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ABSTRACT Fifth-generation (5G) cellular communication systems have embraced massive multiple-input-
multiple-output (MIMO) in the low- and mid-band frequencies. In a multiband system, the base station can
serve different users in each band, while the user equipment can operate only in a single band simultaneously.
This paper considers a massive MIMO system where channels are dynamically allocated in different
frequency bands. We treat multiband massive MIMO as a scheduling and resource allocation problem and
propose deep reinforcement learning (DRL) agents to perform user scheduling. The DRL agents use buffer
and channel information to compose their observation space, and the agent’s reward function maximizes
the transmitted throughput and minimizes the packet loss rate. We compare the proposed DRL algorithms
with traditional baselines, such as maximum throughput and proportional fairness. The results show that the
DRL models outperformed baselines obtaining a 20% higher network sum rate and an 84% smaller packet
loss rate. Moreover, we compare different DRL algorithms focusing on training time to assess the online
implementation of the DRL agents, showing that the best agent needs about 50K training steps to converge.

INDEX TERMS Multiband scheduling, MIMO, DRL-based scheduling, mmWave.

I. INTRODUCTION
Massive MIMO remains a key technology in the fifth gen-
eration of cellular networks and beyond. It enables good
coverage in the network through the use of low- andmid-band
frequencies below 7 GHz. At the same time, it offers high
spectral efficiency through the use of multi-user MIMO com-
munication to spatially share the channel among different
users. The main challenge in applying massive MIMO in the
sub 7 GHz frequencies is that the available bands for use
are fragmented. This problem can be solved by aggregating
frequencies on different carriers. Unfortunately, aggregation
requires a more complicated radiofrequency (RF) design at
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the user equipment (UE) to transmit/receive and process
multiple bands simultaneously. An alternative is a multi-
band architecture, where UEs are limited to using a single
carrier simultaneously. The main challenge, in this case,
is the dynamic scheduling of UEs to bands in such a way as
to reduce the overhead associated with measuring channels
while achieving a good assignment of UEs to bands that
results in high system efficiency.

Scheduling and resource allocation (SRA) is a key com-
ponent of most wireless communication systems [1], [2], [3],
[4]. For example, in a massive MIMO system, resources that
might be scheduled include time-frequency resource blocks
and spatial layers [3]. The assignment of users to resources is
challenging as it involves combinatorial optimization involv-
ing the configuration of other parameters (power, coding,
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modulation, and beamformers). There may also be competing
objectives that need to be, including rate, fairness, energy,
and delay. In general, SRA leads to complicated joint multi-
optimization problems [3].

Early approaches for SRA would select users independent
of their channels using, e. g., round robin [1], [2]. This strat-
egy, though, does not account for the impact of path loss and
fading on user links. Since 2000, muchwork has been devoted
to channel-aware (or opportunistic) SRA [2]. For example,
a proportional fair scheduler assigns resources such that the
total network throughput is maximized and a minimum level
of service is assured for all users [5]. Nowadays, SRA systems
adopt cross-layer optimization enabling the usage of different
network layers’ information for improved performance [1],
[6], [7]. This extra flexibility on SRA has been explored
in several papers [8], [9]. However, the flexibility brings
new difficulty levels due to a large number of operational
parameters. The lack of efficient optimization procedures for
some SRA problems has motivated research on data-based
learning methods.

This paper mainly concerns a combinatorial optimization
problem, which is an area traditionally centered on heuristics
or dynamic programming. Machine learning has recently
expanded the solutions tomanage combinatorial optimization
problems [10], [11], [12].

One approach for adopting machine learning in combi-
natorial and other optimization problems is the learning-to-
optimize paradigm [13], [14]. This approach relies on the
existence of an iterative optimization algorithm that pro-
vides the labels for supervised learning. After proper train-
ing, a neural network can learn how to map the inputs
on the output labels and be faster than the optimization
algorithm. Nevertheless, a machine learning model trained
with the learning-to-optimize approach is not expected
to outperform the iterative algorithm that created the
labels.

This paper does not use learning-to-optimize or any other
supervised learning paradigm but reinforcement learning
(RL) [15]. RL is well-suited to resource allocation problems
that need to adapt continuously to the environment and cannot
be solved by efficient optimization algorithms. Another moti-
vation for adopting RL in this paper is the potential for the
RL agent to capture and use information that was not explic-
itly modeled, as experienced in areas such as computational
vision [16], [17], and also communications [18].

In this paper, we formulate the multiband massive MIMO
as a combinatorial SRA problem and solve it using RL.
RL has a long history in the optimization of communication
systems [19], [20], [21], e. g. in SRA [22], [23], rate adap-
tion [21], [24] and self-organizing networks [25], [26]. For
relatively small dimensions, we could model the described
SRA problem as a finite Markov decision process (MDP)
and implement the RL agent using tabular methods [15].
Unfortunately, scalability in finite MDP is an issue as the
complexity grows exponentially with the number of states
and actions [15].

Some SRA problems of interest have a large number of
parameters and cannot be modeled as a finiteMDP nor solved
with tabular methods [15]. Fortunately, the combination of
RL with deep neural networks in DRL approaches makes it
possible to deal with a large number of states and actions.
Thus, DRL has been extensively investigated for SRA in
recent years [21], [23], [27], [28], [29], [30], [31], [32].
Some of the relevant work in this area are summarized in the
following paragraphs.

In [21], a distributed method for downlink inter-cell power
control and rate adaptation was proposed that used an artifi-
cial neural network trained to estimate the Q-values [15] in
a DRL agent. Each cell was controlled by a DRL agent that
used local measurements with partial observability, given that
the cross-cell state observations were unavailable. There were
five discrete actions available to the DRL agent. A simplified
simulation scenario was used with one base station and users
located at random places without mobility.

In [23], the DRL goal was to obtain resource alloca-
tion policies that satisfy different quality of service (QoS)
objectives, such as packet loss rate minimization, guaranteed
bit rate satisfaction, and packet delay reduction. An Actor-
Critic architecture was trained to achieve the QoS metrics by
selecting three discrete actions corresponding to the different
scheduling rules. Their results were evaluated using simu-
lated data from single antenna cells (MIMO scenarios are not
explored) and with un temporally consistent channels.

Aiming to solve the difficulties imposed by high dimen-
sional discrete action spaces in multi-user MIMO SRA
problems, the authors of [27] presented a real-time deep
deterministic policy gradient (DDPG) user scheduling algo-
rithm. A continuous action space was defined based on a
matrix of the UEs’ scores obtained from the users’ channel
correlation matrix, their previous channel quality indicator
(CQI), and past average throughput. Resource blocks (RBs)
were assigned to the UEs with the highest scores during each
time slot. The algorithm sought to maximize throughput and
system fairness, not considering metrics for delay-sensitive
services.

A deep belief architecture (DBA) is used in [28], where
features are extracted to train a deep Q-Learning model
for dynamic resource allocation in 5G HetNets. In [30],
a multi-agent DRL algorithm was applied to the UE asso-
ciation and resource allocation problem, where it was con-
sidered a simplified environment with only a single band
and Rayleigh fading. An Actor-Critic method for multi-user
scheduling in single-cell downlink massive MIMO systems
is proposed in [32], which reduces the complexity of the
combinatorial problem faced by tabular-basedmethods. None
of these proposed methods considered multiband scheduling
nor employed multi-layer data.

A user scheduling algorithm based on DRL for multi-user
MIMO systems focused on coverage and capacity optimiza-
tion in massive MIMO scenarios was proposed in [29].
An optimization parameter called group alignment of the
users’ signal strength was used with a unified QoS threshold
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to be dynamically configured with a pre-trained deep pol-
icy gradient-based neural network at each transmission time
interval (TTI). The scheduling scheme considered a discrete
action space composed of 15 discrete levels of signal-to-
interference-plus-noise ratio (SINR) and discrete levels of
signal strength from 20 users.

A DRL-based radio resource scheduler for multiple 5GNR
numerology settings was proposed in [31], considering only
the MAC layer data for the observation space, divided into
three parts: eligibility, data rate, and fairness. The first one
was a set of UEs with buffered data for transmission that
were not associated with a HARQ process, and the last one
represented the resource allocation log. The agent tried to
learn a resource allocation method by observing a discrete
set of actions in which a UE was defined for allocating the
current resource block group (RBG). After the training phase,
the agent must be able to choose the UE to be scheduled for
each time slot. UEs’ buffer latency and packet loss rate were
not evaluated in [31], which focused on system throughput
and fairness metrics. Additionally, the proposed scheduler did
not take advantage of information from the PHY layer.

Despite the prior work and the rich set of techniques,
DRL-based SRA is still an open problem. Particular issues
demand investigation, such as avoiding having the neural
network topology (e. g. its number of neurons in the last layer)
depending on the number of UEs. Besides, there are general
issues such as scalability and the lack of realistic environ-
ments for assessing the techniques. Hence, many published
solutions are restricted to tasks with small discrete action
space [21], [23], [28], [32] or were developed for relatively
simple environments [23], [28], [30], [32].

Indeed, the DRL solutions strongly depend on the adopted
communication system model and the choice of states and
actions. Moreover, the lack of well-established problem set-
tings and baselines delays the adoption of DRL-based SRA
in actual deployments.

Our DLR SRA differs from prior work as follows. We deal
with partial observability and assume a multiband MIMO
model in which the base station can serve different users
in each band. However, the UEs are restricted to operating
only in a single band at a time. Furthermore, the base sta-
tion updates the information about the UE channels only
in the frequencies that were adopted to serve these users.
This creates an observability problem: if a user is not served
using a given frequency for a long time, the base station will
work with an outdated estimation of the respective channel.
Partial observability was addressed in [21] but for a different
and simpler system model. Here we emphasize the MIMO
transmission, and the number of possible (discrete) actions in
the simulations is 4200. In contrast, only five actions were
adopted in [21].

Compared with [31] and [27], which considers the allo-
cation of RBs in the time and frequency domains, our work
investigates how the DRL agent can deal with outdated chan-
nel information. The agents in [31] and [27] rely on full
observability while we simulate distinct carrier frequencies

and bandwidths, aiming at realistic scenarios combining
sub-7 GHz and mmWaves.

Our work differs from previous ones due to the MIMO
channel generation process. We pay special attention to this
data generation process and use open-source software that
enables reproducing our results on other sites.

As in diverse solutions that rely on machine learning,
the adopted dataset determines the problem’s difficulty. For
instance, the adoption of distinct frequency bands imposes
requirements on the simulation methodology. One should
not use a drop-based strategy to generate the channels [33]
due to the eventual lack of consistency among the different
frequency bands. While some previous works (e. g., [31]
and [27]) adopted proprietary simulators, in this paper,
we used the well-established QuaDRiGa software [34], [35]
to generate the data for training and validating theDRL agents
with realistic and consistent channels.

The adopted simulation methodology enabled the compo-
sition of an RL environment that can be used to assess SRA
techniques. Using this environment and a traditional DRL
architecture, this paper also shows results concerning our key
assumption: that the agent can deal with partial observability
in multiband MIMO environments. However, the DRL agent
performance depends on several aspects, such as the network
load. It indicates the need for more complete assessment
methodologies for DRL-based SRA, such that the tests can
lead to robust estimations of the generalization capability of
the DRL agent.

In summary, the main contributions of this paper are the
following:

• We expand previous work on DRL-based SRA by inves-
tigating the issue of partial observability in the context
of multiband MIMO systems.

• A RL environment for assessing SRA for multiband
MIMO systems, based on a methodology to efficiently
train and test DRL agents using offline files generated
with the QuaDRiGa simulator, considering a realistic
and consistent MIMO scenario with mobile users.

• Results of the SRA performance of a DRL agent in
the mentioned environment using the deep Q-Network
(DQN) algorithm with a discrete action space and com-
parison with baseline methods such as round-robin and
proportional-fairness. The results indicate that the DRL
agent can achieve improved latency while keeping the
best throughput obtained by the baselines, even when
dealing with partial observability.

• We explored two different scenarios, demonstrating
that our proposal can protect the UEs suffering from
blockages.

• Concerning the DRL agent, our solution is innovative in
how we model the state space and design the reward as
a heuristic. Our proposal is cross-layer since it uses both
information from the PHY and higher layers.

• We present comparisons and discussions about other
DRL algorithms.
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• Codes and results are made publicly available at [36],
including the DQN agent and the RL environment
implemented with the Stable-baselines library, which
enables the reproduction of our experiments and tests
with new algorithms.

II. COMMUNICATION SYSTEM MODEL
This section introduces the multiband massive MIMO sys-
tem model considered in this paper. As with any paper that
applies machine learning to communications, this section is
of critical importance as it outlines the main assumptions
in our model, which impact the simulation of the system
and the generation of data used by our proposed algorithms.
We begin by explaining our vision for multiband massive
MIMOcommunication. Thenwe explain the key assumptions
related to channel modeling and simulation, paying particular
attention to the idea of ensuring spatial consistency in the gen-
erated data. Next, we describe how performance is evaluated
for each communication link in terms of spectral efficiency.
Finally, we describe the scheduling and frequency allocation
problem under consideration.

A. MULTIBAND MASSIVE MIMO SYSTEM MODEL
In this paper, we pose and solve a specific scheduling prob-
lem related to multiband massive MIMO communication.
We consider a canonical narrowband massive MIMO system
using a digital architecture where there are Nt,c antennas at
the base station for the c-th frequency band, Nu = 1 antenna
at the user, and a set of K users in the cell [37]. Only a
subset of K ∈ K users can be served simultaneously at the
same frequency band (e.g., due to a limited number of data
streams). We assume a different number Nt,c of base station
antennas for each carrier c, because the array sizes may differ.
For example, arrays in themillimeter wave band canmake use
ofmore antenna elements, due to shrinking antenna sizes with
the carrier frequency, thereby achieving a similar aperture and
antenna gain with low-band counterparts [38].

The limitation on narrowband channels in this paper is
simply for simulation convenience. We could consider an
OFDMA system and multiple resource blocks in frequency
without changing the solution methodology. Because that
would increase the computational cost without impacting the
comparisons promoted in this paper, we did not use OFDM.

The base station (BS) supports transmission to the users
on one of the F discrete frequency bands. Each UE may
receive data on only one band at a time. As a result, the
BS must perform an assignment of UEs to bands as part of
the SRA process. The BS can generally support multiband
hardware, enabling it to support many users simultaneously
and making the most use of precious spectral resources.
We assume that the UE can only support a single band at a
time. Using multiple bands on users’ devices would require
having more sophisticated wideband array designs (due to
limited space), more RF components, higher capability data
converters, or multiple discrete radios to be operating simul-
taneously consuming power [39], [40]. Using multiple bands

simultaneously would also require channel estimation for all
band users, increasing overheads [41]. Note that the differ-
ent bands are associated with several parameters including
the carrier frequency fc and bandwidth Wc. For example,
a low-band carrier may have a bandwidth of 5 MHz, a mid-
band carrier with a bandwidth of 20 MHz, and a millimeter
wave band with a bandwidth of 100 MHz. As a result, the
choice of band impacts the achieved rate through potential
differences in the channel as well as in the capability of the
system.

We assume that the system uses a TDD transmission proto-
col for concreteness to obtain channel state information (CSI)
at the base station. The BSmeasures pilots from the users sent
on the uplink and then uses that obtained channel state infor-
mation to do the SRA and downlink beamforming. We could
alternatively consider FDD with channel state feedback with
some further changes to the system model.

We consider transmissions organized in blocks (or frames)
of duration Tc seconds, as depicted in Fig. 1. In the context
of RL, the multi-frame structure can be seen as an episode,
with a duration of Te seconds, composed of Nb blocks. The
duration of downlink transmission in a block is τdTs seconds,
where τd is the number of downlink time slots (or samples)
and Ts is the sampling interval. Similarly, τp is the number
of slots-per-block dedicated to pilot sequences, and τu is the
number of slots dedicated to uplink information transmission.
We denote discrete time with t ∈ Z+ and reset to t = 1 at
the beginning of each episode. Hence, the relative time corre-
sponding to the t-th slot within an episode is (t−1)Ts seconds.
The adopted block structure can represent the standard multi-
frame organizations. The number of blocks and slots and the
slots’ duration are determined by the adopted numerology
index, as considered in [31] for 5G NR.

FIGURE 1. Time scales and frame organization: the downlink
transmission within a block (or frame) occurs in τd time slots, where Nb
blocks form a multi-frame structure, represented as an episode.

Because we focus on downlink (DL) configurations, the
usage of uplink (UL) data (over τu) is not addressed. Never-
theless, we assume the number of slots per episode is Ne =

Nb(τp + τu + τd), such that Te = NeTs. The duration Tb
is often chosen according to a definition of coherence time.
The channel varies within a block according to the adopted
channel model described in Section II-C.

125512 VOLUME 10, 2022



V. H. L. Lopes et al.: DRL-Based Scheduling for Multiband Massive MIMO

B. MULTICELL SYSTEM CONFIGURATION
The power of massive MIMO in cellular systems comes from
its ability to provide high spectral efficiency without coordi-
nation between cells. To incorporate the interference effects,
we consider a hexagonal cellular system of L BSs in the target
geographic area to be studied. Each BS is equipped with three
sector antennas formed by independently controlled vertical
uniform linear arrays (ULA). There is no cooperation among
BSs or sectors, and all inference (intercell/intersector) is
treated as noise. Thus we allow for interference from antenna
back lobes and other base stations. We apply our algorithm
and analyze performance for the center cell, as is typical in
prior work [27].

When considering Massive MIMO, multiple possible
antenna array geometries are available, including linear
arrays, planar arrays, and circular arrays. Throughout this
paper, we assume each sector has a set of independently
controlled ULAs at the base station. In this setting, the ele-
vation beamforming is only controlled by the sector’s tilt
control, while the combination of ULAs allows for azimuth
beamforming. This array balances the flexibility and gain
of full-dimensional beamforming with the simplicity and
efficiency of more traditional arrays. Operators have tradi-
tionally preferred sectorization and tilt control as a means
of beamforming [41], [42], so we limit the investigation
to one-dimensional geometry. We leave the evaluation of
two-dimensional arrays to future work.

We consider a classical hexagonal tessellation of cells.
We analyze performance for users in the center cell and con-
sider interference from the neighboring six cells to give a total
of L = 7 base stations. Each cell has one base station serving
three independent sectors for a total of 3L = 21 serving
cells. We place the base stations in a hexagonal grid with
an intersite distancing of 282 m. To evaluate performance,
we randomly place the UEs within 150 m of the central BS,
moving with speeds according to a folded normal distribution
|N (10, 3)|m/s, as shown in Fig. 2. At each second, the UE
may turn its movement direction with probabilityPturn = 0.2.

FIGURE 2. Considered multicell system layout, showing an example of
UEs patterns.

The interference from neighboring cells is primarily deter-
mined by simulating the channels for these interfering cells

and assuming they perform perfect interfering azimuth beam-
forming to the UE, which would be the case that the
interfering BSs are all serving users in the same azimuth
direction as the intended UE. This essentially is a worst-case
assumption on the amount of interference a BS could impose
without changing the physical arrays. The blocks (and con-
sequently the time slots) in different cells are assumed to
be time-aligned, but we do not model pilot contamination
because it is largely inconsequential for our array struc-
ture due to the limited pilots necessary without elevation
beamforming [43].

C. CHANNEL MODELING
To evaluate an RL algorithm’s performance, a channel
model with an appropriate level of fidelity is necessary.
The model must be sophisticated enough to preserve cor-
relations in the channels experienced by different users at
different bands during the blocks within the episodes. For
example, the commonly employed drop-based strategy to
generate channels [33], [44] will lead to a lack of consis-
tency among channels at different bands and in different
places.

We use the QuaDRiGa [34], [35] tool suite to generate
spatially- and frequency-consistent channels for the UEs con-
sidering their mobilities previously described. This widely
used statistical channel simulator generates spatially cor-
related MIMO channels from statistical models–including
experimentally validated channel models. We use the 3GPP
38.901 UMi [45], [46] statistical models based on a
dual-slope path loss with significant inter-parameter correla-
tions. We augment the QuaDRiGa simulator with additional
support for multiband consistency to ensure that scattering
clusters are consistent across bands. Our simulations fol-
low the 3GPP specifications, including {12, 19} clusters and
{20, 20} rays per cluster, for line-of-sight (LOS) and non-line-
of-sight (NLOS), respectively [47]. The entire process of gen-
erating channel coefficients is meticulously presented in [47].
However, the essential process combines generating random
values corresponding to the per-ray paths with specified dis-
tributions, correlating the values, and applying path loss and
shadowing effects. The simulation code is available at [48].
Now we describe the system simulation setting and appro-
priate parameters. Once all paths are defined, according to
the multicell system configuration described in Section II-B,
we generate channel coefficients according to the 3GPP UMi
scenario [45], [46], and correlate the coefficients across UEs
in space, time, and frequency band. According to the frame
organization described in Fig. 1, the sampling interval is
Ts = 1 ms, in which blocks with different downlink dura-
tions can be represented, with episodes that can last up to
Te = 2 s. In each sample, the channel is characterized as line-
of-sight (LOS) or non-line-of-sight (NLOS), depending on
the distance and scattering clusters. The overall distributions
for the coefficients are distinct between LOS and NLOS
channels. In the LOS case, the large-scale path loss model
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follows a dual-slope model [46] and is given by

PLUMi−LOS =

{
PL1 d2D ≤ dBP
PL2 d2D > dBP,

(1)

where d2D is the two-dimensional distance between the BS
and the UE defined by 3GPP [46], and dBP is the breakpoint
distance, defined by

dBP = BPSF(hBS − hEnv)(hUT − hEnv)fc, (2)

where BPSF is the breakpoint scaling factor, fc ∀c ∈ F
is the frequency in GHz, hBS, hEnv, and hUT are the BS,
environment, and UE heights, respectively. PL1 and PL2 can
be defined by:

PL1 = 21 log10(d3D)+ 32.4+ 20 log10(fc)

+d3D dBU,

PL2 = PL1(dBP)+ 40 log10(
d3D
dBP

), (3)

where d3D is the three-dimensional distance between the BS
and the UE [46] and dBU is the distance between the BS and
the UE.

For an NLOS channel, the path loss is [46]:

PLUMi−NLOS = max(PLUMi−LOS,PL ′UMi−NLOS) (4)

where

PL ′UMi−NLOS = 35.3 log10(d3D)+ 22.4

+21.3 log10(fc)− 0.3(hUT − 1.5). (5)

Once the channels have been generated, we calculate the
Reference Signal Received Power (RSRP), which is used in
cellular systems for UE assignment and resource allocation.

We then calculate the RSRP, for a set of N clusters and
M rays per cluster with a pathloss PL and shadow fading SF
for a BS b and UE u pair with a transmission power Pt, as
[47, Section 8.1]

RSRPb,u = PL SF |α0|2 +
N∑
n=1

M∑
m=1

|αn,m|
2Pt. (6)

The calculation of α0, which is the LOS path contribution,
depends on the Ricean K-factor KR, the antenna beam pat-
terns for the receiver Fu and transmitter Fb, and the initial
phase 8LOS given by

α0 =

√
KR

KR + 1
FTu

[
exp(j8LOS) 0

0 − exp(j8LOS)

]
Fb. (7)

The beam pattern vector Fu is defined by the two components

Fu =
[
Fu,θ (θLOS,EOA, φLOS,AOA)
Fu,φ(θLOS,EOA, φLOS,AOA)

]
. (8)

In the case of the transmitter side, all angle-of-arrival (AOA)
and elevation-of-arrival (EOA) values are replaced with the
angle-of-departure (AOD) and elevation-of-departure (EOD)

equivalents. For the NLOS paths, αn,m is calculated according
to

αn,m =

√
Pn

M (KR + 1)
FTu,n,mC Fb,n,m. (9)

Here, C is the cross-polarization matrix defined by the initial
phases for each ray (m) cluster (n) polarization (xy) combina-
tion 8xy

n,m as

C =

 exp(j8θθn,m)
√
κ−1n,m exp(j8θφn,m)√

κ−1n,m exp(j8φθn,m) exp(j8φφn,m)

 . (10)

The NLOS Fu,n,m is defined in the same way as the LOS case
but is considered for each ray’s angular component θn,m,EOA
and φn,m,EOA, with similar extensions to the transmitter.

The RSRP is calculated for each sector-to-UE pair. How-
ever, the UE only reports the strongest cell (the nominal
serving cell) and the top-6 strongest interfering cells during
measurement reports to the base station [49]. Due to sector-
ization, the top-6 interfering cells cover the majority of the
interference since all other cells will not be aligned in the
direction of the UE. Although back lobes exist on the sector
antennas, there is very limited interference due to the large
front-to-back ratio and the tilt mechanism causing back lobes
to be projected upwards.

D. SPECTRAL EFFICIENCY
It is assumed that the bandwidths associated with the distinct
carrier frequencies differ, and the bit rates are calculated as
follows. There are well-established capacity-like formulas for
massive MIMO that allow us to conveniently estimate the
SE in bits/s/Hz [33], [37], [50]. We use a capacity bound to
assume that, when considering a bandwidth Wc for a given
frequency band, the downlink bit rate Rb,u = SEb,uWc of user
u in target cell b can be obtained via the spectral efficiency

SEDLb,u =
τd

τc
log2

(
1+

RSRPb,u
I interb,u + σ

2

)
, (11)

where

I interb,u =
∑

max
l 6=b

(6)(RSRPl,u) (12)

is the corresponding intercell interference, σ 2 is the noise
power, and max(k)(x) is the set of the k largest elements of x.
These equations reflect the assumptions of optimal precoding
from all BS to all UEs. The software for spectral efficiency
processing is available in the shared source code [36].

E. USER SCHEDULING AND FREQUENCY ALLOCATION
Nowwe describe the scheduling operation inmore detail. The
scheduler of the target cell b = 1 is illustrated in Fig. 3, where
the notation hb,u[fc, t] for the channels represents that the BS
receives information about its channel with user u ∈ K over
the available frequency bands fc ∈ {f1, . . . , fF }.

In every slot t ∈ τd within a block m ∈ Nb (Fig. 1),
the scheduler must decide which users should be allocated
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FIGURE 3. Multiband SRA for MU-MIMO using F = 2 frequencies from set
F = {f1, f2}.

in every slot t for each available frequency band fc ∈ F ,
creating disjoint subsets Km,fc,t ⊂ K of users in the same
slot to be served. As in previous work [51], we consider a
single time-frequency resource block per slot, per carrier fre-
quency,1 which can be spatially multiplexed among different
users, as depicted in Fig. 4.

FIGURE 4. Example illustrating the users scheduled according to our
multi-user multiband resource allocation model with F = {f1, f2},
K = {1,2, · · · ,6} and W2 > W1, considering two consecutive blocks
m = 1 and m = 2 with 5 slots each.

We assume that Kmax is the maximum number of users that
can be served in a slot t using band fc, i. e., the maximum
cardinality |Km,fc,t | is Kmax. An example of such scheduling
is depicted in Fig. 4 for two blocks,m = 1 and 2, withKmax =

2, where K1,f1,2 = {1, 2} and K2,f1,2 = {4, 6}. User 6 is
served at four slots, as indicated byK1,f2,1 = K1,f2,2 = {4, 6}
andK1,f2,3 = K1,f2,5 = {5, 6}, but ends up not being served in
block m = 2 in f2. Without loss of generality, we will assume
that Kmax users are always scheduled in each frequency band.
The BS downlink transmission uses the same power PDL per
band, such that its total power is FPDL.

It is assumed that all active users can send feedback
through a control channel, indicating their channel quality
through the CSI for band fc. The BS also uses this control
channel to inform, before the transmission of DL data for
block m, the sets Km,fc and Km,fc,t for t within block m. This
procedure is depicted in Fig. 5.

1Note that a 4G LTE / 5G NR scheduler assigns resources over a time-
frequency grid [52] organized as a hierarchy of resource blocks, time-slots,
etc.

FIGURE 5. Interaction between BS and UE, with blue arrows indicating
control channel usage. Red arrows indicate transmission using the
frequency fc specified by the scheduler for block m.

We assume that the scheduler should be able to operate
either with full knowledge of the CSI of all UEs associ-
ated with the BS, at all available frequencies or with partial
knowledge (i.e., outdated). For the first case, we assume ideal
full observability [53], as considered in [27], in which the
scheduler at the BS would have complete CSI for all K active
users in all F frequency bands for each blockm. In the case of
a partial observability scenario, we assume that a fresh CSI
on frequency band fc is obtained only for the users in the set
Km−1,fc of the previous block. In both cases, the scheduler
process is executed during the channel coherence time.

F. DATA TRAFFIC AND INTERFERENCE
The users’ data traffic is modeled as Poisson processes with
time-varying mean λu[t] packets for user u. The incoming
traffic is buffered and when a buffer is full, its packets are
tail-dropped, and the same happens if the packet reaches a
maximum age ξ . The buffer of user u has a size equivalent to
Su packets, with constant packet size. For faster implemen-
tation, we do not generate packets but account for the buffer
occupancy of user u as qu ∈ N. The BS knows for each of the
K buffers: its occupancy, and the age of the oldest packet,2

and the number of dropped packets.
Therefore the simulations, and consequently the RL agent,

are not restricted to scenarios such as full buffer or infinite
backlogs, often assumed to enable analytical results. The
simulations can incorporate burst traffic and limited buffer
size [3].

III. DEEP REINFORCEMENT LEARNING SYSTEM MODEL
The following subsections describe the details related to our
DRL-based approach to scheduling. First, we present the
basic RL configuration, i.e., states, actions, and rewards.
Afterward, we comment on the specific DRL agent
employed. Finally, we introduce the RL datasets and simu-
lation platform involved in the experiments.

2To know the age of the oldest, the BS is required to store the time of
arrival of all packets.
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A. STATES, ACTIONS, AND REWARDS
From a machine learning perspective, our DRL-based sched-
uler, here named DRL-SRA (Deep Reinforcement Learning
Scheduling and Resource Allocation) is illustrated in Fig. 6.
The agent observes the environment (state) and performs an
action, which sets the users per frequency band (resources).
The action changes the state in which a reward can be
calculated. The RL state consists of information from both
channels and queues, generically denoted as CSI and queue
state information (QSI), respectively, similar to [54]. Thus,
the scheduler is cross-layer since it considers information
from layers other than the PHY, such as the buffer occu-
pancy of active users and the age of the packets. Among the
distinct time scales in which a modern SRA algorithm can
operate [55], we deal in this paper with short-term (also called
radio scheduler and ‘‘channel-aware’’ scheduling) distributed
SRA, with a time scale of a few milliseconds.

FIGURE 6. DRL-SRA overview: inputs are the CSI and QSI, and outputs are
the users that should be served and their respective frequency bands.

We assume the number of downlink data streams is limited
by the uplink pilot dimension rather than by the number Nt,c
of BS antennas, such that |Km,fc,t | < Nt,c,∀c. Nevertheless,
the total number K > |Km,fc,t | of connected users is larger
than the number of served ones. In this case, the system
operates in the so-called scheduling regime [37] that makes
cross-layer scheduling more important [56]. The BS pro-
cesses the received channel information (CSI) and updates a
matrixC of dimensionK×F with estimated spectral efficien-
cies. The matrix C is updated once per block, as illustrated in
Fig. 5, but when partial observability is implemented, not all
elements of C are modified. Similarly, the BS receives the
QSI with the status of all buffers.

The RL action at is represented by a matrix of integers
with dimension F × Kmax. The action space is discrete, and
because we always choose Kmax users, its dimension is

Na =

F−1∏
i=0

(
K − iKmax

Kmax

)
. (13)

For example, assuming K = 10, Kmax = 3 and F = 2,
we have 4200 possible actions.

Concerning the agent input, we adopt the parameters
described in Table 1, which consider information from both

TABLE 1. RL state definition with the last two columns corresponding to
the dimension and update frequency.

QSI and CSI (Table 1). Thus, the observed state st groups
information from allK connected users at time t in the matrix
of dimension K × (F + 2), and is given by:

st = (ot , gt , set ), (14)

where the vectors ot , gt and set have as elements the values in
slot t for users u = 1, . . . ,K of buffer occupancy out ∈ [0, 1],

age of oldest packet (relative) gut ∈ [0, 1] and SE sef ,ut for
frequency f , respectively. The relative age gut is obtained by
taking the age of the oldest packet in the buffer of user u at
time t and dividing it by the maximum age ξ a packet can stay
in the buffer before being dropped.

The state described in Eq. (14) leads to a continuous state
space, and our RL agent employs a neural network to deal
with it.

The RL reward rt is calculated after the agent takes an
action, given a certain state observed at instant t . As observed
in [57], [58], [59], and [60], the solution to the SRA prob-
lems with a DRL framework strongly depends on the design
of meaningful reward functions correlated to the scheduler
objectives. DRL is quite flexible concerning the metrics
adopted in the reward formulation, but they should guide
agent training and often require considerable reward engi-
neering based on trial and error [61].

In this paper, the reward function is a heuristic adopted
because it led to good results compared to other alternatives.
It is given by

rt =
Tt
Bt−1

−
Dt
Tt
, (15)

where Bt−1 =
∑K

u=1 o
u
t−1 is the sum of the buffer occupan-

cies rate. Similarly, Tt and Dt are the sum among users of all
transmitted and dropped bits in time t .

B. THE DRL AGENT
We adopt a DRL agent that estimates the action-value func-
tion Q(st , at ) using iterative updates [15]. More specifically,
we adopt a Deep Q-Network algorithm (DQN) [62], [63],
an off-policy algorithm that uses the function approximator
Q(st , at ; θi) with weights (parameters) θi as a Q-network of
the i-th iteration [64]. DQN uses a technique named expe-
rience replay, based on a set D = {d1, . . . , dN} known as
replay memory composed of the agent’s experiences dt =
(st , at , rt , st+1) in each time-step (i.e., a slot t) withinmultiple
episodes, where st is the state of the observation, at is the
action selected by the agent, and rt is the reward. Once the
replay memory is collected, mini-batch rounds are performed
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during the experience replay. The agent applies an ε-greedy
strategy to select the actions to be taken. As promoted in [63],
the DQN training algorithm can randomly select a set of past
experiences from the replay memory buffer to use for weight
updates. Each step of experience can be used in many weight
updates. Moreover, by randomizing the samples of the replay
memory, any possible strong correlation between the data
samples can be avoided, improving convergence as detected
in [63].

C. RL DATASETS AND SIMULATION PLATFORM
Due to the computational cost of obtaining and processing
the data from the wireless communication system for train-
ing and validation, we pre-compute the channels, as done
in [26], wrapping up a dataset composed of the MIMO
channels generated by QuaDRiGa, a MATLAB-based open-
source simulator, as described in Sec. II-C. In addition, the
dataset also incorporates the users’ incoming traffic, accord-
ing to Sec. II-F, allowing the evaluation of different load
patterns for network users. The channels in the dataset are
used to obtain parameters such as SE in a post-processing
stage by using a Python-based simulation platform, which is
available to facilitate reproducing the experiments presented
in this paper.3 The simulation platformwas implementedwith
the DRL library Stable Baselines [65], a fork of the OpenAI
Baselines project [66], which uses TensorFlow.

This simulation platform was used to train and test the
DRL-SRA agent performance, considering the previously
described communication and DRL subsystems. When the
DRL-SRA agent is in the training stage, Algorithm 1 is
used in order to train the agent, following the architecture
described in Fig. 6. The DRL-SRA agent will take the action
at according to a greedy strategy (ensuring adequate explo-
ration of the state space), in which the system can compute the
reward according to Eq. (15) and the figures of merit within
each training episode. Each training step is used to build the
replay memory D used by the DQN algorithm as described
in Sec. III-B. Once the replay memory is filled, it is used
in the training rounds, in which Q-values are updated [63].
During the testing stage, the DRL-SRA agent will take action
for the state observation st only based on prediction through
the model policy. The communication subsystem is similar to
Algorithm 1 implementation.

The employed DQN agent is based on a fully-connected
deep neural network with two hidden layers, with rectified
linear units (ReLU) as activation functions. In contrast, the
output layer adopts a linear activation function. The input
consists of an array of 40 elements representing the state. The
two hidden layers have 256 neurons each. The output dimen-
sion coincides with the number of actions and is given by
Na = 5040. Hence, a forward step corresponds to multiplying
the input vector by amatrix of dimension 256×41 (to take the
bias into account) and calculating the ReLU activation for the
resulting array of dimension 256. The other two layers repeat

3https://github.com/LABORA-INF-UFG/DRL-SRA-Gym-SB

Algorithm 1: Training the DRL-SRA Agent.
Input: DQN agent configuration, number of episodes E,

episode size Ne, number of active UEs K, Kmax,
and the frequency bands F.

Output: Q-values.
1 Initialize replay memory D;
2 for each episode e = 1, . . . ,E do
3 for each slot t = 1, . . . ,Ne do
4 while replay memory D is not complete do
5 Get input traffic;
6 Take an action a = (Kt , ft );
7 for each frequency band fc in action a do
8 Compute the spectral efficiency sef ,ut ;

9 Calculate effective rates R[k, t];
10 Calculate reward rt ;
11 Update queues;
12 Update agent information;
13 Store transition in D;

14 Update Q-values;
15 Reset D;

16 Output results;

the operation using matrices of dimensions 256 × 257 and
5040 × 257, with ReLU and linear activations, respectively.
This forward step corresponds to 5.46 GFLOPS. Both A2C
and PPO1 agents use two neural networks that share the
weights and have a similar topology to the model adopted by
the DQN agent. Hence, the forward step by A2C and PPO1
agents corresponds to 5.61 GFLOPS.

In terms of asymptotic complexity, when the number of
actions Na � hj,∀j, where hj is the number of neurons in
layer j, the proposed method has 2(hJ × Na) complexity,
where J is the last layer index. The Round Robin scheduler
has complexity2(Kmax×F), and both Proportional Fairness
and Maximum Throughput have complexity 2(K × F).

IV. SIMULATION RESULTS AND DISCUSSION
The main goal of the simulations is to assess how the
proposed agent can learn an adequate allocation policy to
maximize the aggregated network throughput (sum rate)
while ensuring control of delay and packet loss. For com-
parison, three traditional schedulers in the literature [67]
were adopted: Round Robin (RR), Proportional Fair (PF),
and Maximum Throughput (MT). These baseline schedulers
present different objectives and performances, especially in
terms of sum-rate maximization and fairness scheduling,
being adequate to DRL-SRA agents’ flexibility evaluations.
We are also interested in evaluating the training cost of the
models in terms of model convergence. As will be described,
two different types of simulations were considered, represent-
ing different scenarios.
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A. SIMULATION I
To evaluate the impact of different network traffic, simu-
lations were carried out with two different traffic datasets,
representing two values of average traffic load per user, i.e.,
the average total packet arrival per UE per second (or simply
MIR -Mean Incoming Rate). These average values follow the
data traffic patterns described in Sec. II-F: 110 Mbps per user
(MIR-110 Mbps) and 150 Mbps per user (MIR-150 Mbps),
labeled as lower and higher traffic scenarios, respectively.
As described previously, the simulations consider two dis-
tinct scenarios regarding the observability of the UE states,
representing full or partial observability. For the first case,
both the spectral efficiencies and the expected data rates of
each UE in each band are available in the BS. In the second
case, only the latest known information is available, which
is updated only when the UE is scheduled in that band. The
parameters used in this simulation are summarized in Table 2.
The DQN algorithm was instantiated with a feedforward
multilayer perceptron (MLP) network with two hidden layers
of 256 perceptrons each, using layer normalization with the
same configuration for both behavior and target policy. In the
output layer, a linear activation function4 is used, where x is
the values coming from the last layer of the hidden layer,W T

is the transpose of the neural network weights matrix, and b
is the bias.

TABLE 2. Simulation setup.

Figures 7–9 present the performance of the scheduler
agents under three network metrics: throughput, buffer delay,
and packet loss. The figures exhibit the average value of
these metrics computed over all the UEs associated with the
BS. The x-axis shows the amount of training time steps per-
formed, while the y-axis presents the average value obtained
in a validation run for eachmetric. Figures in the left (a) corre-
spond to the lower traffic scenario and those in the right (b) to
the higher traffic scenario. The dashed lines represent the
partial observability scenario, while the solid lines represent
the full observability scenario.

4https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

FIGURE 7. Results for the mean throughput per UE: (a) low traffic and
(b) high traffic.

FIGURE 8. Results for the mean buffer delay: (a) low traffic and (b) high
traffic.

FIGURE 9. Results for mean packet loss: (a) low traffic and (b) high traffic.

Regarding average throughput (Fig. 7), the DRL-SRA
agent outperforms all baseline schedulers in all network traf-
fic load and observability scenarios. The DRL-SRA agent
model convergence occurs around 50K training time steps
in both network traffic load scenarios. It is important to
note that baseline agents that use the knowledge of the UEs’
channels in the decision process (i.e., PF andMT) are severely
impacted when not using full observability. On the contrary,
the DRL-SRA agent can present similar performance for
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both full and partial observations after the convergence of
the models. In this sense, the DRL-SRA agent achieves a
throughput 5.3% higher than the MT agent in partial observ-
ability and between 12.6% and 13.8% higher than the other
agents. In the higher traffic load scenario (Fig. 7-b), despite
the large impact of increasing network load, i.e., due to the
higher impact of the packet loss (the channel capacity is upper
bounded), the DRL-SRA agent continues to be able to deliver
the highest throughput, especially in a partial observability
scenario. As illustrated in the figure the DRL-SRA agent
consistently outperforms RR and PF agents in this metric
after convergence.

In terms of average buffer delay, the DRL-SRA agent has
a performance similar to RR and PF agents, which are the
agents with the best results in this metric compared with the
MT agent, as shown in Fig. 8. This illustrates the DRL-SRA
agent’s ability to pursue more elaborated and complex behav-
iors than a conventional scheduler. The MT agent exhibits
the largest buffer delays, notably higher than the other agents
in the higher traffic load scenario. This happens due to the
MT’s unfair allocation policy, in which UEs with low channel
capacity and/or demand (i.e., low data rates due to low packet
arrival rate) tend to have their resource allocation delayed
until their buffer occupation achieves a size large enough to
sustain a higher throughput for a certain time. In the partial
observability scenarios, the MT agent presents an even more
expressive deterioration of this metric, while the proposed
agent demonstrates greater robustness and stability.

It is important to point out that the DRL-SRA agent is not
trained to control delays. The observed performance can be
assigned to the allocation policy, where maximizing through-
put and minimizing packet loss led to lower latencies. Thus,
these results demonstrate that the throughput performance
obtained is not due to the cost of damming user packets with
low buffer occupancy, as done by MT.

Regarding the average packet loss (Fig. 9), we observe
that the proposed DRL-SRA agent is able to outperform all
baseline agents in all scenarios as soon as the learning algo-
rithm of the DRL agent converges. This result was expected
since the packet loss metric is correlated to the throughput in
the evaluated environment. The performance of RR and PF
agents confirms this observation.

Additionally, when considering the t-test analysis between
the scenarios with partial and full observability, we can see in
Table 3 that there is no relevant statistical difference between
the two scenarios among all the metrics considered here.
In this sense, the proposed method’s ability to learn even only
having access to outdated information from the channels was
highlighted.

B. SIMULATION II
In order to explore the ability of the DRL-SRA agent to
operate in more complex scenarios, a second experiment
was carried out according to parameters that differ from the
former experiment described in Table 4. A set of 4 connected
UEs (i.e., K = 4) for model training and validation is

TABLE 3. T-test results for simulation I.

TABLE 4. Simulation II setup.

TABLE 5. Simulation II - UEs setup.

determined, where each of these UEs can assume a distinct
profile, as described in Table 5. UEs 1 and 4 have a higher
average packet arrival rate in comparison with UEs 2 and 3.
None of the UEs suffer blockages in the sub 6 GHz band,
while blockages can occur in the mmW band, with differ-
ent probabilities, frequencies of occurrence, and duration.
Thus, UEs 1 and 4 are susceptible to a higher probability
of blockage in the mmW band in comparison with UEs
2 and 3. The blockage probabilities, their expected duration,
and the expected frequency of occurrence were modeled in
line with [68], considering an urban scenario with dynamic
and static blockers (e.g., pedestrians and buildings, respec-
tively). For simplicity, it is assumed that blockage occurs on
both LOS and NLOS links so that the spectral efficiency of
the blocked channel tends to zero. Partial and full observ-
ability scenarios are also considered, as done in the former
experiment. The training was performed with episodes with
200 time steps each (as done in the previous experiment) but
with longer validation episodes (10K time steps) using dif-
ferent datasets. The results are presented in the next figures,
which are discussed below, showing the averages obtained in
the validation episodes.

First, we evaluate the behavior of allocations performed
by the DRL-SRA agent. Fig. 10a shows the average number
of allocations per UE during the validation episodes. We can
see that, in both observability scenarios, the DRL-SRA agent
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FIGURE 10. Comparing the number of allocations and the spectral
efficiency received by each UE per frequency band.

is able to capture both the highest packet arrival rates from
UE1 and UE4, as well as the frequencies that provide the
best spectral efficiencies (as shown in Fig. 10b). Thus, UE1 is
allocated with priority in the mmW band. At the same time,
UE4 receives even more allocation priority in the sub 6 GHz
band. This demonstrates that the agent can learn the band that
can provide the best performance for each UE. Such behavior
allowed the protection of the UEs with greater demands.
Meanwhile, the allocation policy for UE2 and UE3 becomes
very similar, which is also justified by their characteristics of
channels and demands. There is a prioritization of allocation
in the mmWave band whenever possible.

Fig. 11 presents the average aggregate sum-rate metric,
in view of the performance observed in the baseline sched-
ulers, for both observability scenarios. It is observed that

FIGURE 11. Comparing the network sum-rate results.

the DRL-SRA agent can deliver a throughput performance
superior to the other schedulers, even in a partial observability
scenario. In a scenario of partial observability, the lagged
information of the channels of the UEs imposes a degra-
dation in the performance of the schedulers that use such
information in the decision-making, as in the case of PF and
MT. The errors caused by this lag can be even more harmful
in scenarios with the possibility of signal blockage. These
schedulers can take a long time to notice such situations,
negatively impacting throughput and increasing delay and
packet losses, for example. In this sense, it is observed that
the DRL-SRA agent is able to learn such situations, mainly
due to the impact that the blockages cause in obtaining the
training rewards. Thus, the DRL-SRA agent can outperform
the RR scheduler by about 22% when operating in partial
observability and about 20% in relation to the MT when
operating in full observability.

Regarding the average delay of packets in the BS buffers,
Fig. 12 shows the results. As noted earlier, the RR scheduler
can deliver good performances on this metric compared to PF
andMT. However, the DRL-SRA agent manages to overcome
it, with an average delay of about 62% to 64% lower in
the case of partial and full observability, respectively. Again,
these metrics demonstrate that the gain obtained in the net-
work sum rate is not obtained at the cost of imposing severe
delays for those UEs with low buffer occupancy, as observed
in PF and MT, for example. Additionally, the delay in these
schedulers can be even worse in partial observability sce-
narios, again justified by the errors created by the lagged
information of the UEs channels.

FIGURE 12. Comparing the BS buffers delay results.

Observing the packet loss metrics in these scenarios is
important, as shown in Figs. 13a and 13b, for the aggregate
and individual packet loss, respectively. The DRL-SRA agent
manages to operate with a much lower packet loss compared
with other schedulers, even in a partial observability scenario,
delivering an average packet loss about 84% lower than the
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FIGURE 13. Comparing the packet loss results.

RR (in partial observability), which has the best performance
on this metric among the baseline schedulers. Looking at
the individual metric in more detail (Fig. 13b), even though
the RR delivers the lowest average packet loss among the
baseline schedulers, UE1 is severely impaired in a very unbal-
anced way among the other UEs. Thus, although it guaran-
tees fair allocation opportunities for all UEs, this illustrates
the need for employing scheduling and resource allocation
methods that use smarter mechanisms in the decision-making
process. In this sense, it is possible to notice that only the
DRL-SRA agent can guarantee an equal average packet loss
among all UEs, even if the UEs have different capacities and
demands.

Finally, regarding the t-test analysis presented in
Table 6, it is proved that there is no relevant statisti-
cal difference between the scenarios with partial and full
observability.

TABLE 6. T-test analysis for the experiment II.

C. TRAINING ANALYSIS
The results of the two experiments illustrate the potential
of the DRL-SRA agent as an important alternative in the
challenges of user scheduling and resource allocation in
multiband MU-MIMO networks. However, it is important to
consider the costs involved in training the agent. Thus, Fig. 14
and Fig. 15 present details about the training of the DRL-SRA

agent, considering one of the models used in experiment I
(Sec. IV-A) in a scenario of partial observability and high
average packet arrival rate. Results are presented both for
the use of the DQN algorithm (adopted by the DRL-SRA
agent) as well as for the A2C [62] and PPO1 [69] algorithms.
Although other algorithms available in the stable-baselines
library could be considered, only these ones presented min-
imally equivalent performance and/or compatibility, while
the others being disregarded to favor the visualization of the
graphs.

FIGURE 14. Training reward evolution analysis.

Fig. 14 shows the evolution of the training in terms of the
average reward obtained (normalized) in relation to the num-
ber of used training time steps. The DQN algorithm presents
the fastest convergence, occurring with about 50K time steps,
as already observed in the previous experiment’s curves.
Given that the A2C algorithm converges only after 160K time
steps, while the PPO1 needs 300K time steps to reach the
same level of rewards, the adoption of the DQN algorithm
is preferred. Although the convergence time observed by the
DQN can impact its adoption for online operation, several
techniques already described in the literature can be used to
deal with this issue. For example, transfer learning [70] can
be employed in order to allow the use of previously trained
models and adapted to the current situation of the network in
operation.

Comparing the performance of the models trained using
each algorithm considered here, Fig. 15 displays the average
packet loss and sum rate (top and bottom, respectively).
A2C manages to approach the performance obtained by the
DQN only after the convergence and the PPO1 presents a
lower performance. Even if a longer convergence time can be
accepted, the choice of the DQN algorithm is still preferred
due to the smaller amount of data required for training the
models. As the duration of each episode is extremely short
(200 time steps), the training duration can be greatly reduced,
generating several positive impacts in the management of the
DRL environment.
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FIGURE 15. Comparing the algorithms metrics.

D. DISCUSSION
The experiments presented demonstrate important aspects
regarding the use of schedulers based onDRL for the problem
of scheduling and resource allocation in multiband Massive
MIMO. To provide a discussion, some points need to be
highlighted:

• Trained models can be obtained with low training time
steps (50 K 100 K time steps), where datasets do not
need to contain very long samples.

• The RL modeling used allows the partial observability
not to generate severe negative impacts on the agent’s
performance. Additionally, in partial observability sce-
narios, the proposed agent outperforms all the sched-
ulers considered, mainly in the throughput and loss
metrics.

• The proposed agent is able to learn the impact of differ-
ent load, blockage, and spectral efficiency profiles.

• The proposed agent is able to incorporate the behav-
iors of both schedulers considered. Furthermore, the
throughput maximization achieved does not impose an
increase in delay.

Recalling that none of the related work considered jointly
all the aspects used here, impacting the agent’s flexibility
and its applicability in more realistic scenarios, as already
described.

When comparing the proposed method against the other
algorithms (A2C and PPO1), it is observed that the choice
of DQN is more reasonable since it converges with a shorter
training time, delivers superior performance, and does not
represent a higher computational cost (Sec. III-C).

The drawback observed in the proposed agent is the rela-
tionship between the space of actions and the size of the
output layer of the neural network, generating impacts on
scalability. This aspect will be addressed in future work.

V. CONCLUSION
This paper presented the DRL-SRA, a DRL-based agent
for scheduling mobile users in a multiband massive MIMO
system using a DQN algorithm, with observation data from
the PHY and MAC layers. Our agent was trained and tested
in a flexible platform, implemented with the stable-baselines
library, using a realistic and consistent MIMO scenario with
mobile users generated with the QuaDRiGa simulator. Sim-
ulations were conducted to evaluate the DRL-SRA agent
performance against different parameters, using well-known
baseline schedulers for comparison.

The experiments show that the time required to train
the models is viable for their adoption in solutions that
require online learning models, as in the architecture pro-
posed in [71], which employs a RAN AI controller that has
logical interfaces with many of the network functions (both
in BS and in the core network), responsible for processing AI
solutions in non-real-time, in parallel to the running system.
Additionally, the proposed agent is suitable for delay-tolerant
and delay-sensitive [72] services without compromising the
users’ throughput and packet loss.

DRL-based SRA is a powerful tool for the optimization of
5G and 6G networks. The construction of data-driven SRA
may be relevant to future generations of wireless network
services that will require more flexible and adaptable radio
resource management tools supporting a suite of new use
cases. DRL may be able to account for practical impairments
that are difficult to adjust for using only standard optimization
theory. The simulation scenarios, however, must be realistic,
and the solutions should take into account practical aspects
such as scalability with the number of users. This paper
presented a reproducible framework that can facilitate further
investigations toward the goal of making DRL-based SRA
closer to actual deployment.

REFERENCES
[1] W. Ajib and D. Haccoun, ‘‘An overview of scheduling algorithms in

MIMO-based fourth-generation wireless systems,’’ IEEE Netw., vol. 19,
no. 5, pp. 43–48, Sep. 2005.

[2] A. Asadi and V. Mancuso, ‘‘A survey on opportunistic scheduling in
wireless communications,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 4,
pp. 1671–1688, 4th Quart., 2012.

[3] E. Castañeda, A. Silva, A. Gameiro, and M. Kountouris, ‘‘An overview
on resource allocation techniques for multi-user MIMO systems,’’
IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 239–284, 1st Quart.,
2017.

[4] Y. Xu, G. Gui, H. Gacanin, and F. Adachi, ‘‘A survey on resource alloca-
tion for 5G heterogeneous networks: Current research, future trends, and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 668–695,
2nd Quart., 2021.

[5] H. Kim and Y. Han, ‘‘A proportional fair scheduling for multicarrier
transmission systems,’’ IEEE Commun. Lett., vol. 9, no. 3, pp. 210–212,
Mar. 2005.

[6] A. Khalek, C. Caramanis, and R. Heath, ‘‘Delay-constrained video trans-
mission: Quality-driven resource allocation and scheduling,’’ IEEE J. Sel.
Topics Signal Process., vol. 9, no. 1, pp. 60–75, Jan. 2015.

[7] A.Vora andK.-D.Kang, ‘‘Downlink scheduling and resource allocation for
5GMIMOmulticarrier systems,’’ in Proc. IEEE 5GWorld Forum (5GWF),
Jul. 2018, pp. 174–179.

125522 VOLUME 10, 2022



V. H. L. Lopes et al.: DRL-Based Scheduling for Multiband Massive MIMO

[8] G. Femenias, F. Riera-Palou, X. Mestre, and J. J. Olmos, ‘‘Downlink
scheduling and resource allocation for 5G MIMO-multicarrier: OFDM vs
FBMC/OQAM,’’ IEEE Access, vol. 5, pp. 13770–13786, 2017.

[9] B.Maaz, K. Khawam, S. Tohme, S. Lahoud, and J. Nasreddine, ‘‘Joint user
association, power control and scheduling in multi-cell 5G networks,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6.

[10] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina-
torial optimization with reinforcement learning,’’ 2016, arXiv:1611.09940.

[11] Y. Bengio, A. Lodi, and A. Prouvost, ‘‘Machine learning for combinato-
rial optimization: A methodological tour d’horizon,’’ Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405–421, 2021.

[12] W. Kool, H. van Hoof, and M. Welling, ‘‘Attention, learn to solve routing
problems!’’ 2018, arXiv:1803.08475.

[13] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, ‘‘Learn-
ing to optimize: Training deep neural networks for wireless resource man-
agement,’’ IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–5453,
Oct. 2018.

[14] W. Cui, K. Shen, and W. Yu, ‘‘Spatial deep learning for wireless schedul-
ing,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1248–1261,
Jun. 2019.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[16] R. Zhang, L. Wu, Y. Yang, W. Wu, Y. Chen, and M. Xu, ‘‘Multi-camera
multi-player tracking with deep player identification in sports video,’’
Pattern Recognit., vol. 102, Jun. 2020, Art. no. 107260.

[17] R. Zhang, L. Xu, Z. Yu, Y. Shi, C. Mu, and M. Xu, ‘‘Deep-IRTarget:
An automatic target detector in infrared imagery using dual-domain
feature extraction and allocation,’’ IEEE Trans. Multimedia, vol. 24,
pp. 1735–1749, 2022.

[18] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, ‘‘The roadmap
to 6G: AI empowered wireless networks,’’ IEEE Commun. Mag., vol. 57,
no. 8, pp. 84–90, Aug. 2019.

[19] C. Pandana and K. J. R. Liu, ‘‘Near-optimal reinforcement learning frame-
work for energy-aware sensor communications,’’ IEEE J. Sel. Areas Com-
mun., vol. 23, no. 4, pp. 788–797, Apr. 2005.

[20] I. S. Comcsa, S. Zhang, M. Aydin, J. Chen, P. Kuonen, and J. F. Wagen,
‘‘Adaptive proportional fair parameterization based LTE scheduling using
continuous actor-critic reinforcement learning,’’ in Proc. IEEE Global
Commun. Conf., Dec. 2014, pp. 4387–4393.

[21] E. Ghadimi, F. D. Calabrese, G. Peters, and P. Soldati, ‘‘A reinforcement
learning approach to power control and rate adaptation in cellular net-
works,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–7.

[22] D. V. Djonin and V. Krishnamurthy, ‘‘MIMO transmission control in fad-
ing channels—A constrained Markov decision process formulation with
monotone randomized policies,’’ IEEE Trans. Signal Process., vol. 55,
no. 10, pp. 5069–5083, Oct. 2007.

[23] I.-S. Comsa, A. De-Domenico, and D. Ktenas, ‘‘QoS-driven scheduling in
5G radio access networks—A reinforcement learning approach,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1–7.

[24] G. Peserico, T. Fedullo, A.Morato, S. Vitturi, and F. Tramarin, ‘‘Rate adap-
tation by reinforcement learning for Wi-Fi industrial networks,’’ in Proc.
25th IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2020,
pp. 1139–1142.

[25] O.-C. Iacoboaiea, B. Sayrac, S. B. Jemaa, and P. Bianchi, ‘‘SoN coordi-
nation in heterogeneous networks: A reinforcement learning framework,’’
IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5835–5847, Sep. 2016.

[26] R. M. Dreifuerst, S. Daulton, Y. Qian, P. Varkey, M. Balandat,
S. Kasturia, A. Tomar, A. Yazdan, V. Ponnampalam, and R. W. Heath,
‘‘Optimizing coverage and capacity in cellular networks using machine
learning,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Jun. 2021, pp. 8138–8142.

[27] X. Guo, Z. Li, P. Liu, R. Yan, Y. Han, X. Hei, and G. Zhong, ‘‘A novel user
selection massive MIMO scheduling algorithm via real time DDPG,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6.

[28] F. Tang, Y. Zhou, and N. Kato, ‘‘Deep reinforcement learning for
dynamic uplink/downlink resource allocation in high mobility 5G Het-
Net,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 12, pp. 2773–2782,
Dec. 2020.

[29] Y. Yang, Y. Li, K. Li, S. Zhao, R. Chen, J. Wang, and S. Ci,
‘‘DECCO: Deep-learning enabled coverage and capacity optimization
for massive MIMO systems,’’ IEEE Access, vol. 6, pp. 23361–23371,
2018.

[30] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, ‘‘Deep
reinforcement learning for user association and resource allocation in
heterogeneous cellular networks,’’ IEEE Trans.Wireless Commun., vol. 18,
no. 11, pp. 5141–5152, Nov. 2019.

[31] F. Al-Tam, N. Correia, and J. Rodriguez, ‘‘Learn to schedule (LEASCH):
A deep reinforcement learning approach for radio resource schedul-
ing in the 5G MAC layer,’’ IEEE Access, vol. 8, pp. 108088–108101,
2020.

[32] L. Chen, F. Sun, K. Li, R. Chen, Y. Yang, and J. Wang, ‘‘Deep
reinforcement learning for resource allocation in massive MIMO,’’
in Proc. 29th Eur. Signal Process. Conf. (EUSIPCO), Aug. 2021,
pp. 1611–1615.

[33] R. W. Heath, Jr., and A. Lozano, Foundations of MIMO Communication.
Cambridge, U.K.: Cambridge Univ. Press, 2018.

[34] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, ‘‘QuaDRiGa:
A 3-D multi-cell channel model with time evolution for enabling virtual
field trials,’’ IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256,
Jun. 2014.

[35] F. Burkhardt, S. Jaeckel, E. Eberlein, and R. Prieto-Cerdeira, ‘‘QuaDRiGa:
A MIMO channel model for land mobile satellite,’’ in Proc. 8th Eur. Conf.
Antennas Propag. (EuCAP), Apr. 2014, pp. 1274–1278.

[36] V. H. L. Lopes, A. Klautau, C. Nahum, and K. Cardoso, ‘‘DRL-based
scheduling for multiband access massive MIMO—Simulation platform
(code and data),’’ DRL-SRA Project Repository, Labora INF-UFG, Goiâ-
nia, Brazil, Jun. 2022. [Online]. Available: https://github.com/LABORA-
INF-UFG/DRL-SRA-Gym-SB

[37] E. Björnson, J. Hoydis, and L. Sanguinetti, ‘‘Massive MIMO networks:
Spectral, energy, and hardware efficiency,’’ Found. Trends Signal Process.,
vol. 11, nos. 3–4, pp. 154–655, Nov. 2017, doi: 10.1561/2000000093.

[38] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal,
A. Alkhateeb, and G. C. Trichopoulos, ‘‘Wireless communications and
applications above 100 GHz: Opportunities and challenges for 6G and
beyond,’’ IEEE Access, vol. 7, pp. 78729–78757, 2019.

[39] Y. Palaskas, A. Ravi, S. Pellerano, and S. Sandhu, ‘‘4 design considera-
tions for integrated MIMO radio transceivers,’’ in Wireless Technologies.
Boca Raton, FL, USA: CRC Press, 2017, pp. 107–130.

[40] M. Ikram, N. Nguyen-Trong, and A. Abbosh, ‘‘Multiband MIMO
microwave and millimeter antenna system employing dual-function
tapered slot structure,’’ IEEE Trans. Antennas Propag., vol. 67, no. 8,
pp. 5705–5710, Aug. 2019.

[41] Y.-H. Nam, M. S. Rahman, Y. Li, G. Xu, E. Onggosanusi, J. Zhang, and
J.-Y. Seol, ‘‘Full dimension MIMO for LTE-advanced and 5G,’’ in Proc.
Inf. Theory Appl. Workshop (ITA), Feb. 2015, pp. 143–148.

[42] R. Maslennikov, A. Trushanin, O. Testov, M. Vechkanov, A. Antipova,
T. A. Thomas, A. Ghosh, and E. Visotsky, ‘‘Azimuth and elevation sec-
torization for the stadium environment,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2013, pp. 3971–3976.

[43] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, ‘‘Pilot contam-
ination and precoding in multi-cell TDD systems,’’ IEEE Trans. Wireless
Commun., vol. 10, no. 8, pp. 2640–2651, Aug. 2011.

[44] R. Hasan, M. M. Mowla, and N. Hoque, ‘‘Performance estimation of
massive MIMO drop-based propagation channel model for mmWave
communication,’’ in Proc. IEEE Region 10 Symp. (TENSYMP), 2020,
pp. 461–464.

[45] B. Mondal, T. A. Thomas, E. Visotsky, F. W. Vook, A. Ghosh,
Y.-H. Nam, Y. Li, J. Zhang,M. Zhang, Q. Luo, Y. Kakishima, and K. Kitao,
‘‘3D channel model in 3GPP,’’ IEEE Commun. Mag., vol. 53, no. 3,
pp. 16–23, Mar. 2015.

[46] Q. Zhu, C.-X. Wang, B. Hua, K. Mao, S. Jiang, and M. Yao, ‘‘3GPP TR
38.901 channel model,’’ in Wiley 5G Ref: The Essential 5G Reference
Online. 2019, pp. 1–35.

[47] 3GPP, Study on 3D Channel Model for LTE, 3rd Generation Partnership
Project (3GPP), document (TR) 36.873, 06 2017, version 12.5.0. [Online].
Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2574

[48] R.M.Dreifuerst. (Jun. 2020).QuaDRiGA Simulation Extensions. [Online].
Available: https://github.com/Ryandry1st/QuaDRiGA-Simulation-
Extensions

[49] 3GPP, Requirements for support of radio resource management, 3rd
Generation Partnership Project (3GPP), Technical Specification
(TS), document 3GPP TS 138.133, 2018, release 15 version 15.3.0.
[Online]. Available: https://www.etsi.org/deliver/etsi_ts/138100_
138199/138133/15.03.00_60/ts_138133v150300p.pdf

[50] T. Marzetta, E. Larsson, and H. Yang, Fundamentals of Massive MIMO.
Cambridge, U.K.: Cambridge Univ. Press, 2016.

VOLUME 10, 2022 125523

http://dx.doi.org/10.1561/2000000093


V. H. L. Lopes et al.: DRL-Based Scheduling for Multiband Massive MIMO

[51] J. Choi, N. Lee, S.-N. Hong, and G. Caire, ‘‘Joint user scheduling, power
allocation, and precoding design for massive MIMO systems: A principal
component analysis approach,’’ inProc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 396–400.

[52] D. C. Larsson, ‘‘NR physical layer overview,’’ in 5G and Beyond: Funda-
mentals and Standards. Springer, 2021, p. 259.

[53] A. Avranas, M. Kountouris, and P. Ciblat, ‘‘Deep reinforcement learning
for resource constrained multiclass scheduling in wireless networks,’’
2020, arXiv:2011.13634.

[54] J. S. Shekhawat, R. Agrawal, K. G. Shenoy, and R. Shashidhara, ‘‘A rein-
forcement learning framework for QoS-driven radio resource scheduler,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–7.

[55] N. Omidvar, A. Liu, V. Lau, F. Zhang, D. H. K. Tsang, and
M. R. Pakravan, ‘‘Optimal hierarchical radio resource management for
HetNets with flexible backhaul,’’ IEEE Trans. Wireless Commun., vol. 17,
no. 7, pp. 4239–4255, Jul. 2018.

[56] V. K. N. Lau, ‘‘Asymptotic analysis of SDMA systems with near-
orthogonal user scheduling (NEOUS) under imperfect CSIT,’’ IEEE Trans.
Commun., vol. 57, no. 3, pp. 747–753, Mar. 2009.

[57] L. Liang, H. Ye, G. Yu, and G. Y. Li, ‘‘Deep-learning-based wireless
resource allocation with application to vehicular networks,’’ Proc. IEEE,
vol. 108, no. 2, pp. 341–356, Feb. 2020.

[58] L. Liang, H. Ye, and G. Y. Li, ‘‘Spectrum sharing in vehicular networks
based on multi-agent reinforcement learning,’’ IEEE J. Sel. Areas Com-
mun., vol. 37, no. 10, pp. 2282–2292, Oct. 2019.

[59] H. Ye, G. Y. Li, and B.-H. F. Juang, ‘‘Deep reinforcement learning based
resource allocation for V2V communications,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

[60] Z. Lu and M. C. Gursoy, ‘‘Dynamic channel access and power control
via deep reinforcement learning,’’ in Proc. IEEE 90th Veh. Technol. Conf.
(VTC-Fall), Sep. 2019, pp. 1–5.

[61] C. She, R. Dong, Z. Gu, Z. Hou, Y. Li, W. Hardjawana, C. Yang,
L. Song, and B. Vucetic, ‘‘Deep learning for ultra-reliable and low-latency
communications in 6G networks,’’ IEEENetw., vol. 34, no. 5, pp. 219–225,
Sep./Oct. 2020.

[62] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. 33rd Int. Conf. Mach. Learn. (Proceedings of Machine
Learning Research), vol. 48, M. F. Balcan and K. Q. Weinberger, Eds.
New York, NY, USA: PMLR, Jun. 2016, pp. 1928–1937. [Online]. Avail-
able: http://proceedings.mlr.press/v48/mniha16.html

[63] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[64] V. Mnih, ‘‘Human-level control through deep reinforcement learning,’’
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[65] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu. (Aug. 2018). Stable Baselines. [Online]. Available:
https://stable-baselines.readthedocs.io/en/master/index.html

[66] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov. (2017). OpenAI Baselines.
[Online]. Available: https://github.com/openai/baselines

[67] S. Schwarz, C. Mehlfuhrer, and M. Rupp, ‘‘Low complexity approximate
maximum throughput scheduling for LTE,’’ in Proc. Conf. Rec. 44th
Asilomar Conf. Signals, Syst. Comput., Nov. 2010, pp. 1563–1569.

[68] I. K. Jain, R. Kumar, and S. S. Panwar, ‘‘The impact of mobile blockers on
millimeter wave cellular systems,’’ IEEE J. Sel. Areas Commun., vol. 37,
no. 4, pp. 854–868, Apr. 2019.

[69] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[70] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
‘‘A comprehensive survey on transfer learning,’’ Proc. IEEE, vol. 109,
no. 1, pp. 43–76, Jul. 2021.

[71] S. Han, T. Xie, I. Chih-Lin, L. Chai, Z. Liu, Y. Yuan, and C. Cui, ‘‘Artificial-
intelligence-enabled air interface for 6G: Solutions, challenges, and stan-
dardization impacts,’’ IEEE Commun. Mag., vol. 58, no. 10, pp. 73–79,
Oct. 2020.

[72] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, ‘‘Deep learning
for radio resource allocation with diverse quality-of-service requirements
in 5G,’’ IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2309–2324,
Apr. 2021.

VICTOR HUGO L. LOPES (Graduate Student
Member, IEEE) received the degree in informatics–
information systems from the Cefet-Goiás,
in 2006, and the master’s degree in electrical
engineering from the Faculty of Technology, UnB,
in 2015. He is currently pursuing the Ph.D. degree
in computer science with the Institute of Informat-
ics, Federal University of Goiás (UFG). He has
been a Professor with the Federal Institute of Edu-
cation, Science, and Technology of Goiás (IFG),

since 2013. His research interests include radio resource management and
machine learning applied to next-generation wireless networks.

CLEVERSON VELOSO NAHUM received the
B.Sc. degree in computer engineering from
the Federal University of Pará (UFPA), Belém,
Pará, Brazil, in 2019, and the master’s degree
in electrical engineering with emphasis on
telecommunications from the Electrical Engineer-
ing Graduate Program, UFPA, in 2021, where
he is currently pursuing the Ph.D. degree. He is
part of the Research and Development Center for
Telecommunications, Automation and Electronics

(LASSE), since 2016. His current research interests include network slicing,
radio resource management, and artificial intelligence applied on mobile
communication systems.

RYAN M. DREIFUERST received the B.S. degree
in electrical engineering from the Milwaukee
School of Engineering with minors in mathemat-
ics and physics, the B.S. degree in electrical and
communications engineering from the Technische
Hochschule Lübeck, the M.S. degree in electri-
cal engineering from The University of Texas at
Austin (UT Austin), where he is currently pur-
suing the Ph.D. degree in electrical engineering.
His research interests include machine learning

and signal processing. Specifically, he has focused on augmenting machine
learning with domain knowledge for physical layer processing in wireless
communications.

PEDRO BATISTA received the B.S., M.S., and
Ph.D. degrees from the Electrical Engineering
Graduate Program, Federal University of Pará,
Brazil. He is currently a Researcher at Erics-
son. His research interests include optimization
of future mobile networks, particularly, using
machine learning and machine reasoning, and
future internet architectures.

125524 VOLUME 10, 2022



V. H. L. Lopes et al.: DRL-Based Scheduling for Multiband Massive MIMO

ALDEBARO KLAUTAU (Senior Member, IEEE)
received the bachelor’s degree in electrical engi-
neering from the Federal University of Pará
(UFPA), in 1990, the M.Sc. degree in electrical
engineering from the Federal University of Santa
Catarina (UFSC), in 1993, and the Ph.D. degree
in electrical engineering from the University of
California at San Diego (UCSD), in 2003. He is
currently a Full Professor at the UFPA, where he
is the ITU Focal Point and co-ordinates the LASSE

Research Group. He is a Researcher of CNPq, Brazil, and the Brazilian
Telecommunications Society (SBrT). His research interests include machine
learning and signal processing for communications and embedded systems.

KLEBER VIEIRA CARDOSO received the degree
in computer science from the Universidade Fed-
eral de Goiás (UFG), in 1997, and the M.Sc. and
Ph.D. degrees in electrical engineering from the
COPPE, Universidade Federal do Rio de Janeiro,
in 2002 and 2009, respectively. He is currently an
Associate Professor with the Institute of Informat-
ics, UFG, where he has been a Professor and a
Researcher, since 2009. He spent his sabbatical at
Virginia Tech, USA, in 2015, and the Inria Saclay

Research Centre, France, in 2020. He has participated in some international
research projects (including two from joint calls BR-EU) and coordinated
several national-sponsored research and development projects. His research
interests include wireless networks, SDN, virtualization, resource allocation,
and performance evaluation.

ROBERT W. HEATH JR. (Fellow, IEEE) received
the B.S. andM.S. degrees in electrical engineering
from the University of Virginia, Charlottesville,
VA, USA, in 1996 and 1997, respectively, and
the Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, USA, in 2002.
From 1998 to 2001, he was a Senior Member of
the Technical Staff then a Senior Consultant at
Iospan Wireless Inc., San Jose, CA, USA, where
he worked on the design and implementation of

the physical and link layers of the first commercial MIMO-OFDM commu-
nication systems. From 2002 to 2020, he was with The University of Texas
at Austin, most recently as a Cockrell Family Regents Chair in Engineering
and the Director of the UT SAVES. He is currently a Distinguished Professor
with North Carolina State University. He is also the President and the CEO
of MIMO Wireless Inc. He has authored Introduction to Wireless Digital
Communication (Prentice Hall, 2017) and Digital Wireless Communication:
Physical Layer Exploration Lab Using the NI USRP (National Technol-
ogy and Science Press, 2012), and coauthored Millimeter Wave Wireless
Communications (Prentice Hall, 2014) and Foundations of MIMO Com-
munication (Cambridge University Press, 2018). In 2017, he was selected
as a fellow of the National Academy of Inventors. He has been the coau-
thor of a number award winning conference and journal papers, including
recently the 2016 IEEE Communications Society Fred W. Ellersick Prize,
the 2016 IEEE Communications and Information Theory Societies Joint
Paper Award, the 2017Marconi Prize Paper Award, and the 2019 IEEECom-
munications Society Stephen O. Rice Prize. He received the 2017 EURASIP
Technical Achievement Award and the 2019 IEEE Kiyo Tomiyasu Award.
He was a Distinguished Lecturer and a member of the Board of Governors
in the IEEE Signal Processing Society. He is also a Licensed Amateur
Radio Operator, a Private Pilot, and a Registered Professional Engineer, TX.
He is also the Editor-in-Chief of IEEE Signal Processing Magazine and is a
Member-at-Large of the IEEECommunications Society Board of Governors.

VOLUME 10, 2022 125525


