
Received 13 November 2022, accepted 16 November 2022, date of publication 28 November 2022,
date of current version 2 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3225092

Deep Learning on Energy Harvesting IoT
Devices: Survey and Future Challenges
MINGSONG LV , (Member, IEEE), AND ENYU XU
International Laboratory for Smart Systems, Northeastern University, Shenyang 110819, China

Corresponding author: Mingsong Lv (lumingsong@cse.neu.edu.cn)

This work was supported in part by the NSFC Project under Grant 61772123.

ABSTRACT Internet-of-Things (IoT) devices are becoming both intelligent and green. On the one hand,
Deep Neural Network (DNN) compression techniques make it possible to run deep learning applications on
devices equipped with low-end microcontrollers (MCUs). By performing deep learning on IoT devices,
in-situ decision-making can be made, which can improve the responsiveness of such devices to the
environment and reduce data uploading to edge servers or clouds to save valuable network bandwidth. On the
other hand, many IoT devices in the future will be powered by energy harvesters instead of batteries to
reduce environmental pollution and achieve permanent service free of battery maintenance. As the energy
output of energy harvesters is tiny and unstable, energy harvesting IoT (EH-IoT) devices will experience
frequent power failures during their execution, making the software task hard to progress. The deep learning
tasks running on such devices must face this challenge and, at the same time, ensure satisfactory execution
efficiency. We believe deploying deep learning on EH-IoT devices that execute intermittently will be a
challenging yet promising research direction. To motivate research in this direction, this paper summarizes
existing solutions and provides an in-depth discussion of future challenges that deserve further investigation.
With IoT devices becoming more intelligent and green, DNN inference on EH-IoT devices will generate a
much more significant impact in the future in academia and industry.

INDEX TERMS DNN inference, energy harvesting, IoT devices, embedded systems.

I. INTRODUCTION
Energy harvesting [1] is believed to be the future technique
to power IoT devices for two main concerns: first, millions
of IoT devices will be deployed in hard-to-reach work-
ing environments, such as mountains and forests, charging
and replacing the batteries of such devices will be almost
impossible. Energy harvesting will eliminate battery main-
tenance and significantly extend the lifetime of the devices
beyond the limit of battery size. Second, batteries on such
devices are identified as a significant source of environ-
mental pollution since the batteries in the vast amount of
tiny IoT devices can hardly be reclaimed after deployment.
By replacing batteries with energy harvesters, the threat
of IoT devices to the natural environment is considerably
reduced.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

A significant problem of energy harvesting is that the
energy output of the harvesters is typically tiny and unstable
due to uncertainty in the energy harvesting environment.
Take solar energy harvesting, for example, the availability
of the energy depends on a broad range of factors, such as
sunlight angle, season, the weather of the day, etc. The change
of any factor will significantly affect the energy harvesting
power. The energy input is even more unpredictable for other
sources, such as wind and thermal energy. As a result, the
devices will experience frequent power failures during their
execution. When a power failure occurs, the running program
will be stopped, and the computation context in the main
memory will be lost. After energy regains and the system
restarts, the program must restart from the beginning and
re-execute what has already been done before the power
failure. In the extreme case, the programmay never make any
progress if power failures occur very frequently [1].

Intermittent computing [2] aims to enable a program to
make incremental progress across power failures. The main

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 124999

https://orcid.org/0000-0002-4489-745X
https://orcid.org/0000-0002-9352-0237


M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

technique is to checkpoint the execution states (registers,
memory contents) of a program to non-volatile memory
(NVM) before a power failure occurs and to reload the
checkpointed states after energy regains so that the program
can resume from where it was left [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. Besides checkpointing-based
approaches, task-based approaches [14], [15], [16], [17],
[18], [19] allow programmers to choose the program points
for checkpointing and the data contents to be saved. Typically,
a programmer needs to write computation logic into software
segments called tasks and explicitly specify what data or
variables should be saved to NVM when the current task is
finished. For both the above techniques, a major problem
is that checkpointing the execution states to NVM incurs
significant time and energy overhead, which will severely
impede the progress of the software task.

Another trend is that IoT devices are becoming more intel-
ligent. Deep learning, specifically deep neural networks, was
traditionally carried out on powerful GPUs or data centers
as they require a considerable amount of computation [20].
Recently, new DNNs with small footprints were developed
to run on MCUs with very limited resource [21]. Such DNNs
may have from several megabytes to hundreds of megabytes
of memory consumption. The rationale for running DNNs on
MCUs is that sensor data can be analyzed in situ on the IoT
device. The benefits are two-fold: first, by doing data analysis
on the device side, decision-making can be performed in real-
time so that the device may have better responsiveness to the
environment; second, data transfer between IoT devices and
the cloud will be significantly reduced, thus saving valuable
network bandwidth.

We believe the development in the above two trends is
worth special attention since they will make IoT devices
both mentally and physically ready for future application
scenarios. ‘‘Mentally ready’’ means it is possible to run
AI applications on IoT devices for high-quality analysis
and decision-making. ‘‘Physically ready’’ means the devices
should be appropriately powered for long-time service, free
of battery size limitations. Deep learning and energy har-
vesting are the two pillars to make IoT devices ready for
their future form. In a recently proposed concept ‘‘WEAF
Mnecosystem’’ [22], [23], AI and energy are identified as
the two critical enablers for the self-evolution of future IoT
systems.

The merging of the two trends has created a new sce-
nario of IoT computation: to perform deep learning tasks
on intermittently powered EH-IoT devices [24]. Researchers
are exploring solutions enabling intermittent deep learning
on EH-IoT devices. Unlike the simple control programs
discussed in existing intermittent computing research [25],
Deep learning programs typically generate large feature maps
as intermediate computation data before a final classifica-
tion/identification result is produced. To enable such pro-
grams to progress across frequent power failures, the feature
maps will be checkpointed to NVM as part of the program
execution states. This will incur a much more significant

overhead compared to simple control programs. Reducing
this overhead to improve inference efficiency in the energy
harvesting environment remains largely unsolved. Although
intermittent deep learning has only been researched for about
five years, we believe this will become a critical computation
technology for future IoT devices and significantly impact
academia and industry.

This paper aims to pinpoint the evolving research on inter-
mittent deep learning by reviewing current research work and
solutions and then performing an in-depth discussion on the
future challenges requiring special attention to push state-
of-the-art intermittent deep learning. Note that this paper is
not intended to provide comprehensive surveys on energy
harvesting technology, intermittent computing, or deep learn-
ing. Extensive survey work has been done on the above
research areas [1], [20], [21], [25], which interested readers
can reference. In Section II, we briefly provide a glimpse
of the techniques in the above research areas to provide the
background knowledge for better understanding.

The rest of the paper is organized as follows. In Section II,
we present some background knowledge needed to under-
stand the technical contents, including energy harvesting IoT
devices, intermittent computing, and deep neural networks.
The review of existing research on intermittent deep learning
is given in Section III by focusing on different technical
problems. The discussion on future research is provided in
Section IV, and the paper is concluded in Section V.

II. BACKGROUND KNOWLEDGE
This section provides essential knowledge on energy-
harvesting IoT devices, intermittent computing, and DNN.

A. ENERGY HARVESTING IoT
IoT devices are generally designed as small devices equipped
with sensors, MCU, and wireless networking capability.
Such devices are expected to be deployed in various work-
ing environments where a wired power supply is generally
impossible. Therefore, the devices are powered by on-device
power sources currently realized by various types of batteries.
However, battery technology has several major limita-
tions [26]. First, batteries need to be recharged or replaced
when the energy inside the battery is depleted, which is
inconvenient or even impossible for devices deployed in harsh
working environments, such as fire-warning IoT devices
scattered in the mountains. To prolong the battery life, IoT
devices are typically equipped with low-power hardware
components and are configured to be activated very infre-
quently to save energy. One example is the heart pacemaker.
A pacemaker implanted in human hearts can work for about
seven years. Even though, when the pacemaker’s battery is
depleted, the patient must experience a heart operation to
change the pacemaker’s battery, which is very inconvenient
and costly [27]. Second, batteries, especially those carried
on millions or billions of IoT devices, represent a signifi-
cant environmental threat because the batteries can hardly be
reclaimed from the harsh working environment. The above

125000 VOLUME 10, 2022



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

FIGURE 1. Examples of energy harvesting techniques. (a) a solar-powered
smart wristband [29]; (b) an RF energy harvesting IoT node [30];
(c) a thermal energy harvesting module by MATRIX [31]; (d) a kinetic
energy harvesting shoe [32].

two significant problems are now hindering the development
of IoT.

In recent years, energy harvesting is becoming popular as
an alternative energy source for IoT devices, which is very
promising for solving battery problems. In this paper, we call
IoT devices powered by energy harvesting EH-IoT devices.
The main component of EH-IoT devices is the energy har-
vester which collects energy from the ambient environment.
There are several types of energy harvesters [28]. Examples
are given in Figure 1.
Solar energy harvesting is the most popular approach [33].

Solar panels use sunlight as a source of energy to generate
direct current electricity through the photovoltaic effect.Most
modules use wafer-based crystalline silicon cells or thin-film
cells. The power output of a solar panel can be affected by
multiple factors. First, the light intensity directly affects the
power output. For example, in direct sunshine, a solar panel
may work at peak power output, and in a dark environment,
a solar panel has no power generation. Second, the incident
light angle is also a determining factor. A solar panel gener-
ates higher power output when the panel’s surface is vertical
to the incident light. Third, the power output of a solar panel
also depends on other factors, including temperature and
payload. Traditionally, large solar panel arrays are primarily
deployed in areas with sufficient sunshine, such as deserts,
to generate energy that cities will use. Recently, small solar
panels have been introduced to mobile IoT devices as power
sources. For example, the self-powered PowerWatch [34]
uses a solar panel as one of its two primary power sources.

Another approach is radio frequency (RF) energy harvest-
ing [35], [36], [37]. Conventionally, IoT devices are equipped
with an antenna to communicate with other devices or wire-
less control centers using an RF signal. RF energy harvesting
treats the electromagnetic radiation scattered in the envi-
ronment as a natural source of energy and converts part of
such energy into electrical energy to power the IoT device.

Another related technology is wireless power transfer
[38], [39], by which RF energy is intentionally transmit-
ted from a source to a target in order for the receiver to
gather proper energy to support its operation. A successful
platform is the WISP device [40] that harvests energy from
the Radio Frequency Identification (RFID) signal. Related
devices based on WISP have been used in indoor object
tracking [41]. The power output of the RF energy harvester
depends on many factors, including the efficiency of the
antenna, the distance between the signal sender and receiver,
the accuracy of the impedance matching between the antenna
and the voltage multiplier, and the power efficiency of the
voltage multiplier that converts the received RF signals to
DC voltage.
Kinetic energy harvesting is popular in both factories

and wearable IoT devices [42]. Kinetic energy harvesting is
the process of converting environmental kinetic or vibration
energy into electrical energy. The harvesting device is made
from piezoelectric materials that work with the piezoelectric
effect to convert mechanical strain into electric current or
voltage. The strain can be generated from various sources,
including human motion, low-frequency seismic vibrations,
acoustic noise, wind, and tide. Kinetic energy is widely
available on mobile devices. In [43], a shoe-based battery-
free wearable sensing platform was proposed, on which the
power is generated from the two feet when people walk.
The designed piezoelectric energy harvester achieved a power
output of 1 ∼ 2mW that is enough to power the sensors, the
MCU, and the radio with reasonable task frequency.

For wearable IoT devices, thermal energy harvesting is a
feasible and promising approach [44]. The thermal energy
harvester is essentially a thermoelectric generator (TEG) that
is a solid-state device that converts heat flux (temperature
differences) directly into electrical energy through a phe-
nomenon called the Seebeck effect (a form of thermoelectric
effect). For example, besides a solar panel, the self-powered
PowerWatch [34] is also equipped with a TEG as a second
source of energy harvesting to power the smartwatch.

New materials and technologies are emerging for energy
harvesting. In [45], a sensing device combines flexible
polyvinylidene fluoride (PVDF) piezoelectric film with kres-
ling origami structure to design a new piezoelectric kresling
origami generator, which can achieve high-efficiency and
broadband energy harvesting performance. In [46], multi-
scale metamaterials with super-normal functions on energy
manipulation are utilized in multi-field renewable energy har-
vesting and absorbing, which can enhance the local energy
density by confining and focusing the energy before it is
harvested. To waive the energy discontinuity problem, the
literature investigates the development of multi-source EH
platforms, where miniaturized energy harvesters address-
ing different environmental sources are integrated together
[47], [48], [49]. Relying on orthogonal sources, those plat-
forms can effectively overcome discontinuity due to the
shortage of a specific source at a particular moment. These
types of solutions are made particularly feasible thanks to the

VOLUME 10, 2022 125001



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

exploitation of Micro/Nanotechnologies and advanced pack-
aging and integration solutions.

Energy harvesting is increasingly adopted in smart
factory [50], smart transportation [51], smart build-
ing [52], implantable medical devices [53], wearable devices
[54], [55], [56], etc. To enable interoperability between
products from different manufacturers, the International
Organization for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC) have initiated
the standardization of EH-IoTs, including wireless protocol
design and testing for different types of energy harvesting
approaches [57].1 Energy harvesting is becoming an impor-
tant infrastructure for future IoT devices and applications.

B. INTERMITTENT COMPUTING
As can be seen from the above introduction of energy harvest-
ing technologies, the run-time power output of the energy har-
vesters, regardless of the specific technology, can be affected
by many factors and thus may be very unpredictable. For
example, the power output of a solar panel is very sensitive to
the weather and whether the panel is directly radiated by the
light source [58], [59]. Consider a solar-powered smartwatch
user; the watch’s panel may generate enough energy in the
daytime with sufficient sunlight. Still, the panel may generate
almost zero output on cloudy days or in dark environments.
When the user is walking, the plane direction of the solar
panel will change all the time, which will also considerably
reduce its power output. Such problems are even more promi-
nent in IoT devices, the application environment of which can
be very unpredictable.

The unpredictable output of energy harvesters will lead to
a severe issue: the EH-IoT device will experience frequent
power failures during its execution. Typically, the execution
of a software program is based on the program states in
volatile memory, such as the variables stored in registers and
main memory. Once a power failure occurs, the program
states in the volatile memory will be lost. As a result, when
the energy regains and the system restarts, the program must
re-execute from the very beginning. This will cause the pro-
gram hard to progress. In the worst case, if the power failure
occurs too frequently, the program may have no chance to
progress to the end [1]. The problem is shown by Figure 2.
Intermittent computing [2] was proposed to solve the above

problem. The main idea is to enable a software program
to progress incrementally by frequently checkpointing the
program states to NVM. Once a power failure occurs, the pro-
gram can restart from the latest checkpoint by reloading the
checkpointed program states. Thus, it does not have to restart
from the beginning (i.e., achieving incremental progress).

There are two typical techniques to achieve intermittent
computing: checkpointing-based approach and task-based
approach. Checkpointing is a technique widely used in

1The IEC 62830 standard has eight parts, here we only include the
reference for the first part, and the other parts can be retrieved on the IEC
website.

FIGURE 2. An illustration of the problem of program execution in the
presence of frequent power failures and the basic idea of intermittent
computing.

fault-tolerant computing. When program execution reaches
a checkpoint, the system states will be copied from the
volatile main memory to the NVM, where the program can
be resumed. This technique was widely used in intermittent
computing [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [60]. The checkpointing technique is program-friendly
since it typically does not require the programmer to specify
the specific checkpointed data. However, checkpointing is
generally expensive, as the checkpointing system typically
saves a large set of system states to NVM.

The task-based approach [14], [15], [16], [17], [18], [19]
offers a lighter-weight alternative to checkpointing. Take
the task-based intermittent computing systems InK [16] for
example, an application is programmed as a collection of
atomic execution blocks called tasks. Each task is written
as a function, and the programmer explicitly defines the
control flow between tasks. Program states are saved at task
boundaries, and when recovering from a power failure that
occurred during the execution of a task, the system resumes
execution from the beginning of that task. At task boundaries,
the program states (i.e., a subset of the program variables)
to be saved to NVM (and will be restored after a power
failure) will be determined by the programmer at the design
time. Compared to checkpointing-based approaches, task-
based approaches typically require much fewer data to be
saved at task boundaries. However, the main difficulty is that
the program designer must specify the data saved at task
boundaries.

Nowadays, NVM is being used as the main memory
in some MCUs. For example, some of the TI MSP430
MCUs [61] are using FRAM as the main memory. Therefore,
the program/system states will be directly stored on NVM
and will not be lost during power failures. However, directly
operating data on NVM may cause memory inconsistency
due to the so-called Write-After-Read (WAR) problem [4] in
the presence of power failures. The system should maintain a
backup version for the WAR variables to solve the problem.
When recovering from a power failure that occurred in some
tasks, the system restores theWAR variables from the backup
version to the main memory. It then correctly resumes exe-
cution from the beginning of the aborted task. Some existing

125002 VOLUME 10, 2022



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

intermittent computing systems are built on FRAM-based
MCUs. ButMCUs equippedwith FRAMgenerally costmuch
higher than traditional MCUs equipped with SRAM and
FLASH, so devices using such MCUs only occupy a small
portion of the IoT devices in the literature.

For both checkpointing-based and task-based approaches,
saving system/program states represent a major run-time
overhead since checkpointing the states to NVM is time-
consuming and energy-consuming. In some systems [16], the
time overhead of checkpointing may occupy up to 90% of
the total execution time. Therefore, reducing the checkpoint-
ing overhead is one of the major concerns and optimization
objectives in intermittent computing.

Furthermore, IoT devices typically interact with their envi-
ronment through peripherals. Maintaining consistent states
across power failures is another critical problem for such
systems. Without persistent peripheral states, a program may
behave incorrectly in many aspects. For example, a program
may get stuck in an infinite loop of state polling due to power
failures [11]. Re-operation of peripherals across power fail-
ures may produce inconsistent system states [62]. Interrupts
may also violate the atomicity of the program [18].

C. DEEP NEURAL NETWORKS
Machine learning is valuable in many applications, including
image classification, object detection, multimedia retrieval,
recommendation, social network analysis, etc. With the
development of the Internet and pervasive computing, mas-
sive sensing data are generated every day, which triggers
the thriving of the data-driven machine learning techniques,
among which deep neural network is the most successful
one [20].

DNN is a general concept covering many different neural
network models. A DNN takes the sensor data as input (such
as images containing objects to be identified) and processes
the input data through several layers of computation. Concep-
tually, each layer will extract many abstract features based
on the previous layer’s output. In the end, the output from
the last feature-extraction layer will be put into a particular
layer called a classifier that generates the final identification
result, e.g., the classification of the objects in an image. The
output data of each feature-extraction layer is typically called
feature map. In many successful neural network models,
a larger number of layers leads to higher analysis precision.
Thus, these network models are called deep neural networks.
A DNN is effective only when it is intensively trained, i.e.,
a massive amount of data goes through the network many
times to adjust the network parameters, which is very time-
consuming. When a well-trained DNN is deployed to gener-
ate outputs, the input data will go through the network only
once, and the process is called inference.
Currently, there are two dominating types of DNNs: con-

volution neural network (CNN) [63] and recurrent neural
network (RNN) [64]. The structure of CNNs is inspired by
the neurons in animal and human brains as it simulates the
brain’s visual cortex. CNN has been successfully applied in

applications such as Natural Language Processing (NLP),
speech processing, and computer vision. RNN is primarily
used in speech processing and typically has excellent per-
formance. In applications such as speech processing, a word
is only precisely understood when the context can be con-
sidered. An RNN utilizes the sequential information in the
network and thus achieves short-term memory capability.
Computational-wise, a CNN can be viewed as a linear data
flow model, while an RNN contains complex data depen-
dency between different layers.

Regardless of its type, the execution of a DNN generally
requires large CPU andmemory usage. The high computation
requirement is acceptable when the DNN is executed on a
powerful computer server. With the rapid development of
IoT, DNNs are increasingly adopted on IoT devices. The
rationale is that application responsiveness can be improved
by analyzing the sensor data on the IoT device (so that
sensor data are not needed to be uploaded to a remote server
for processing). However, an IoT device has very limited
computation capability and memory space. For example,
many IoT devices are only equipped with low-end MCUs.
Such devices cannot meet the requirements of running nor-
mal DNNs. Thus, much research has been done to reduce
the size of a DNN or to execute part of the DNN so that
the requirement on computation and memory is reduced
[21], [65]. There are several techniques to solve this problem.

The first class of work is lightweight network design.
With the model size as a critical design parameter, many
DNNs have been proposed with a network model size of
several megabytes or hundreds of kilobytes. SqueezeNet [66]
is an early network designed to run on resource-constrained
hardware. It introduces a fire module in which convolu-
tion operations are split into the squeeze and expand layers.
MobileNet [67], [68], [69], which has developed across many
generations, is another representative lightweight DNN. The
depth-wise separable convolution technique significantly
reduces the complexity of the DNN. ShuffleNet [70], [71]
uses the group convolution and channel shuffle techniques to
reduce its footprint. These lightweight DNNs have demon-
strated an accuracy very close to complex DNNs with
much low computation and memory requirements in specific
domains such as object detection.

The second class of work is network compression. The
basic idea is to remove the redundant parts of an over-
parameterized network to produce a much smaller DNN
with similar analysis accuracy. Three types of techniques are
developed for network compression. Network pruning [72]
removes the redundant weights/channels of a complex DNN.
Quantization [73] uses fewer bits to store the weight param-
eters and the intermediate feature maps. Knowledge distilla-
tion [74] learns a smaller DNN model from a complex DNN
model. The new resulting DNNs are typically retrained to
provide an analysis accuracy close to the complex DNNs
while keeping their footprints at several megabytes.

The third class of work is adaptive DNN inference which
allows an inference task to execute only part of the network

VOLUME 10, 2022 125003



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

(using only a portion of the filters or skipping some DNN lay-
ers) if the computation capability or the available energy does
not allow complete execution of the whole network. Analysis
precision is traded off for computation/energy efficiency.
There are three main types of techniques to do adaptive infer-
ence: 1) multi-model selection [75], [76]; 2) runtime filter
pruning [77], [78], [79], [80]; 3) early-exit networks [81],
[82], [83], [84]. Multi-model selection requires several DNNs
to be available on the device, and before the inference starts,
the system will select one of the networks to execute. Filter
pruning allows skipping some filters at runtime to reduce
computation. Early-exit networks attach multiple classifiers
at different convolution layers. When a decision is made to
reduce the computation workload, the inference task may exit
at an earlier point, i.e., skipping the layers after the selected
point.

D. DNN INFERENCE MEETS INTERMITTENT COMPUTING
Although the techniques mentioned above have successfully
reduced the sizes of DNNs, executing such DNNs on inter-
mittently powered EH-IoT devices remains a big challenge.
During the inference of a lightweight DNN, a large volume
of intermediate feature data will be generated. To enable a
DNN to make progress across frequent power failures, these
feature maps will be checkpointed to NVM. In terms of
energy consumption and execution time, the checkpointing
overhead is still unacceptable even for very small DNNs
because the energy input is too tiny. This challenge has
attracted many researchers in recent years (which will be
reviewed in Section III) and deserves further development
(which will be discussed in Section IV).

III. A REVIEW OF EXISTING RESEARCH ON
INTERMITTENT DNN INFERENCE
A. METHODOLOGY
Although comprehensive survey work has been done on the
hot research areas, including energy harvesting technology,
intermittent computing, and deep learning, this paper focuses
on a new research direction, ‘‘deep learning on energy-
harvesting IoT devices,’’ which is an interesting combination
of the above directions to build green and intelligent IoT
systems that will evolve in the future. Therefore, in surveying
the state-of-the-art work, we exclude the papers that only
deal with one of the above three directions. Specifically, this
survey focuses on a critical issue of deploying computation-
intensive DNNs on intermittently powered IoT devices. Thus,
related research on using DNNs to optimize the efficiency
of energy harvesting or developing better DNNs to solve a
specific application target is also outside the scope of this
survey and is not included. The new emerging research direc-
tion was first formally discussed in [24], but related work
has been done since 2017. The literature was reviewed from
Google Scholar and DBLP with an intensive search with
related keywords. The closely related papers from the year
2017 to year 2022 were selected, and their contributions are
detailed in Section III.

FIGURE 3. The architecture of SONIC [24].

Existing research works try to tackle the problem of inter-
mittent DNN inference from different view angles. Related
research practices are summarized in Table 1, and the survey
of technical contents is given in the rest sub-sections.

B. SAFE CHECKPOINTING TECHNIQUES
The fundamental technique required for intermittent execu-
tion is checkpointing, which saves the program states to
NVM frequently so that the program can make incremental
progress. ADNN inference program is essentially an ordinary
software program, so generally, the checkpointing techniques
developed in the intermittent computing domain can also be
applied to DNN inference programs. The primary concern is
the overhead of checkpointing.

Gobieski, Lucia, and Beckmann are the first to present a
comprehensive solution for intermittent DNN inference on
energy-harvesting devices [24]. The authors proposed a run-
time system called SONIC modified from the Alpaca run-
time system [15], the functionality of which is to program and
run a DNN inference program as a set of tasks (the so-called
‘‘task-based intermittent approach’’) across power failures.
The architecture of SONIC is shown in Figure 4.

A DNN inference program is essentially a nested loop
with the filter operation as the computation unit. SONIC
implements a functionality called loop continuation to ensure
incremental progress across power failures. Loop continua-
tion stores the loop control variables and data manipulated
directly in NVM (specifically a FRAM). When a loop con-
tinuation task restarts, the local volatile variables are reinitial-
ized by reading back the loop states from the last attempted
iteration.

However, only saving loop states to NVM does not guaran-
tee correctness when the loop continuation task re-executes
due to the well-known ‘‘Write After Read (WAR)’’ prob-
lem. SONIC uses a double-buffering approach to solve the
problem. The input feature map is stored in one buffer for
each filter operation, and the output feature map is stored
in a second buffer instead of updating the input matrix.

125004 VOLUME 10, 2022



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

TABLE 1. A summary of the surveyed work.

This approach removes WAR operations. After applying a
single filter, SONIC swaps the input buffer with the output
buffer and moves on to the next filter value. But this buffering
approach has a performance problem: unmodified activation
data will be copied between the two buffers, spending con-
siderable time and energy. To remove this overhead, SONIC
introduces sparse undo-logging, which tracks the program’s
progress via a read index and a write index. When applying a
filter, SONIC copies the unmodified activation into a canon-
ical memory location and increments the read index. Then,
SONIC computes the modified activation and writes it back
to the original activation buffer (no separate output buffer in
this technique). After that, SONIC increments the write index
and proceeds to the next iteration. However, sparse undo-
logging doubles the number of memory writes per modified
element, so it is inefficient on convolution layers where most
data are modified. Sparse undo-logging is only used on fully
connected layers to enable efficient intermittent execution.

For high performance and low power consumption, hard-
ware accelerators are increasingly used in small, embed-
ded devices to perform the basic mathematical computation
steps in the DNN inference. The energy consumption can
be reduced with hardware accelerators compared to pure
software implementation, but it is still orders of magnitude
higher than the energy input from the energy harvesters.

Kang et al. proposed a system called HAWAII [85] to
enable intermittent DNN inference that adopts hardware
accelerators. A specific challenge is that the internal state
of an accelerator is typically inaccessible, which leads to the
loss of inference progress and incorrect execution behavior.
The authors proposed a concept called ‘‘footprinting’’ that
preserves the state of hardware-accelerated intermittent DNN

FIGURE 4. The system architecture of HAWAII [85].

inference. For most DNNs, each layer consists of neurons,
essentially a set of sequentially executed sub-operations.
Thus, the number of completed sub-operations indirectly
represents the inference progress, i.e., the footprint of the
inference program. Specifically, the footprint contains two
numbers: one indicates which layer has been finished, and
the other indicates which sub-operation in the layer is just
completed.

To preserve inference progress across power failures,
HAWAII only saves the footprints and the intermediate sub-
operation results to NVM. Therefore, a sub-operation is an
atomic execution unit of the intermittent inference. Since
the hardware accelerator is invoked inside a sub-operation,
there is no need to identify and save the states internal to the
hardware accelerator. A footprint monitor is designed as part
of the run-time system of HAWAII. The footprint monitor

VOLUME 10, 2022 125005



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

periodically saves the footprint to NVM. This approach helps
to reduce the volume of footprints saved toNVM. In recovery,
the footprint information is read from the NVM to the volatile
main memory. The correct loop indices will be resumed
based on the footprint information. Clearly, the system only
needs to re-execute the last unfinished sub-operation after the
resumption.

After the development of HAWAII, Kang et al. proposed an
extension to the footprint-based approach called model aug-
mentation [86]. The main idea is to append extra neural net-
work components into the original DNN model to integrate
progress indicators into the inference process. Thus, DNN
outputs and progress indicators can be generated alternately,
i.e., progress indicator preservation can be piggybacked onto
DNN output preservation. The extra overhead of embedding
progress information can be compensated by reducing NVM
data backup overhead.

C. ADAPTIVE TECHNIQUES — ADAPTING ACCURACY
WITH ENERGY AVAILABILITY
ePerceptive [87] is a framework for best-effort inference.
The objective of ePerceptive is to adapt the computational
complexity of DNN models to fluctuating energy conditions,
a feature specific to inference in energy-harvesting scenarios.
Several key techniques were combined to achieve the design
goal. The ePerceptive framework is shown in Figure 5.

FIGURE 5. The framework of ePerceptive [87].

First, a new DNN model was developed to enable multi-
resolution analysis. The basic idea is straightforward: if there
is low energy, the resolution of the input data is reduced; thus,
the energy consumption for DNN inference is reduced. This
is a trade-off between analysis quality and energy availability.
ePerceptive offers a single model that can operate at different
input resolutions without storing multiple models in memory.
The multi-resolution technique selects the input dimension
and ensures the required accuracy with a specific energy
budget.

Second, ePerceptive presented another technique which,
at run time, selects the appropriate exit point of a DNN
model for the instantaneous and unpredictable energy input
to guarantee a timely response. ePerceptive enhances a
MobileNetV1 DNN model with multiple exit points at inter-
mediate positions throughout the network. At each exit point,
a classifier is implemented to produce the output.

A research group from the University of Pittsburgh pre-
sented a series of techniques that adopt multi-exit neural

FIGURE 6. The framework of ePerceptive [83].

networks for intermittent DNN inference [83], [84], [88].
As explained earlier, a DNN inference task must consider
the available energy that is typically tiny and unstable. If the
energy input is high, an inference task may finish before the
energy is depleted; otherwise, the original inference task will
not finish. For the second case, the inference task may exit
earlier by skipping some of the latter layers in the original
model. This ensures that the inference task will always finish
with the available energy at run time, even if this may reduce
analysis accuracy.

In [83], the authors start by compressing an existing large
DNN (with layer-wise pruning and quantization) to fit into the
limited computation capability of an MCU. However, most
network compression algorithms only consider the accuracy
of the final classifier. But for inference in the energy har-
vesting scenario, the accuracy of any exit point should be
deemed comprehensively. This objective makes the proposed
approach different from all other network compression tech-
niques.

At run time, decisions must be made on where to exit
according to the available energy input. There is an interesting
trade-off in this decision. For example, when the energy input
is low in the long run, even if the system has sufficient
energy to exit at a later layer for the highest accuracy, a better
decision can be to exit earlier and reserve some energy for
the following inferences. In reality, the power trace and the
inference distribution are unknown in advance. To select
the best exit for each event, the authors proposed an online
Q-learning approach to predict the information required for
an early-exit decision.

The same research group implemented a multi-exit CNN
modified from the above work. It deployed the new CNN on
a small platform with an ARM Cortex-M0 processor core,
16KB SRAM as the main memory, and 128KB FLASH as
NVM and is powered by a tiny solar panel [84], [88]. The
experiments demonstrated that the multi-exit approach offers
flexibility with a trade-off between accuracy and process-
ing time, an essential feature desired for energy-harvesting
devices with variable energy inputs and different operation
situations.

D. NEURAL ARCHITECTURE SEARCH FOR MODELS
TAILORED TO INTERMITTENT INFERENCE
Designing a high-quality DNN model is intractable regard-
ing its design space. Traditionally, DNN models are manu-
ally designed with expert knowledge. However, this design
approach is becoming increasingly unrealistic with the

125006 VOLUME 10, 2022



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

FIGURE 7. The architecture of iNAS [97].

increasing complexity of the optimization objectives. Hence,
neural architecture search (NAS) techniques [89] were devel-
oped to automatically search for highly accurate neural net-
works with specific design constraints.

A recent NAS approach called iNAS [97] was proposed to
automatically find a DNNmodel with maximal accuracy and,
most importantly, satisfying energy and latency constraints.
Two key components realize the above design targets. The
intermittent-aware Execution Design Explorer (iNAS-Exp)
implements the design constraints on energy consumption
and inference latency in the design space exploration step,
which differentiates iNAS from other NAS approaches.
iNAS-Exp ensures that for the resulting DNN model, 1) the
maximal energy consumed by one layer should not exceed
the available energy budget in each power cycle, and 2) the
overall inference latency should not exceed a specified upper
bound.

A design space explorer (DSE) cannot guarantee the qual-
ity of the resulting model. The critical cost parameters input
to the DSE must be trustworthy. To solve this problem,
iNAS presents an intermittent-aware Abstract Performance
Model (iNAS-PMod). iNAS-PMod analytically formulates
the power-cycle energy consumption and latency considering
the additional costs, including the total cost of computing
multiple tiles in a power cycle, the power-cycle energy con-
sumption, the inference latency, and the recharging time.
Specific to the intermittent execution scenario, the costs of
rebooting, fetching progress indicators, and data re-fetching
for progress recovery are modeled in the formulation of
energy consumption and inference latency. Compared to the
non-intermittent-aware NAS approach, iNAS generates DNN
models that perform efficient and safe inference with energy
and latency budgets.

E. DEPTH-FIRST EXECUTION FOR LOW
CHECKPOINTING OVERHEAD
Generally, DNN inference is performed layer by layer, mean-
ing each layer will generate a featuremap and be used as input
to the next layer. To ensure forward progress, the intermediate
feature map data must be checkpointed to NVM to survive
power failures. The checkpointing process presents a consid-
erable energy and time overhead due to the size of feature
map data.

FIGURE 8. Depth-first DNN inference to optimize checkpointing
overhead [90].

Lv and Xu proposed a depth-first intermittent inference
approach to improve the checkpointing and execution effi-
ciency [90]. Instead of executing the inference layer by layer,
the input feature map is partitioned into small slices that
span multiple layers, an example of which is shown in
Figure 8. Since the energy required to execute a slice of
the DNN is much smaller, the inference over one slice will
probably finish before a power failure occurs. By this means,
the intermediate feature maps need not be saved to NVM.
This approach significantly reduces the overhead of check-
pointing. For typical CNNs, the authors explored several
dimensions to partition the network model, including array-
wise partitioning, channel-wise partitioning, and kernel-wise
partitioning. Themaximal number of layers a slice can span is
discussed, based on which the lower and upper bounds of the
slice size can be determined. The depth-first inference may
introduce extra overhead, as the rows (of the feature maps)
at the slice boundary may be referenced twice by the two
adjacent slices. However, their experiments showed that this
extra overhead could be compensated by reducing the total
data volume written to NVM.

F. TIMING MATTERS
Real-time requirements are a common feature of IoT applica-
tions, which is valid for those running on energy-harvesting
devices. Classical real-time theories generally assume con-
stant workload (the Worst-Case Execution Time for each
task) and continuous execution on the CPU cores (the CPU
cores are always on). However, both assumptions do not hold
on energy harvesting devices. First, the energy generation of
a harvester is bursty, not constant. Second, if the workload
is a DNN inference task, the system may vary the analysis
accuracy (for example, by the multi-exit approach) to adapt
computation to the available energy. Thus, the workload also
varies.

Islam et al. proposed Zygarde, a framework and a run-
time system that enables time-aware execution of a DNN on
intermittently-powered devices [98]. Zygarde contains five
key components: a job generator, an energy manager, an agile
DNN model, k-means classifiers, and a scheduler, shown
in Figure 9. Sensor data are read into Zygarde and written
to NVM, and then the data are analyzed by classification
algorithms. The end-to-end processing of one data sample is
called a job. The job generator creates jobs periodically and
puts the jobs into a queue. The energy manager monitors the
state of the energy storage as well as the energy harvesting

VOLUME 10, 2022 125007



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

FIGURE 9. Zygarde system architecture [98].

rate that the scheduler will use for decision-making. The
energy manager also contains a run time to enable jobs to
progress across power failures. The agile DNN model is a
DNN network, and rank decomposition and separation are
applied to compress and fit the original network to the mem-
ory footprint. The model is essentially a multi-exit model,
which means the model may exit earlier if the energy input is
small. The k-means classifier takes the feature representation
obtained by the DNN and generates the final classification
result. Zygarde maintains a separate k-means classifier for
each layer of the DNN. The most critical component is the
scheduler. Zygarde implemented a dynamic priority real-time
scheduler that considers the deadline and the expected accu-
racy. As theDNNmay exit early, the scheduler partitions a job
into mandatory and optional portions. The execution of the
mandatory portion is to ensure both timeliness and accuracy.
If extra energy and time remain, the optional portion will be
executed to improve accuracy further.

G. HARDWARE DESIGN TO FACILITATE
INTERMITTENT DNN INFERENCE
As the main overhead of intermittent DNN inference is to
checkpoint program states to NVM, particular processors
are developed to reduce the checkpointing overhead or even
remove the need for checkpointing and improve the energy
efficiency of DNN inference.

FIGURE 10. The hardware architecture of MOUSE [92].

MOUSE [92], [93] is an in-memory accelerator specif-
ically designed to enable DNN inference in the presence
of power failures, the architecture of which is shown in
Figure 10. First, MOUSE has on-chip non-volatile mem-
ory to ensure data will not be lost across power failures,
specifically the STT-MRAM array, which is considered a
universal memory replacement [99]. MOUSE can be used as
a standard STT-MRAM array and a computational substrate

by minor modifications to the memory array. Besides the
memory array, MOUSE has five other components to enable
continuous computation in the presence of power failures:
1) a memory controller reading and issuing instructions,
2) an 128B memory buffer to facilitate reads/writes to the
tiles, 3) a non-volatile program counter, 4) a non-volatile
register as an instruction buffer, and 5) a voltage sensing cir-
cuitry to monitor the power source. Since MOUSE performs
all computations within the non-volatile memory, program
progress is saved after each operation. This makes restart-
ing after the last instruction possible. To continue from the
last instruction, MOUSE writes the program counter into a
non-volatile register after each instruction. When restarts,
MOUSE reads the next instruction from the address in
the program counter. Program correctness in the presence
of power failures has been proved regarding the hardware
design. MOUSE has been demonstrated to be logically cor-
rect and energy-efficient in many applications, including
those based on Binary Neural Network (BNN) models.

FIGURE 11. The device and the framework of MaxTracker [94].

MaxTracker [94] is a software and hardware solution
for CNN inference on energy-harvesting devices. The hard-
ware of MaxTracker is a processor with specialized comput-
ing hardware components tailored for CNN inference and
ReRAMmemory to provide persistent data storage. Themain
idea behind MaxTracker is the so-called ‘‘Harvest-Store-
Use’’ paradigm, by which a storage capacitor is conserva-
tively filled with sufficient harvested energy to power the

125008 VOLUME 10, 2022



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

sensor node for a specified period of continuous operation
before the compute phase. MaxTracker monitors the har-
vesting power levels and workload conditions at run time
to decide the transition between computing modes. Under
the intermittent computing mode, each power cycle can have
multiple working cycles. A working cycle refers to a purely
charging period followed by a consecutive working period.
A working cycle is the unit of intermittent computing. Specif-
ically, the status data will be backed up to the non-volatile
ReRAM memory at the end of each working cycle. At the
beginning of each working cycle, the stored status data will
be read from the ReRAM to the volatile memory for progress.
Experiments on CNN inference show that the MaxTracker
approach can significantly enhance the program progress by
precisely tracking the power status of the system.

H. LEARNING ON ENERGY-HARVESTING DEVICES
Most researchers believe an EH-IoT device with resource-
constrained hardware and tiny energy input can only perform
DNN inference. The resource-consuming training process
should be performed in advance on computer servers. Some
recent research practices explore the possibility of putting
inference and training on an EH-IoT device. Lee et al. pro-
posed the concept of ‘‘intermittent learning’’ that deploys
both training and inference tasks on EH-IoT devices [95]. The
objective is to enable the lifetime evolution of the DNNmodel
and thus to improve the level of intelligence of the device.

As surveyed before, performing inference on intermittently
powered EH-IoT devices is already challenging. Putting the
more resource-consuming training onto the same device will
bring many new challenges. First, as the energy input of
an EH-IoT device is scarce, the tiny energy must be intel-
ligently distributed between training and inference. Second,
an intermittent learning system should smartly discard data
samples at run time, as not all samples contribute equally to
learning. Thus, unnecessary energy waste on training can be
minimized. Third, greedily consuming the energy may cause
the system to miss real-world events that deserve to learn
when the system pauses. So the scheduling of the learning
processes and the energy usage becomes essential. Although
this article focuses on DNN inference on EH-IoT devices,
we still include intermittent learning in this sub-section to
extend our understanding.

Lee et al. proposed a framework to tackle the above-
mentioned challenges [95], shown in Figure 12. Behind the
framework, a programming model was proposed to develop
an intermittent learning application. The programmingmodel
is called action-based, similar to the task-based approach.
There are eight actions defined in the presented framework,
including sense, extract, decide, select, learnable, learn, eval-
uate, infer. These actions are the major behaviors that an
EH-IoT device may perform. A learning task comprises a
subset of the actions that must be executed in a specific order.

The framework has a key component called the dynamic
action planner that determines a sequence of actions at run
time. When enough energy is harvested, the planner selects

FIGURE 12. The intermittent learning framework [95].

the best action that should be performed. Several performance
indicators are defined to decide whether to learn or to infer,
including the learning rate, the inference rate, and the combi-
nation of the two. The performance indicators are evaluated
with the system’s progress, and the objective can be tuned by
adjusting the desirable indicator values at run time.

Learning example selection is another critical component
of intermittent learning. The framework defines a series
of mathematical criteria for selecting examples, including
uncertainty, balance, diversity, and representation. Selecting
the training examples to satisfy all the criteria is computation-
ally expensive. The framework proposes several heuristics
for different optimization purposes. To ensure balance, the
selected examples fall into k clusters in a round-robin fashion.
To ensure diversity and representation, two k-element lists are
maintained that keep track of the last 2k examples that were
selected and not selected, respectively. To ensure uncertainty,
an example xi with a probability of pi.
Islam et al. studied the problem of training an effi-

cient DNN model to run on intermittently powered EH-IoT
devices [96]. Their work considered the various vector opera-
tions supported by the low-energy accelerators in the training
process. By improving the efficiency of such accelerators,
the DNN inference can make better progress with limited
energy input. In their work, a resource-aware DNN training
framework is proposed that comprises several components,
including architecture search, model compression, normal-
ization, and fixed point calculation. A software system is also
designed that provides an efficient implementation flow for
application developers. An on-demand checkpointing mech-
anism is proposed, which can minimize progress overhead in
the presence of power failures.

I. A SHORT SUMMARY
Within the past several years, research on deploying deep
learning on EH-IoT devices has touched many aspects and is
forming a road map for the future. Early work makes it pos-
sible to correctly checkpoint DNN inference tasks [24], [85],
but achieving low checkpointing cost remains unsatisfactory.

VOLUME 10, 2022 125009



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

Although new chip hardware has been proposed to simplify
checkpointing [92], [93], [94], excessive memory access due
to checkpointing still stands for a major overhead. Related
work considered adaptive DNN inference to fit the compu-
tation workload into the energy envelope (work surveyed
in Section III-C). However, existing work only considered
reducing inference computation with an early exit in the cases
of low-energy input. More flexible adaptive DNN inference
techniques are expected to compensate for the analysis qual-
ity if the energy becomes abundant. Due to the lack of precise
energy prediction methods, the run-time decision on adaptive
DNN inference remains unoptimized.

IV. FUTURE CHALLENGES AND NEW
RESEARCH DIRECTIONS
Thanks to the research work listed in the previous
section, intermittent DNN inference has been made possible
on resource-constrained IoT devices. However, challenges
remain in several aspects and need further exploration:

• Minimizing the overhead of checkpointing
• Dynamically adjusting the inference workload to maxi-
mize analysis accuracy with fluctuating energy input

• Efficiently and precisely predicting the energy harvest-
ing power to guide adaptive inference

A. MINIMIZING THE OVERHEAD OF CHECKPOINTING
DNN inference tasks bring an unprecedented challenge to
state checkpointing. Beyond register files and memory stack,
DNN inference typically generates massive feature map data
when it progresses layer by layer. For an inference task to
continue execution after a power failure, the generated feature
maps must be saved to NVM. This will incur significant
energy overhead by writing a large amount of data to NVM.
As a result, very little energy is left for the system to run
useful work, i.e., DNN inference.

Re-scheduling the computation of an inference task
deserves further investigation to reduce the amount of feature
map data to be checkpointed. A first research practice in
this line is the depth-first inference approach [90]. Note that
feature maps are not the expected result of the inference but
are used as intermediate data between layers. Once a layer
has consumed the feature map, it can be safely discarded
from the main memory. Although the technique in [90] works
for CNNs, new challenges remain for DNNs with complex
data dependency among layers, such as RNNs. New slicing
approaches need to be explored.

Re-scheduling comes with extra overhead. By dividing
the input data into small chunks and letting each chunk go
through the convolution layers one by one, the filter data
(i.e., weight parameters) will be reloaded and used each
time a chunk goes through the layers. This will introduce
extra energy overhead. Therefore, there is a need to balance
reduced checkpointing of feature map data and increased
reloading of filter data. The trade-off will be explored to find
the design choice with minimal overhead.

Another design decision is to decide the size of a chunk.
The number of times to reload weight parameters during
an inference will be very large to partition the input data
into small chunks. If the chunk is too big, the probability
of encountering power failures during the execution of a
chunk is increased. So, chunk size design should adapt to
the availability of the energy that can be harvested soon.
Implementation techniques that allow changing chunk size at
run time need to be explored.

B. FLEXIBLE RUN-TIME ADAPTIVE DNN INFERENCE
One significant characteristic of energy harvesting is that the
harvesting power may vary in an extensive range due to the
changing ambient environment. A DNN inference may take
a long time to finish in cases where energy harvesting is very
low. This is unacceptable in applications where the analysis
results are expected to be produced within a given deadline.
For such cases, system designers may sacrifice analysis pre-
cision by executing only part of the DNN to reduce the time
and energy consumed to finish an inference.

Even though the amount of energy input can be predicted,
it is still possible that the predicted amount of energy is
lower than that is harvested. In this case, a pessimistic adap-
tation will be decided at the beginning of an inference to
aggressively reduce the inference workload by executing a
tiny portion of the DNN. At the end of the inference, there
is remained energy. Such energy should have been used to
execute a less pruned network for better precision. Therefore,
we need techniques that, when extra energy is available, can
perform additional computation on the pruned part of the
DNN to compensate for the analysis precision. This line of
work will improve the existing multi-exit approaches.

For early-exit networks, if it turns out that the inference
exits too early, we can let the inference go further along
the network layers. This requires the output of the last con-
volution layer (take CNN, for example) to be saved so the
inference can continue from where it has exited. Note that
keeping the output may increase the amount of data to be
checkpointed. Then a balance between the overhead of extra
checkpointing and the actual precision gain obtained by the
compensation should be explored.

For filter pruning techniques, it is very hard to do com-
pensation once the inference is finished. This is because,
at the end of each layer, the outputs of all filters at this
layer are merged into a single output of the current layer.
If we want to compensate by adding the pruned filters at
this layer, then all the computation after this layer should be
redone. One opportunity to solve this problem will be to do
filter pruning structurally. For example, one can perform less
filter pruning at earlier layers of the DNN to avoid losing
information too early. When the inference goes deeper in the
network, more aggressive filter pruning can be considered
to reduce computation. A more aggressive idea would be
to significantly change the typical CNN architecture into
a multi-path architecture so that each path may contribute

125010 VOLUME 10, 2022



M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

partly to the analysis precision, and the contribution of each
path can be added up.

Another potential line of adaptive inference is on the frame
level. If after an inference is done, there is still extra energy,
one can let the IoT device immediately do additional sens-
ing and use the extra energy to perform inference on the
extra sensor data. In some application scenarios, multiple
less precise analysis results may work the same as few more
accurate results. This approach can be used at least for some
applications to achieve higher overall precision instead of
maximizing the accuracy of a single inference.

Recently, collaborative DNN inference is becoming a hot
topic in the IoT domain [100]. The main idea is to offload
some workload of DNN inference from the IoT device to the
edge server so that the energy consumption can be reduced
with less inference work to do. This DNN inference paradigm
may help alleviate the intermittent power supply issue on
EH-IoT devices and thus increase the probability of a success-
ful inference. However, collaborativeDNN inference requires
to transfer intermittent data from the edge server to the IoT
device, which may incur extra energy consumption for wire-
less communication. It would be interesting to investigate
which decision may lead to the optimal result: to perform the
whole DNN inference task on the IoT device or to pay the
price of communication for less computation overhead.

C. EFFICIENT RUN-TIME ENERGY PREDICTION
Predicting the amount of energy that can be harvested in
the near future is critical to decision-making. For depth-first
execution (to reduce state checkpoint overhead), the amount
of available energy will affect the decision on the granu-
larity of a chunk; for adaptive run-time inference (to trade
precision for low energy consumption), the availability of
energy will affect the decision of reduced execution, e.g.,
how early to exit, and thus affect the analysis precision that
can be achieved. Therefore, run-time energy prediction is an
indispensable capability.

Existing work on energy prediction stands at two
extremes of complexity. Complex approaches leverage learn-
ing approaches, including DNNs, to predict future incoming
energy by analyzing large volume history data on energy
harvesting [101]. Such approaches are suitable for long-term
or offline energy prediction (such as predicting energy input
for large solar arrays for a considerable time scale). Still,
they are not a good option for runtime prediction on low-
energy EH-IoT devices because the computation involved in
the prediction will bring a significant overhead to the system.
In other related research practices of intermittent computing,
very simple approaches are adopted which predict future
energy harvesting by looking at the harvesting power of the
previous power cycle [102]. Although the computation over-
head of such methods is very small, the prediction precision
will be severely compromised. It needs to investigate new
energy prediction approaches that are efficient enough to
perform at run time and as precise as possible.

The key to efficient and precise energy prediction is to
combine history/experience information and run-time infor-
mation. To this end, pattern-based energy prediction can
be investigated. The rationale behind this idea is that the
energy harvesting power for a short while does not change
arbitrarily in reality; instead, patterns exist [103]. A pattern
specifies how the energy harvesting power changes over a
short period. One may seek to model the energy harvesting
patterns abstractly with mathematical formulations explicitly.
At design time, parameterized patterns of different energy
harvesting sources (solar, wind, heat, etc.) will be explored
and modeled with the help of machine learning over a large
amount of historical data. Each pattern, specified by some
mathematical formulation, will be characterized by a small
set of critical indicators. At run time, the values of the key
indicators will be extracted from the energy harvesting infor-
mation recorded for the past few power cycles, and the energy
harvesting pattern will be identified. The values of the key
indicators are also fed into the parameterized pattern formu-
lation to predict the amount of energy that can be harvested
for a given period in the future. Thus, the EH-IoT device does
not need to record a long energy harvesting history or undergo
complex analysis to predict energy input.

V. CONCLUSION
Future IoT deviceswill becomemore intelligent (usingDNNs
to analyze sensor data) and greener (eliminating traditional
batteries and relying on energy harvesters). A design gap
was created between computation and energy-intensive deep
learning tasks and low-energy EH-IoT devices. To conduct
deep learning on EH-IoT devices is an exciting research
direction. This article surveys current research work in this
domain. However, many issues still exist and need further
exploration. So, this article also calls for research to crack the
enabling techniques to bridge the gap, specifically, enabling
deep learning tasks to intermittently execute on EH-IoT
devices and make reliable progress, enabling deep learn-
ing to dynamically balance between analysis precision and
computation overhead to cope with changing energy input.
These capabilities are pillared by efficient and precise run-
time energy input prediction. We believe the success in this
research domain will unlock many new IoT applications in
the future, making the IoT more intelligent and environmen-
tally friendly.

REFERENCES
[1] D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, ‘‘Sensing, com-

puting, and communications for energy harvesting IoTs: A survey,’’
IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 1222–1250, 2020, doi:
10.1109/COMST.2019.2962526.

[2] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, ‘‘Intermit-
tent computing: Challenges and opportunities,’’ in Proc. 2nd Sum-
mit Adv. Program. Lang. (SNAPL), B. S. Lerner, R. Bodík, and
S. Krishnamurthi, Eds., Asilomar, CA, USA, vol. 71, 2017, pp. 8:1–8:14,
doi: 10.4230/LIPIcs.SNAPL.2017.8.

[3] B. Ransford, J. Sorber, and K. Fu, ‘‘Mementos: System support for long-
running computation on RFID-scale devices,’’ in Proc. 16th ASPLOS,
2011, pp. 159–170.

VOLUME 10, 2022 125011

http://dx.doi.org/10.1109/COMST.2019.2962526
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.8


M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

[4] B. Lucia and B. Ransford, ‘‘A simpler, safer programming and execution
model for intermittent systems,’’ in Proc. 36th ACM SIGPLAN Conf. Pro-
gram. Lang. Design Implement., Jun. 2015, vol. 50, no. 6, pp. 575–585.

[5] J. van der Woude and M. Hicks, ‘‘Intermittent computation without hard-
ware support or programmer intervention,’’ in Proc. 12th OSDI, 2016,
pp. 17–32.

[6] H. Jayakumar, A. Raha, and V. Raghunathan, ‘‘QUICKRECALL: A low
overhead HW/SW approach for enabling computations across power
cycles in transiently powered computers,’’ in Proc. 27th Int. Conf. VLSI
Design 13th Int. Conf. Embedded Syst., Jan. 2014, pp. 330–335.

[7] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli,
B. M. Al-Hashimi, G. V. Merrett, and L. Benini, ‘‘Hibernus++: A self-
calibrating and adaptive system for transiently-powered embedded
devices,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 35, no. 12, pp. 1968–1980, Jun. 2016.

[8] M. Hicks, ‘‘Clank: Architectural support for intermittent computation,’’
in Proc. 44th Annu. Int. Symp. Comput. Archit., Jun. 2017, vol. 45, no. 2,
pp. 228–240.

[9] N. A. Bhatti and L. Mottola, ‘‘HarvOS: Efficient code instrumentation for
transiently-powered embedded sensing,’’ in Proc. 16th ACM/IEEE Int.
Conf. Inf. Process. Sensor Netw., Apr. 2017, pp. 209–220.

[10] K. Maeng and B. Lucia, ‘‘Adaptive dynamic checkpointing for safe effi-
cient intermittent computing,’’ in Proc. 13th OSDI, 2018, pp. 129–144.

[11] K. Maeng and B. Lucia, ‘‘Supporting peripherals in intermittent systems
with just-in-time checkpoints,’’ in Proc. 40th ACM SIGPLAN Conf. Pro-
gram. Lang. Design Implement., Jun. 2019, pp. 1101–1116.

[12] J. Choi, H. Joe, Y. Kim, and C. Jung, ‘‘Achieving stagnation-free inter-
mittent computation with boundary-free adaptive execution,’’ in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2019,
pp. 331–344.

[13] V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and
P. Pawełczak, ‘‘Time-sensitive intermittent computing meets legacy soft-
ware,’’ in Proc. 25th Int. Conf. Architectural Support Program. Lang.
Operating Syst., Mar. 2020, pp. 85–99.

[14] A. Colin and B. Lucia, ‘‘Chain: Tasks and channels for reliable inter-
mittent programs,’’ in Proc. ACM SIGPLAN Int. Conf. Object-Oriented
Program., Syst., Lang., Appl., Oct. 2016, pp. 514–530.

[15] K. Maeng, A. Colin, and B. Lucia, ‘‘Alpaca: Intermittent execution with-
out checkpoints,’’ in Proc. OOPSLA, 2017, pp. 1–30.

[16] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawełczak, and
J. Hester, ‘‘InK: Reactive kernel for tiny batteryless sensors,’’ in Proc.
16th ACM Conf. Embedded Netw. Sensor Syst., Nov. 2018, pp. 41–53.

[17] J. Hester, K. Storer, and J. Sorber, ‘‘Timely execution on intermittently
powered batteryless sensors,’’ in Proc. 15th ACM Conf. Embedded Netw.
Sensor Syst., Nov. 2017, pp. 1–13.

[18] E. Ruppel and B. Lucia, ‘‘Transactional concurrency control for
intermittent, energy-harvesting computing systems,’’ in Proc. 40th
ACM SIGPLAN Conf. Program. Lang. Design Implement., Jun. 2019,
pp. 1085–1100.

[19] S. Liu, W. Zhang, M. Lv, Q. Chen, and N. Guan, ‘‘LATICS: A low-
overhead adaptive task-based intermittent computing system,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11,
pp. 3711–3723, Nov. 2020, doi: 10.1109/TCAD.2020.3012214.

[20] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. S. Iyengar, ‘‘A survey on deep learning: Algo-
rithms, techniques, and applications,’’ ACMComput. Surv., vol. 51, no. 5,
pp. 92:1–92:36, Sep. 2018, doi: 10.1145/3234150.

[21] D. Liu, H. Kong, X. Luo, W. Liu, and R. Subramaniam, ‘‘Bringing AI
to edge: From deep learning’s perspective,’’ Neurocomputing, vol. 485,
pp. 297–320, May 2022, doi: 10.1016/j.neucom.2021.04.141.

[22] J. Iannacci, ‘‘The WEAF mnecosystem: A perspective of MEMS/NEMS
technologies as pillars of future 6G, super-IoT and tactile internet,’’ in
Proc. IEEE Int. Conf. Smart Internet Things (SmartIoT), Aug. 2021,
pp. 52–59.

[23] J. Iannacci and H. V. Poor, ‘‘Review and perspectives of micro/nano tech-
nologies as key-enablers of 6G,’’ IEEE Access, vol. 10, pp. 55428–55458,
2022.

[24] G. Gobieski, B. Lucia, and N. Beckmann, ‘‘Intelligence beyond the
edge: Inference on intermittent embedded systems,’’ in Proc. 24th Int.
Conf. Architectural Support Program. Lang. Operating Syst., Apr. 2019,
pp. 199–213, doi: 10.1145/3297858.3304011.

[25] S. Umesh and S. Mittal, ‘‘A survey of techniques for intermittent
computing,’’ J. Syst. Archit., vol. 112, Jan. 2021, Art. no. 101859, doi:
10.1016/j.sysarc.2020.101859.

[26] J. Hester and J. Sorber, ‘‘The future of sensing is batteryless,
intermittent, and awesome,’’ in Proc. 15th ACM Conf. Embedded
Netw. Sensor Syst., Delft, The Netherlands, Nov. 2017, p. 21, doi:
10.1145/3131672.3131699.

[27] A. Haeberlin, Y. Rösch, M. V. Tholl, Y. Gugler, J. Okle, P. P. Heinisch,
T. Reichlin, J. Burger, and A. Zurbuchen, ‘‘Intracardiac turbines
suitable for catheter-based implantation—An approach to power bat-
tery and leadless cardiac pacemakers?’’ IEEE Trans. Biomed. Eng.,
vol. 67, no. 4, pp. 1159–1166, Apr. 2020, doi: 10.1109/TBME.2019.
2932028.

[28] S. Chalasani and J. M. Conrad, ‘‘A survey of energy harvesting sources
for embedded systems,’’ in Proc. IEEE SoutheastCon, Apr. 2008,
pp. 442–447.

[29] V. Kartsch, S. Benatti, M. Mancini, M. Magno, and L. Benini, ‘‘Smart
wearable wristband for EMG based gesture recognition powered by
solar energy harvester,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1–5.

[30] Z. Yun and S. Han, ‘‘Towards a real-time wireless powered communi-
cation network: Design, implementation and evaluation,’’ in Proc. IEEE
27th Real-Time Embedded Technol. Appl. Symp. (RTAS), May 2021,
pp. 347–359, doi: 10.1109/RTAS52030.2021.00035.

[31] (2022). Prometheus: Energy Harvesting Made Easy. [Online]. Available:
https://www.matrixindustries.com/technology

[32] N. Shah, L. Kamdar, D. Gokalgandhi, and N. Mehendale, ‘‘Walking
pattern analysis using deep learning for energy harvesting smart shoes
with IoT,’’ Neural Comput. Appl., vol. 33, no. 18, pp. 11617–11625,
Sep. 2021, doi: 10.1007/s00521-021-05864-4.

[33] V. Devabhaktuni, M. Alam, S. S. S. R. Depuru, R. C. Green, D. Nims, and
C. Near, ‘‘Solar energy: Trends and enabling technologies,’’ Renew. Sus-
tain. Energy Rev., vol. 19, pp. 555–564, Mar. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364032112006363

[34] (2022). The Matrix Industries Homepage. [Online]. Available:
https://www.matrixindustries.com/

[35] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, ‘‘Wireless net-
works with RF energy harvesting: A contemporary survey,’’ IEEE Com-
mun. Surveys Tuts., vol. 17, no. 2, pp. 757–789, 2nd Quart., 2015, doi:
10.1109/COMST.2014.2368999.

[36] S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and
M. M. Tentzeris, ‘‘Ambient RF energy-harvesting technologies for self-
sustainable standalone wireless sensor platforms,’’ Proc. IEEE, vol. 102,
no. 11, pp. 1649–1666, Nov. 2014.

[37] M. Aldrigo, M. Dragoman, M. Modreanu, I. Povey, S. Iordanescu,
D. Vasilache, A. Dinescu, M. Shanawani, and D. Masotti, ‘‘Harvesting
electromagnetic energy in the V -band using a rectenna formed by a
bow tie integrated with a 6-nm-thick Au/HfO2/Pt metal–insulator–metal
diode,’’ IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 2973–2980,
May 2018.

[38] N. Xing and G. A. Rincon-Mora, ‘‘Highest wireless power: Induc-
tively coupled or RF?’’ in Proc. 21st Int. Symp. Qual. Electron. Design
(ISQED), Mar. 2020, pp. 298–301.

[39] X. Li, C.-Y. Tsui, and W.-H. Ki, ‘‘A 13.56 MHz wireless power transfer
system with reconfigurable resonant regulating rectifier and wireless
power control for implantable medical devices,’’ IEEE J. Solid-State
Circuits, vol. 50, no. 4, pp. 978–989, Apr. 2015.

[40] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith, ‘‘Design of an RFID-based battery-free programmable
sensing platform,’’ IEEE Trans. Instrum. Meas., vol. 57, no. 11,
pp. 2608–2615, Nov. 2008, doi: 10.1109/TIM.2008.925019.

[41] M. Gorlatova, P. R. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman, ‘‘Energy harvesting active networked tags (EnHANTs) for
ubiquitous object networking,’’ IEEE Trans. Wireless Commun., vol. 17,
no. 6, pp. 18–25, Dec. 2010, doi: 10.1109/MWC.2010.5675774.

[42] H. Vocca and F. Cottone, ‘‘Kinetic energy harvesting,’’ in ICT-Energy-
Concepts Towards Zero, G. Fagas, L. Gammaitoni, D. Paul, and
G. A. Berini, Eds. Rijeka, Croatia: IntechOpen, 2014, ch. 3, doi:
10.5772/57091.

[43] Q. Huang, Y. Mei, W. Wang, and Q. Zhang, ‘‘Toward battery-free wear-
able devices: The synergy between two feet,’’ ACM Trans. Cyber Phys.
Syst., vol. 2, no. 3, pp. 20:1–20:18, 2018, doi: 10.1145/3185503.

[44] M. Thielen, L. Sigrist, M. Magno, C. Hierold, and L. Benini, ‘‘Human
body heat for powering wearable devices: From thermal energy
to application,’’ Energy Convers. Manage., vol. 131, pp. 44–54,
Jan. 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0196890416310007

125012 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCAD.2020.3012214
http://dx.doi.org/10.1145/3234150
http://dx.doi.org/10.1016/j.neucom.2021.04.141
http://dx.doi.org/10.1145/3297858.3304011
http://dx.doi.org/10.1016/j.sysarc.2020.101859
http://dx.doi.org/10.1145/3131672.3131699
http://dx.doi.org/10.1109/TBME.2019.2932028
http://dx.doi.org/10.1109/TBME.2019.2932028
http://dx.doi.org/10.1109/RTAS52030.2021.00035
http://dx.doi.org/10.1007/s00521-021-05864-4
http://dx.doi.org/10.1109/COMST.2014.2368999
http://dx.doi.org/10.1109/TIM.2008.925019
http://dx.doi.org/10.1109/MWC.2010.5675774
http://dx.doi.org/10.5772/57091
http://dx.doi.org/10.1145/3185503


M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

[45] C. Huang, T. Tan, Z. Wang, S. Zhang, F. Yang, Z. Lin, and
Z. Yan, ‘‘Origami dynamics based soft piezoelectric energy
harvester for machine learning assisted self-powered gait biometric
identification,’’ Energy Convers. Manage., vol. 263, Jul. 2022,
Art. no. 115720. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0196890422005167

[46] T. Tan, Z. Yan, H. Zou, K. Ma, F. Liu, L. Zhao, Z. Peng,
and W. Zhang, ‘‘Renewable energy harvesting and absorbing via
multi-scale metamaterial systems for Internet of Things,’’ Appl.
Energy, vol. 254, Nov. 2019, Art. no. 113717. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261919314047

[47] M. Badr, M.M. Aboudina, F. A. Hussien, and A. N.Mohieldin, ‘‘Simulta-
neous multi-source integrated energy harvesting system for IoE applica-
tions,’’ in Proc. IEEE 62nd Int. Midwest Symp. Circuits Syst. (MWSCAS),
H. Lee and R. L. Geiger, Eds., Dallas, TX, USA, Aug. 2019, pp. 271–274,
doi: 10.1109/MWSCAS.2019.8884893.

[48] X. Cui, J. Zhang, H. Zhou, and C. Deng, ‘‘PowerPool: Multi-source
ambient energy harvesting,’’ in Proc. 6th Int. Conf. Big Data Comput.
Commun. (BIGCOM), Jul. 2020, pp. 86–90.

[49] W. Zhou, X. Wang, C. Hu, Q. Li, C. Li, L. Du, and H. Yu, ‘‘Research
on multi-source environmental micro energy harvesting and utiliza-
tion,’’ in Proc. 6th Asia Conf. Power Electr. Eng. (ACPEE), Apr. 2021,
pp. 1072–1076.

[50] (2022). The Kinergizer Homepage. [Online]. Available:
https://kinergizer.com/

[51] K. Vijayaraghavan and R. Rajamani, ‘‘Novel batteryless wireless sensor
for traffic-flow measurement,’’ IEEE Trans. Veh. Technol., vol. 59, no. 7,
pp. 3249–3260, Sep. 2010, doi: 10.1109/TVT.2010.2050013.

[52] F. Li, Y. Yang, Z. Chi, L. Zhao, Y. Yang, and J. Luo, ‘‘Trinity: Enabling
self-sustainingWSNs indoors with energy-free sensing and networking,’’
ACM Trans. Embed. Comput. Syst., vol. 17, no. 2, pp. 57:1–57:27, 2018,
doi: 10.1145/3173039.

[53] B. Lu, Y. Chen, D. Ou, H. Chen, L. Diao, W. Zhang, J. Zheng, W. Ma,
L. Sun, and X. Feng, ‘‘Ultra-flexible piezoelectric devices integrated
with heart to harvest the biomechanical energy,’’ Sci. Rep., vol. 5, no. 1,
p. 16065, Dec. 2015.

[54] (2022). The Solepower Homepage. [Online]. Available: http://www.
solepowertech.com/

[55] (2022). The Instepnanopower Homepage. [Online]. Available: http://
www.instepnanopower.com/

[56] (2022). The Bionic Power Homepage. [Online]. Available: https://
www.bionic-power.com/

[57] Semiconductor Devices—Semiconductor Devices for Energy Harvest-
ing and Generation—Part 1: Vibration Based Piezoelectric Energy
harvesting, document IEC 62830-1:2017, 2022. [Online]. Available:
https://webstore.iec.ch/publication/27039

[58] P. K, U. Govindarajan, V. K. Ramachandaramurthy, and
B. Jeevarathinam, ‘‘Integrating solar photovoltaic energy conversion sys-
tems into industrial and commercial electrical energy utilization—A sur-
vey,’’ J. Ind. Inf. Integr., vol. 10, pp. 39–54, Jun. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2452414X17300742

[59] C. Schuss, B. Eichberger, and T. Rahkonen, ‘‘Impact of solar radia-
tion on the output power of moving photovoltaic (PV) installations,’’
in Proc. IEEE Int. Instrum. Meas. Technol. Conf. (I MTC), May 2018,
pp. 1–6.

[60] P. Singla and S. R. Sarangi, ‘‘A survey and experimental analysis of
checkpointing techniques for energy harvesting devices,’’ J. Syst. Archit.,
vol. 126, May 2022, Art. no. 102464, doi: 10.1016/j.sysarc.2022.102464.

[61] MSP430 Microcontrollers. Accessed: Oct. 15, 2022. [Online]. Available:
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/
overview.html

[62] M. Surbatovich, L. Jia, and B. Lucia, ‘‘I/O dependent idempotence bugs
in intermittent systems,’’ in Proc. OOPSLA, 2019, pp. 1–31.

[63] Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech,
and Time Series. Cambridge, MA, USA: MIT Press, 1998, pp. 255–258.

[64] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations
using RNN encoder–decoder for statistical machine translation,’’ in
Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP),
A. Moschitti, B. Pang, and W. Daelemans, Eds., 2014, pp. 1724–1734,
doi: 10.3115/v1/d14-1179.

[65] S. Branco, A. G. Ferreira, and J. Cabral, ‘‘Machine learning in
resource-scarce embedded systems, FPGAs, and end-devices: A survey,’’
Electronics, vol. 8, no. 11, p. 1289, Nov. 2019. [Online]. Available:
https://www.mdpi.com/2079-9292/8/11/1289

[66] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracywith 50x fewer param-
eters and <0.5 MB model size,’’ CoRR, vol. abs/1602.07360, Feb. 2016.

[67] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient con-
volutional neural networks for mobile vision applications,’’ 2017,
arXiv:1704.04861.

[68] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT,
USA, Jun. 2018, pp. 4510–4520.

[69] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan,
G. Chu, V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le,
‘‘Searching for MobileNetV3,’’ in Proc. IEEE/CVF Int. Conf. Com-
put. Vis. (ICCV), Seoul, South Korea, Oct. 2019, pp. 1314–1324, doi:
10.1109/ICCV.2019.00140.

[70] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA,
Jun. 2018, pp. 6848–6856.

[71] N. Ma, X. Zhang, H. Zheng, and J. Sun, ‘‘Shufflenet V2: Practical guide-
lines for efficient CNN architecture design,’’ in Proc. 15th Eur. Conf.,
vol. 11218, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., Munich,
Germany. Cham, Switzerland: Springer, Sep. 2018, pp. 122–138, doi:
10.1007/978-3-030-01264-9_8.

[72] Z. Li and L.Meng, ‘‘A survey of model pruning for deep neural network,’’
in Proc. 4th Int. Symp. Adv. Technol. Appl. Internet Things (ATAIT),
H. Nishikawa and X. Kong, Eds., vol. 3198, Aug. 2022, pp. 25–34.
[Online]. Available: http://ceur-ws.org/Vol-3198/paper4.pdf

[73] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, ‘‘Pruning
and quantization for deep neural network acceleration: A survey,’’
Neurocomputing, vol. 461, pp. 370–403, Oct. 2021, doi:
10.1016/j.neucom.2021.07.045.

[74] J. Gou, B. Yu, S. J. Maybank, and D. Tao, ‘‘Knowledge distillation:
A survey,’’ Int. J. Comput. Vis., vol. 129, pp. 1789–1819, Mar. 2021, doi:
10.1007/s11263-021-01453-z.

[75] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, ‘‘MCDNN: An approximation-based execution
framework for deep stream processing under resource constraints,’’ in
Proc. 14th Annu. Int. Conf. Mobile Syst., Appl., Services, R. K. Balan,
A. Misra, S. Agarwal, and C. Mascolo, Eds., Singapore, Jun. 2016,
pp. 123–136, doi: 10.1145/2906388.2906396.

[76] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane,
‘‘MobiSR: Efficient on-device super-resolution through heterogeneous
mobile processors,’’ in Proc. 25th Annu. Int. Conf. Mobile Comput.
Netw., S. A. Brewster, G. Fitzpatrick, A. L. Cox, and V. Kostakos,
Eds., Los Cabos, Mexico, Oct. 2019, p. 54, doi: 10.1145/3300061.
3345455.

[77] J. Lin, Y. Rao, J. Lu, and J. Zhou, ‘‘Runtime neural pruning,’’ in
Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process.
Syst., I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, Eds., Long Beach, CA, USA,
Dec. 2017, pp. 2181–2191.

[78] X. Gao, Y. Zhao, L. Dudziak, R. D. Mullins, and C. Xu, ‘‘Dynamic
channel pruning: Feature boosting and suppression,’’ CoRR,
vol. abs/1810.05331, Jun. 2018.

[79] J. Yu, L. Yang, N. Xu, J. Yang, and T. S. Huang, ‘‘Slimmable neural
networks,’’ CoRR, vol. abs/1812.08928, Jul. 2018.

[80] W. Hua, Y. Zhou, C. D. Sa, Z. Zhang, and G. E. Suh, ‘‘Channel gating
neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., Annu. Conf.
Neural Inf. Process. Syst., H. M.Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., Vancouver, BC, Canada,
Dec. 2019, pp. 1884–1894.

[81] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, ‘‘Adaptive neu-
ral networks for efficient inference,’’ in Proc. 34th Int. Conf. Mach.
Learn., D. Precup and Y. W. Teh, Eds., Sydney, NSW, Australia, vol. 70,
Aug. 2017, pp. 527–536.

[82] S. Teerapittayanon, B. McDanel, and H. T. Kung, ‘‘BranchyNet:
Fast inference via early exiting from deep neural networks,’’
in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR), Cancún,
Mexico, Dec. 2016, pp. 2464–2469, doi: 10.1109/ICPR.2016.
7900006.

[83] Y. Wu, Z. Wang, Z. Jia, Y. Shi, and J. Hu, ‘‘Intermittent infer-
ence with nonuniformly compressed multi-exit neural network for
energy harvesting powered devices,’’ in Proc. 57th ACM/IEEE Design
Autom. Conf. (DAC), San Francisco, CA, USA, Jul. 2020, pp. 1–6, doi:
10.1109/DAC18072.2020.9218526.

VOLUME 10, 2022 125013

http://dx.doi.org/10.1109/MWSCAS.2019.8884893
http://dx.doi.org/10.1109/TVT.2010.2050013
http://dx.doi.org/10.1145/3173039
http://dx.doi.org/10.1016/j.sysarc.2022.102464
http://dx.doi.org/10.3115/v1/d14-1179
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1007/978-3-030-01264-9_8
http://dx.doi.org/10.1016/j.neucom.2021.07.045
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1145/2906388.2906396
http://dx.doi.org/10.1145/3300061.3345455
http://dx.doi.org/10.1145/3300061.3345455
http://dx.doi.org/10.1109/ICPR.2016.7900006
http://dx.doi.org/10.1109/ICPR.2016.7900006
http://dx.doi.org/10.1109/DAC18072.2020.9218526


M. Lv, E. Xu: Deep Learning on Energy Harvesting IoT Devices: Survey and Future Challenges

[84] Y. Li, Y. Wu, X. Zhang, J. Hu, and I. Lee, ‘‘Energy-aware adaptive
multi-exit neural network inference implementation for a millimeter-
scale sensing system,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 30, no. 7, pp. 849–859, Jul. 2022, doi: 10.1109/TVLSI.2022.
3171308.

[85] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu,
‘‘Everything leaves footprints: Hardware accelerated intermittent
deep inference,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 11, pp. 3479–3491, Nov. 2020, doi:
10.1109/TCAD.2020.3012217.

[86] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu,
‘‘More is less: Model augmentation for intermittent deep inference,’’
ACM Trans. Embedded Comput. Syst., vol. 21, no. 5, pp. 1–26, Sep. 2022,
doi: 10.1145/3506732.

[87] A. Montanari, M. Sharma, D. Jenkus, M. Alloulah, L. Qendro, and
F. Kawsar, ‘‘EPerceptive: Energy reactive embedded intelligence for bat-
teryless sensors,’’ in Proc. 18th Conf. Embedded Netw. Sensor Syst.,
Nov. 2020, pp. 382–394, doi: 10.1145/3384419.3430782.

[88] Y. Li, Y. Wu, X. Zhang, E. Hamed, J. Hu, and I. Lee, ‘‘Developing
a miniature energy-harvesting-powered edge device with multi-
exit neural network,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Daegu, South Korea, May 2021, pp. 1–5, doi:
10.1109/ISCAS51556.2021.9401799.

[89] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforce-
ment learning,’’ in Proc. 5th Int. Conf. Learn. Represent. (ICLR),
Toulon, France, Apr. 2017. [Online]. Available: https://openreview.
net/forum?id=r1Ue8Hcxg

[90] M. Lv and E. Xu, ‘‘Efficient DNN execution on intermittently-
powered IoT devices with depth-first inference,’’ IEEE Access, vol. 10,
pp. 101999–102008, 2022, doi: 10.1109/ACCESS.2022.3203719.

[91] B. Islam and S. Nirjon, ‘‘Zygarde: Time-sensitive on-device deep infer-
ence and adaptation on intermittently-powered systems,’’ Proc. ACM
Interact., Mobile, Wearable Ubiquitous Technol., vol. 4, no. 3, pp. 1–29,
Sep. 2020, doi: 10.1145/3411808.

[92] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao,
H. Cilasun, J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu,
‘‘MOUSE: Inference in non-volatile memory for energy harvesting
applications,’’ in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microar-
chitecture (MICRO), Athens, Greece, Oct. 2020, pp. 400–414, doi:
10.1109/MICRO50266.2020.00042.

[93] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao,
H. Cilasun, J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu, ‘‘Energy
efficient and reliable inference in nonvolatile memory under extreme
operating conditions,’’ ACM Trans. Embedded Comput. Syst., Mar. 2022,
doi: 10.1145/3520130.

[94] K. Qiu, N. Jao, K. Zhou, Y. Liu, J. Sampson, M. T. Kandemir, and
V. Narayanan, ‘‘MaxTracker: Continuously tracking the maximum com-
putation progress for energy harvesting reram-based CNN accelerators,’’
ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, pp. 78:1–78:23, 2021,
doi: 10.1145/3477009.

[95] S. Lee, B. Islam, Y. Luo, and S. Nirjon, ‘‘Intermittent learning: On-device
machine learning on intermittently powered system,’’ Proc. ACM Inter-
act. Mob. Wearable Ubiquitous Technol., vol. 3, no. 4, pp. 141:1–141:30,
2019, doi: 10.1145/3369837.

[96] S. Islam, J. Deng, S. Zhou, C. Pan, C. Ding, and M. Xie, ‘‘Enabling fast
deep learning on tiny energy-harvesting IoT devices,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 921–926, doi:
10.23919/DATE54114.2022.9774756.

[97] H. R. Mendis, C. Kang, and P. Hsiu, ‘‘Intermittent-aware neural archi-
tecture search,’’ ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s,
pp. 64:1–64:27, 2021, doi: 10.1145/3476995.

[98] B. Islam and S. Nirjon, ‘‘Zygarde: Time-sensitive on-device deep
inference and adaptation on intermittently-powered systems,’’ Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 4, no. 3,
pp. 82:1–82:29, 2020, doi: 10.1145/3411808.

[99] X. Dong, X.Wu, G. Sun, Y. Xie, H. Li, andY. Chen, ‘‘Circuit andmicroar-
chitecture evaluation of 3D stacking magnetic RAM (MRAM) as a uni-
versal memory replacement,’’ in Proc. 45th Annu. Conf. Design Autom.,
Anaheim, CA, USA, 2008, pp. 554–559, doi: 10.1145/1391469.1391610.

[100] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, ‘‘Accuracy-guaranteed
collaborative DNN inference in industrial IoT via deep reinforcement
learning,’’ IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4988–4998,
Jul. 2021.

[101] M. Chu, H. Li, X. Liao, and S. Cui, ‘‘Reinforcement learning-based
multiaccess control and battery prediction with energy harvesting in
IoT systems,’’ IEEE Internet Things J., vol. 6, no. 2, pp. 2009–2020,
Apr. 2018, doi: 10.1109/JIOT.2018.2872440.

[102] A. Y. Majid, C. D. Donne, K. Maeng, A. Colin, K. S. Yildirim,
B. Lucia, and P. Pawełczak, ‘‘Dynamic task-based intermittent execution
for energy-harvesting devices,’’ ACM Trans. Sensor Netw., vol. 16, no. 1,
pp. 1–24, Feb. 2020, doi: 10.1145/3360285.

[103] A. Bakar and J. Hester, ‘‘The energy harvesting mode abstrac-
tion,’’ in Proc. 16th ACM Conf. Embedded Networked Sensor Syst.,
G. S. Ramachandran and B. Krishnamachari, Eds., Shenzhen, China,
Nov. 2018, pp. 418–419.

MINGSONG LV (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer science
from Northeastern University, China, in 2002,
2005, and 2010, respectively. He is currently an
Associate Professor with Northeastern University.
His research interests include timing analysis of
real-time systems, intermittent computing, and
satellite edge computing. He received the Best
Paper Award of DATE 2013.

ENYU XU received the B.S. degree in computer
science from the Taiyuan University of Science
and Technology, China, in 2019, and the M.S.
degree in computer science from Northeastern
University, China, in 2022. His research interests
include intermittent computing, deep learning, and
timing analysis of DNN programs on GPU.

125014 VOLUME 10, 2022

http://dx.doi.org/10.1109/TVLSI.2022.3171308
http://dx.doi.org/10.1109/TVLSI.2022.3171308
http://dx.doi.org/10.1109/TCAD.2020.3012217
http://dx.doi.org/10.1145/3506732
http://dx.doi.org/10.1145/3384419.3430782
http://dx.doi.org/10.1109/ISCAS51556.2021.9401799
http://dx.doi.org/10.1109/ACCESS.2022.3203719
http://dx.doi.org/10.1145/3411808
http://dx.doi.org/10.1109/MICRO50266.2020.00042
http://dx.doi.org/10.1145/3520130
http://dx.doi.org/10.1145/3477009
http://dx.doi.org/10.1145/3369837
http://dx.doi.org/10.23919/DATE54114.2022.9774756
http://dx.doi.org/10.1145/3476995
http://dx.doi.org/10.1145/3411808
http://dx.doi.org/10.1145/1391469.1391610
http://dx.doi.org/10.1109/JIOT.2018.2872440
http://dx.doi.org/10.1145/3360285

