the Fig. 7 (d), because of
the basic ACO is not optimized and easily falls into local
optimal, the algorithm only converges after the 185th iter-
ation, while the IACO has already converged at the 170th

iteration due to the introduction of the VNS method in the
algorithm, which impling the ability of IACO to jump out
of the local otimum is better than basic ACO algorithm. The
basic DPSO algorithm and the improved MDPSO algorithm

obtain the optimal solutions at the 179th iteration and 161th

iteration, respectively. Therefore, VNS, SA, ACO and DPSO
algorithms have significantly weaker convergence than IACO
andMDPSO, respectively, because their performance has not
been optimized. ACO and DPSO can only obtain sub-optimal
solutions to the problem, while the improved algorithm can
get close to optimal solutions. Meanwhile, IACO has better
convergence than DPSO, but slower than MDPSO.

VI. CONCLUSION
In this paper, we consider the generalized extensible bin pack-
ing problem with overload cost using some meta-heuristics
based on the existing work of Denton et al. [1], [2], to the
best of our knowledge, this is the first attempt to solve this
problem with an meta-heuristics algorithm. This model pro-
vides a powerful tool for management decision-making in
outpatient operating room allocation in a healthcare setting
and in servers handling large tasks. According to the char-
acteristics of the problem, we use improved ACO algorithm
and discrete particle swarm optimization algorithms to solve
this problem. We enhance the positive feedback effect of ant
colony optimization by improving the state transition rules

VOLUME 10, 2022 124871

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

and dynamic adaptive parameters. In order to avoid the pre-
mature or stagnant phenomenon of ant colony algorithm in
the search, a variable neighborhood search method is also
introduced, which further improves the global search ability
and convergence speed of the algorithm. In addition, in order
to ensure the uniform distribution and high-quality charac-
teristics of the initial particle swarm, some heuristic meth-
ods are adopted in the initialization process of the particle
swarm, so that the initial particle can cover the entire search
space with a large probability. Computational experiments
show that for the same problem instance, the proposed IACO
andMDPSO algorithms outperform othermetaheuristic algo-
rithms in most cases. A number of results are achieved from
solving this model and managers can make a reasonable
choice according to the actual situation they are dealing with,
which is very in line with the needs of economic, social,
medical and green manufacturing.

For further studies, since the model studied has many
uncertainties in practice, we need to consider more con-
straints, such as the regular working time of each server may
be different, and the cost of overloading each machine may
also be different. Of course, in the actual operating room
allocation process, since the number of operations to be com-
pleted is dynamically known, wemust also dynamicallymake
decisions accordingly. We will conduct further research on
these cases. Moreover, in the DPSO algorithm, it can be seen
from the experimental results that it is not enough to get rid
of particles trapped in local minima only by improving the
quality of the initial particle population, and the search pro-
cess of the best solution is often difficult to take into account
the balance of ‘‘detection’’ and ‘‘development’’ at the same
time. The new and improved DPSO algorithm will be a very
interesting research direction in the future.

REFERENCES
[1] B. T. Denton, A. J. Miller, H. J. Balasubramanian, and T. R. Huschka,

‘‘Optimal allocation of surgery blocks to operating rooms under uncer-
tainty,’’ Oper. Res., vol. 58, no. 1, pp. 802–816, 2010.

[2] B. P. Berg and B. T. Denton, ‘‘Fast approximation methods for online
scheduling of outpatient procedure centers,’’ Informs J. Comput., vol. 29,
no. 4, pp. 631–644, Nov. 2017.

[3] P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Z. Tuza, ‘‘A 13/12 approxi-
mation algorithm for bin packing with extendable bins,’’ Inf. Process. Lett.,
vol. 65, no. 5, pp. 229–233, Mar. 1998.

[4] P. Dell’Olmo and M. G. Speranza, ‘‘Approximation algorithms for parti-
tioning small items in unequal bins to minimize the total size,’’ Discrete
Appl. Math., vol. 94, nos. 1–3, pp. 181–191, May 1999.

[5] D. Ye and G. Zhang, ‘‘On-line extensible bin packing with unequal bin
sizes,’’ Discrete Math. Theor. Comput. Sci., vol. 11, no. 1, pp. 141–152,
Jan. 2009.

[6] L. Epstein and T. Tassa, ‘‘Vector assignment schemes for asymmetric set-
tings,’’ Acta Inf., vol. 42, nos. 6–7, pp. 501–514, Mar. 2006.

[7] G. J. Woeginger, ‘‘When does a dynamic programming formulation guar-
antee the existence of a fully polynomial time approximation scheme
(FPTAS)?’’ Informs J. Comput., vol. 12, no. 1, pp. 57–74, Feb. 2000.

[8] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid, ‘‘Approximation
schemes for scheduling on parallel machines,’’ J. Scheduling, vol. 1, no. 1,
pp. 55–66, Jun. 1998.

[9] M. G. Speranza and Z. Tuza, ‘‘On-line approximation algorithms for
scheduling tasks on identical machines withextendable working time,’’
Ann. Oper. Res., vol. 86, pp. 491–506, Jan. 1999.

[10] E. G. Coffman andG. S. Lueker, ‘‘Approximation algorithms for extensible
bin packing,’’ J. Scheduling, vol. 9, no. 1, pp. 63–69, Feb. 2006.

[11] K. Luo and F. C. Spieksma, ‘‘Online bin packing with overload
cost,’’ in Algorithms and Discrete Applied Mathematics, A. Mudgal and
C. R. Subramanian, Eds. Cham, Switzerland: Springer, 2021, pp. 3–15.

[12] A. Levin, ‘‘Approximation schemes for the generalized extensible bin
packing problem,’’ Algorithmica, vol. 84, no. 2, pp. 325–343, Feb. 2022.

[13] G. Sagnol and D. S. G. Waldschmidt, ‘‘Stochastic extensible bin packing,’’
2020, arXiv:2002.00060.

[14] J. Blazewicz, ‘‘Scheduling preemptible tasks on parallel processors
with information loss,’’ Technique et Sci. Informatiques, vol. 3, no. 6,
pp. 415–420, 1984.

[15] X. Chen, M. Sterna, X. Han, and J. Błażewicz, ‘‘Scheduling on parallel
identical machines with late work criterion: Offline and online cases,’’
J. Scheduling, vol. 19, no. 6, pp. 729–736, Dec. 2016.

[16] M. Sterna and K. Czerniachowska, ‘‘Polynomial time approximation
scheme for two parallel machines scheduling with a common due date
to maximize early work,’’ J. Optim. Theory Appl., vol. 174, no. 3,
pp. 927–944, Sep. 2017.

[17] X. Chen, W. Wang, P. Xie, X. Zhang, M. Sterna, and J. Błażewicz,
‘‘Exact and heuristic algorithms for scheduling on two identical machines
with early work maximization,’’ Comput. Ind. Eng., vol. 144, Jun. 2020,
Art. no. 106449.

[18] X. Chen, Y. Liang, M. Sterna, W. Wang, and J. Błażewicz, ‘‘Fully poly-
nomial time approximation scheme to maximize early work on parallel
machines with common due date,’’ Eur. J. Oper. Res., vol. 284, no. 1,
pp. 67–74, Jul. 2020.

[19] X. Chen, X. Shen, M. Y. Kovalyov, M. Sterna, and J. Blazewicz, ‘‘Alterna-
tive algorithms for identical machines scheduling to maximize total early
work with a common due date,’’ Comput. Ind. Eng., vol. 171, Sep. 2022,
Art. no. 108386.

[20] W.-D. Li, ‘‘Improved approximation schemes for early work scheduling on
identical parallel machines with a common due date,’’ J. Oper. Res. Soc.
China, pp. 1–10, Jun. 2022, doi: 10.1007%2Fs40305-022-00402-y.

[21] X. Chen, S. Kovalev, Y. Liu, M. Sterna, I. Chalamon, and J. Błażewicz,
‘‘Semi-online scheduling on two identical machines with a common due
date to maximize total early work,’’ Discrete Appl. Math., vol. 290,
pp. 71–78, Feb. 2021.

[22] M. Xiao, X. Liu, W. Li, X. Chen, M. Sterna, and J. Blazewicz, ‘‘Online and
semi-online scheduling on two hierarchical machines with a common due
date to maximize the total early work,’’ 2022, arXiv:2209.08704.

[23] M. Xiao, X. Liu, and W. Li, ‘‘Semi-online early work maximization prob-
lem on two hierarchical machines with partial information of processing
time,’’ in Proc. Int. Conf. Algorithmic Appl. Manage. Cham, Switzerland:
Springer, 2021, pp. 146–156.

[24] W.-C. Lee, C.-C. Wu, and P. Chen, ‘‘A simulated annealing approach to
makespanminimization on identical parallel machines,’’ Int. J. Adv.Manuf.
Technol., vol. 31, nos. 3–4, pp. 328–334, Nov. 2006.

[25] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), vol. 4, Aug. 1995, pp. 1942–1948.

[26] M. Dorigo, ‘‘Optimization, learning and natural algorithms,’’ M.S. thesis,
Politecnico Di Milan, Milan, Italy, 1992.

[27] D. Whitley, ‘‘A genetic algorithm tutorial,’’ Statist. Comput., vol. 4, no. 2,
pp. 65–85, 1994.

[28] Q.-K. Pan, B.-H. Zhao, and Y.-G. Qu, ‘‘Ant-colony heuristic algorithm
for no-wait flow shop problem with makespan criterion,’’ Comput. Integr.
Manuf. Systems-Beijing, vol. 13, no. 9, pp. 1801–1804 and 1815, 2007.

[29] A. Bauer, B. Bullnheimer, R. F. Hartl, and C. Strauss, ‘‘An ant colony
optimization approach for the single machine total tardiness problem,’’ in
Proc. Congr. Evol. Comput. (CEC), 1999, pp. 1445–1450.

[30] M. D. Besten, T. Stützle, and M. Dorigo, ‘‘Ant colony optimization for
the total weighted tardiness problem,’’ in Proc. Int. Conf. Parallel Problem
Solving Nature. Cham, Switzerland: Springer, 2000, pp. 611–620.

[31] D. Merkle and M. Middendorf, ‘‘An ant algorithm with a new pheromone
evaluation rule for total tardiness problems,’’ in Proc. Workshops
Real-World Appl. Evol. Comput. Cham, Switzerland: Springer, 2000,
pp. 290–299.

[32] D. Merkle and M. Middendorf, ‘‘Ant colony optimization with global
pheromone evaluation for scheduling a single machine,’’ Appl. Intell.,
vol. 18, no. 1, pp. 105–111, 2003.

[33] O. Holthaus and C. Rajendran, ‘‘A fast ant-colony algorithm for single-
machine scheduling to minimize the sum of weighted tardiness of jobs,’’
J. Oper. Res. Soc., vol. 56, no. 8, pp. 947–953, Aug. 2005.

124872 VOLUME 10, 2022

http://dx.doi.org/10.1007%2Fs40305-022-00402-y

R. Ding et al.: Meta-Heuristic Algorithms for the Generalized Extensible Bin Packing Problem With Overload Cost

[34] T. C. E. Cheng, A. A. Lazarev, and E. R. Gafarov, ‘‘A hybrid algorithm for
the single-machine total tardiness problem,’’ Comput. Oper. Res., vol. 36,
no. 2, pp. 308–315, Feb. 2009.

[35] C. R. Gatica de Videla, S. C. Esquivel, and G. M. Leguizamón, ‘‘An ACO
approach for the parallel machines scheduling problem,’’ Intel. Artif.,
vol. 14, no. 46, pp. 84–95, Mar. 2010.

[36] Z.-F. Hao, R.-C. Cai, and H. Huang, ‘‘An adaptive parameter control
strategy for ACO,’’ in Proc. Int. Conf. Mach. Learn. Cybern., 2006,
pp. 203–206.

[37] X. Liu, X. Zhang, W. Li, and X. Zhang, ‘‘Swarm optimization algorithms
applied to multi-resource fair allocation in heterogeneous cloud computing
systems,’’ Computing, vol. 99, no. 12, pp. 1231–1255, Dec. 2017.

[38] X. Chen, V. Chau, P. Xie, M. Sterna, and J. Błażewicz, ‘‘Complexity of late
work minimization in flow shop systems and a particle swarm optimization
algorithm for learning effect,’’ Comput. Ind. Eng., vol. 111, pp. 176–182,
Sep. 2017.

[39] B. Deng, ‘‘An improved honey badger algorithm by genetic algorithm and
levy flight distribution for solving airline crew rostering problem,’’ IEEE
Access, vol. 10, pp. 108075–108088, 2022.

[40] A. H. Kashan and B. Karimi, ‘‘A discrete particle swarm optimization
algorithm for scheduling parallel machines,’’ Comput. Ind. Eng., vol. 56,
no. 1, pp. 216–223, Feb. 2009.

[41] Q. K. Pan, M. F. Tasgetiren, and Y.-C. Liang, ‘‘A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem,’’
Comput. Oper. Res., vol. 35, no. 9, pp. 2807–2839, Sep. 2008.

[42] Q. Yang, H. Zuo, andW. Li, ‘‘Land surface model and particle swarm opti-
mization algorithm based on themodel-optimizationmethod for improving
soil moisture simulation in a semi-arid region,’’ PLoS ONE, vol. 11, no. 3,
pp. 1–17, 2016.

[43] Q. Yang, J. Wu, Y. Li, W. Li, L. Wang, and Y. Yang, ‘‘Using the particle
swarm optimization algorithm to calibrate the parameters relating to the
turbulent flux in the surface layer in the source region of the Yellow River,’’
Agricult. Forest Meteorol., vol. 232, pp. 606–622, Jan. 2017.

[44] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, ‘‘A discrete particle swarm
optimization algorithm for single machine total earliness and tardiness
problemwith a common due date,’’ inProc. IEEE Int. Conf. Evol. Comput.,
Sep. 2006, pp. 3281–3288.

[45] C. Zhou, L. Gao, and H.-B. Gao, ‘‘Particle swarm optimization based
algorithm for permutation flow shop scheduling,’’ Acta Electonica Sinica,
vol. 34, no. 11, pp. 2008–2011, 2006.

[46] Z. Lian, X. Gu, and B. Jiao, ‘‘A similar particle swarm optimization algo-
rithm for permutation flowshop scheduling to minimize makespan,’’ Appl.
Math. Comput., vol. 175, no. 1, pp. 773–785, 2006.

[47] Q. Yang, L. Dan, J. Wu, R. Jiang, J. Dan, W. Li, F. Yang, X. Yang, and
L. Xia, ‘‘The improved freeze–thaw process of a climate-vegetationmodel:
Calibration and validation tests in the source region of the yellow river,’’
J. Geophys. Res., Atmos., vol. 123, no. 23, pp. 13–346, Dec. 2018.

[48] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, ‘‘A combinatorial particle
swarm optimization for solving multi-mode resource-constrained project
scheduling problems,’’ Appl. Math. Comput., vol. 195, no. 1, pp. 299–308,
2008.

[49] D. Y. Sha and C.-Y. Hsu, ‘‘A hybrid particle swarm optimization for job
shop scheduling problem,’’ Comput. Ind. Eng., vol. 51, no. 4, pp. 791–808,
Dec. 2006.

[50] C.-T. Tseng and C.-J. Liao, ‘‘A discrete particle swarm optimization for
lot-streaming flowshop scheduling problem,’’ Eur. J. Oper. Res., vol. 191,
no. 2, pp. 360–373, Dec. 2008.

[51] N. Mladenović and P. Hansen, ‘‘Variable neighborhood search,’’ Comput.
Oper. Res., vol. 24, no. 11, pp. 1097–1100, Nov. 1997.

[52] X. Chen, Z. Wang, E. Pesch, M. Sterna, and J. Błażewicz, ‘‘Two-machine
flow-shop scheduling to minimize total late work: Revisited,’’Eng. Optim.,
vol. 51, no. 7, pp. 1268–1278, Jul. 2019.

RAN DING received the B.S. degree from Henan
Normal University, Xinxiang, China. He is cur-
rently pursuing the M.S. degree in operations
research and cybernetics with Yunnan University,
Kunming, China. His research interests include
discrete optimization, scheduling theory, and
intelligent algorithms.

BIN DENG received the B.S. degree in survey-
ing engineering from the Southwest University of
Science and Technology, Mianyang, China. He is
currently pursuing the Ph.D. degree in opera-
tions research and cybernetics with Yunnan Uni-
versity, Kunming, China. His research interests
include aviation operations, fair distribution, and
intelligent algorithms.

WEIDONG LI received the B.S., M.S., and Ph.D.
degrees fromYunnan University, Kunming, China,
in 2004, 2007, and 2010, respectively. He is cur-
rently working as a Professor and a Doctoral
Supervisor with the School of Mathematics and
Statistics, Yunnan University. His current research
interests include discrete optimization, theoretical
computer science, computational economics, and
algorithmic game theory and its applications.

VOLUME 10, 2022 124873

