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ABSTRACT Self-supervised learning has recently been implemented widely in speech processing areas,
replacing conventional acoustic feature extraction to extract meaningful information from speech. One of
the challenging applications of speech processing is to extract affective information from speech, commonly
called speech emotion recognition. Until now, it is not clear the position of these speech representations
compared to the classical acoustic feature. This paper evaluates nineteen self-supervised speech represen-
tations and one classical acoustic feature for five distinct speech emotion recognition datasets on the same
classifier.We calculate the effect size among twenty speech representations to show the magnitude of relative
differences from the top to the lowest performance. The top three are WavLM Large, UniSpeech-SAT Large,
and HuBERT Large, with negligible effect sizes among them. The significance test supports the difference
among self-supervised speech representations. The best prediction for each dataset is shown in the form of
a confusion matrix to gain insights into the best performance of speech representations for each emotion
category based on the training data from balanced vs. unbalanced datasets, English vs. Japanese corpus, and
five vs. six emotion categories. Despite showing their competitiveness, this exploration of self-supervised
learning for speech emotion recognition also shows their limitations on models pre-trained on small data and
trained on unbalanced datasets.

INDEX TERMS Self-supervised learning, speech emotion recognition, acoustic feature, speech processing,
affective computing.

I. INTRODUCTION
Speech processing has recently flourished more than before,
thanks to the advancement of deep learning. One of the major
advancements in speech processing is how to learn patterns
from unlabeled data as in nature. Self-supervised learning
(SSL) aims to tackle this problem and has recently shown
promising results in automatic speech recognition (ASR).
Using small labeled data (1h), SSL has been reported to
achieve a smaller word error rate (WER) than models trained
on big labeled data (100h) [1]. In [2], the authors observed
the performance of SSL to be comparable to that of state-of-
the-art ASR with only 3% of the training data. The authors

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Wang .

also show that the use of a full training set improves the
performance score from the baseline model with labeled data.

Although SSL is claimed to be universal across various
domains [3], it is necessary to investigate the effect of utiliz-
ing different SSLs for different tasks. For instance, an SSL
model may work better on one task than others, while in
several general tasks, the other SSLs may perform better.
In this paper, we focus our study on evaluating SSL as
an acoustic feature extractor to extract speech representa-
tions for speech emotion recognition. For the speech domain
itself, Yang et al. [4] proposed a Speech processing Univer-
sal PERformance Benchmark (SUPERB) to find a universal
speech representation for all speech processing tasks listed in
their benchmark list.

Instead of universal speech representation, a course to find
a subset of universal speech representation for non-semantic
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tasks has recently begun. The task is aimed at finding a good
speech representation for the tasks that do not include ASR
or phoneme classification. These two semantic tasks require
granularity of the input to be at a word or a phoneme level [5].
The authors proposed TRILL (TRIplet loss network), which
is a transfer learning fromAudioSet to NOn-Semantic Speech
benchmark (NOSS). Speech emotion recognition (SER) is a
subset of NOSS that focuses on recognizing affective states
within the speech. As in NOSS and SUPERB, the search for
a universal representation for SER has begun following those
two benchmarks.

Evaluating SSL for SER can be based on the similarities
between the two. Most of the speech representations based on
SSL are aimed at ASR tasks. While ASR predicts the word
(linguistic) content of speech, SER is aimed at recognizing
paralinguistic information of the speech. Both tasks are clas-
sification tasks given a speech input. Considering processes
by which various information manifested in the speech fea-
tures [6], both linguistic and paralinguistic information may
be embedded in the same extracted acoustic features from
SSLmodels. Hence, it is sound to investigate the SSL models
that are commonly evaluated and proposed for ASR for SER
tasks. Besides that, most available speech datasets are ASR
datasets upon which SSL models are built.

In addition to the findings from the previous works, this
paper contributes to the following aspects:

• We evaluated the performance of nineteen self-
supervised speech representations and one classical
acoustic feature for speech emotion recognition on a
similar architecture and five datasets to gain insights into
the performance of SSL-based speech representations
for the SER task;

• We measure the effect size and rank among these
twenty speech representations above to show their
competitiveness.

Through those contributions, we want to know about the
current position of the SSL-based speech representations for
the SER task compared to another non-SSL-based acoustic
feature (filterbank).

The rest of this paper is organized as follows. The next
section II reviews previous works related to this research.
Section III describes the research methodology that includes
the datasets, self-supervised speech representations as acous-
tic features, a classifier for mapping acoustic features to
labels, and the objective evaluations to analyze the results.
Section IV contains tables and figures of the experiment
results. Section V discusses the data and findings. Finally,
section VI closes this research article with conclusions and
future directions on evaluating self-supervised speech repre-
sentations for the speech emotion recognition problem.

II. RELATED WORK: SSL AND SER
Self-supervised learning (SSL) has recently been adopted
in many research areas due to its effectiveness and similar-
ity to nature. SSL learns from labeled and unlabeled data:

seeking the pattern of unlabeled data given labeled data in
certain intervals to generate pre-trained models. Research on
SSLs and SER has been performed independently in most
works. The focus of the previous works is either proposing
a new SSL for a specific task (e.g., ASR [1]), for several
similar tasks (e.g., [7]), for general speech tasks (e.g., [4]),
or evaluating the existing acoustic features (including some
SSLs) for the SER task (e.g., [8]). The following description
describes the difference between our work from the previous
works.

In [5], the authors proposed TRILL to achieve state-of-
the-art (SOTA) results for three out of six tasks in NOSS
(VoxCeleb1, VoxForge, SpeechCommands, CREMA-D,
SAVEE, and DementiaBank). The authors then improved
TRILL for mobile devices by knowledge distillation known
as FRILL [7]. The previous TRILL is based on the modified
version of ResNet50, which is expensive to run on mobile
devices. In this paper, we do not evaluate FRILL/TRILL
since the goal is not to evaluate the speech representations
for mobile devices; besides, the representations are also not
compatible with the S3PRL toolkit [4].

In [9], the authors reported the use of pre-trained acous-
tic and linguistic features for continuous SER. The evalu-
ated methods were wav2vec for speech representation and
CamemBERT for linguistic representation. The result shows
the superiority of fusion between acoustic and linguistic fea-
tures for SER. In several cases, the use of merely acoustic
features may be enough if the representation contains rich
affective information. In addition, it is necessary to evaluate
beyond the wav2vec feature extractor since there are recent
developments in SSLs.

The authors of [10] attempted to find a universal repre-
sentation for SER. Based on the language-agnostic assump-
tion, the authors proposed a contrastive pretraining-based
SSL method by minimizing contrastive loss between a pair
of different augmented matrices. The method, known as a
contrastive spec, obtained better performance than MFCC,
OpenSMILE-based features, and PASE+ [10]. The improve-
ment over the last method is about 1% in terms of accuracy.
Compared to other SSL reported in SUPERB [4], the
improvement of the latest SSL (HuBERT) now is about 10%
for the emotion recognition task. We exclude contrastive
spec due to the unavailability of the pre-trained models in
SUPERB and its low improvement scores.

Aldeneh et al. [11] proposed a framework to learn to extract
paralinguistic embedding. The authors showed that convert-
ing synthetic-neutral speech to expressive speech based on
that embedding improved the results from acoustic features
and other evaluated embeddings. In addition to emotion
classification, the learned embedding is also beneficial for
detecting speaking style. The baseline method with a convo-
lutional autoencoder could learn a feature transformation that
highlights latent paralinguistic embedding in Mel-filterbanks
(MFBs). However, no results of the proposed speech embed-
ding have been reported for SER. This representation is also
not available in SUPERB.
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While previous works focused on the development of new
SSLs, Keesing et al. [8] evaluated existing traditional and
modern acoustic features on various speech emotion datasets.
The authors found that standard features such as Interspeech
2009 feature set (IS09) still perform competitively to neural
representations like VGGish [12]. The limitation of the pre-
vious work in [8] is that the study only involved nine neural
network-based speech embeddings. We extend the work of
Keesing et al. [8] by focusing on a larger number and newer
SSLs on the common five speech emotion datasets.

III. METHODS
A. DATASETS
This paper employed five emotional speech datasets:
IEMOCAP [13], MSP-IMPROV [14], MSP-PODCAST [15],
CMU-MOSEI [16], and JTES [17]. IEMOCAP, MSP-
IMPROV, MSP-PODCAST, and JTES are selected with
four emotion categories: angry, happy/joy, sad, and
neutral. CMU-MOSEI predicts six basic emotion cate-
gories: happiness, sadness, anger, fear, disgust, and sur-
prise. IEMOCAP, MSP-IMPROV, MSP-PODCAST, and
CMU-MOSEI recorded English speakers; JTES recorded
Japanese speakers’ emotional speech based on a Twitter
corpus. The following is a short description of each dataset.

1) IEMOCAP
IEMOCAP is an interactive emotional dyadic motion capture
database recorded by the Speech Analysis and Interpretation
Laboratory at the University of Southern California. From
the original 10,039 utterances with ten emotion categories,
we only take a subset of 5,331 utterances with four emotion
categories following the previous research [18]. The happy
and excitement categories are merged (exc). The dataset is
divided into five sessions, with two speakers for each session
(male and female speakers). The dataset is then split into two
parts: training and test. The first four sessions are for training,
while the last fifth session is for a test.

2) MSP-IMPROV
MSP-IMPROV is an emotional audiovisual dataset by some
authors of the IEMOCAP dataset and other researchers to
propose naturalness in dyadic interactions. From the original
8,438 utterances with five primary emotion labels, we take
a subset of 7,834 utterances with four emotion labels. The
dataset is divided into six sessions, with two speakers for each
session. Similar to IEMOCAP, the dataset is split into two
parts: training and test: the first five sessions are for training,
while the last sixth session is for a test.

3) MSP-PODCAST
MSP-PODCAST is a large-scale natural emotional dataset
built from the existing publicly available podcast recordings.
From the original 73,042 utterances with nine primary emo-
tion labels, we take a subset of 41,388 utterances with four
emotion labels. The original dataset already splits the data

into training and test partitions. To match our four emotion
categories selection, we choose utterances with a label in
one of angry, happy, sad, neutral on both training and test
partitions. The validation set provided by the authors of the
dataset is merged into a training set; both ‘‘Test Set 1’’ and
‘‘Test Set 2’’ in the original dataset are merged into a test set.
The final number for the training set is 32,084 utterances, and
for the test, the set is 9,304 utterances.

4) CMU-MOSEI
CMU-MOSEI is both sentiment analysis and emotion recog-
nition corpus with multimodal data (audio, video, text) [16].
The original dataset consists of 23,259 audio files, which are
already split into standard training, validation, and test sets
via its SDK. From that total number, we only included a
total of 22,860 utterances. We merged the training and the
validation data into a training set and kept the test data as
a test set as it is. Any utterance which does not belong to the
training, validation, and test is not included in the experiment.
The final number for the training set is 18,189; for the test set
is 4,662 utterances.

5) JTES
JTES is a phonetically and prosodically balanced emotional
speech corpus of Japanese speakers. From the original 20,000
utterances with six emotion labels, we took a subset of 14,800
utterances with four emotion labels with speaker+text-
independent criteria following the previous research [19].
Excitement is referred to as joy in this dataset. Of the total
100 speakers (50 males and 50 females) and 50 sentences,
speakers 1-45 for each gender were used for training, while
the last five speakers were allocated for the test. That splitting
criterion also involves text split with text 1-40 for training
and the rest of text 41-50 for the test. The speaker and
text independent splitting criterion (different speakers and
different sentences for training and test) resulted in 14,400
utterances for training and 400 utterances for the test.

Fig. 1 shows the distribution of emotion categories and
partitions in the datasets. The portion of validation data is
20% of the number of training data in all datasets. It is
shown that we accommodate both balanced and unbalanced
datasets, four-emotion and six-emotion datasets, and English
vs. non-English datasets in the experiments. The evalua-
tion of SSL-based speech representations is intended to
judge their performances in various characteristics of those
datasets.

All experiments were conducted in speaker-independent
evaluations. These evaluations are chosen to avoid bias
due to the model learning the speaker-related information.
Furthermore, evaluations of the JTES dataset were performed
in the speaker- and text-independent condition, which is more
difficult than the speaker-independent condition. By accom-
modating a speaker-independent condition, we aimed to build
a more realistic model where the speakers in the real-life
scenario are different from that evaluated in the training
phase.
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FIGURE 1. Distribution of emotion categories (left) and training/test partitions (right) in the datasets; all partitions are speaker-independent evaluations.

B. THE EVALUATED SELF-SUPERVISED SPEECH
REPRESENTATIONS
In this paper, we focus on the evaluation of SSL as an acoustic
feature extractor for SER, which attempts to extract affective
information from speech. The selection criteria for an SSL
to be included in this evaluation is the availability of the
corresponding SSL in SUPERB benchmark [4]. Newer SSLs
are added if the source code is available and can be incorpo-
rated into the S3PRL toolkit. We removed a low-performance
SSL (PASE+) from the benchmark and added wav2vec
2.0 XLSR [20], variants of UniSpeech-SAT [21], and variants
of WavLM [22].

We used logmel filterbank (FBANK) as a baseline acoustic
feature for our SER system, which is also used as a base-
line in other systems [4], [21], [22]. The stride and window
lengths for the FBANK configuration are 10ms and 25ms.
The number of the mel bins is 80 with their deltas and deltas-
deltas. Hence, the dimension of FBANK for each frame is
240 (80 × 3). We then used the following self-supervised
speech representations to evaluate their performances com-
pared to FBANK in five SER datasets on the same classifier.
The short description for each SSL is given below; for more
detailed descriptions, please refer to the reference paper for
each SSL method.

The first evaluated SSLmethod is the so-called autoregres-
sive predictive coding (APC) [23]. The APC is intended as
a feature extractor for a wide range of downstream tasks by
incorporating a language model-like training scheme into an
acoustic sequence. APC then is improved by vector quanti-
zation (VQ) version, i.e., VQ-APC [24]. The latter improve-
ment aims at limiting the APC model capacity for a general
approach to various speech-processing tasks. In the original
APC version, it is difficult to quantify the amount of informa-
tion by changing values in hyperparameters.

Instead of using an autoregressive model, Liu et al. [25]
proposed non-autoregressive predictive coding (NPC) for a
similar generative modeling purpose. Aside from the non-
autoregressive method, NPC replaced RNN with CNN, and
future generations with masked reconstruction. Another SSL
representation called Mockingjay [26] is a similar technique

that also usesmasked reconstructionwith bidirectional Trans-
formers encoders (self-attention). Mockingjay outperformed
FBANK significantly; however, it obtained lower perfor-
mances than other previous SSL methods [4].

TERA is another generative modeling SSL which also
based on Transformers encoders [27]. Themain idea in TERA
is the change of three orthogonal axes: time, frequency, and
magnitude, to learn through a reconstruction of acoustic
frames from that changes, controlled via a stochastic policy.
TERA showed competitive results only for the ASR task; for
other tasks, it is not clear whether it is better than previous
SSL methods [4].

A modified version of contrastive predictive coding (CPC)
is proposed to pretrain ASR data across languages. The modi-
fication consists of stabilization of the training and improving
the CPC model. The stabilization was made by replacing
batch normalization with channel-wise normalization. The
improvement of the CPC model was made by replacing
the linear classifier with a 1-layer Transformers network.
Modified CPC showed modest performances on SUPERB
tasks. It outperformed FBANK and previous SSLs for the
following tasks: keyword spotting (KS), emotion recognition,
and query by example (QbE).

The wav2vec is an SSL trained on large amounts of
unlabeled data to generate speech representations that are
fed back to improve model training. The wav2vec outper-
formed all previous SSLs except for emotion recognition in
SUPERB [4]. The VQ technique of wav2vec, as implemented
in VQ-APC, has been adopted, which results in no improve-
ment in performance except for intent classification (IC) and
speaker identification (SID). Instead, version 2.0 of wav2vec
improved the model performance significantly. The wav2vec
2.0 Large outperformed all previous SSLs in the SUPERB
tasks [4]. The Large version is trained with a larger network
(316M vs. 95M trainable parameters) and on more extensive
data (60k hr vs. 960 hr) than the Base model [4]. Similar
variants also apply to the HuBERT models.

Motivated by training on extensive acoustic data with a lan-
guage model over the continuous inputs, hidden-unit BERT
(HuBERT) improves the previous SSL methods by masked
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prediction of hidden units by combining CNN encoders
with Transformers. HuBERT Large outperformed all previ-
ous SSLs in SUPERB tasks except for the following tasks:
KS, QbE, automatic speaker verification (ASV), and speaker
diarization (SD) [4]. For those tasks, HuBERT still obtained
competitive scores among other SSLs.

UniSpeech-SAT is a speaker-aware pre-training model
based on the previous UniSpeech model [21]. This model
is a contrastive loss model with multitask learning, which
integrates utterance-wise contrastive loss with SSL objec-
tive function. On the other hand, the model utilizes an
utterance-mixing strategy for data augmentation. The latter
method aims at better speaker discrimination (speaker-aware
training). UniSpeech-SAT Large dominated the SUPERB
tasks score except for the ASR task. For the ASR task, the
obtained word error rate (WER) is slightly lower than the
previous HuBERT Large.

WavLM is an SSL built based on the HuBERT framework
by adding a gated relative position bias and utterance mixing
strategy [22]. Trained on the larger datasets (96k hours on
WavLM vs. 60k hours on HuBERT), the model outperformed
other previous SSLs, excluding UniSpeeh-SAT models on
all of the SUPERB tasks. Similar to wav2vec, HuBERT and
UniSpeech-SAT with larger models tend to obtain better per-
formances. Most of the obtained SOTA scores on SUPERB
tasks are also obtained with the large models. Only for QbE
and IC tasks, the WavLM Base attains better performances
than the WavLM Large.

For both UniSpeech-SAT and WavLM, we experimented
with the Base, Base+, and Large models. The Base and
Base+models have a similar number of trainable parameters
(94M) but are trained on different hours of data (960 hr vs.
94k hr). The Large model is trained on 96k hours of data with
316.6M trainable parameters.

The choice of FBANK and nineteen SSL speech represen-
tations is based on the previous results [4], [21], [22]. The last
two SSLs are the most recent ones; they were built on top of
and to improve the HuBERT model. We assume those twenty
speech embeddings represent speech representations from a
classical approach to the most up-to-date SSL-based speech
technologies.

C. CLASSIFIER
For all SSL models, we employed the same classifier, i.e.,
two linear layers (fully connected network, FCN) with a
simple average pooling (from frame to utterance) as used
in SUPERB benchmark [4] for emotion recognition (ER)
task. The input dimension depends on the acoustic feature
type (see Table 2). The first layer contains 256 units. The
second layer contains a number of units depending on the
number of classes (n_class, e.g., 4 for JTES and IEMOCAP).
The different hyperparameter values are employed instead of
the original implementation based on the experiment results.
These values are shown in Table 1.
For training the classifier, we use a batch size of 4 for

both training and evaluation, except for the CMU-MOSEI

TABLE 1. Hyperparameters for the classifier (FCN).

dataset. Due to its large size, we used batch sizes of 2 and
1 for training and evaluation on CMU-MOSEI to avoid out-
of-memory (OOM) errors. The training steps are 10000 for
all datasets. We reported the test scores based on the model
of the best performance on the validation set.

D. OBJECTIVE EVALUATIONS AND EFFECT SIZE
Weighted accuracy (WA) and unweighted accuracy (UA) are
the most common metrics for evaluating machine learning
tasks. WA is obtained by dividing the number of correct
predictions by the number of data. UA is obtained by aver-
aging accuracy for each label. UA is also known as balanced
accuracy and unweighted average recall (UAR). While the
UA metric is intended to deal with imbalanced datasets,
WA is commonly used for balanced datasets. We reported
both UA and WA since the datasets contain both unbalanced
and balanced data.

To measure the effect of WA and UA for all acoustic
features, we calculate effect size based on mean absolute
deviation (MAD). The intuition behind this calculation is to
get insights into the best and the worst performing speech rep-
resentation by their effect sizes (the first rank to the last rank).
This effect size estimates the magnitude of difference among
different speech representations for SER. First, we calculate
the rank of all acoustic features (based on UA or WA across
five datasets) and sort them from the lowest to the highest
rank. Then, we calculate the MAD of the ranks. The MAD
is the mean absolute deviation of the ranks. The higher the
MAD, the more different the ranks are. The effect size is
calculated from the ratio of the MAD of the first rank to
the MAD of the evaluated rank. While rank, as proposed in
the [8], is informative for ranking features from the most
to the least predictive, the effect size is more informative to
report the strong and weak relationships among features. The
greater the effect size, the weaker the relationship between
the features.

The effect size is calculated for each SSL based on the
following metric:

Effect sizei =
Mtop −Mi√

MAD2
top +MAD2

i

2

. (1)

where M is the median and MAD is the median absolute
deviation. Subscripts i and top indicate the current and the
top-ranked acoustic features. Hence, the first rank will have

124400 VOLUME 10, 2022



B. T. Atmaja, A. Sasou.: Evaluating Self-Supervised Speech Representations for Speech Emotion Recognition

zero effect size, while the last rank will have the highest effect
size. Notice that this effect size is independent of the number
of evaluated datasets.

For the interpretation of effect size, we propose the follow-
ing definitions:

1) Small: effect size ≤ 0.2,
2) Medium: 0.2 < effect size < 0.8,
3) Large: effect size ≥ 0.8.

This interpretation is based on the [28] for the effect size with
mean and standard deviation (standard deviation-based effect
size).

E. EXPERIMENTAL PLATFORM
We experimented with the S3PRL toolkit available at
https://github.com/s3prl/s3prl (accessed on 29 November
2021) for five different datasets called downstream. The
repository contains two original configurations for IEMOCAP
(‘emotion’) and CMU-MOSEI (‘mosei’). We evaluated
these two datasets and the other three datasets with
the previously explained configurations (subsections III-A
and III-C) instead of the original configuration given in
the repository. These configurations are also stored at
https://github.com/bagustris/ssl-ser.

IV. EXPERIMENT RESULTS
We cast our results into two, performance comparison and
significance analysis. The first result is the main result to
judge the performances of evaluated self-supervised repre-
sentations for SER. The second result on significance anal-
ysis with a critical difference approach (on a side note) is
added to know whether one feature set significantly differs
(better) than others. Note that this calculation includes several
highly-related features (wav2vec, HuBERT, WavLM, and
UniSpeech), which are also shown by the results.

We reported performances comparison in WA and UA
for the twenty acoustic features over five datasets. WA is
beneficial for a balanced dataset (e.g., JTES), while UA is
beneficial for an unbalanced dataset (CMU-MOSEI). Aside
from the WA and UA, we also calculated the effect size in
terms of mean absolute deviation (MAD). For each WA and
UA, we also calculated the effect size in terms of the mean
absolute deviation (MAD), p-value for the Friedman test [29],
and a critical difference (CD) from the Nemenyi posthoc test.
Note that although we showed CD, we chose effect size as
the primary metric for evaluating SSL models since it does
not depend on the number of datasets.

Table 2 and Table 4 show the WA and UA scores for the
twenty acoustic features over five datasets. Between WA and
UA, we choose UA as the main metric for evaluating SSL
models since it exhibits the performance of unseen data. The
result shows the competitiveness of self-supervised learning
methods over a classical handcrafted filterbank feature. It also
clearly shows that the recent self-supervised speech repre-
sentations with large-size training data are superior to the
other SSL with smaller training data. The big three SSLs

FIGURE 2. Confusion matrix of the best prediction for the IEMOCAP
dataset.

FIGURE 3. Confusion matrix of the best prediction for the MSP-IMPROV
dataset.

from accuracy calculations are WavLM Large, UniSpeech-
SAT Large, and HuBERT Large. However, the order of the
importance of all features is not clearly shown using such
measurements as average WA or UA over five datasets.

The Friedman tests were conducted with a significance
level of α = 0.05. The tests detected significant differences
in both WA and UA scores over twenty feature sets on five
measurements (datasets). The p-value forWA is 1.72×10−10

and for UA is 4.52× 10−11.
In Table 3 and Table 5, we calculated the effect size of all

features using a systematic method explained in the previous
section. First, we computed an average rank, mean, standard
deviation (std), median, and MAD of accuracy for each fea-
ture from the five datasets. Then, we calculated the effect
size of each feature using (1) based on the MAD.

Finally, we reported the experiment results in the format
of the best prediction confusion matrix for each dataset.
Figs. 2 - 6 shows those pieces of information. The confusion
matrix show WA for each emotion category; the average
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TABLE 2. Weighted Accuracy (WA %) per feature over five emotional speech datasets (Friedman test p = 1.72× 10−10).

TABLE 3. Effect of various speech representations calculated from average WA of the test sets from five datasets. The MAD is the median absolute
deviation of the ranks. The effect size calculation is based on MAD.

value of these WAs is the reported UA. The highest UA
for IEMOCAP comes from UniSpeech-SAT Base+. For
the other four datasets, the highest UA is from WavLM
Large. Hence, the confusion matrix for IEMOCAP is the one
obtained by UniSpeech-SAT Base+, while WavLM Large
assists other confusion matrices.

V. DISCUSSION
First, we saw a similar pattern of scores betweenWA (Table 2)
and UA (Table 4) for twenty acoustic features. The clearer
patterns were shown in Table 3 and Table 5 for the rank of the
features for WA and UA. For the interpretation of effect size,
the evaluated speech representations can be categorized into
three groups: top features with small or negligible effect, fea-
tures with medium effect from top performance, and features
with large effect from the top performance. The big three in

the first group areWavLMLarge, UniSpeech-SATLarge, and
HuBERT Large. The SSLs in the second group with medium
effect from the top are WavLM Base+, UniSpeech-SAT
Base+, WavLMBase, UniSpeech-SATBase, HuBERTBase,
wav2vec 2.0 Large, and wav2vec 2.0 Base. The rest belong to
the third group with large effects from the top performance.
The interpretation is based on the UA scores instead of the
WA scores.

Next, the data showed that pre-trained models from large-
size data achieved superior performances over the small-
size data. It can be seen that WavLM Large, along with
recent large SSL models (HuBERT and UniSpeech-SAT),
dominates top performances for SER tasks than previous
models. However, the trend only applies to the recent model
with the same size, i.e., HuBERT Large vs. UniSpeech-SAT
Large vs. WavLM Large. The first two models obtain small
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TABLE 4. Unweighted Accuracy (UA %) per feature over five emotional speech datasets (Friedman test p = 4.52× 10−11).

TABLE 5. Effect of various speech representations calculated from average UA of the test sets from five datasets. The MAD is the median absolute
deviation of the ranks. The effect size calculation is based on MAD.

effect sizes (≤ 0.2) from the third model on the UA scores.
Between models with different sizes, e.g., WavLM Base vs.
UniSpeech-SAT Large, the former with smaller training data
attained lower performances than the latter trained on the
larger data. This result shows the dependency of the train-
ing data size on the performance of recent SSL models for
the SER tasks. This finding also highlights the necessity of
building SSL models that requires less data than the current
models. The training data size is equal to the requirement
of computing resources to generate the model. For instance,
using the same ‘‘base’’ training data as UniSpeech-SAT and
WavLM, the next SSL ‘‘base’’ models should attain better
performances than the current UniSpeech-SAT and WavLM
Large models. The base models are evaluated on 960 hours
of data, while the large models are evaluated on 95k hours of
data [22].

The necessity of building SSL models that requires less
data is in line with the motivation of SSL itself. SSL is
motivated by the nature that human does not require an
exact number of data and labels to learn. Not only unla-
beled data, but humans also can learn from less data than
current machine learning requires (e.g., the learning process
of infants to recognize emotions). The requirement of high
computing costs for training large data is only affordable for
big companies and big institutions. For small institutions,
training large data is likely undoable. Such an effort has been
attempted by the authors of [30]; the proposed distilledmodel
still depends on the previous larger model as a teacher in a
teacher-student learningmodel. This gap has also been shown
in past research: while it only needs 3% of training data to
match the baseline performance, it needs a complete training
set to improve the performance [2].
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FIGURE 4. Confusion matrix of the best prediction for the MSP-PODCAST
dataset.

FIGURE 5. Confusion matrix of the best prediction for the CMU-MOSEI
dataset.

FIGURE 6. Confusion matrix of the best prediction for the JTES dataset.

One of the main issues in SER is the low availability
of evaluation of non-English datasets [31]. The majority of

SER research has been conducted in the English language.
Here, we added a Japanese SER evaluation for comparing the
performance across datasets. Surprisingly, the result shows
that the highest performances among the five datasets for
both WA and UA are the ones from the Japanese dataset.
Notice that the scores for WA are the same as UA since
the dataset is perfectly balanced. This balanced character-
istic helps JTES attain the highest UA scores among other
unbalanced datasets. One interesting result is that model
trained on multi-language, i.e., wav2vec 2.0 XLSR, showed
no better performance than other models trained on mono-
language (English). This fact also applies even though for
the same wav2vec variants. The previous result on different
datasets (IEMOCAP, TESS, SAVEE, EMA,German database
EmoDB, and Italian database EMOVO) showed that XLSR
obtained better representations for multilingual SER [20].
The lower results obtained by the XLSR model (multiple
languages) here for mono language may indicate that the
universality of emotion needs to be adjusted for specific
languages. Trainingmono language for mono language is still
better than training multiple languages for mono language in
the SER task.

In contrast to the well-balanced JTES dataset,
CMU-MOSEI is a very unbalanced dataset with six emotion
categories. As a result, the performance scores obtained
by CMU-MOSEI are the worst among others. SSL-based
speech representations fail to predict emotion other than the
happy/excitement category (Fig. 5). This failure shows the
limitation of deep learning models, including the SSL-based
speech representations; they need to be trained on balanced
data. While the SSL methods can reduce the number of
labeled data, each category’s distribution needs to be balanced
for better performance.

The unbalanced distribution of each emotion category for
the evaluated datasets (except for JTES) prevents further
analysis of which emotion the model currently learns better.
The need for balancing the datasets opens future research
contributions for this analysis. For instance, it is difficult to
judge in which category the best model with WavLM Large
learns better, as shown in Figs. 2 - 5. Using a well-balanced
JTES dataset (Fig. 6), the current model learned best on sad
among other emotion categories.

In contrast to the need for well-balanced data, humans
can learn well from unbalanced data. SSL, in some portions,
is close to the human ability to learn. The nature of the data
itself is unbalanced; hence, there is a need to improve SSL
method to be able to learn about unbalanced data. This ability
will make deep learning models more general and flexible,
as well as closer to the human ability to learn.

Another limitation that we did not explore here is the
ability of SSL to predict large emotion categories. While
we show that the SSL methods achieve comparable perfor-
mance across datasets with four emotion categories, the result
becomes the worst on six emotion categories. Although we
suspect that the cause of the low performance is unbalanced
data, it is noteworthy to see if the SSL methods can obtain
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TABLE 6. Comparison of the best unweighted accuracy (UA %) obtained by SSLs to the scores reported in the literature by non-SSL-based acoustic
features.

FIGURE 7. Critical difference among self-supervised speech representations and filterbank on WA scores, CD = 13.26 ranks. Groups of
features whose performances are not significantly different (Nemenyi test at p = 0.05) are connected by bold lines.

FIGURE 8. Critical difference among self-supervised speech representations and filterbank on UA scores, CD = 13.26 ranks. Groups of
features whose performance is not significantly different (Nemenyi test at p = 0.05) are connected by bold lines.

good performances on a more prominent number of emotion
categories.

Finally, we performed a benchmark test of our best SSL
scores compared to the scores reported in the literature under
similar conditions. Although this research does not intend to
propose a new method, a benchmark of SSL evaluation in
this research with non-SSL-based results from the literature
will enable us to better understand the current SSL evaluation
for SER. We required the benchmarked scores to come from
published papers instead of pre-prints for validity. The condi-
tion for training and test data is also required to be the same
as our method. No other modalities are involved in training
data; if possible, no data augmentation is allowed. Table 6
shows a benchmark of our best SSL methods with scores in
the literature (in terms of UA).

The benchmark table (Table 6) shows that current SSL
methods are competitive with respect to methods reported in
the literature. The SSL methods achieve better performances
than scores reported in the literature for MSP-IMPROV,
CMU-MOSEI, and JTES. For IEMOCAP, a method by

multitasking approach (SER and ASR) achieves a better UA
score. The reported score is cross-validation from five folds.
For MSP-IMPROV, the method utilizing X-Vectors achieves
a better UA score. For CMU-MOSEI, we can not find compa-
rable scores with a similar setup. Note that the baseline paper
of CMU-MOSEI reported the UA for segmented data [16];
this research evaluated the raw audio data. For JTES, the
reported benchmark comes from augmented data. Without
data augmentation, our SSLmodel achieves a better UA score
by about 5% improvement.

VI. CONCLUSION
This paper reported an evaluation of SSL-based speech rep-
resentations on the emotion recognition task. The results
showed that all nineteen SSL-based speech representations
performed substantially better than the classical filterbank on
the emotion recognition task.We calculated the effect size for
each SSL and showed their rank from the top (WavLM) to
the bottom (vq-wav2vec) for the five-dataset speech emotion
recognition task. Both weighted and unweighted accuracy
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evaluations showed a similar gap in effect size between the
top and the worst scores; the gap is large by the defini-
tion of the proposed effect size interpretation (meaning a
weak relationship between top SSL and filterbank). The top
scores were obtained by the recent SSL models trained on
large-scale speech data. These three big SSL-based acous-
tic features (WavLM Large, UniSpeech-Sat Large, HuBERT
Large) share negligible effects among them. Evaluations of
the five datasets with different characteristics showed the
strengths and limitations of the current SSLmodels. The char-
acteristics include English vs. Japanese language, balanced
vs. unbalanced data, and four vs. six emotion categories.
The strength is that the SSLs could extract more affective
information than conventional FBANK features. The limita-
tions, for instance, are that the SSLs need to be trained on
well-balanced large data and that they are not able to learn
about a large number of emotion categories.

In future work, we plan to evaluatemore datasets to provide
a unified SSL-based speech emotion recognition benchmark.
As highlighted in the previous discussions, proposing a new
SSLmethod for evaluating SSL-based speech emotion recog-
nition is a research challenge. Future contributions can be
made to tackle the limitations of the current SSLs, such as
a smaller size of pre-training data, a large number of emotion
categories, and unbalanced data.

APPENDIX
A. SIGNIFICANCE ANALYSIS
In addition to the Friedman test for WA and UA, p-values
were also evaluated using the Nemenyi test to group features
whose performance is not significantly different. Figs. 7 and 8
shows groups of these features with the bold lines. These fig-
ures compare features against each other from the Nemenyi
posthoc test in critical-difference diagrams [29]. Notice that
both figures show that significant differences using critical
differences are unreliable in some cases. For instance, both
figures suggest that FBANK performance would essentially
be the same as HuBERT Base for this small data evaluation.
On the other side, the similar SSLs from the related mod-
els (WavLM, UniSpeech, HuBERT, wav2vec) are grouped
as not significantly different, which represent their relation-
ships. Given the unreliability of significance analysis by a
critical-difference diagram (probably due to small datasets)
among different features, the previous analysis by the Fried-
man test on five different datasets should be used as the main
analysis for the significance of the results (datasets) across
features. The small p − values on Friedman tests indicate
that each SSL experiment on each dataset is significantly
different from the others. For comparing the performance
of features (SSLs), the proposed effect size based on the
mean absolute deviation is more reliable than these CD
diagrams.
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