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ABSTRACT With the growing usage of renewable energy resources, the fluctuation and randomness of
solar and wind power output have a significant influence on the safe and stable operation of a power system.
Deciding how to deal with these uncertainties has become a hot topic for researchers and practitioners.
In this paper, a hybrid improved marine predators algorithm is proposed to solve the optimal reactive
power dispatch problem with load demand, and wind-solar power uncertainties. The ε-constraint handling
technique is adopted to deal with the constraints in the optimization problem. The uncertainty factors in
the system are modeled using appropriate probability density functions. The backward reduction method
is used to determine a representative set of scenarios from a large number of scenarios produced by a
Monte Carlo simulation method. IEEE 30-bus test system is utilized to verify the proposed algorithm.
The simulation results demonstrate that the algorithm can produce better results than other advanced
metaheuristic algorithms.

INDEX TERMS The ε-constraint handling, marine predators algorithm, optimal reactive power dispatch,
renewable energy, uncertainty.

I. INTRODUCTION
The optimal reactive power dispatch (ORPD) problem is one
of the significant research directions in the field of power
system optimization. The primary objective of the ORPD
problem is to maximize the voltage stability by optimizing
the generator terminal voltages, transformer taps, shunt VAR
compensators, and other equipment to minimize active power
loss and voltage deviation [1], [2]. From the mathemati-
cal viewpoint, the control variables of the power system
include both continuous variables (i.e., generator voltages)
and discrete variables (i.e., tap of transformers and shunt VAR
compensators), which make the ORPD problem difficult to
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solve. Therefore, seeking a better solution has received much
attention.

In the early stages, many traditional mathematical meth-
ods, including the newton method [3] and linear program-
ming [4], have been widely employed to address the ORPD
problem. Unfortunately, these techniques have weaknesses
that cannot be ignored, in particular poor convergence, com-
plex computation, and inappropriate handling of discrete
variables. To better solve the non-linear ORPD problem,
scholars have developed numerous intelligent optimization
techniques, like differential evolution (DE) [5], grey wolf
optimizer (GWO) [6], cuckoo search algorithm (CS) [7], bat
algorithm (BA) [8], and social spider optimization (SSO) [9].

Nowadays, with the increasing use of renewable energy
resources (RERs) in the power system, the uncertainties
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of wind power and photovoltaic power output has brought
serious challenges to safe and stable operation. To realize
efficient management, the uncertainty of the system must
be taken into account. Therefore, the solutions of ORPD
incorporating RERs are studied in [10], [11], [12], and [13].
The marine predators algorithm (MPA) is a recently proposed
algorithm by Faramarzi et al. [14]. The research demonstrates
that while the MPA performs favorably with different algo-
rithms, it still has poor convergence and local optima traps
when solving complex problems [15], [16], [17].

In this paper, considering the uncertainties of load demand
and RERs, a hybrid improved marine predators algo-
rithm (HIMPA) is applied to solve the ORPD problem. The
HIMPA has been modified in the following three aspects:
i) to improve the quality of the initial solution, an opposition-
based learning method is adopted; ii) to balance the explo-
ration and development capabilities, the mid-term stage of
traditional MPA is replaced by the modified DE/best −
to-rand/1 strategy; iii) SS operator is used to enhance the
development stage of the algorithm and accelerate the con-
vergence speed. Since the constraints are difficult to deal
with, we use the ε-constraint handling [18] and HIMPA inte-
gration technology to optimize the decision variables in the
system. Moreover, the uncertainty in the power system is also
modeled using various probability density functions (PDFs)
[11]. In addition, 1000 scenarios are generated employing
the Monte Carlo Simulation method [19] and then chosen by
applying a backward reduction technique. Finally, the feasi-
bility and effectiveness of the HIMPA algorithm are verified
on IEEE 30-bus test system.

The remainder of the paper is structured as follows:
Section II describes the ORPD problem formulation and
ε-constraint handling technique. Section III describes the
uncertainties model of RERs and load demand. In Section IV,
the background knowledge is briefly recalled. The improved
MPA is detailed in Section V. The related experimental anal-
ysis and discussion are provided in Section VI. Section VII
concludes the work.

II. PROBLEM FORMULATION
The mathematical model of the ORPD problem can generally
be defined as follows:

Min : F (x,u) (1)

Sub. to : gi (x,u) ≤ 0, i = 1, 2, · · · ,m (2)

hj (x, u) = 0, j = m+ 1, · · · , p (3)

where F (x,u) is the objective function, gi (x,u) and hj (x,u)
indicate the ith inequality constraint and the jth equality
constraint, respectively. The vectors x and u represent control
and state variables, respectively, i.e.,

x = [VG1 , · · · ,VGNG ,QC1 , · · · ,QCNC ,T1, · · · ,TNT ]

(4)

u = [VL1 , · · · ,V LNL ,QG1 , · · · ,QGNG , Sl1 , · · · , Slnl ] (5)

where VGi represents the voltage at the ith generator bus,
QCj denotes the shunt compensation at the jth bus and Tk
signifies the kth branch transformer tap; NG, NC, and NT
are the number of generators buses, shunt compensators,
and transformers, respectively. In this paper, QC and Tk are
discrete variables. VLm is the voltage at the mth load bus, QGi
denotes the reactive power at the ith generator bus and Slq
represents the line loading at the qth line. NL and nl are the
number of load buses and the transmission lines, respectively.

A. OBJECTIVE FUNCTIONS
1) MINIMIZATION OF THE REAL POWER LOSS
The mathematical model with the objective of reducing the
real power loss (FLoss) can be expressed as [20]:

FLoss =
nl∑
i=1

nl∑
j6=i

Gij[V 2
i + V

2
j − 2ViVjcos(δi − δj)] (6)

where Vi is the voltage magnitude at the ith bus. Gij denotes
the transfer conductance between bus i and j, and δi is the
voltage angle at the ith bus.

2) MINIMIZATION OF THE VOLTAGE DEVIATION
The voltage deviation is calculated as the sum of all load
bus voltages deviating in the network from the ideal value
by 1.0 p.u. Mathematically, the voltage deviation objective
function (FVD) can be defined as [20]:

FVD =

(
NL∑
m=1

|VLm − 1|

)
(7)

B. CONSTRAINTS
1) EQUALITY CONSTRAINTS
The power balance equations are stated as follows:

PGi − PDi − Vi
NB∑
j=1

Vj
[
Gij cos

(
δi − δj

)
+ Bij sin

(
δi − δj

)]
= 0 (8)

QGi − QDi − Vi
NB∑
j=1

Vj
[
Gij sin

(
δi − δj

)
− Bij cos

(
δi − δj

)]
= 0 (9)

where PG and QG are the active and reactive power of the
generator, respectively. PD and QD represent the active and
reactive load demands, respectively. Bij denotes the suscep-
tance between bus i and j, and NB is the number of buses.

2) INEQUALITY CONSTRAINTS
To ensure a safe and stable operation, control variables and
state variables necessarily satisfy the following inequality
constraints.

Vmin
Gi ≤ VGi ≤ V

max
Gi , ∀i ∈ NG

QminCj ≤ QCj ≤ Q
max
Cj , ∀j ∈ NC

Tmink ≤ Tk ≤ Tmaxk , ∀k ∈ NT

(10)
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
Vmin
Lm ≤ VLm ≤ V

max
Lm , ∀m ∈ NL

QminGi ≤ QGi ≤ Q
max
Gi , ∀i ∈ NG

Slq ≤ S
max
lq , ∀q ∈ nl

(11)

C. ε-CONSTRAINT HANDLING TECHNIQUE
The equality constraints in the ORPD problem can be con-
verted into inequality constraints, and all constraints can be
written as:

Gi (x,u) =

{
max {gi (x,u) , 0} i = 1, 2, · · · ,m
max {|hi(x,u)| − δ, 0} i = m+ 1, · · · , p

(12)

where δ signifies the tolerance parameter. Therefore, the
individual’s total constraint violation can be formulated as:

vio (x,u) =
∑m

i=1 wi · Gi (x,u)∑m
i=1 wi

(13)

wi =
1

Gi,max
(14)

where wi is a weight parameter and Gi,max represents the
maximum violation of the constraintGi (x,u) obtained so far.
The ε-constraint handling method is an effective constraint

handling technique, which is first introduced by Takahama
and Sakai [18]. The core idea is to find feasible solutions
by controlling the ε-parameter [11]. The traditional ε setting
method is stated as follows:

ε (1) = vio(xθ ) (15)

ε (t) =

 ε (1) ∗
(
1−

t
Tc

)cp
, 0 < t < Tc

0, t < Tc
(16)

where xθ is the θ th individual with the highest overall con-
straint violation in the initial population and θ = 0.05 ∗ N .
ε(1) is the initial epsilon parameter and t indicates the current
iteration. Tc represents the number of generations that the
ε-parameter is managed before being set to zero. According
to [18], the relevant parameters are set as cp ∈ [2, 10], Tc ∈
[0.1 ∗ tmax , 0.8 ∗ tmax], where tmax is the maximum number
of iterations. We can follow the feasibility rule proposed by
Deb to find an optimal feasible solution [21].

III. THE UNCERTAINTIES OF LOAD DEMAND AND RERs
A. UNCERTAINTY MODELING OF SOLAR IRRADIANCE
The lognormal PDF is applied to represent the solar irradi-
ance [11] and expressed as follows:

fG (G) =
1

Gσs
√
2π

exp

[
−
(lnG− µs)2

2σ 2
s

]
for G > 0

(17)

where µs and σs denote the mean and standard deviation,
respectively. In this paper, the 1000 Monte Carlo scenarios of
solar irradiance are created using lognormal PDF (µs = 5.5,
σs = 0.5).

The output power of the photovoltaic unit as a function of
irradiance can be calculated as [22]:

Ps (G) =


Psr

(
G2

Gstd × Xc

)
for 0 < G ≤ Xc

Psr

(
G
Gstd

)
for G ≥ Xc

(18)

where Psr is the photovoltaic unit rated power which equals
50 MW; Gsd and Xc denote the standard solar irradiance and
a certain irradiation point which are equal to 1000W/m2 and
120W/m2, respectively [11].

B. UNCERTAINTY MODELING OF LOAD
The uncertainty of load is modeled using the normal PDF
defined as follows [23]:

fd (Pd ) =
1

σd
√
2π

exp[−
(Pd − µd )2

2σ 2
d

] (19)

where Pd represents probability density of normal distribu-
tion of load; σd and µd are the standard deviation and mean
values which are equal to 10 and 70, respectively [11]. Here,
the Monte Carlo method is used to establish load demand
scenarios (sample size 1000).

C. UNCERTAINTY MODELING OF WIND SPEED
The Weibull PDF is utilized to signify the wind speed [11]
and is expressed as follows:

fν (νw) = (
β

α
)
(νw
α

)(β−1)
exp[−

(νw
α

)(β−1)
] 0 ≤ v <∞

(20)

where νw represents the wind speed, and its unit is meters per
second. α and β are the scale and shape parameters of the
Weibull PDF, respectively. Weibull PDF is employed in the
Monte Carlo method to construct the wind speed distribution
scenarios (sample size 1000, α = 9, β = 2).

The output power of a wind turbine can be formulated as
follows [24]:

Pω (νw)=


0 for νw < νwr and νw > νwo

Pωr

(
νw − νwi

νwr − νwi

)
for νwi ≤ νw ≤ νwr

Pωr for νwr ≤ νw ≤ νwo
(21)

where Pωr is the wind turbine rated output power; νwr =
16m/s, νwi = 3m/s, and νwo = 25m/s are the rated, cut-
in, and cut-out speeds of the wind turbine, respectively. Note
that a wind farm is made up of 25 turbines with a total output
of 75 MW.

D. BACKWARD REDUCTION TECHNIQUE
In this paper, the backward reduction algorithm [25] is
applied to simplify 1000Monte Carlo scenarios into 25 repre-
sentative scenarios sets. Detailed steps of scenario reduction
are described in [11]. The selected scenarios, along with
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their associated parameters and probabilities, are provided in
Table 3.

IV. BACKGROUND
A. MARINE PREDATORS ALGORITHM
MPA is a novel nature-inspired metaheuristic algorithm that
simulates the biological behavior of marine predators forag-
ing for prey [14]. The main operation idea is that predators
adopt two random walks called ´Levy flight and Brownian
motion to improve the encounter rate with prey and update
their position based on the optimal solution. Meanwhile, the
prey also acts as a predator. Because the prey is hunting for
its own food while the predator is looking for prey.

Similar to other population-based metaheuristic algo-
rithms, theMPA also randomly initializes the location of prey
through (22):
−→
X i =

−→
lb +
−−→
rand ⊗

(
−→
ub −

−→
lb
)
, i = 1, 2 · · · , n (22)

where
−→
ub and

−→
lb are the upper and lower boundaries of the

search space, respectively. Also,
−−→
rand represents a random

number within the range from 0 to 1. The prey matrix is
described as follows:

Prey =


X1,1 X1,2
X2,1 X2,2

. . . X1,d

. . . X2,d
...

...

Xn,1 Xn,2

. . .
...

· · · Xn,d

 (23)

where n is the population size and d signifies problem
dimensions.

In this step, according to the fitness value of prey, we deter-
mine the best solution as the top predator, namely the Elite
matrix, which is defined as (24):

Elite =


X I1,1 X I1,2
X I2,1 X I2,2

. . . X I1,d

. . . X I2,d
...

...

X In,1 X In,2

. . .
...

· · · X In,d

 (24)

The entire iterative process is divided into three stages
based on different speed ratios while simulating the lifespan
of predators and prey. The description of these three stages
are as follows [14]:

The first stage is carried out in the first third of the iteration
when the prey is faster than the predator. The updated process
for the prey is as follows:

−−→
Stepi =

−→
R B ⊗

(
−−→
Elitei −

−→
R B ⊗

−−→
Preyi

)
(25)

−−→
Preyi =

−−→
Preyi + P ·

−→
R ⊗
−−→
Stepi (26)

where
−−→
Stepi is the step size vector, and

−→
R B is a normally

distributed random vector, representing the Brownianmotion.
−→
R ∈ [0, 1] denotes a random vector, P = 0.5, and ⊗
indicates the entry-wise multiplication. In addition, t and tmax
are the present and maximum iterations, respectively.

The second stage is implemented in the middle of the itera-
tion when the predator and prey move at the same speed. The
population is split into two groups, one is used for exploration
and the other is utilized for development. The mathematical
descriptions of both are as follows:

−−→
Stepi =

−→
R L

(
−−→
Elitei −

−→
R L ⊗

−−→
Preyi

)
, i = 1, 2, · · · , n

/
2

(27)
−−→
Preyi =

−−→
Preyi + P ·

−→
R ⊗
−−→
Stepi (28)

where
−→
R L represents the random vector based on the Lévy

distribution.
−−→
Stepi =

−→
R B ⊗

(
−→
R B ⊗

−−→
Elitei −

−−→
Preyi

)
, i = n

/
2, · · · , n

(29)
−−→
Preyi =

−−→
Elitei + P · CF ⊗

−−→
Stepi (30)

where CF =
(
1− t

tmax

)( 2·t
tmax

)
is an adaptive parameter to

control the predator’s moving step.
The last stage is executed in the last third of the iteration

when the predator outruns the prey. The updated formula for
the prey is as follows:

−−→
Stepi =

−→
R L ⊗

(
−→
R L ⊗

−−→
Elitei −

−−→
Preyi

)
(31)

−−→
Preyi =

−−→
Elitei + P · CF ⊗

−−→
Stepi (32)

However, some studies have shown that eddy formation or
the effect of fish aggregating devices (FADs) would affect
the foraging behavior of predators, and easily lead to local
optimum. This process can be mathematically described as
in (33), shown at the bottom of the page, where

−→
U is a binary

vector, FADs = 0.2, and r ∈ [0, 1]. r1 and r2 are random
indices from the prey matrix.

B. SPHERICAL SEARCH ALGORITHM
Spherical search algorithm (SS) is proposed by Abhishek
Kumar to solve global optimization problems with bounded
constraints [26]. In the SS algorithm, each solution creates
a spherical boundary according to the target direction and
makes the trial solution lies on the surface of the spherical
boundary. Each spherical boundary is constructed using the
axis determined by the individual position and the target
position, with the target direction here referring to the primary
axis of the spherical boundary.

−−→
Preyi =


−−→
Preyi + CF

[
−→
lb +
−→
R ⊗

(
−→
ub −

−→
lb
)]
⊗
−→
U if r < FADs

−−→
Preyi + [FADs (1− r)+ r]

(
−−→
Preyr1 −

−−→
Preyr2

)
otherwise

(33)
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Similar to other metaheuristic algorithms, the SS algorithm
initializes the search process by randomly generating a set of
populations, and the expression is shown in (22). Then the ith
trial solution

−→
Y i corresponding to the ith solution

−→
X i can be

calculated as:

−→
Y i =

−→
X i + ciPr i

−→
Z i (34)

where ci represents the step-size control vector of the ith trial
solution, whose value is randomly calculated within the range
of [0.5,0.7] obtained from the experiment. Pr i is the pro-
jection matrix, which determines the value of

−→
Y i on the

spherical boundary, and
−→
Z i denotes the search direction.

Algorithm 1 Pseudocode of the SS
Input: n,NEmax , ub, lb, rd = 0.95, c = [0.5, 0.7]
/∗n is population size, NEmax is the maximum number of
calculations, ub and lb are the boundaries of the search space,
d is search-space dimension; c is the parameter for the scale
of step-size ∗/
Output: The best solution
1. Initialization
2. Calculate the fitness value of

−→
X i

3. While (FEs ≤ FEmax)
4. Calculate step-size control vector, ci
5. Calculate the search direction of

−→
X i

6. Calculate the orthogonal matrix, A
7. for i = 1 to n do
8. Calculate the rank of projection using (38)
9. if i < 0.5 ∗ n then
10. Update the half population of better solutions

using (35)
11. else
12. Update the other half of the population using (36)
13. endif
14. end for
15. Calculate the trial solution
16. Apply the greedy selection
17. end while

The SS algorithm uses two ways to calculate the search
direction, namely toward-rand and toward-best. The popu-
lation is divided into two groups on average according to
the fitness value. When determining the search direction,
the group with superior fitness uses toward-rand, while the
group with poor fitness uses toward-best. The mathematical
descriptions of both are as follows:

−→
Z i =

−→
X pi +

−→
X qi −

−→
X ri −

−→
X i (35)

−→
Z i =

−→
X pbesti +

−→
X qi −

−→
X ri −

−→
X i (36)

where pi, qi and ri are randomly selected indices from among
1 to n such that pi 6= qi 6= ri 6= i.pbest denotes the randomly
selected individuals from the top p solutions in the current
iteration.

The projection matrix Pr i in (38) is a symmetric matrix,
and its expression is as follows:

Pr = A′diag
(
−→
b i

)
A (37)

where A is an orthogonal matrix and
−→
b i represents a binary

vector. The calculation method of binary diagonal matrix
diag

(
−→
b i

)
is as follows:

0 < rank(diag
(
−→
b i

)
) < d (38)

Followed by using greedy selection to update the ith solu-
tion of the population, the mathematical expression can be
expressed as follows:

−→
X t+1
i =

{−→
Y t
i , if f

(
−→
Y t
i

)
≤ f

(
−→
X t
i

)
−→
X t
i , otherwise

(39)

The basic steps of the SS algorithm are summarized by the
pseudo-code shown in Algorithm 1.

V. HYBRID IMPROVED MARINE PREDATORS
ALGORITHM
A. OPPOSITION-BASED LEARNING
Opposition-based learning (OBL) is an effective method of
population initialization proposed by Tizhoosh [27]. In the
metaheuristic algorithm, some randomly generated search
agents are frequently distributed far away from the optimal
solution or in the opposite position of the optimal solution,
which reduces the search efficiency of the population. Here,
the OBL strategy improves the quality of the initial popula-
tion by constructing a solution closer to the optimal solution
search region. Suppose

−→
X i =

(
Xi,1,Xi,2, · · · ,Xi,d

)
is a

solution in d-dimensional space, then the opposite solution
−→
X
′

i is calculated as follows:

−→
X ′i =

−→
ub +

−→
lb −
−→
X i, i = 1, 2, · · · , n (40)

Therefore, the fittest search agents are chosen from the
population generated by random and its opposite population
to construct an initial population.

B. TRANSITIONAL STAGE OF INTEGRATING DIFFERENTIAL
EVOLUTION
In the preliminary and intermediate stages of theMPA, preda-
tors and prey may skip the most promising area in the search
area because they search for food quickly [28]. Inspired by the
DE algorithm, the improved DE/best − to-rand/1 strategy
is used to replace the middle stage of the traditional MPA,
which balances the development and exploration capabilities
and improves the convergence speed of the algorithm. The
updated mode for the prey position is as follows:

−−→
Preyi =

−−→
Elitei + rand ·

(
−−→
Preyi −

−−→
Preyr4

)
+ rand ·

(
−−→
Preyr5 −

−−→
Preyr6

)
(41)
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where rand represents a random value within [0, 1] . The
subscripts r4, r5 and r6 indicate that integers are randomly
selected from 1 to n with r4 6= r5 6= r6 6= i. Note
that this phase is executed between t > 1

/
20 tmax and

t < 18
/
20 tmax .

C. ADAPTIVE MUTATION OPERATION
In the third stage of iterative optimization, the SS operator
is used to strengthen the development stage of the traditional
MPA, to improve the search efficiency of the improved algo-
rithm. Here, the probability value of p = 0.7 is utilized
to perform the adaptive mutation operation, and the prey
updates their position by performing MPA or SS operators to
exploit the finest solutions. The corresponding mathematical
expression of this strategy is:

−−→
Preyi =

{
operators of MPA rand < p
operators of SS otherwise

(42)

Algorithm 2 Pseudocode of the HIMPA
Input: n, tmax , ub, lb,P = 0.5,FADs = 0.2
/∗n is population size, tmax is the maximum number of
iterations, ub and lb are the boundaries of the search
space ∗/
Output: Top predator
1. Initialize search agents using the OBL strategy
2. t = 1
3. while(t ≤ tmax)
4. Calculate fitness and constraint violation for each search
agent
5. Construct the Eliite matrix
6. Accomplish memory saving according to constraint
violation
7. if t < tmax/20 then
8. Update prey using ((25)-(26))
9. elseif tmax/20 < t < 18 ∗ tmax/20 then
10. Update prey using (41)
11. else
12. Update prey using (42)
13. end if
14. Update ε-parameter, evaluate fitness and constraint vio-
lation for each search agent
15. Accomplish memory saving according to the rules of EC
and Elite individual update
16. Apply the FADs effect using (33), and t = t + 1
17. end while

D. THE FRAMEWORK OF HIMPA
The basic steps of the proposed HIMPA are summarized by
the pseudo-code shown in Algorithm 2.

VI. SIMULATION RESULTS AND DISCUSSION
In this section, the HIMPA is studied for solving the ORPD
problem on IEEE 30-bus systems with and without RERs

uncertainty. The parameters and generator data of the studied
system are taken from [11]. For all given cases, the popula-
tion size, the number of trial runs, the maximum number of
function evaluations, and the maximum number of iterations
are specified as 40, 5, 30000, and 374, respectively. The
proposed HIMPA runs on MATLAB R2020a with an Intel
Core i3 @4 GHz CPU with 64GB RAM.

A. CASE 1: STANDARD IEEE 30-BUS SYSTEM
Cases (1) and (2) aim to minimize real power loss (Ploss)
and aggregate voltage deviation (VD), respectively. In both
cases, the shunt compensator and transformer taps are set to
discrete variables in accordance with the recommendations
in [11]. In addition, the active power value of generators
should be reasonably selected within the specified range of
the generators. To effectively compare with previous studies,
the objective functions of Cases (1a) and (2a) are to reduce
Ploss and VD, respectively. And these cases take into account
the active power value of the generator.

Table 1 provides the optimization results of all variables
of the four study cases. In Case (1), the Ploss obtained by
the HIMPA is 4.4125 MW, while the VD in Case (2) is
0.08846 p.u. The voltage profiles of load buses are shown in
Fig. 1. Voltage of few load buses operates near the maximum
limit to achieve the minimum Ploss.While Cases (2) and (2a)
will not result in excess voltage because the goal is to keep
the bus voltage close to 1.0 p.u.

Figs. 2 and 3 show the iterative convergence curves of
the HIMPA and MPA-EC in Cases (1) and (2), respectively.
It can be seen that the MPA-EC is liable to fall into local
optimization in the early and middle stages of optimization,
and the optimal solution cannot be found quickly. However,
the HIMPA can converge to the optimal value quickly in the
early stage of optimization. This shows that the improved
marine predator algorithm effectively balances the global and
local search ability. Table 2 presents a comparison between
the proposed algorithm in this study and the reported algo-
rithm. None of the other references in the table specifies the
active power settings for the particular generators, except [29]
and [30]. Assume that the data in these references are set
according to the data in [29]. The study in [11] analyzes in
detail the infeasibility of some algorithm solutions in Table 2.
In the comparison between Case (2) and (2a), many reported
algorithms have better VD values than the proposed HIMPA,
but there is no documented study to examine the correspond-
ing actual reactive power generation status or voltage distri-
bution of load buses [11].

B. CASE 2: MODIFIED IEEE 30-BUS SYSTEM
This subsection adopts the stochastic ORPD approach based
on wind power uncertainty proposed in [31] and [32] to
calculate the expected power loss (EPL) and expected voltage
deviation (EVD). When RERs are in short supply, swing
generators necessarily provide additional power to meet sys-
tem demand. The details of stochastic ORPD are explained
in [16]. The modified IEEE 30-bus system is to switch the
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TABLE 1. Simulation results of the study cases.

FIGURE 1. Voltage profiles of load buses in different cases.

thermal generators of buses 5 and 8 to wind generator and
solar generator units, respectively. Table 3 lists the details of
25 representative scenarios. The objective of Case (3) is to
minimize the EPL under uncertain conditions, as follows:

EPL =
Nsc∑
SC=1

1sc × Ploss,sc (43)

FIGURE 2. Convergence characteristics of HIMPA and MPA-EC for Case 1.

where 1sc and Ploss represent the probability and minimum
power loss of the scenario, respectively. Similarly, the min-
imization of the EVD under all scenarios is evaluated as
follows:

EVD =
Nsc∑
SC=1

1sc × VDsc (44)
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FIGURE 3. Convergence characteristics of HIMPA and MPA-EC for Case 2.

FIGURE 4. Voltage profiles of load buses in extreme scenarios.

FIGURE 5. Optimum values of generator bus voltages in Case 3.

The EPL value of Case (3) is 1.8316 MW, and the EVD
value of Case (4) is 0.05856 p.u. According to the data analy-
sis in Table 3, under the condition of minimum network load,
Ploss is also small (scenario 4). Minimum loading represents
the lowest current in the network and therefore the lowest
power loss. On the other hand, when the network loading

FIGURE 6. Optimum values of generator bus voltages in Case 4.

TABLE 2. Comparison results of different cases.

is the largest, the system active power loss is the largest
(scenario 20).

The experimental results of the EVD show that under the
minimum load (scenario 4), the bus voltage levels of the
network can be maintained close to the desired 1.0 p.u.
Similarly, the low current means the minimum aggregate VD.
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TABLE 3. Case studies with uncertain load and renewable energy.

On the contrary, under the maximum load (scenario 20), the
aggregate VD of the system is the highest.

Fig. 4 depicts the distribution of load bus voltage in these
two extreme scenarios. Figs. 5 and 6 show the optimal values
of generator bus voltages for each scenario in Cases (3)
and (4), respectively. Generator bus voltage values in Case (3)
are higher than those in Case (4); particularly in Case (4), bus
11 has a greater voltage setting, since it is connected to the
nearby load buses without any shunt compensators.

VII. CONCLUSION
In this paper, a hybrid improved marine predators algorithm
(HIMPA) is proposed, which can improve the performance of
the originalMPAwhen solving the ORPD problem. The three
improvements of the HIMPA are based on opposition-based
learning, the transitional stage of integrating differential evo-
lution, and the adaptive mutation strategy. In the first section,
the proposed HIMPA is applied to solve the deterministic
ORPD problem, and the basic IEEE 30-bus system is selected
for testing. The optimization objectives are real power loss
and voltage deviation. The test results show that the optimal
solution obtained by HIMPA is better than other competitive
algorithms. Subsequently, stochastic ORPD solutions with
uncertainties of solar power, wind, and load demand have
been investigated by a scenario-based approach for the mod-
ified IEEE 30-bus system. Various scenarios are created by
Monte Carlo simulation, and then a group of representative
scenarios is selected by using the backward reduction tech-
nique. The expected power loss and expected voltage devia-
tion values in different scenarios are calculated by optimizing
these parameters. The results show that the combination of
the HIMPA and ε-constraint technique can effectively solve
the ORPD problem.
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