IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON IEEE EDUCATION SOCIETY SECTION

Received 9 November 2022, accepted 22 November 2022, date of publication 24 November 2022,
date of current version 1 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3224759

==l TuTorIAL

Fundamentals of Transaction Management in
Enterprise Application Architectures

ANTONIO NAVARRO

Dpto. Ingenierfa del Software e Inteligencia Artificial, Universidad Complutense de Madrid, 28040 Madrid, Spain

e-mail: anavarro @fdi.ucm.es

ABSTRACT Transaction management is a key issue in the development of enterprise application. During the
payment of purchases, when dealing with bank operations or when making hotel reservations, transactions
are everywhere. Curricula recommendations mainly consider specific knowledge units for transactions in
the context of information management knowledge area. Thus, from a curricular point of view, transactions
are usually related to Database Management Systems (DBMS). However, in the development of enterprise
applications, designers and programmers use frameworks that manage transactions from the business tier.
Therefore, there is a significant gap between the concept of transaction usually presented in degree courses
and the real use of transactions made during the development of enterprise applications. There are excellent
books that provide detailed descriptions of the transactional management in enterprise application from the
business tier, but these are detailed and complex books beyond the reach of most students and, what is
worse, beyond the reach of those lecturers without a significant background both in DBMS and enterprise
application architectures. This paper provides a core of knowledge distilled from these books, as well as some
examples of transactional architectures used in the grade software engineering courses taught by the author.
The main goal is to describe in detail a knowledge unit focused on what I have called service transactions that
helps to fill the gap between the learning outcomes provided in university courses and the use of transactions
made in enterprise application development.

INDEX TERMS Service transaction, n-tier architecture, database transaction processing, transaction pro-
cessing monitor, local transaction, global transaction, X/Open XA, JTA.

I. INTRODUCTION

Nowadays, terms like artificial intelligence, big data and
blockchain are in the focus of society, industry, and academia.
However, there is a significant number of enterprise appli-
cations [1], [2] that manage the business processes of key
entities for society such as hospitals, banks and financial
trading, or everyday activities such as online shopping. These
applications are not in the present focus of attention, but
without them much of the world’s progress would not have
happened. At the core of these applications lies transac-
tional management. Transaction is a concept usually bound to
Database Management Systems (DBMS): a database transac-
tion symbolizes a unit of work performed within a database
management system (or similar system) against a database
and treated in a coherent and reliable way independently

The associate editor coordinating the review of this manuscript and
approving it for publication was James Harland.

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of other transactions. A transaction generally represents any
change in a database. A database transaction must be Atomic,
Consistent, Isolated and Durable (ACID) [3].

DBMSs and, specifically, Relational DBMS (RDBMSs)
lie in the core of data management of enterprise applications
because they handle the management of highly structured
data very well in a concurrent and transactional environment.
Transactions are so important in enterprise applications that
many of the features found in application servers have their
basis in transaction processing monitors [4].

The wide use of RDBMs in enterprise applications have
promoted the development of automatic object-relational
mappings in most platforms and frameworks for the devel-
opment of enterprise applications such as JEE [5], Microsoft
.NET [6] or Spring [7].

These mappings deal with both the persistence of objects
and the transactional management of the operations that use
them. Transactional management is so widely used in these

124305

https://orcid.org/0000-0001-7230-4407

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

operations that its presence is assumed in each operation
and declaratively managed by platforms and frameworks.
This management has to be explicitly configured but once
done, it is implicitly performed by the platforms and frame-
works, and programmers are excused from writing a code for
transaction management. Therefore, this is called declarative
transaction management.

From a technical perspective, it has taken too much effort
and time for transaction processing systems to evolve to
their current level of performance, fault tolerance and reli-
ability [4], and declarative transaction management is a very
useful tool for enterprise application development.

However, from a pedagogical perspective, there is a prob-
lem that has gone unnoticed for years: in curricula recommen-
dations, transactions are only considered from an information
systems point of view, and the software engineering point of
view of transactions has remained unattended.

What is the main difference between the information sys-
tems and software engineering points of view? Information
systems approach transactions from a DBMS point of view.
Software engineering approaches transactions from the busi-
ness logic point of view. Both of them are concerned with
ACID properties, but information system transactions are
about database transactions and software engineering trans-
actions are about service transactions. For example, if a user
makes a money transfer in a bank, the service transaction
takes care of the amount of money that has to be transferred
and has to check whether or not it is possible, which will
end the service transaction with commit or rollback. And this
is made with total isolation of the underlying DBMS in the
resource tier. Database transaction takes care of providing an
ACID management of the operations against the DMBS in
accordance with what the service transactions expects. This
is not an academic or professional rule for distinguishing
transactions, but rather a convention used in this paper.

Not only curricula recommendations have failed to attend
to the software engineering point of view of transactions, but
even the most modern software engineering books such as [8]
do not pay attention to this point of view of transactions.

A main question arises: what are the key elements of the
software engineering point of view of transactions? Two:
(i) service transactions; and (ii) the infrastructure that has to
be provided in order to deal with the management (program-
matic or declarative) of these service transactions.

Precisely, this paper focuses on the definition of service
transactions and describes a simple solution for teaching how
to build the necessary infrastructure for dealing with service
transactions in enterprise applications. Three solutions are
described in this paper according to the amount of resource
managers and the presence of remote services. For the sake
of conciseness, this paper focusses on ACID transactions and
does not consider other extended transactions models such as
long-running transactions [4], [9].

Because this paper has a pedagogical motivation
(i.e., teaching transactions from a software engineering point
of view) and no technical motivation (i.e., improving present

124306

infrastructure for dealing with service transactions), it defines
a knowledge unit (KU) in the format of ACM/IEEE curricula
recommendation providing core-tier1, core-tier 2 and elective
topics and learning outcomes. This paper does not discuss
whether or not present ACM/IEEE curricula recommenda-
tions should be revised in order to include this new knowl-
edge unit. It only uses the ACM/IEEE format for defining
academic knowledge about service transactions.

Using this curricular structure, core-tierl, core-tier2 and
elective topics contents are provided in this paper with the
frameworks defined by the author.

Thus, the paper is divided into the following sections.
Section II reviews the related work and provides a basic
vocabulary for transaction management. Section III defines
a knowledge unit (KU) in the format of ACM/IEEE cur-
ricula recommendation. Section IV focusses on KU’s core-
tierl contents (simple transaction management for local
transactions without remote services). Section V focusses on
KU’s core-tier2 contents (simple transaction management
for global transactions without remote services). Section VI
focusses on KU’s elective contents (transaction management
for web services). Finally, Section VII presents conclusions
and future work. Notwithstanding the complexity of the issue
analysed in this work, and the paper’s final length, an aim
of conciseness is a cross-cutting concern in the paper in
order to keep it within a reasonable size. Thus, for the sake
of conciseness, the paper stresses the positive behaviour of
transaction management, omitting the key mechanisms for
failure recovering and transaction compensation.

Il. RELATED WORK

This section gathers knowledge from different heterogenous
domains. All of them are necessary because this paper deals
with a technical computing science problem from an edu-
cational perspective. Thus, this section considers: curricula
recommendations, information systems literature, software
engineering literature, global transactions literature, litera-
ture about platforms and frameworks for the development
of enterprise applications, documentation of frameworks for
global transaction management and cloud computing litera-
ture. Finally, it provides a list of key terms extracted from the
material analysed.

It is important to note that the classification provided in
this section is not exclusive. Thus, for example, the same
reference could be indexed under software engineering and
global transactions. However, I have chosen an exclusive
indexing in order to simplify this paper.

A. CURRICULA RECOMMENDATIONS
Curricula recommendations and bodies of knowledge can be
a good starting point for lecturers willing to include some
computer science-related concept in their courses.
ACM/IEEE have different curricula recommendations
focused on computer science-related disciplines [10].
ACM/IEEE Computer Science Curricula 2013, CS2013, [11]
considers different knowledge areas (KA), which are topical

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

areas of study in computing, such as Computational Sci-
ence (CN), Information Management (IM), Parallel and
Distributed Computing (PD), Social Issues and Professional
Practice (SP) or Software Engineering (SE). They are divided
into knowledge units (KU) with core-tier] (mandatory),
core-tier2 (important) and elective contents to be included
in degree programs. Each type of content has a number
of associated lecturer hours. The recommendations include
learning outcomes that students should acquire as a result of
understanding the knowledge areas. Each learning outcome
has an associated level of mastery: familiarity (the student
understands the concept), usage (the student is able to apply
the concept in a concrete way) and assessment (the student
is able to understand the concept from multiple viewpoints).
In this paper I only consider those recommendations that are
more closely related to the subject of this paper.

CS2013 provides curriculum guidelines for undergraduate
degree programs in computer science. Transactions are con-
sidered in the following knowledge units:

— CN/ Data, Information and Knowledge. Elective con-
tent with the following learning outcome:

o List and describe the reports, transactions, and
other processing needed for a computational sci-
ence application. [Familiarity]

— IM/Database systems. Core-tier2 content with the fol-
lowing learning outcome:

o Describe the most common designs for core
database system components including the
query optimizer, query executor, storage man-
ager, access methods, and transaction processor.
[Familiarity]

— IM/Transaction processing. Elective content with the
following learning outcomes:

o Create a transaction by embedding SQL into an
application program. [Usage]

o Describe the issues specific to efficient transac-
tion execution. [Familiarity]

o Choose the proper isolation level for implement-
ing a specified transaction protocol. [Assessment]

o Identify appropriate transaction boundaries in
application programs. [Assessment]

— IM/Distributed databases. Elective content with the fol-
lowing learning outcome:

o Explain how the two-phase commit protocol is
used to deal with committing a transaction that
accesses databases stored on multiple nodes.
[Familiarity]

— IM/Physical database design. Core-tier2 content with
the following learning outcome:

o Explain how physical database design affects
database transaction efficiency. [Familiarity]

— PD/Communication and Coordination. Cores-tier2
contents with no specific learning outcomes.

— SE/Software design. Elective content with the follow-
ing learning outcomes:

VOLUME 10, 2022

o Apply component-oriented approaches to the
design of a range of software, such as using
components for concurrency and transactions,
for reliable communication services, for database
interaction including services for remote query
and database management, or for secure commu-
nication and access. [Usage]

— SP/Privacy and civil liberties. Core-tierl contents with
the following learning outcomes:

o Evaluate solutions to privacy threats in tran-
sactional databases and data warehouses.
[Assessment]

Therefore, CS2013 basically considers transaction pro-
cessing from an information management point of view, with
mainly core2-tier and elective content. Only the elective
KUs IM/Transaction processing, IM/Distributed databases
and SE/Software Design slightly put the stress on service
transactions and global transactions. It is important to remark
that the learning outcome create a transaction embedding
SQL into an application program is not enough to guar-
antee the teaching of service transactions as Section IV.C
highlights.

ACM/IEEE Competency Model for Undergraduate Pro-
grams in Information Systems 2020, 182020, [12] follows a
slightly different approach to CS2013, translating the courses
described in the previous curriculum guidelines published
in 2010 into competency areas. In any case, its coverage of
the concept of transaction is less detailed than CS2013. Inter-
estingly, IS2020 removes the previous core course focused on
Enterprise Architecture, which could be the item most related
to the subject discussed in this paper.

ACM/IEEE Software Engineering 2014, SE2014, [13] pro-
vides curriculum guidelines for undergraduate degree pro-
grams in Software Engineering. The recommendation does
not consider transactions in any knowledge unit.

Thus, considering CS2013, 1S2020, and SE2014, only
CS2013 mentions a few elective topics related to service
transactions. This is the reason why I think that this paper
is a contribution to computing education. I do not propose
to extend ACM/IEEE curricula recommendations, but I think
that this paper puts the stress on an interesting issue that
has not been sufficiently taken into account by the academic
world.

B. INFORMATION SYSTEMS LITERATURE

Transactional information systems are a key issue in software
development. Therefore, there is a huge number of excel-
lent books about transactional information systems. Choosing
some references from this list can be very complex. In this
paper [14], [15] are chosen as prototypical examples of what
to find in this category. These books provide a wide view
of DBMS, focusing on Relational DBMS (RDBMS), and
putting the stress on the information systems point of view
of transaction. Thus, they do not consider enterprise architec-
tures or the management of transactions from the business

124307

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

tier, because from a database point of view, this issue lies
outside their scope.

There are fewer books that focus more specifically on
transaction processing. In this paper [16], [17], [18] are cho-
sen as prototypical examples of what to find in this category.
These books study in more detail how RDBMS implement
transactions, maintaining the ACID properties in a concur-
rent environment. This is a very complex issue that must be
addressed by RDBMS designers and developers, but which
lies outside the scope of this paper.

Therefore, information systems literature about transac-
tions provides a necessary background for understanding and
implementing service transactions, but totally ignores them.

C. SOFTWARE ENGINEERING LITERATURE

This paper focuses on the software engineering point of view
of transaction management. Therefore, software engineering
literature has been analysed.

The Guide to the Software Engineering Body of Knowl-
edge, SWEBOK V3.0 [19] describes generally accepted
knowledge about software engineering. SWEBOK does
not pay special attention to transactions either, and only
considers them from a collateral point of view: 1.7.2.
Trademarks and 14.1 Parallel and distributed computing
overview.

This paper does not consider general purpose books about
software engineering, because they provide a horizontal
vision of the discipline, and does not delve into the details
of transaction management. On the contrary, [1], [2] are key
references for understanding the development of enterprise
application, including transaction management. Reference
[1] has an excellent chapter about concurrency and transac-
tions (Chapter 5), and defines several patterns for transaction
management, such as fransaction script and unit of work.
Reference [2] gathers several patterns defined in [1] into the
domain store pattern, which deals with the persistence of
business objects [2] with dynamic load, in a transactional and
concurrent application.

These two books teach three important issues:

- How to build n-tier enterprise applications from a
pattern-based point of view, which underlies the main
frameworks and platforms for enterprise application
development.

- Application services are responsible for implementing
the business logic and, therefore, they are responsible
for starting and finishing transactions.

- How to build a simple transaction manager which deals
with local transactions. Local transactions are those cre-
ated and committed against a single resource manager
(e.g., a RDBMS) [4].

However, they do not cover global transactions and,
to some extent (specially [2]), pre-suppose certain knowledge
about how application servers (and therefore transaction pro-
cessing monitors) work.

124308

D. GLOBAL TRANSACTIONS LITERATURE

Unlike local transactions, global transactions are those cre-
ated and committed against several participants such as
resource managers (e.g., several RDBMS) [20]. Global trans-
actions are key elements of enterprise applications and pro-
fessionals focusing on the development of these applications
must understand global transactions in depth.

The literature about global transactions comprises a single
category on its own. This literature lies in an intersection
between information systems and software engineering litera-
ture, because, without previous knowledge about information
systems and the architecture of enterprise applications, it is
not possible to understand this literature.

The X/Open XA Specification [20] defines a distributed
transaction processing model that envisages three software
components: application programs, which define transaction
boundaries and specify actions that constitute a transaction;
resource managers (e.g., RDBMSs), which provide access
to shared resources; and transaction managers, which assign
identifiers to transactions, monitor their progress, and take
responsibility for transaction completion and failure recov-
ery. The kernel of the specification is the XA interface: the
bidirectional interface between a transaction manager and a
resource manager. X/Open XA is the core specification for
global transactions and it is necessary to understand it before
understanding advanced transaction processing presented in
the rest of literature within this category. However, the single
standard does not provide a detailed overview of how to build
applications which deal with global transactions.

The X/Open XA specification is platform-agnostic, and
this type of literature is a very good candidate for inclu-
sion in curricular recommendation. On the opposite side,
the book [21] focusses on transactions for the JEE plat-
form and Spring framework. This is a concise and practical
book that defines three types of transaction models: local
(the programmer manages transactions using connections to
RDBMS), programmatic (the programmer manages trans-
actions using some type of transaction interface provided
by a framework/platform) and declarative (the programmer
does not write a code to manage transactions and the frame-
work/container manages them). The book also introduces XA
transaction processing and some specific patterns for transac-
tions. It is a very useful book if the reader has some type of
background about global transaction processing. Otherwise,
it is hard to understand the inner infrastructure that underlies
the code examples provided in it.

References [4] and [22] are excellent books for under-
standing the inner infrastructure that [21] does not describe.
References [4] and [22] present the key concepts about global
transaction processing from two different point of views. Ref-
erence [22] presents the concepts in a platform-agnostic way,
and Reference [4] presents these concepts for the JEE plat-
form. Both are excellent books and the key concepts depicted
in this paper are mainly extracted from them. However, they
do not include the specific transactional frameworks included

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

in this paper. These basic frameworks have been defined by
the author of this paper for educational purposes only.

It is important to remark that declarative transaction man-
agement is the preferred method for transaction management
because it is simpler, as it hides the complexities of transac-
tion management, and separates transactional behaviour from
business logic [21], [23]. In addition, declarative transac-
tion management is usually integrated with some framework
which implements a domain store pattern for the persis-
tence of business objects, such as Jakarta Persistence API,
JPA [24]. However, in the material provided in this paper
explicit programmatic transaction management is made from
application services in order to teach students the complexity
that underlies transaction management.

E. LITERATURE ABOUT PLATFORMS AND FRAMEWORKS
FOR THE DEVELOPMENT OF ENTERPRISE APPLICATIONS
The literature about platforms and frameworks for the devel-
opment of enterprise application architectures includes some
chapters about transaction management in these platforms
and frameworks. There is a wide variety of literature for
these frameworks and platforms and, in the case of infor-
mation systems, this is a small selection from each one of
them [23], [25], [26].

These books use the power provided by frame-
works/platforms for the management of transactions. There-
fore, although these books provide detailed examples about
transaction management, the inner mechanisms used by the
frameworks/platforms remain hidden to the programmer.
Without hesitation, this is an advantage for senior program-
mers, but students in undergraduate courses are unable to see
the complexity behind service transaction processing. This
problem is not only present in the context of transaction
management but inherent to the use of frameworks. For
example, programmers can use the Jakarta Server Faces
framework [27], which hides the complexity of implementing
a model-view-controller [28]. But if programmers have never
manually programmed a controller which maps incoming
interface events in services and services responses in views,
they will never understand the true essence of the model-
view-controller pattern.

F. DOCUMENTATION OF FRAMEWORKS FOR GLOBAL
TRANSACTION MANAGEMENT

Frameworks for global transaction management provide an
interesting documentation that can help to understand the
management of global transactions. In the context of Java, the
key API for transaction management is Jakarta Transactions
(JTA). Atomikos [29], Bitronix [30] or Narayana [31] are
good examples of JTA implementations and their documenta-
tions provide interesting examples of how to deal with global
transactions.

However, in general, these are technical documents,
explicitly focussed on the programming platform (JEE in
the previous examples). Thus, they are more focussed on
describing how to configure and use the frameworks than on

VOLUME 10, 2022

providing a pedagogical description of the global transaction
management.

G. CLOUD COMPUTING LITERATURE

During the last years, cloud computing platforms such as
Amazon Web Services, Google Cloud Platform or MS Azure
have gained the focus of the market for the development of
enterprise applications [32]. Enterprise applications built on
these services usually rely on microservices [33], which use
some type of eventual consistency model for dealing with
transactional management. In this model, a business opera-
tion consists of a series of separate steps. While these steps are
being performed, the overall view of the system state might
be inconsistent, but when the operation has been completed
and all of the steps have been executed, the systems should
become consistent again [34]. This type of transactional man-
agement is analysed in Section VI. It is well worth men-
tioning the proposal made by [35] for a concurrency control
protocol which allows greater concurrency across multiple
microservices. However, this is an isolated approach that has
not been generally adopted by the industry.

Cloud computing also includes other types of transactions
which lie beyond the scope of this paper. Some of these
approaches are closer to the underlying cloud infrastructure
than to enterprise applications. For example, Reference [36]
defines a Virtual Machine Interface (VMI) platform for trans-
actional modification. Reference [37] presents a scalable pro-
tocol for transaction management in a key-value-based multi-
version data storage system supporting partial replication.
Reference [38] proposes a unified and comprehensive Remote
Direct Memory Access (RDMA)-enabled distributed transac-
tion processing framework supporting multiple concurrency
control protocols.

Other transaction-related bibliography in cloud comput-
ing is focused on data stores not specifically intended for
enterprise applications. Reference [39] presents an approach
for transaction management in a cloud-based database.
Reference [40] proposes a concurrency control method to
support transaction processing capability for Cloud Data
Management Systems (CDMS).

Finally, there is a range of cloud-based data stores from
the academy which include transactional management. Refer-
ence [41] analyses these data stores, which are not considered
in this paper because they are not being adopted by the
industry for the development of enterprise applications.

H. KEY TERMS

Vocabularies (i.e., lists of key terms) are key parts of specific
domains. Thus, coming into contact with the vocabulary is
a key issue for understanding a domain. At a first glance,
vocabularies are difficult to understand, but as the knowledge
about a domain grows, vocabularies are better understood,
and reciprocally, vocabularies improve domain knowledge.
In addition, vocabularies identify a group of terms which
are key in the understanding of a specific domain. This
section defines some basic vocabulary used in service

124309

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

transaction processing. Terms are presented from the more
basic to the more advanced ones, which need basic terms to
be understood. Some terms about multitier architecture are
also included.

Enterprise application: applications with the follow-
ing characteristics: a significant amount of persistent
data, which is accessed concurrently, a significant
amount of user interface screens and complex business
logic [1].

Business logic: any logic associated with provid-
ing some service. This includes all logic related to
processing, workflow, business rules, data and so
forth [2].

Business object: a class that separates business data and
logic using an object model [2].

Application service: a class that centralizes and
aggregates behaviour to provide a uniform service
layer [2].

Remote Procedure Call (RPC): a programming mecha-
nism that enables a program in one process to invoke a
program in another process using an ordinary procedure
call, as if the two programs were executing in the same
address space [22].

Session facade: a class that encapsulates business-tier
components and exposes a coarse-grained service to
remote clients using Remote Procedure Calls [2].

Web service broker: a class that exposes and brokers one
or more services using XML and web protocols [2].
Service activator: a class that receives asynchronous
requests and invokes one or more business services [2].
Business service: In this paper, I consider business ser-
vices to include any class which implements business
logic. For the sake of simplicity, business services can be
considered application services, because they implement
business logic whether applications are directly invoked
by local processes or are remotely invoked from other
classes which access them using session fagades, web
service brokers and/or service activators. A business
object can implement business logic, but if this logic
is invoked by actors, I am prone to include it withing
application services.

Application server: a server that hosts applications [42].
Container: the logical partitions of an application
server [42].

Transaction: a complete unit of work [43].

ACID transaction: Atomic, Consistent, Isolated and
Durable transaction [3].

Long-running transaction: transaction that cannot be
synchronously resolved [4], [9].

Extended transaction models: transactions beyond the
ACID paradigm (e.g., long-running transactions) [4].
Business transaction: an interaction in the real world,
usually between an enterprise and a person or another
enterprise, in which something is exchanged [22].
Service Transaction (ST): a transaction started and fin-
ished from a business service, in particular from an

124310

application service. This concept is further developed
in Section V.A.

Transaction demarcation: a mechanism that offers the
application programmer commands to start, commit and
abort a transaction [4].

Transaction bracketing: transaction demarcation [22].
Transaction attribute: mechanisms in object-oriented
languages which allow one to define an implicit/declara-
tive transaction demarcation in methods [4].
Transaction composability: the ability of different trans-
actions to become part of the same transaction with
a behaviour consistent with the business logic imple-
mented. This is an adaptation of the term composability
problem defined in [22].

Compensating transaction: a transaction that reverses
the effect of an already committed transaction [22].
Connection passing: a technique that establishes
a database connection at the higher-level method
(e.g., an application service’s method), and passes the
connection into the DAOs [21].

Application Program (AP): the program that defines
transactions and accesses resources withing transaction
boundaries [43]. In this paper, application services are
the core of application programs.

Resource Manager (RM): a software that manages a
certain part of the computer’s shared resources. RDMBS
or print servers are good examples of RMs [43].
Transaction Manager (TM): a software component
that assigns identifiers to transactions, monitors their
progress, and takes responsibility for transaction com-
pletion and for failure recovery [43].

RM transaction: a transaction performed by a RM. This
concept is further developed in Section V.A.

X/Open Distributed Transaction Processing (DTP)
Model: a model in which APs that use resources from
a set of RMs call TMs to structure transactions [20],
[43], [44].

Local transaction: a transaction created and committed
against a single RM [4].

Global transaction: a transaction that involves many
RMs in a single unit of work [20], [43], [44].
Distributed transaction: a global transaction [20], [43],
[44], [45].

Nonglobal transaction: a transaction in which, if two or
more RMs are involved, there is no coordinated commit-
ment between them [44].

Transaction Processing Monitor (TPM): a product
that supports the development of transactional appli-
cations/systems [4]. A TPM coordinates the flow of
transaction requests between the client processes (APs)
that issue requests and the back-end servers that process
them. Basically, a TPM coordinates transactions that
require the services of several different types of back-
end processes, such as application servers and RMs
distributed over a network. A TM is usually provided
by a TPM [45].

VOLUME 10, 2022

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

- Transaction context: common information propagated tor and participant functions for a group of transactions

between components involved in a transaction dis-
tributed among several machines [20].
Transaction branch: A global transaction has one or
more transaction branches (or branches). A branch is a
part of the work in support of a global transaction for
which the TM and the RM engage in a separate but
coordinated transaction commitment protocol. Each of
the RM’s internal units of work in support of a global
transaction is part of exactly one branch [20]. Reference
[46] delves into this concept: a transaction branch is the
part of the work between a TM and an RM that supports
the global transaction. A global transaction could have
multiple transaction branches when multiple RMs are
accessed through one or more application processes that
are coordinated by the TM.
Transaction identifier: Each transaction has a unique
transaction identifier (ID), which is assigned when the
transaction is started (by a TM or a transactional RM).
Itis used to tell the RM on which transaction’s behalf the
access is being made. The RM needs this information to
enforce the ACID properties. Transaction ID is usually
hidden in a transaction context. There are two major
types of transaction IDs: global (more than one RM
participates in the transaction) and local (IDs assigned
by RMs and correlated to the global transaction ID) [22].
- XID: a key used to identify a transaction branch [20].
It contains the global transaction identifier and a branch
qualifier. The AP defines the start and end of a global
transaction by calling the TM. The TM assigns an iden-
tifier to the global transaction and informs each RM of
the XID on behalf of which the RM is doing the work
[20]. Reference [46] delves into this concept: XIDs are
assigned by the TM to identify both the global transac-
tion, and the specific branch within an RM.
Exception handler: Application programs that bracket
transactions must provide error handling for two types
of exceptions: transaction failures (e.g., a rollback) and
system failures (e.g., an unsolicited abort by zero divi-
sion). For each type of exception, the application should
specify an exception handler, which is a program that
executes after the system recovers from the error [22].
Savepoint: a point in the program in which the appli-
cation saves its whole state, generally by issuing a
savepoint command, which tells the database system
and other resource managers to mark this point in their
execution, so that they can return their resources to this
state later, if asked to do so [22].
Two-phase commit. A commit encompassing two
phases [20]:

o Phase 1: RMs are requested to inform whether or

not they can commit.
o Phase 2: according to the result of phase one, RMs
are requested to commit or abort.
Usually, the TM is responsible for running the two-
phase commit protocol, performing both the coordina-

VOLUME 10, 2022

(interposition). It usually runs a two-phase commit for
all transactions that execute on its machine. To do this,
it communicates with RMs on its own machine and
with TMs on other machines [22].
Coordinator: a component that runs the two-phase com-
mit protocol on behalf of the transaction. The coordi-
nator receives the commit or abort request from the
application program and drives the execution of the
protocol [22].
Participant: an RM involved in a two-phase commit
transaction [22].
Interposition: the use of coordinators as subordinate
coordinators/participants of an ongoing transaction.
Each domain (machine) that imports a transaction con-
text may create a subordinate coordinator that enrols
with the imported coordinator as though it were a par-
ticipant. Any participants that are required to enrol in
the transaction within this domain actually enrol with
the subordinate coordinator [4]
XA interface: an interface that enables the TM to struc-
ture the work of RMs into global transactions and coor-
dinate the global transaction’s completion and recovery
(in case of failure) [20]. AKA TM-RM interface [44].
TX interface: an interface that allows the application to
delimit the global transactions. AKA AP-TM interface
for global transaction demarcation [44]. An application
program starts and completes all transaction control
operations through the TM using the TX interface [45].
Native interface: an interface that enables the AP to
access shared resources (e.g., JDBC). AKA AP-RM
interface [44].
Communication Resource Manager (CRM): a compo-
nent that controls communication between distributed
applications [44].
Communication Protocol Stack: the component that pro-
vides the underling communication services used by
distributed applications and supported by CRMs [44].
XA+ interface: an interface that supports the global
transaction information flow across TM domains. A TM
uses the XA+ interface to communicate with remote
TMs participating in global transactions. AKA TM-
CRM interface [44].
Object Transaction Service (OTS): an interoperable
transaction service specified by the Object Management
Group (OMGQG)) [47], [48] in CORBA.
Java Transaction Service (JTS): this is the Java lan-
guage mapping of the CORBA OTS 1.1 Specification
[4], [21]. Programmers are unaware of JTS. It is not
mandated by JEE; it is mandatory for the interoperabil-
ity of distributed transactions between heterogeneous
implementations.
Java Transaction API (JTA): this is the Java API for
transaction management [4], [21]. Programmers use
JTA for demarcating transactions. JTS is the underlying
transaction service on which JTA is based.

124311

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

- Eventual consistency [34]: model of consistency where
the system can be temporary inconsistent but it is
enforced to become consistent in a point in the future.

IIl. PROPOSED KNOWLEDGE UNIT

Section II.A describes the division of ACM/IEEE curricula
recommendations into KAs and KUs. This section provides a
KU, which describes the contents about service transactions
not covered by curricular recommendation such as CS2013
or SE2014. The aim of this paper is not to propose the mod-
ification of such recommendations. It only uses the CS2013
KU format to describe the contents, learning outcomes and
lecturer hours that I propose.

However, if this KU were a part of CS2013, it could be
included within SE KA, and it would then build directly on
the foundation provided by IM/Transaction processing and
SE/Software Design KUs. The proposed KU could have a
slight conflict with the KU IM/Distributed databases that
should be considered when preparing specific curricula.
Section IV.C deals with this topic.

If this KU were a part of SE2014, it could be included
within Software Design (DES) KA, and it would then build
directly on the foundation provided by Computing Essen-
tials/Database fundamentals DES/Architectural design, and
DES/Detailed design.

The inclusion of this KU in IS2020 is more complex due
to the structure of 1S2020. However, its learning outcomes
could be included as competencies within the Application
Development and Programming area of the Development
competency realm.

For the description of this KU, I use the CS2013 format
because it is more detailed than the formats used by other rec-
ommendations. The knowledge area is omitted, because, as |
have already mentioned, it would be SE in CS2013, DES in
CS2014 and Development competency realm in IS2020. The
lecturer hours for core-tierl contents are directly calculated
from my experience teaching this subject during ten academic
years. The lecturer hours for core-tier2 and elective contents
are estimated from my experience with core-tierl subjects.

Service transactions

Topics:

[Core-Tierl]

- Data persistence in concurrent environments. Optimistic

and pessimistic concurrency control.

- Application programs and resource managers.

- Resource manager transactions and service transactions.

- Transaction demarcation.

- Transaction managers.

[Core-Tier2]

- Global transactions, transaction context and distributed

transaction processing. XOpen/XA.

- Transaction branch, global transaction

and XID.
- Two-phase commit.
- Transaction managers for two-phase commit.

identifier

124312

- Platform-specific frameworks for global transaction
management.
[Elective]
- Web services and transactions.
- Persistence APIs. Transaction management.
Learning outcomes:
[Core-Tier1] 12 hours (6 theory + 6 practice)

1. Explain the problems related to data persistence in
concurrent environments. [Familiarity]

2. Use optimistic and pessimistic concurrency control to
avoid problems related to data persistence in concurrent
environments. [Assessment]

3. Explain the roles played by application programs,
resource managers and transaction managers.
[Familiarity]

4. Explain the difference between those transactions
related to resource managers and those transactions
managed by elements belonging to the business tier.
[Familiarity]

5. Use transactional demarcation in application services
for managing transactions in the business tier. [Usage]

6. Build a transaction manager for applications dealing
with a single resource manager and no remote services.
[Usage]

7. Build an n-tier application using service transactions.
[Usage]

[Core-Tier2] 9 hours (5 theory + 4 practice)

1. Explain the difference between local and global trans-
actions. [Familiarity]

2. Describe the main elements of the XOpen/XA stan-

dard. [Familiarity]

Describe the two-phase commit. [Familiarity]

4. Use transactional demarcation in application services
for managing global transactions in the business tier.
[Usage]

5. Build a transaction manager for applications dealing
with several resource managers and no remote services.
[Usage]

6. Build a n-tier application using global service transac-
tions with two-phase commit. [Usage]

7. Describe some platform-specific frameworks for dis-
tributed transaction processing. [Familiarity]

[Elective] 4 hours (2 theory + 2 practice)

1. Explain transaction management in web services.
[Familiarity]

2. Explain how to use a persistence framework for dealing
with data persistence in concurrent transactional envi-
ronments. [Familiarity]

hed

In the courses taught by the author of this paper, core-
tierl contents are explained and JPA is also explained and
used instead of the core-tier2 contents described in this KU.
An incremental approach is chosen: in a project done in the
second course, a simple enterprise application with no trans-
action management is made. In the first part of the project
done in the third course, the simple enterprise application

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

o/ E Transferx «interface»

«Interfaz Java»

= DAOXImp

% A4 AV4
«Interfaz Java» «Interfaz Java» «Clase Java»

| Epaox «
#®9()
«interface» i
e |l LEASImE) «Clase Java»
Rl ' % DriverManag
v
Y2 «interface»
El Transfery < Zlpaoy
@h()

foi» PreparedSt. Y T SQLE;
N A A

= DAOYImp

FIGURE 1. Basic multitier application based only on transfers, application services and DAOs.

is enhanced with the transactional management explained in
core-tierl contents. Finally, in the second part of the project
made in the third course, the application is enlarged with
some modules that use JPA for dealing with the persistence
and transaction management. This enforces the presence of
two sets of tables (in the same or different schema): one for
those accessed from the non-JPA components and the other
for those accessed for the JPA components. This character-
istic is used to illustrate the need for a two-phase commit
protocol, but in practice, it is never implemented because
there is no business logic that simultaneously involves tables
managed and non-managed by JPA.

In order to keep the KU defined in this paper within a
reasonable time range, no persistence APIs are included in
it, and they are only mentioned as elective contents. If a
persistence API (e.g., JPA) is included with the intent of using
it in core-tier] and core-tier2 contents, the duration of the KU
should be double.

The next sections describe the main concepts and refer-
ences for teaching core-tierl, core-tier2 and elective contents.
I have chosen to embody these contents in the context of a
specific platform. Due to the restrictions in my school and
the programming knowledge of the students, this platform
is JEE. Between JEE standards and Spring, I have chosen JEE
standards because they are supported by more vendors. In any
case, other platforms such as .NET or Spring could be used
instead with no significant changes.

IV. CORE-TIER1. SERVICE TRANSACTIONS FOR ONE RM
AND NO REMOTE SERVICES
This section describes in detail core-tier1 contents for the pro-
posed KU. As the title indicates, these contents are focused
on providing students with a detailed view of service trans-
actions which only involves one resource manager and does
not consider remote services. The simple transaction manager
presented in this section has been defined by the author taking
into account the ideas suggested by [1] and [2] and has been
in use for, at least, ten academic courses about software
engineering taught by the author. This transaction manager
has also been used in the development of the Virtual Campus
of the Universidad Complutense de Madrid [49].

The section begins with a basic multitier architecture that
the students must already have mastered before presenting

VOLUME 10, 2022

the concept of service transaction. Then it provides important
references for teaching the main concepts related to local ser-
vice transactions. Finally, it describes the transaction manager
used by the author in his courses.

A. BASIC MULTITIER ARCHITECTURE

The description of multitier architecture lies outside the scope
of this paper and can be fully described in two catalogues of
design patterns [1], [2]. A brief description and a design used
in the development of the Virtual Campus of the Universidad
Complutense de Madrid can be found in [49].

Before presenting the concepts of local service transac-
tions, the students should be able to build an application using
the following patterns: some type of controller (closer to the
concept presented in [28] than to the dual front/application
controller presented in [2]), transfers [2], transfer object
assembler (TOA) [2], application services (ASs) [2] and data
access objects (DAOs) [2].

One of the most underestimated issues in multitier books
is the mapping of the domain relationships to DAOs and
transfers. In order to avoid problems with dynamic loading,
it is better not to include pointers between transfers. Thus,
if there is a one to many relationship (e.g., Department—
Employee), the transfer of the side with multiplicity N holds
the identifier of the side one (e.g., TEmployee should have
departmentId), and its DAO should have an operation
to read them (e.g., EmployeeDAO: : readEmployeesBy
DepartmentId (departmentId:int) :TEmploy
ee[«]). This is applicable to many to many relationship
also. If there are attributes belonging to the relationship (e.g.,
the quantity of Products in an Order) the solution
is straightforward because there is an intermediate class

(OrderLine) which holds two many to one relation-
ships with both ends (Order and Product). If there
are not these attributes (e.g., Ingredient-Drink),
there is no need for such a intermediate class, and the
DAOs of each end can have a function to read the
N elements of the other end (e.g., IngredientDAO: :
readIngredientsByDrinkId (drinkId:int) :TI
ngredient [*] and DrinkDAO::readDrinks By
IngreditentId(ingredientId:int): TDrink

[*]). An intermediate DAO can be provided in order
to deal with the binding and unbinding of both ends

124313

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

(e.g., Ingredient_DrinkDAO: :bind (ingredien
tId: int, drinkId:int):int). If a wuse case
requires to get several related elements (e.g., a department
with its employees) a TOA can be used to generate a transfer
gathering this information (e.g a TDepAndEmployees
with a TDepartment and several TEmployees).

In this application, no transactional management is made,
either from a business or integration tier, and if a RDBMS
is used (students can use a plain file system if they wish),
this is supposed to be with the auto-commit feature on. The
main goal is to facilitate the teaching of multitier application
to those students who might not be familiar with relational
databases.

= :Asximp 2] :paox 2 :paoy

1:f0
» | 1190

1.2 ho

Yy

2f

FIGURE 2. Idealized interaction between application services and DAO
objects whose classes are defined in Fig. 1.

Although courses should be as general as possible, students
are expected to build programs and some programming lan-
guage has to be used. As I have previously mentioned, Java is
the chosen language in the author’s courses. Fig. 1 provides
a UML class diagram for the business and integration tiers
of application that the students are able to build because
its architecture has been presented in the previous academic
year. Fig. 2 provides a UML sequence diagram for a proto-
typical interaction between application services and DAOs.
Note that in Fig. 1 a RDMBS underlies the integration tier
and JDBC [50] is used to connect it with the application
program. In order to avoid a problem of future transaction
composability, application services are not allowed to invoke
other application services. In this case, only one RDBMS
is used, and JDBC Connections are created and closed
by DAOs using the DriverManager class. I am aware of
the fact that this is not very efficient, but at this point of the
learning process, the search for efficiency is not a goal. In the
event of students not being familiar with JDBC [51], it is a
very simple and useful reference.

Multitier architecture patterns focus on logical tiers, but
these tiers have to be mapped to physical tiers. Thus,
a multitier application could be deployed in a machine
(whether physical or virtual) that holds the presentation tier
(e.g., a servlet container), the business and integration tiers
(e.g., a Java application) and the resource tier (e.g., a
SGBDR). However, at least three machines are usually
present in the deployment of a multitier application: a web

124314

server/servlet container for the presentation tier, an appli-
cation container for the business and integration tiers and
a database server for the resource tier. If several machines
are used for the deployment of the business logic or the
deployment of the databases, then global transactions arise
whenever elements of the same tier deployed in different
machines become involved in a transaction.

«Clase Java»

«interface» L = ASXImp > «Interfaz Java»
Easx | fus Connection {u» DriverManager
@10 +
2‘;’?&; K £l DAOYImp

FIGURE 3. Simple but undesirable way to manage local transactions
through connections in applications services.

B. LOCAL SERVICE TRANSACTION CONCEPTS

Taking into account the basic multitier application presented
in figures 1 and 2, the goal of the core-tierl contents is
to introduce students to the definition and use of service
transactions in multitier architecture application that they
already know. At this point, it is also necessary that students
have knowledge of relational databases and their access from
applications using some type of object-database connectivity
such as JDBC. Therefore, it is assumed that they are able
to build applications like those described in Fig. 1, based on
RDBMSs and not on Java-accessed files.

Before talking about service transactions, it is necessary to
present fundamental concepts about concurrency problems,
isolation, optimistic and pessimistic concurrency control, and
to be sure that students are already familiar with RDBMS
transactions and their ACID properties. All these concepts are
very well described and presented in Chapter 5 of [1]. After
that, business objects and domain store patterns [2] can be
presented. The main idea is to keep the application simple,
without business objects (whose dynamic load increases the
complexity), but taking into account the ideas about transac-
tion managers presented in the domain store pattern (which
indeed is based on patterns presented in [1]) to be able to build
a transaction manager that can deal with service transactions
bound to the control thread. The next section covers the build-
ing of such a transaction manager. This transaction manager,
and those defined in Section V and described in Section VI
are elements belonging to the integration tier, which are used
in the business tier.

C. INCREMENTAL DEFINITION OF A TRANSACTION
MANAGER FOR LOCAL SERVICE TRANSACTIONS

WITH NO REMOTE SERVICES

If T had to implement a commercial Java application
that manages persistent data in a single RM, I would
choose JPA as the persistence mechanism, and the
Jakarta.persistence.EntityTransaction inte-
rface for the management of local transaction. However,
this type of implementation hides significant details related

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures I E E E ACC@SS

= :ASXImp fub 1« Clase Java» DriverManager
R S (| IS N get(:v:mnection[)>
1.2: getConnection

1.3: setAutoCommit(false)

14: g9

1.5: commit()
1.6: close()

2f

{u_-o c:«Interfaz Java» Connection é :DAOX
»
g
»l

FIGURE 4. Transaction demarcation using object instances of classes depicted in Fig 3.
Note the necessity for the application service to pass the connection to the DAO.

«interface»

EAsX < £ Asximp
@10
v
«interface» | = . «Interfaz Java»
Epaox [= DAOXImp 7| fusConnection

FIGURE 5. Basic local service transaction.

with the integration tier that students should be aware of.
Therefore, this section provides incremental examples for
justifying the introduction of a transaction manager that can
deal with service transactions in a multithreaded environ-
ment. To do this, four solutions are provided to the students,
discussing the limitations of each solution. After that, in the
courses taught by the author, JPA and its transactional man-
agement is presented to the students.

The first example is an easy way to make students
understand how application services can manage transac-
tions: no wrappers are used, and application services man-
age transactions using JDBC Connections which are
passed to DAOs. In this way, the transaction demarcation
[4], [22] is done by application services using the inter-
face Connection. This is easily understandable for stu-
dents, but it couples the business tier to the integration
tier, what is totally unacceptable. In addition, application
services are forced to pass the connection to the DAOs.
Figures 3 and 4 show the main concepts of this first unde-
sirable solution.

The second example decouples application services from
connections introducing a simple interface for hiding the
JDBC Connection. This interface is the basis for service
transactions and is called Transaction. Its implemen-
tation holds the connection to the single RDBMS that is

VOLUME 10, 2022

_«interface» AV

n =] Transaction L «Singleton»
| & begin ())] TransactionFactory
> ¥ commit () A
_| @ rollback () — -~

2 % qelResourge () : Object = TransactionFactorylmp

7AN
1 V N «Clase Java»
<] Transactionimp “ lu» DriverManager

conn

used. In this way, Transaction/TransactionImp acts
as an adapter [52] which wraps the JDBC Connection
in a JDBC-agnostic coating. Thus, TransactionImp
forwards the received commit/rollback to the underlying
Connection. I know that this solution is very different
from those found in the implementation of JTA, but at this
point of learning, only the presentation of service transaction
is intended. Fig. 5 and Fig. 6 shows this solution. Note that,
in this solution, the application service is decoupled from
the JDBC Connection, but it is still forced to explicitly
pass the transaction as a parameter to the DAOs. The DAOs
use the operation Transaction: :getResource () to
obtain the Connection (which is returned as Ob ject for
hiding it from the application services). To fully decouple
application services from the transaction’s implementation,
an abstract factory is used [52].

The third example goes one step further, introducing
a mechanism that prevents application services to pass
transactions to DAOs: a very simple transaction man-
ager that only manages one transaction with a single
connection to a RDBMS and is intended for use in
single-threaded environments. This transaction manager is
implemented as a singleton [52]. When DAOs need this
transaction, request it from the singleton transaction manager.
Figures 7, 8 and 9 illustrate this extremely basic transaction

124315

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

manager. Transaction/TransactionImp plays the
same role as in Fig. 8, but now the commit/rollback also has
to delete the transaction from the transaction manager.

8 {ASXImp B Singleton»TransactionFactory = t-Transaction £ :pa0x
1.0 o
1.1: getinstance(
12t= newTransaction%
1.3: begin »
14: gt >
1.5: commit() »l

2f

FIGURE 6. Transaction demarcation using object instances of classes
depicted in Fig. 5. Note the necessity for the application service to pass
the transaction to the DAO.

The last step enhances the transaction manager to be
used in multithreaded applications, holding one transac-
tion per thread of execution [1], [2]. No remote services
are allowed and only one RDBMS can be used in the
same transaction. As in the previous case, this transaction
is mainly a simple wrapper for a JDBC Connection.
Therefore, this transaction is only capable to deal with one
local resource manager but allows a multitier application to
include service transaction in a multithreaded environment
as in the Virtual Campus of the Universidad Complutense
de Madrid [49]. The binding of threads and transactions
is made using a ConcurrentHashMap because it helps
students to visualize the assignation of transactions to threads.
However, ThreadLocal could be used instead [53].
Figures 10 and 11 illustrate this simple transaction manager.
No sequence diagram is provided for the management of
transactions from the application service because it is the
same as that depicted in Fig. 8.

I am aware that the transaction manager depicted in
Fig. 10 is not similar to JTA transaction managers. This
solution is valid for multithreaded applications with only one
RDBMS in a transaction and no remote services. However,
the idea is to keep the design as simple and possible, and
to some extent, similar to the use that application services
make of JPA local transaction management (my students
will see JPA later in the course). At this point, students are
able to include service transactional management in the basic
multitier architecture depicted in Fig. 1 according to the
solution depicted in figures 10 and 11. Note that this solution
can be used with both optimistic and pessimistic strategies
for the management of the concurrency, because this strat-
egy is implemented in the DAOs. However, according to
the author’s experience, a pessimistic strategy is easier to

124316

implement, including the sentence SELECT ...FOR
UPDATE in the read methods of the DAOs and forcing
application services needed to block any row in the database,
to read it before. In any case, DAOs never commit or rollback
transactions, as application services are responsible for the
implementation of the business rules (i.e., application ser-
vices are responsible for transaction demarcation).

This strategy does not permit transaction composabil-
ity [22]. Therefore, the methods of application services can-
not invoke the methods of application services. A very basic
transaction composability can be achieved by including a
Boolean attribute in the transaction which indicates whether
or not any composed transaction has made a rollback, as well
as an integer attribute that takes into account the number
of begins performed. Each time a transaction is started in
the same thread, as a result of a nested invocation from one
application service to another, the counter increments. When-
ever a commit/rollback is invoked, the counter decrements.
If a rollback is invoked, the Boolean attribute is set to false.
When the counter is at zero, the transaction commits if the
Boolean attribute is true and a commit is invoked, and it is
otherwise with rollbacks. To some extent, this is equivalent
to a required behaviour [23] in application service methods,
and consistent with the solution for transaction composability
provided by [22]. It is not declaratively configurable, but it is
simple enough to be understood by students with no previous
knowledge of service transactions.

It is important to note that the solution provided in
figures 3 and 4 covers the CS2013 learning outcome create
a transaction embedding SQL into an application program,
but the solution provokes a high coupling between the busi-
ness and integration tiers, which it ruins the modularity, and
therefore, the maintainability of applications. Thus, the ser-
vice transaction introduced in the solution provided in fig-
ures 10 and 11 is necessary for transaction management from
the business tier without coupling it with the resource tier.

Finally, in the author’s courses, JPA is presented to stu-
dents once they have implemented and used the transaction
mechanism depicted in figures 10 and 11. In this way, they
can value the work performed by object-relational mapping
frameworks such as JPA at both levels, persistence, and trans-
action management. Special attention is paid to concurrency
and locking in JPA, especially with optimistic locking [24].

V. CORE-TIER2. SERVICE TRANSACTIONS FOR SEVERAL
RMs AND NO REMOTE SERVICES

Section IV provides students with a simple transaction man-
ager able to deal with service transactions in a multithreaded
environment with only one RDBMS per transaction and
no remote services. However, these transactions are simple
adapters of single database connections that are unable to
deal with the inclusion of more than one resource manager
involved in the transaction. This section enhances the simple
transaction manager presented in figures 10 and 11 in order
to make it work with several resource managers. As in the
former case, no remote services are considered.

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

«Singleton» <
N g TransactionManager
“| & newTransaction () : Transaction <!
> # getTransaccion () : Transaction
&2 deleteTransaction () : int

] TransactionManagerimp

«interface»

£ Asx 1
@) v 1
«interface» <
=] Transaction -t v
> begin () ke __ «Singleton»
> 42 commit ()] TransactionFactory
= ASXimp % rollback () A
2 8 getResource () : Object |
e £ TransactionFactorylmp
: &
E Transactionlmp |~
1 «Clase Java»
: lu» DriverManager
4 -conn !
«interface» | = 1V
pAaox |~ | EIDAOXImp | ... -, «Interfaz Java»

fus Connection

FIGURE 7. Basic local service transaction and transaction manager for single-threaded applications and

single RDBMS.
=] :ASXImp £ :«singleton»TransactionM g & t-Transaction £ :pa0x
S (| Y
—1.1:1= newTransaction(y,.
1.2 begin(. >
1.3: 90 P
l4commit)

2f

FIGURE 8. Transaction demarcation using object instances of classes depicted
in Fig. 7. The transaction manager avoids the need of the application service

to pass the transaction to the DAO.

The section provides important references for teaching the
main concepts related to core-tier2 contents, but before con-
sidering these concepts, I think that reviewing the different
classifications that are made for transactions in literature can
be very interesting for both students and readers of this paper.
Only the three first classification items are presented in the
author’s courses as well as service transactions. Finally, the
section describes a simple transaction manager proposed by
the author for dealing with several resource managers with no
remote services.

A. CLASSIFICATION

Different authors consider transactions from different point of
views. This section revises the classification of transactions
made in the literature.

1) BUSINESS VS. SYSTEM TRANSACTIONS

According to [1], business transactions are those related to
the use case, while system transactions are those performed
by the RM and transaction monitors.

For example, let us suppose that a user wants to buy an item
with the following process: the user can select it, add it to the
shopping basket and finally pay for it. The user conceives the
three operations associated to purchases (selection, addition
to the basket and payment) as a single business transaction,

VOLUME 10, 2022

but, usually, the application has performed three systems
transactions against the RM.

2) REQUEST VS LONG TRANSACTIONS

According to [1] request transactions are those that are started
and finished within one request, while long transactions
span multiple requests. For example, the purchasing process
described above is a long transaction. User registration in an
application is a request transaction because the user provides
the data, and they are processed in the request sent to the
server with no need of further requests (if no problems found).

How do business/system and request/long transactions

coexist?

- Business-request transaction: implemented by a single
system transaction.

- Business-long transaction: very difficult to implement in
practice. Simulated by system transactions as much as
by requests.

- System-request transaction: implemented by a single
system transaction.

- System-long transaction: the application is forced to
hold the system transaction through several requests.

3) LOCAL VS GLOBAL TRANSACTIONS

Local transactions are those created and committed against a
single RM [4] while global transactions involve many RMs in

124317

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

=) ‘TransactionManagerimp H: Singleton»TransactionFactory

1 newTransaction[)»

ft==null 1: getinstance()
>
1.1: t= newTransaction
P
[t'=null] 1: Exception()
| ’a_n. e:«Clase Java»Exception
2e
2t

FIGURE 9. This basic transaction manager only holds one transaction.

/ - «Clase Java»
o «Singleton> | ConcurrentHashMap<Thread, Transaction>
8 £ TransactionManager -ts N1
«interface» .| & newTransaction () : Transaction | 4
=] ASX ~| # getTransaccion () : Transaction L =y Managerl
@f() i deleteTransaction () : int ™ T
AVA
«interface»
[Z] Transaction v
! | # begin () . «Singleton»
=5 AXlmp | # commit () I< £ TransactionFactory
) # rollback () ‘\
& qetResourse {)isiobject £ TransactionFactorylmp
! Transactionim, < N
\Vi 1 B | «Clase Java»
«interface» {us DriverManager
& paox < .\ conn

2| «Interfaz Java»

£l DAOXImp
: {us Connection

FIGURE 10. Basic local service transaction manager for multithreaded applications and no remote services.

transaction with a behaviour consistent with the business
logic implemented. This is an adaptation of the term com-
posability problem defined in [22].

According to this, I define uncomposed transactions as

a single unit of work [20]. The concept of non-global transac-
tion can be assimilated to the concept of local transaction: a
transaction in which, if two or more RMs are involved, there
is no coordinated commitment between them [44].

In practice these RMs can be invoked from the same
AP or from different APs. How do single/several RMs
invoked from single/several APs coexist in the same unit of
work?

- One RM invoked from one AP involves a local

transaction.

- One RM invoked from several APs involves a global
transaction if these APs are remote, and usually, one
local transaction if these APs are not remote.

- Several RMs always involve a global transaction.

4) UNCOMPOSED VS. COMPOSED TRANSACTIONS

In this paper I define transaction composability as the abil-
ity of different transactions to become part of the same

124318

those in which there are no two consecutive begins without
an intermediate commit/rollback and composed transactions
such as those where two begins can be produced without an
intermediate commit/rollback.

In the session facade pattern [2], coarse-grained transac-
tion control and fine-grained control are considered. In the
coarse-grained control, business services do not demarcate
transactions and they are contained within one single service
that starts the transaction, calls these business services and
closes the transaction. In the fine-grained control, each busi-
ness service demarcates its own transaction, and there is no
enclosing service. Thus, uncomposed/composed transactions
are, to some extent, similar to those of coarse-grained/fine-
grained transaction control.

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

g TransactionManagerimp fib 1« Clase JavasThread

IH newTransactionL

1.1: thread= curremThreadl

1.2: t= get(thread)

lub ts:«Clase Java» ConcurrentHashMap

H Singleton» TransactionFactory

It==null 1: getinstance()
g L
2: t= newTransaction()
T =
3: put(thread, 1)
4: put
[t'=null] .
1: e=new Exception()
2e | fb ex«Clase Java»Exception

2t

FIGURE 11. This basic transaction manager is able to hold one transaction per thread.

Uncomposed transactions avoid the problem of transaction
composability. However, in object-oriented programming,
it is common to have collaborative transactions that are
managed with a transaction attribute that indicates the trans-
actional behaviour of a method [22]. In JEE this behaviour
can be: NotSupported, Supports, Required,
RequiresNew, MandatoryandNever [23]. A method
is top-level if it causes a new transaction to be started,
i.e., the top-level method is tagged with RequiresNew
or Required, and its caller is not executing in a transac-
tion [22]. Generally speaking, a transaction commits when
its top-level method terminates without an error. If it throws
an exception during its execution, then its transaction aborts.
To avoid the checking of each operation involved in a transac-
tion, before an exception is thrown, an involved method can
mark the transaction context as setRol1backOnly, which
provokes the rollback of the top-level and all the methods
involved in the transaction [21].

5) FLAT VS. NESTED TRANSACTIONS

When a composed transaction is made, it is possible to have
flat or nested transactions. Flat transactions are those run
independently, and nested transactions are those in which a
tree hierarchy is made [22].

Although nested transactions are appealing from an appli-
cation programming perspective, they are not supported in
many commercial products [22]. Thus, in Jakarta Transac-
tions, support for nested transactions is not required [54].

For example. Let us suppose that in JEE there is an
outer method that starts a transaction (T1) and calls for

VOLUME 10, 2022

an inner method which starts another transaction (T2). Let
us suppose that the inner method that started T2 did so
because it is marked as RequiresNew. What is the differ-
ence between the JEE flat/RequiresNew behaviour and the
nested behaviour?
- The behaviour is quite straightforward if both, T1 and
T2, commit or rollback.
- If T2 rollbacks, the behaviour of T1 is not conditioned
and can do whatever it wants in both cases, flat or nested.
- The difference arises when T2 commits and TI1
rollbacks [55]:
o Inthe flat/RequiresNew scenario, T2 stays com-
mitted, because it is independent of T1.
o In the nested scenario, T2 should rollback, because
it is nested to T1.
OTS provides more information about nested transactions.

6) CHAINED VS. UNCHAINED
If every operation is always executed within a transaction,
which only has to be committed, thus provoking the start of
another transaction, we say that the transactions are chained.
On the contrary, if operations can be executed without trans-
actions, which have to be started and committed, we say that
the transactions are unchained [22].

The transaction attribute used in object-oriented program-
ming makes use of chained transactions.

7) CHECKED VS. UNCHECKED

In commercial applications it is normal to have several
threads involved within a transaction. Checking is about
thread and transaction synchronization.

124319

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

TManage! _
[= o =] Transaction
7, instance : TManager bec
getinstance () : TManager # begin 0
> begin () ~ & commit ()

& rollback ()

> 4§ commit ()

 rollback () # getStatus () : String

«interface»

enlistResource (xaRes : XAResource)

] MySQLXATransaction
global : String
branches : ConcurrentHashMap <Integer,Pair>
counter : int
: commit : boolean
status : String

PP

[aWal

tTransaction () : Transactio) . A 7
& getr on () X 1on # delistResource (xaRes : XAResource, flag : int) & NNS/SLXATransacllon‘ 0
N
Vi
«Clase Java»
fus MysqIXid
| o A4
£ TManagerimp £ TFactory «Interfaz Java»
[transactions : ConcurrentHashMap <Thread, Transaction> > [& instance : TFactory A BE Jors Xid
TManagerimp () getinstance () : TFactory = £ Tractorylmp N n
3 newTransaction () : Transaction «Interfaz Java» | - xid 1
fuis XAResource
N
~ «interface» v ~xares’| 11
= ServiceTransaction & Pair
| g ServiceTransactionlmp —— - > ? begin () & Pair (xid : Xid, xares : XAResource)
A g °°I'I‘l‘)'“"k() £ getxid () : Xid
& rollback () o & setXid (xid : Xid)
@ getstatus () : String # getXares () : XAResource 1

A

£ STFactory
[instance : STFactory

0 . I
= STFactorylmp i 4 getinstance () : STFactory

i setXares (xares : XAResource)

. J

£ newServiceTransaction () : ServiceTransaction

FIGURE 12. Basic global transaction manager and transactions with no remote services.

In checked transactions, it is guaranteed that whenever
a transaction ends, there can be no thread active within
the transaction which has not completed its processing.
Unchecked transactions do not enforce this behaviour [4].

Applications that do not create new threads and only
use synchronous invocations within transactions implicitly
exhibit checked behaviour. However, when asynchronous
invocation is allowed, explicit synchronization is required
between threads and transactions in order to guarantee
checked behaviour [4].

8) ACID VS EXTENDED TRANSACTION

ACID transactions are those started and finished in a short
amount of time. How long is “‘short”? The time that allows
resources to remain engaged in a transaction for its duration.
For example, to buy a trip that includes acquiring airplane
tickets and making a hotel reservation, selecting both choices
and buying both at the same time is a good example of ACID
transaction. Thus, ACID transactions are those that can be
synchronously resolved.

However, there are other transactions that cannot be
resolved in such a short amount of time. For example, in the
former example, if the customer can make the hotel reserva-
tion and then the application waits for two days looking for a
good offer in flight tickets, cancelling the hotel reservation if
no flight for a certain amount of money appears, this cannot
be managed as an ACID transaction. Here is where extended
transaction models such as those for dealing with long-lived
transaction appear [4].

For the sake of conciseness, this paper only focuses on
ACID transactions.

124320

9) TRANSACTION MODELS

According to [21] there are three transaction models: local,
programmatic, and declarative. These models do not explic-
itly define transactions, but the way transactions are used.

In the local model the programmer manages connec-
tions instead of transactions. Because services create con-
nections, DAOs must access the same connection in order
to participate in the same transaction. This causes two prob-
lems: connection passing from the service to the DAOs
and from the coupling business tier to the resource tier.
In addition, only one RDBMS is normally used. Note that
the transaction management depicted in figures 3 and 4
is based on the local model with connection passing
and coupling. The transactional management depicted in
figures 5 and 6 solves the coupling by introducing the inter-
face Transaction. The transaction management depicted
in figures 7, 8 and 9 solves the connection passing by
using the singleton TransactionManager. The term
connection-based would be more precise because local
transactions can be performed without using an explicit con-
nection as JPA does.

In the programmatic model, transactions are managed by a
framework that hides RM connections. Thus, the programmer
manages transactions rather than connections. In order to
implement this model, JTA can be used. In this case, the JTA
UserTransaction interface is used to manage transac-
tions. The main problem associated to this model in JEE is
the transaction context problem: transaction contexts cannot
be passed between different services implemented as stateless
session beans. Reference [23] calls this model the explicit or
bean-managed model. The transaction management depicted

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

8 ConnectionManager

[
Mapperim

«Interfaz Java» «Interfaz Java» «Interfaz Java» & instance : ConnectionManager S Mapperimp

Sran Ta < = . < # getinstance () : ConnectionManager (2 map : ConcurrentHashMap <Integer,Integer >
e x - X e # getConnection () : Connection % Mapperimp ()

A N
freeConnections ()
E] ConnectionManagerimp /
[datasources : ConcurrentHashMap <Integer,XADataSource > & Mapper

&2, connectionsPerThread : ConcurrentHashMap <Thread,ConcurrentHashMap <Integer,Connection> >

& ConnectionManagerimp ()

v Vi
«Interfaz Java» «Clase Java»

fus XADataSource fuis MysqIXADataSource & TManager

> [instance : Mapper
getinstance () : Mapper
2 map (s : String) : int

v
«interface»
=] Transaction

FIGURE 13. Singleton ConnectionManager + ConnectionManagerImp for the management of JDBC connections and auxiliary

singleton Mapper + MapperImp.

in figures 10 and 11 conforms to the programmatic model,
without hiding the transaction manager behind JTA user
transactions (or any similar interface).

In the declarative model, transactions are managed by
containers, i.e., there are Container Managed Transactions
(CMT). Thus, the container (or underlying framework) man-
ages the start and end of the transaction, including different
services in the same or different application servers. Trans-
action attributes (i.e., Required, Mandatory, etc.) tell
the container how it should manage the transactions. Refer-
ence [23] calls this model the implicit model. This model has
no significant problems beyond the complexity of implement-
ing it in transactional frameworks and application servers.

The local and programmatic models use unchained trans-
actions, while the declarative model uses chained transactions
configured by the transaction attribute.

10) RM TRANSACTIONS VS SERVICE TRANSACTIONS

In the literature about global transactions there is an implicit
assumption: although transactions have to be implemented
by transactional resource managers, in practice, these trans-
actions have to be wrapped in some way to be used by
the business tier irrespectively of the underlying resource
managers.

This paper explicitly distinguishes between RM transac-
tions (or simply transactions), which are those performed
by transactional RMs, and service transactions, which are
those demarcated by application services omitting connec-
tions to RMs. Note that it is possible to have applications
that perform RM transactions without service transactions
(i.e., the local transaction model [21]), while it is not possible
to have service transactions without underlying RM trans-
actions that implement them (at least one RM transaction
for each service transaction). Service transactions can be
programmatically or declaratively demarcated. In this paper,
only programmatic service transactions are considered and
no declarative demarcation is considered because it is more
pedagogical to first learn to use programmatic demarcation
and then learn to use declarative demarcation.

Business transactions are not the same as service transac-
tions. Thus, the business transaction related to performing

VOLUME 10, 2022

a purchase (selection, addition to the basket and payment)
involves three service transactions (which indeed involve a
minimum of three RM transactions). Do system transactions
correspond to RM transactions? It is unclear, because sys-
tem transactions are those performed by RMs and transac-
tion monitors. Those performed by RMs are indeed system
transactions. Maybe those performed by transaction monitors
could be matched to service transactions. In this case, both
RM and service transaction could be considered to be system
transactions.

Reference [56] also defines the term service transaction,
but with a more generic semantics in the context of the
definition of a basic system metamodel for mobile enter-
prise architectures: complete set of operations between two
resources, comprising sending a stimulus and the reaction
to it by the receiving resource. Reference [57] defines a
pattern named atomic service transaction which deals with
the propagation of transactions with rollback capabilities
across messaging-based services, which have a more specific
semantics. Reference [58] considers a sample tagged with the
title Service Transaction Behaviour. This is the example that
is most related to the term defined in this paper, but [58] does
not define it as something relevant. It is only the title of an
article.

B. XA TRANSACTIONS
The understanding of global service transactions is not evi-
dent for undergraduate students that have had their first
contact with service transactions. The understanding and
implementation of a naive transaction manager such as that
depicted in figures 10 and 11 requires students to make a
significant effort. In this context, presenting global transac-
tions is a challenge (not yet assumed by the present author
in his classes). However, beginning the teaching of global
transactions with standards such as OSI Distributed Trans-
action Processing [43], [44], X/Open XA Specification [20]
or OMG Transaction Service Specification [59] can be very
hard for the students, although the main concepts of X/Open
XA should be presented to them.

These are relevant standards for advanced developers or
for those that build application servers or frameworks for

124321

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

| STFactory

«interface»
2] as1
4 create (s : String) : int
A

«interface»

[instance : STFactory

3 getinstance () : STFactory

2 newServiceTransaction () : ServiceTransaction
N N

\V2

«interface»
= AS2
2 create (s : String) : int
AN

ServiceTransaction
£ AStimp > g’é ‘c’:g]i:‘m(‘)(: . s 1 E As2imp
©
 rollback ()
4 getStatus () : String
A"4 A"
«interface» «interface»
= pAO1 =l pAO2

4 create (s : String) : int
X

£ DAOTimp

«Interfaz Java»
-, lusConnection

A

| ConnectionManager
-5 & instance : ConnectionManager

£ create (s : String) : int

le £l DAO2imp

5 getinstance () : ConnectionManager
% getConnection () : Connection
42 freeConnections ()

FIGURE 14. Use of the proposed framework by application services and DAOs.

enterprise application development. However, these stan-
dards are very technical for undergraduate students. Indeed,
the mere understanding of all the different classifications of
transactions made in Section V.A can be too much for the
students.

Transactions can be global because: (i) at least one AP
needs to deal with data in two (or more) RMs within the
same transaction; or (ii) because two (or more) remote APs
need to deal with data (in the same RM or not) within the
same transaction. It is not unusual, at this level, for students to
have no idea about distributed programming. Therefore, the
concept of an AP remotely invoking another AP is not evident
for students. In this context, introducing a global transaction
within remote invocations is something that raises the level
too much for most students. Therefore, introducing several
RMs in a transaction managed by a single AP (or several local
APs) is something more feasible.

The classical concepts bound to the two-phase protocol
defined in Section II.H (and not previously presented) should
be presented to the students. The definitions of Section II.H
provide references that may be the basic bibliography for this
issue. In addition, the concepts of failure handling and process
structuring (included the tree-of-processes model of a trans-
action execution) [22] should be presented to the students.
It is important to remark to them that:

- APs and RMs interact through native interfaces (such as

JDBO).

- APs and TMs interact through the TX interface.

- TMs and RMs interact through the XA interface.

However, these concepts cannot be fully understood if they
are not used in implementations programmed by the students.
The need for the execution of a code leads us to introduce spe-
cific programming frameworks such as Jakarta Transactions
(JTA), which is used for managing global transactions in the

124322

Java application. The JTA concepts that must be presented
in order to exemplify the use of XA transactions are, at the
very least, the interfaces javax.transaction.xa.Xid
and javax.transaction.xa.XAResource as well as
the JDBC interfaces javax.sgl.XAConnection and
javax.sgl.XADataSource. Reference [60] provides a
simple example of a use of Java DataSources for MySQL
RDBMS. DataSources are necessary for using XA trans-
actions in Java. Reference [61] provides a good example of
the use of XA transactions with MySQL as underlying RM
(although the globalId of xidl and xid2 should be the
same). The following example is an adaptation of [61]:

public class Main {

public static void main(String[] args) {
//Creation of MysglXADataSource from configuration
//files
Properties props= new Properties();
FileInputStream fis = null;
MysglXADataSource mysqglXAdsl= null;
MysglXADataSource mysqlXAds2= null;
try {
fis = new FileInputStream(“conf/dbl.properties”);
props.load(fis);
mysglXAdsl= new MysqglXADataSource();
mysglXAdsl.setURL (props.getProperty (“url”));
mysqglXAdsl.setUser (props.getProperty (“user”));
mysglXAdsl.setPassword (props.getProperty (“password
"))
fis = new FileInputStream(“conf/db2.properties”);
props.load(fis);
mysqlXAds2= new MysglXADataSource();
mysglXAds2.setURL (props.getProperty (“url”));

mysqlXAds2.setUser (props.getProperty (“user”));
mysglXAds2.setPassword (props.getProperty ("

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures I E E E ACC@SS

password

"))

} catch (IOException e) {e.printStackTrace(); }
Statement stmtl = null;

Statement stmt2= null;

Connection connl= null;

Connection conn2= null;

//casting MysqglXADataSource to XADataSource
XADataSource dsl= (XADataSource) mysglXAdsl;
XADataSource ds2= (XADataSource) mysqglXAds2;

try {

//request transactional resource
XAConnection xaConl = dsl.getXAConnection();
XAConnection xaCon2 = ds2.getXAConnection();

//get XAResource

XAResource xaresl= xaConl.getXAResource () ;
XAResource xares2= xaCon2.getXAResource () ;
//XA.Resource.start ()

String global= Thread.currentThreadtoString();
Integer branch = 0;

byte[] globalld = global.getBytes();

byte[] branchId = new byte [1];

branch ++4;

branchId[0]= branch.byteValue();

Xid xidl= new MysqglXid(globalld, branchId, 100);
branch ++4;

branchId[0]= branch.byteValue();

Xid xid2= new MysqglXid(globalId, branchId, 100);
xaresl.start (xidl, XAResource.TMNOFLAGS) ;
xares2.start (xid2, XAResource.TMNOFLAGS) ;

//get connection

connl= xaConl.getConnection();

conn2= xaCon2.getConnection();
connl.setAutoCommit (false);
conn2.setAutoCommit (false) ;

//some work

stmtl= connl.createStatement ();
stmtl.executeUpdate (WINSERT INTO tablel (value)
VALUES (’"Hello’);"”);

stmt2= conn2.createStatement () ;
stmt2.executeUpdate (VINSERT INTO table2 (value)
VALUES ('world’);”);

stmtl.close();

stmt2.close();

//dissociating transaction from RM

xaresl.end (xidl, XAResource.TMSUCCESS);
xares2.end (xid2, XAResource.TMSUCCESS);
//XAResource.prepare ()

int resl = xaresl.prepare(xidl);

int res2 = xares2.prepare(xid2);

//XAResource.commit

if (XAResource.XA_OK == resl && XAResource.XA _OK ==

res2)
{
xaresl.commit (xidl, false);

xares2.commit (xid2, false); }

VOLUME 10, 2022

else
{ xaresl.rollback (xidl);
xares2.rollback (xid2); }
} catch (Exception e)
{
e.printStackTrace();
System.out.println(“error”);

}

finally

{

try {

if(stmtl != null) stmtl.close();

if (stmt2 != null) stmt2.close();

if (connl != null) connl.close();

if (conn2 != null) conn2.close();

catch (SQLException e) {e.printStackTrace();

}

}

Mentioning JTA is necessary, but mentioning the Java
Transaction Service (JTS), which is the Java implementa-
tion of the OMG TS, is optional. There are four important
concepts that arise from JTA that should be presented to the
students [4]:

- The functionality of XA specification is mapped
to JTA through the javax.transaction.xa.ID
and the javax.transaction.xa.XAResource
interfaces.

- The functionality of the Open Group TX specifi-
cation is mapped to JTA through the jakarta.
transaction.UserTransaction, jakarta.
transaction.TransactionManager, and jak
arta.transaction.Transaction interfaces.
UserTransaction provides applications with
the capability to control transaction boundaries
programmatically. An application server uses the
TransactionManager interface to demarcate
transaction boundaries on behalf of an application.
Client applications in a non-managed, non-JEE
environment may choose to manage transactions
via the TransactionManager interface or the
UserTransaction interface. The UserTransac
tion interface allows applications to invoke operations
on the transactions associated with the target object.

- For each thread in a process, the system maintains a
mapping to the current transaction associated with that
thread ([4], pg. 51).

- The philosophy of use of JTA, i.e., the general procedure
an application server follows in a transaction manage-
ment scenario such as [4] describes.

A detailed description of JTA is not necessary, because
the use of UserTransaction, Transaction and
TransactionManager is hidden by the declarative man-
agement of transactions made by JEE. Only in specific
courses about JTA should these interfaces be described. Ref-

124323

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

=] :TManagerimp fub :«Clase Java»Thread fub transactions:« Clase Java» ConcurrentHashMap £ t-Transaction =] ‘TFactory
1: begin
CLEN
1.1: cth= currenﬂhreada
1.2: currentThread
1.3: t= get(cth) ol
14: get

[t'=null] .

1: begin()

B »!

2: begin
t==null :
I] 1: getinstance() »!

2: getinstance
3: t= newTransaction()
>
4: newTransaction
5: begin(»
6: begin
7: put(cth, 1)
P o
8: put

2: begin

FIGURE 15. Starting a transaction in the proposed transaction manager of Fig. 12.

erence [4] provides a good description of when to use each
interface. There are transactions engines such as ArjunaCore
included in the Narayana transaction suite [62], which can be
used as a standalone transaction engine. However, the imple-
mentations of these engines are very complex because they
have to deal with all the capabilities of JTA. Therefore, it is
better to introduce students to simpler transaction managers
such as those defined in this paper.

C. A TRANSACTION MANAGER FOR GLOBAL SERVICE
TRANSACTIONS WITH NO REMOTE SERVICES

If T had to implement a commercial Java application that
manages persistent data distributed in several RMs, I would
choose JPA as a persistence mechanism and some implemen-
tation of JTA to manage XA transactions. However, as in
the case of the previous section, this type of implementation
hides significant details related with the integration tier that
students should be aware of. This section describes a simple

124324

transaction manager for global service transactions with no
remote services.

The core elements of this implementation are described in
figures 12 and 13. Fig. 14 describes the use of these classes
by applications services and DAOs.

Fig. 12 describes the new transaction manager for global
transactions with no remote services. In this solution, sim-
ple transaction composability is enabled. The basic role that
it plays (to keep a transaction bound to the thread that
created it) remains unchanged with regards to the transac-
tion manager of Fig. 10. Thus, only one transaction can
be active per execution thread. The transaction manager
is responsible for transaction demarcation (on behalf of
application services) now. Fig. 15 describes the starting
of a transaction using this transaction manager. The trans-
action manager’s commit and rollback operations perform
these actions on the transaction bound to the calling thread.
getTransaction () returns the transaction bound to the
calling thread.

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

=] :MySQLXATransaction fub XaRes:«Interfaz Java»XAResource

1 enlistResource(xaRes‘
1.1: branch= toString()

1.2: toString

1.3: MysqXid(global.getBytes(, branch.getBytes(, 100)

E branches:« instanciaGenéricaDe)ava» ConcurrentHashMap < Integer, Pair >

foib xid:« Clase Java»MysqlXid

1.4: put(xaRes.hashCode(), new Pair(xid, xaRes))

1.5: put

1.6: start(xid, XAResource.TMNOflAES)
1.7: start

2: enlistResource

FIGURE 16. Transaction enlistment in the class that implements the Transaction interface of Fig. 12.

The Transaction interface described in Fig. 12 is, to
some extent, equivalent to the jakarta.transaction.
Transaction JTA interface. The MySQLXATransac—
tion class that implements it takes care of the global
ID (global), the branches (branches), the number of
begins and commit/rollback actions performed (counter),
whether no one has made rollback (commit) and the status
(status).

The branches are Pairs of (Xid, XAResource)
objects indexed by the XAResource hash code. This
information is needed because in the two-phase com-
mit, XAResources need the branch id (Xid) in order
to interact with the RMs. Fig. 16 shows the enlistment
of a resource in a transaction and Fig. 17 shows the
commit of the transaction according to the two-phase
commit protocol. The ServiceTransaction interface
described in Fig. 12 is, to some extent, equivalent to
the jakarta.transaction.UserTransactionl]JTA
interface, and it is a simple adapter that hides the existence
of the transaction manager from application services. Thus,
for example, the code of ServiceTransactionImp::
begin() is simply TManager.getInstance() .
begin () .

Managing connections (i.e., JDBC Connections) in a
multithreaded environment is a well-known issue in concur-
rency management [53]. Reference [21] defines connection
passing as the technique that establishes a database connec-
tion at the higher-level method and passes the connection into
the DAOs. Reference [63] (pgs. 272-273) has an interesting
discussion about resource handling in JEE containers and
in Hibernate. Reference [4] (pg. 182) discusses the man-
agement of connections in the context of global transac-
tions. This issue is very important in the frameworks that
implement JTA [29], [30], [31]. For example, the configu-
ration file of Bitronix for DataSources, has the param-
eter shareTransactionConnections, which enables
a thread-associated cache, i.e., if the same thread requests

VOLUME 10, 2022

several connections from a DataSource, the same connec-
tion is always retrieved [30].

With these ideas in mind, the management of connec-
tions made in Fig. 13 is fairly simple. If n RDBMS are
going to be used, n configuration files have to be pro-
vided for the configuration of each XADataSource. There-
fore, in our approach, each RDBMS is bound to a spe-
cific XADataSource. Each RDBMS/XADataSource
has a unique ID, provided by the developer. Thus,
if there are three RDMBSs there will be three IDs:
1, 2 and 3 (the order is of no importance). An addi-
tional configuration file that binds DAO classes with
RDMBS/XaADataSource IDs is provided. The singleton
ConnectionManager/ConnectionManagerImp
holds a ConcurrentHashMap that indexes each
XADataSource by its ID (dataSources). These data
sources are configured in the constructor of the class
ConnectionManagerImp. This singleton also holds
the JDBC Connections established in a transaction.
Because in our solution there can only be an active
transaction per thread, the ConnectionManagerImp
indexes connections by execution thread (note that in
Fig. 17 commit frees the connections bound to a trans-
action). These Connections have to be bound to their
RDBMS/XADatasource ID. Therefore, bound to a
thread, they are held in a ConcurrentHashMap that
indexes them by this ID (connectionsPerThread).
Thus, this solution only allows one active connection per
RDBMS/XADataSource in a thread.

Each time a Connection is required by a DAO,
a Mapper class maps the class of the DAO with the
RDMBs/XADatasource ID, and the connection manager
checks if there is a connection bound to this ID in the thread.
If there are none, it gets the XADatasource bound to
the ID and generates a XAConnection, which is used for
the generation of an XAResource and a Connection.
This mapping is driven by a configuration file that maps the

124325

IEE E ACCGSS , A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

1: pair= next

D l £ :MysQLXATransaction ‘ l H ititerator <pair> I I £ pairpair ’ I fob xid:«Interfaz Java»Xid ‘ I T rfaz Java»X e \ £ :conne I
\ \ l \
1: commit
% \]
counter--; ‘]
rmCommit= true;
\ J
opcional ‘]
|counter==0] \]
it= branches.values().iterator(); ‘ 1
bucle ‘ ‘
10*1lith ommit] ‘ |
>]
2: next J
3: xid= getXid) ‘

\
4: getXi

|
5: xaRes= getXares()]

\
\
|
\
\
x
\
\
\
\
\
\
\
\
\ J \
S okt \
\

| L | U

s s SO R

x
\
L
\
|
\
\
\
\
\
\
\
\
\
\
\
\

} 9: res= prepare(xid) J
\ |
R T o T

rmCommit=(res= =XAResource.XA_bK] ‘
|

|
ommit); %t: branches.values().iterator();

bucle ‘

10"1lithasNextQ

1: pair= next(

]
\
J
”]
]
l

L f_gf‘?f'}’, ___________________________ J
Lo cowass | J

alternativo
Jcommit] T it(xid, false) _
2: commit u
%
|!commit]
1: rollback(xid) R
2: rollback U

status="ended"; .
1: freeConnections(

2 IreeConnection

.................. o

FIGURE 17. Transaction commit in the class that implements the Transaction interface of Fig 12. Note the two-phase commit protocol for all the
XAResources enlisted in the transaction.

124326 VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures I E EEACCGSS .

D | H :connectionManagerimp ‘ ‘ lib 1« Clase JavasThread | | H connsper é ashMap <Thread, Cg hiMap<Integer,Connections >
I I I I
1: getCs i
getComnection | |
| | |
| | |
I T | |
| I |
	14 get -H	
[opcional		
i i	l comse eri fashiiap < Integer,C	
	2: put(th, conns) o T	
}		
	- 1l !	
I \ T	\	
: ! ! o i N		
1.6: getinstance		
I I		
1.7: i= map(th.getstackTrace	2].getClassName()	o
	1l	
f \		
19: conn= get() M		
1.10: get		
T		
% getComection		
	!	
(a)		
D‘ B i H =] iaGene hMap < Integer, H Javan: H i xaC JavarXAConnection	E iManager ‘ Transaction ‘ £ conns:instanci... ‘	
[[[[
opcional		
T		
tconr==null 1: ds= getti N		
‘ 2ga		
T		
opcional		
1ds==null \		
1: Exception		
\		
\		
)		
3:xaConn= g‘gnur o

4 getxAConnection

5: xaRes= getXAResource)

6: getXAResource

7

8: getinstance

9:1= getTransaction()

10: getTransaction

opcional

1=

nully. ey ception

1: enlistResource(xaRes)

12: enlistResource

13: conn= gelC

4: getConnection

|
»l

15: putfi, conn.setAutoCommil(false])
T

16: put

2: conn

_.:H
}jﬂ

S I S s N s B

(b)

FIGURE 18. a. Connection management in the ConnectionManagerImp class of Figure 13 (first part). b. Connect ion management in the
ConnectionManagerImp class of Figure 13 (second part).

VOLUME 10, 2022 124327

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

DAO classes with the datasource’s IDs. The XAResource
is enlisted in the transaction bound to the thread and
the Connection is stored in the connections bound to
the thread (indexed by the RMDBs/XADatasource ID).
Fig. 18 describes this process. Due to the size of the diagram,
the figure has been divided into two parts (a) and (b), where
interactions in part (a) precede those in part (b). In the transac-
tion management solution depicted in Fig. 10, as there is only
one RDBMS per transaction, and, therefore, no enlistment
has to be made, the transactions simply wrap Connections
and store them by thread in the transaction manager.

This framework does not permit the invocation of remote
application services but is a fairly simple method to manage
global service transactions in a multithreaded application.

VI. ELECTIVE. SERVICE TRANSACTIONS FOR SEVERAL
RMs AND REMOTE SERVICES. PERSISTENCE APIs.

This section focuses on several advanced topics regarding
the use of service transactions with remote services and
persistence frameworks. I include web services instead of
RPC-like remote invocations because web services are more
widespread at present.

Service-Oriented Architecture (SOA) represents an archi-
tectural model that conceives services as the primary means
through which solution logic is represented [57]. A service is
defined as a unit of solution logic [57]. Services can be imple-
mented as components, web services and REST services [57].
A component is a software program designed to be a part of
a distributed system [57]. A web service is a body of solution
logic that provides a physically decoupled technical contract
consisting of a Web Services Description Language (WSDL)
definition and one or more XML Schema definitions and
also, possibly, WS-Policy expressions [57]. REST services (or
RESTful services) are lightweight programs that are designed
with an emphasis on simplicity, scalability, and usability [57].
Representational State Transfer (REST) provides a means
of constructing distributed systems based on the notion of
resources [64]. A resource is a piece of information that can
be referred to using a URI [64]. Web services are also called
SOAP services because they use a Simple Object Access
Protocol (SOAP) to exchange messages [64]. The differ-
ences between SOAP and REST services consist in three
elements [64]:

- Message format: SOAP services use XML inside a
SOAP Envelope and REST services can use any format,
such as XML.

- Interface definition: SOAP services use WSDL and
REST services do not conform to a formally adopted
interface definition language, although several attempts
have been made in this respect.

- Transport: SOAP can use different protocols (HTTP,
JMS, FTP, etc.) and REST services use HTTP.

Some consider SOAP and REST services to be different,
but inasmuch as enterprise buses make automatic conversions
among them [65], we do not distinguish them and simply
call them web services. This is a mere simplification for

124328

making the writing of this paper easier and does not try to
determine whether or not SOAP and REST services should
be considered equivalent.

Regarding the use of persistence frameworks, no specific
information about this is provided in this paper because there
are a good number of references that can be used to present
the basic concepts identified in the KU. Reference [24] is
a good reference for JPA. A simple example of how to
ensure the persistence of entities related by a 1 to N relation-
ship (e.g., a department with several employees) using JPA
local transactions could be presented to students. Attention
must be paid to the concept of persistence unit and to the
persistence.xml file.

A. SERVICE-ORIENTED ARCHITECTURE AND
MICROSERVICES ARCHITECTURE

SOA can be considered a type of multitier architecture
where applications services are exposed using the web ser-
vice broker pattern [2], [65]. Indeed, multitier architecture
is service-oriented regardless of how the application ser-
vices are exposed: (i) directly to the commands [52] of
a web tier controller which is in the same physical tier
as the business tier; (ii) wrapped in session facades [2],
which allow RPC access to them; (iii) wrapped in web
service brokers, which allow access to them via SOAP
or REST services [57]; or (iv) wrapped in service activa-
tors [2], which allow asynchronous message-based access to
them.

In order for a transaction to span a distributed number of
services, the transaction context has to flow between these
services. The transaction context contains the transaction
identifier, a coordinator location or endpoint address for
participants to be registered, and implementation specific
information [4]. In SOAP web services, standards such as
WS-Transactions for SOAP [66] propagate transactional con-
text from the caller to the callee [4]. WS-Transactions consid-
ers two types of transaction models: afomic, which mimics
the two-phase commit for web services, and long-running,
where participants in a transaction may not participate in a
synchronous way. WS-Atomic [67] and WS- Business Activ-
ity [68] are OASIS standards for dealing with these types
of transaction models in SOAP web services, respectively.
Both standards are built on the generic standard for activity
management in the web services WS-Coordination [69].

Regarding the inclusion of global transactions in REST
web services, there is some controversy as to whether or not
they should be considered [70]. However, [71], [72] are good
references for this issue.

Microservices architecture [73] can be considered an
evolution of SOA. Although microservice authors are
prone to call any architecture different from microservices
monolithic [8], [73] due to the microservices’ deployment
architecture, from the point of view of software architec-
ture, the main difference between microservices and SOA
is the fact that each microservice uses its own database.
This characteristic makes microservices unsuitable for those

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

applications in which ACID transactions, especially con-
sistency, are needed [8]. However, microservices are even
promoted in the banking industry [74]. For example, let
us suppose a microservice that deals with department
deregistering (DD), where the business logic says that
no department can be deregistered with active employees
(let us suppose a one-to-many relationship between depart-
ment and employees). Let us suppose a microservice that
deals with employee registering (ER), and in which the busi-
ness logic says that the employee must be assigned to an
active department. Let us suppose this interaction:

1. DD reads department 7 and checks that it is active, and
itis.

2. ER reads department 7 using an additional service and
checks that it is active, and it is.

3. DD checks that department 7 has no active employees,
and it does not.

4. ER inserts employee 25 assigned to department 7 and
commits.

5. DD marks department 7 as inactive and commits.

The result is employee 25 being assigned to inactive
department 7. In an SOA architecture, where tables depart-
ment and employee can be managed by the same service, and
supposing that data persistence is managed using JPA, simple
optimistic locking solves this issue:

1. DD reads department 7 and checks that it is active, and
it is.

2. ER reads department 7, locks it using JPA optimistic
force increment locking, checks that it is active, and
it is.

3. DD checks that department 7 has no active employees,
and it does not.

4. ER inserts employee 25 assigned to department 7 and
commits (which adds one to the department version
number [24]).

5. DD marks department 7 as inactive, commits and an
optimistic locking exception rises, because the version
number for department 7 in memory is different from
that in the database, avoiding the inconsistency.

If steps 4 and 5 are interchanged, then DD could be able
to mark department 7 as inactive, incrementing its version
number after committing, and ER would detect it and would
make rollback.

An approach for handling consistency across microser-
vices is eventual consistency. This model doesn’t enforce
distributed ACID transactions across microservices. Instead,
it proposes to use some mechanisms for ensuring that the sys-
tem would be eventually consistent at some point in the future
[34], [75]. Other choices for dealing with the consistency of
data among microservices are avoiding transactions across
microservices (if possible) [75] or the two-phase commit
protocol that is not recommended [73], [76], [77]. Therefore,
the saga pattern [78] which uses the eventual consistence
model, is the most widely used mechanisms for handling
consistency across microservices [33], [73], [76], [77], [79].

VOLUME 10, 2022

The Narayana blog [80] contains valuable information about
global transactions in microservices as well as Long Run-
ning Actions between microservices. Atomikos [81], [82] is
another valuable source of resources about distributed trans-
actions in microservices.

B. A TRANSACTION MANAGER FOR WEB SERVICES

There are two ways to organize several web services (micro
or not) when they collaborate in order to implement a func-
tion [83]: orchestration and choreography. In orchestration,
there is a hierarchical organization, where one service, the
coordinator, is responsible for managing the rest of services.
In choreography, there is no hierarchy and services interact
with each other as peers. In the context of the saga pattern for
microservices, [8] and [73] agree that orchestration has more
advantages than choreography.

Irrespective of service organization, it is not extremely
complex to build a naive transaction manager that can cope
with global transactions for web services, because the con-
cepts of transaction coordinator, participant and transaction
context are still valid [4]. In this paper, I restrict myself to
atomic transactions because the management of long-running
transactions lies outside the scope of this paper. In order not
to extend this paper any further, I do not depict the UML
diagrams that characterize the design. Instead, I provide some
key elements about this design:

- The transaction manager plays two roles: local
transaction manager and remote service that can
commit/rollback transactions. Therefore, transaction
managers use the interposition technique acting as sub-
ordinate coordinators of the coordinator that originated
the transaction.

- Transactions must keep the remote transaction managers
of the remote services invoked within its scope.

- Business delegates or invocation proxies can register the
remote transaction manager in the ongoing transaction
and transmit the transaction context (basically the global
id) to the invoked services.

- Begin increments the transaction counter in the local
machine.

- Invoked web services brokers must begin a transaction
in their machines with the global id received.

- Invoked services provide their response, while the con-
nections that the DAOs use in the context of a global
transaction remain opened waiting for the remote invo-
cation of the commit/rollback. This approach is valid
because there is a top service (the director of the orches-
tration or the first pair that started the interaction in
a choreography) that will end the transactions imme-
diately (i.e., in a few seconds or less) because the
transaction is not long-running. The commit/rollback
invocation is made using the global id, and the thread is
not useful any more for finding transactions or connec-
tions. Therefore, the connection manager needs to keep
track of the connections bound to the global id.

124329

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

- If in the same machine a service is invoked twice with
the same global id, the transaction manager puts the
existing transaction in the current execution thread to
make it accessible to the application services that run
in that thread. The connection manager is invoked by
DAOs running in that thread, which get connections
from the connection manager. The connection manager
can choose between reuse connections indexed by the
global id, reuse the connections bound to the thread (and
the global id), or create new connections.

- Commit/rollback decrements the transaction counter in
the local machine.

- When the counter is 0, commit/rollback is done in the
local machine and to the remote transaction managers
within the scope of the transaction. Note that because
invoked web services increment the local transaction
counter, only the commit/rollback performed on the top-
level transaction, which has no previous invocation, can
set the counter to 0.

- The transaction global id becomes customary for index-
ing transactions and for indexing the connections created
within the transaction in the connection manager. More-
over, the transaction must keep information about the
local threads in which it is involved in order to delete it
from the threads in which it has been involved (the same
machine can receive more than one call in the context
of the same transaction). In any case, as in in EJB,
transactions are flat: each transaction is decoupled from
and independent of other transactions in the system, and
another transaction cannot start in the same thread until
the current transaction ends [84].

I am aware that this description is too high-level, but

the description of this transaction manager in detail would
expand the paper to a considerable length.

VII. CONCLUSION AND FUTURE WORK

There is a huge amount of literature about transactional man-
agement. The section about related works considers about
thirty references, and only a couple of prototypical references
have been chosen in most categories. The seven categories
analysed in that section have a different impact in this paper.
Curricula recommendations have to be carefully analysed in
order to determine whether or not the academy has recog-
nized the concept and importance of service transactions,
and in view of the analysis performed in this paper, this is
not the case. Information systems and software engineer-
ing literature are essential for the development of enterprise
applications. Information system literature conceives trans-
actions as database transactions. On the contrary, software
engineering literature (which in this paper does not include
those references which provide a wide view of the discipline)
considers service transactions but is mainly focussed on local
transactions, ignoring global transactions. Global transaction
literature focuses on the infrastructure for supporting global
transactions but its examples are in some cases influenced by
the standards it conforms to (e.g., JPA) and, in all the cases,

124330

it lacks the detail of the examples described in this paper, as is
customary in order to make students understand the details
involved in global transaction management. The literature
about platforms and frameworks for enterprise application
development focuses on the technical details for managing
service transactions using these frameworks, but: (i) without
knowledge about global transactions these texts are very
difficult to understand; and (ii) it does not provide any insight
about how service transactions are implemented. The same
problem affects the documentation of frameworks for global
transaction management, but to a higher degree, due to its
higher complexity. Finally, the relevance of the literature
about cloud computing mainly comes from the microservices
used in this architecture for enterprise application develop-
ment, but this literature has the same problem as the software
engineering literature.

After this analysis, it is easier to see the four main con-
tributions of this paper to the literature about transaction
management in enterprise application. First, it explicitly iden-
tifies a use of transactions that have been widely used in
the industry for years but which the academy has not recog-
nized. This is what we have called the software engineering
point of view of transactions, and the concept of service
transaction constitutes the flagship element of this point of
view. Of course, there were service transactions before this
paper defined them, but they were not explicitly considered
because they were to some extent overshadowed in cur-
ricula recommendations by database transactions. Second,
it defines a knowledge unit focused on service transactions
that describes the main concepts on this topic not covered
in the existing curricula recommendations. Third, it gathers
and refines into one paper valuable knowledge about service
transactions spread in several references, which makes this
paper a simple and powerful tool for teaching. And fourth,
it defines several simple frameworks for teaching service
transactions to undergraduate students. There are excellent
open frameworks for dealing with service transactions, but
their huge complexity makes them unsuitable for a pedagog-
ical issue and, up to now, the academy had not tackled the
issue of providing a simplified version of them for teaching.
Note that the knowledge gathered in this paper as well as the
frameworks defined in it describe the main contents for the
knowledge unit proposed in this paper.

Comparing time and resource consumption of the frame-
works proposed with regard to the professional frameworks
is very complex. Frameworks proposed in sections IV and
V have no counterparts in the industry, because they are
simple frameworks used for a basic management of trans-
actions and the industry focusses on solutions closer to the
needs presented in Section VI. Is the framework drafted in
Section VI comparable to professional frameworks? No, it is
not remotely comparable because it does not take into account
issues such as implementing JTA or its use within application
servers. It is a draft for understanding transactional manage-
ment in enterprise applications, but it does not try to compete
against professional frameworks.

VOLUME 10, 2022

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

IEEE Access

However, this does not detract from the frameworks
defined in this paper. The framework presented in Section IV
has been in use for, at least, ten academic courses about
software engineering taught by the author and has also been
used in the development of the Virtual Campus of the Uni-
versidad Complutense de Madrid, which has been running
flawlessly for more than ten years. The framework presented
in Section V is a simple extension of the concepts used in the
previous framework for dealing with several resource man-
agers and, along with the framework presented in Section VI,
it has passed extensive tests performed by the people that
designed the transactional framework used in the Virtual
Campus of the Universidad Complutense de Madrid.

Future work is split into two big domains: the practical use
of transaction management and its pedagogical presentation
to the students. The practical use of transaction processing has
to deal with the management of data in new deployment envi-
ronments such as cloud computing, as well as data resource
managers beyond those used in enterprise application devel-
opment up to now. In most cases, the industry takes the baton
of responsibility in this area because it needs to implement
transactions in those new environments.

Regarding pedagogy, the academy needs to focus on teach-
ing the common elements of transactional management, and
not on teaching specific frameworks. Furthermore, the main
abstract concepts that underlie these frameworks have to
be presented to the students if a competent use of them is
intended. The work done in this paper goes in this direction,
presenting simplified frameworks that take into account the
key elements of the industry solutions but omitting the huge
number of details which exponentially increase the com-
plexity of understanding professional frameworks. Therefore,
a paper for delving into the complexity of teaching extended
transaction models would be highly desirable, and the same
goes for papers for dealing with the new challenges that the
industry is undertaking at present and will undertake in the
future regarding transactional management in new computing
environments.

REFERENCES

[1] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford,
Patterns of Enterprise Application Architecture. Crawfordsville, IN, USA:
Addison-Wesley, 2003.

[2] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices and
Design Strategies. Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[3] Wikipedia. Database Transaction. Accessed: Jul. 8, 2022. [Online]. Avail-
able: https://en.wikipedia.org/wiki/Database_transaction

[4] M. Little, J. Maron, and G. Pavlik, Java Transaction Processing Design
and Implementation. Upper Saddle River, NJ, USA: Prentice-Hall,
2004.

[5] Jakarta EE. Accessed: Jul. 8, 2022. [Online]. Available: https://jakarta.ee/

[6] Microsoft. NET Framework. Accessed: Jul. 8, 2022. [Online]. Available:
https://docs.microsoft.com/es-es/dotnet/framework/

[7]1 Spring Framework. Accessed: Jul. 8, 2022.
https://spring.io/

[8] I. Sommerville, Engineering Software Products: An Introduction to Mod-
ern Software Engineering. Hoboken, NJ, USA: Pearson, 2020.

[9] E. Pérez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and J. Vuckovic,
“Highly available long running transactions and activities for J2EE appli-
cations,” in Proc. ICDCS, 2006, p. 2.

[Online]. Available:

VOLUME 10, 2022

(10]

(11]

[12]

[13]

(14]
(15]
[16]

[17]

(18]

(19]

(20]

[21]
(22]
(23]
(24]

[25]

(26]
(27]

(28]

(29]
(30]
(31]

(32]

(33]

(34]

(35]

[36]

ACM/IEEE. (2020). Computing Curricula 2020: Paradigms for Global
Computing Education. [Online]. Available: https://www.acm.org/
binaries/content/assets/education/curricula-recommendations/cc2020.pdf
ACM/IEEE. (2013). Curriculum Guidelines for Undergraduate Pro-
grams in Computer Science. [Online]. Available: https://www.acm.
org/binaries/content/assets/education/cs2013_web_final.pdf

ACM/IEEE. (2020). A Competency Model for Undergraduate Programs in
Information Systems. [Online]. Available: https://www.acm.org/binaries/
content/assets/education/curricula-recommendations/is-2010-acm-

final.pdf
ACM/IEEE. (2014). Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering. [Online]. Available:

https://www.acm.org/binaries/content/assets/education/se2014.pdf

R. Elmasri and S. Navathe, Fundamentals of Database Systems, Tth ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2022.

C. J. Date, An Introduction to Database Systems, 8th ed. Crawfordsville,
IN, USA: Addison-Wesley, 2004.

J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.
Burlington, MA, USA: Morgan Kaufmann, 1993.

P. M. Lewis, A. Bernstein, and M. Kifer, Databases and Transaction
Processing: An Application-Oriented Approach. Crawfordsville, IN, USA:
Addison-Wesley, 2002.

B. Weikum and G. Vossen, Transactional Information Systems. Burlington,
MA, USA: Morgan Kaufmann, 2002.

P. Bourque and R. E. Fairley. (2014). IEEE Guide to the Software
Engineering Body of Knowledge, SWEBOK V3.0. [Online]. Avail-
able: https://www.computer.org/education/bodies-of-knowledge/software-
engineering

The Open Group. (1991). Distributed Transaction Processing: The
XA Specification. [Online]. Available: https://pubs.opengroup.org/
onlinepubs/009680699/toc.pdf

M. Richards, Java Transaction Design Strategies. San Francisco, CA,
USA: C4Media, 2006.

P. A. Bernstein and E. Newcomer, Principles of Transaction Processing.
Burlington, MA, USA: Morgan Kaufmann, 2009.

A. L. Rubinger and B. Burke, Enterprise JavaBeans 3.1, 6th Ed.
Sebastopol, CA, USA: O’Reilly Media, 2010.

L. Jungmann, M. Keith, M. Schincariol, and M. Nardone, Pro Jakarta
Persistence in Jakarta EE 10. New York, NY, USA: Apress, 2022.

J. Cosmina, R. Harrop, C. Schaefer, and C. Ho, Pro Spring 5: An In-Depth
Guide to the Spring Framework and its Tools. New York, NY, USA: Apress,
2017.

M. J. Price, C# 10 and .NET 6—Modern Cross-Platform Development,
6th ed. Birmingham, U.K.: Packt Publishing, 2021.

D. Geary and C. Hostmann, Core JavaServer Faces,
Upper Saddle River, NJ, USA: Prentice-Hall, 2010.

G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80,” J. Object Technol.
SIGS Publications, vol. 1, no. 3, pp. 2649, 1988.

Atomikos Resources. Accessed: Jul. 8, 2022. [Online]. Available:
https://www.atomikos.com/Main/AtomikosResources

Bitronix JTA Transaction Manager. Accessed: Jul. 8, 2022. [Online].
Available: https://github.com/bitronix/btm

Narayana Documentation. Accessed: Jul. 8, 2022. [Online]. Available:
https://www.narayana.io/documentation/index.html

J. Atelsek. (2020). Why 76% of companies are adopting multicloud and
hybrid cloud approaches. S&P Global and Market Intelligence. [Online].
Available: https://www.oracle.com/es/a/ocom/docs/cloud/oracle-451-
research-advisory-blog-adopting.pdf

A. Fachat, J. Laredo, and H. Verhoeven. (2022). Extend Saga to
the cloud for distributed transactions. IBM. [Online]. Available:
https://www.ibm.com/cloud/architecture/architecture/practices/extend-
saga-to-the-cloud/

(2022). Compensating Transaction Pattern. MS Azure Cloud
Design Patterns. [Online]. Available: https://learn.microsoft.com/en-
us/azure/architecture/patterns/compensating-transaction

P. Fan, J. Liu, W. Yin, H. Wang, X. Chen, and H. Sun, “2PC*: A distributed
transaction concurrency control protocol of multi-microservice based on
cloud computing platform,” J. Cloud Comput., Adv., Syst. Appl., vol. 9,
no. 1, pp. 1-22, Dec. 2020.

S. M. Aghamirmohammadali, B. Momeni, S. Salimi, and M. Kharrazi,
“Blue-pill oxpecker: A VMI platform for transactional modifica-
tion,” [EEE Trans. Cloud Comput., early access, Mar. 22, 2021, doi:
10.1109/TCC.2021.3067829.

3rd ed.

124331

http://dx.doi.org/10.1109/TCC.2021.3067829

IEEE Access

A. Navarro: Fundamentals of Transaction Management in Enterprise Application Architectures

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

A. Tripathi and G. Rajappan, “Scalable transaction management for par-
tially replicated data in cloud computing environments,” in Proc. IEEE 9th
Int. Conf. Cloud Comput. (CLOUD), Jun. 2016, pp. 260-267.

C. Wang and X. Qian, “RDMA-enabled concurrency control protocols for
transactions in the cloud era,” IEEE Trans. Cloud Comput., early access,
Sep. 29, 2021, doi: 10.1109/TCC.2021.3116516.

G. Koloniari and E. Pitoura, “Transaction management for cloud-based
graph databases,” in Proc. ALGOCLOUD, in Lecture Notes in Computer
Science, vol. 9511, 2016, pp. 99-113.

D. Choi and S. Song, “Concurrency control method to provide transac-
tional processing for cloud data management system,” Int. J. Contents,
vol. 12, no. 1, pp. 60-64, Mar. 2016.

A. Waqgas, A. W. Mahessar, N. Mahmood, Z. Bhatti, M. Karbasi, and
A. Shah, “Transaction management techniques and practices in current
cloud computing environments: A survey,” Int. J. Database Manag. Syst.,
vol. 7, no. 1, pp. 41-59, Feb. 2015.

Wikipedia. Application Server. Accessed: Jul. 8,2022. [Online]. Available:
https://en.wikipedia.org/wiki/Application_server

X/Open Preliminary Specification P209: Distributed Transaction
Processing—The TX (Transaction Demarcation) Specification, X/Open
Company, Mountain View, CA, USA, 1992.

G. Chen, “Distributed transaction processing standards and their applica-
tions,” CITR Tech. J., vol. 1, pp. 41-52, Sep. 1995.

Oracle. Developing Applications with Oracle XA. [Online]. Available:
https://docs.oracle.com/database/121/ADFNS/adfns_xa.htm#ADFNS761
IBM. (2022). X/Open Distributed Transaction Processing Mode. [Online].
Available: https://www.ibm.com/docs/en/db2/11.5?topic=managers-
designing-xa-compliant-transaction

Object Management Group. (2003). Transaction Service Specification.
Version 1.4. [Online]. Available: https://www.omg.org/spec/TRANS/1.4/
Micro Focus. (2020). Orbix 6.3.12. Corba OTS Guide: Java.
[Online]. Available: https://www.microfocus.com/documentation/orbix/
orbix6312/pguide_java.pdf

A. Navarro, J. Cristébal, C. Ferndndez-Chamizo, and
A. Ferndndez-Valmayor, ‘“Architecture of a multiplatform virtual
campus,” Softw., Pract. Exp., vol. 42, no. 10, pp. 1229-1246, 2012.

M. Fisher, J. Ellis, and J. Bruce, JDBC API Tutorial and Reference, 3rd ed.
Crawfordsville, IN, USA: Addison-Wesley, 2003.

Oracle. The Java Tutorials. JDBC Introduction. [Online]. Available:
https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
New York, NY, USA: Pearson, 2015.

B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea,
Java Concurrency in Practice. Crawfordsville, IN, USA: Addison-Wesley,
2006.

Jakarta. (2020). Jakarta Transactions 2.0. [Online]. Available:
https://jakarta.ee/specifications/transactions/2.0/jakarta-transactions-
spec-2.0.html

(2012). EJB 3.0—Nested Transaction | = Requires New? Starckoverflow.
[Online]. Available: https://stackoverflow.com/questions/10817838/ejb-3-
0-nested-transaction-requires-new

J. Delgado, “A service-based framework to model mobile enterprise archi-
tectures,” in Handbook of Research on Mobility and Computing: Evolving
Technologies and Ubiquitous Impacts. Hershey, PA, USA: IGI Global.
2011.

T. Erl, SOA Design Patterns. Upper Saddle River, NJ, USA: Prentice-Hall,
2008.

Microsoft. (2021). Microsoft. NET. Service Transaction Behaviour.
[Online]. Available: https://docs.microsoft.com/en-us/dotnet/framework/
wcf/samples/service-transaction-behavior

Object Management Group. (2003). Transaction Service Specification.
[Online]. Available: https://www.omg.org/spec/TRANS/1.4/PDF

P. Kumar. (2014). Java DataSource, JDBC DataSource Example.
[Online]. Available: https://www.journaldev.com/2509/java-datasource-
jdbe-datasource-example

ProgrammerSought. Distributed — Transactions Based on XA
in MySQL. Accessed: Jul. 8, 2022. [Online]. Available:
https://www.programmersought.com/article/96704095327/

ArjunaCore. Accessed: Jul. 8, 2022. [Online]. Available:

https://www.narayana.io/arjuna-core/index.html

R. Johnson and J. Hoeller, J2EE Development Without EJB. Hoboken, NJ,
USA: Wiley, 2004.

M. D. Hansen, SOA Using Java Web Services. Upper Saddle River, NJ,
USA: Prentice-Hall, 2007.

124332

(65]

[66]

[67]

[68]
[69]
[70]

(71]

[72]

(73]

[74]

[75]

[76]

(77]

(78]

(791

(80]

(81]

(82]

(83]

(84]

A.Navarro and A. da Silva, “A metamodel-based definition of a conversion
mechanism between SOAP and RESTful Web services,” Comput. Stan-
dards Interfaces, vol. 48, pp. 49-70, Nov. 2016.

OASIS. (2009). Web Services Transaction (WS-TX) TC. [Online].
Available: https://www.oasis-open.org/committees/tc_home.php?wg
_abbrev=ws-tx#technical

OASIS. (2009). Web Services Atomic Transaction (WS-
AtomicTransaction). [Online]. Available: http://docs.oasis-open.org/ws-
tx/wsat/2006/06

OASIS. (2009). Web Services Business Activity (WS-BusinessActivity).
[Online]. Available: http://docs.oasis-open.org/ws-tx/wsba/2006/06
OASIS. (2009). Web Services Coordination (WS-Coordination). [Online].
Available: http://docs.oasis-open.org/ws-tx/wscoor/2006/06

M. Little. (2009). REST and transactions? InfoQ. [Online]. Available:
https://www.infoq.com/news/2009/06/rest-ts/

G. Pardon and C. Pautasso, “Towards distributed atomic transactions over
RESTful services,” in REST: From Research to Practice. New York, NY,
USA: Springer, 2011.

M. Little. (2013). REST-Atomic Transactions 2.0. Draft 8. [Online].
Available: https://www.narayana.io/docs/specs/restat-v2-draft-8-2013-jul-
29.pdf

C. Richardson, Microservices Patterns. Shelter Island, NY, USA: Manning,
2019.

K. Bhole and R. Nareddy. (2020). Opening banking through
architecture re-engineering. A microservices-based roadmap.
Deloitte. [Online]. Available: https://www?2.deloitte.com/content/dam/
Deloitte/us/Documents/financial-services/us-enabling-platform-banking-
pov.pdf

S. Petunin. (2021). A guide to transactions across microservices.
Baeldung. [Online]. Available: https://www.baeldung.com/transactions-
across-microservices

R. Ganji. (2021). How to get closer to consistency in microservice architec-
ture. DZone. [Online]. Available: https://dzone.com/articles/transaction-
management-in-microservice-architectur

K. Xiang. Patterns for Distributed Transactions Within a Microservices
Architecture. [Online]. Available: https://developers.redhat.com/
blog/2018/10/01/patterns-for-distributed-transactions-within-a-
microservices-architecture#

H. Garcia-Molina and K. Salem, “SAGAS,” in Proc. SIGMOD, 1987,
pp. 249-259.

O. Bagkok. (2019). SAGA Pattern Briefly. [Online]. Available:
https://medium.com/trendyol-tech/saga-pattern-briefly-5b6cf22dfabe
Narayana Blog Team. Accessed: Jul. 8, 2022. [Online]. Available:
https://jbossts.blogspot.com/

G. Pardon. (2016). ACID Transactions Across REST Microservices.
[Online]. Available: https://www.atomikos.com/Blog/ACIDTransactions
AcrossMicroservices

G. Pardon. (2017). Transactional REST Microservices With
Atomikos. [Online]. Available: https://www.atomikos.com/Blog/
TransactionalRESTMicroservicesWithAtomikos

T. Erl, Service-Oriented Architecture. Upper Saddle River, NJ, USA:
Prentice-Hall, 2005.

(2010). Sun Java System Application Server Platform Edition
9 Developer’s Guide. Handling Transactions With Enterprise
Beans. [Online]. Available: https://docs.oracle.com/cd/E19501-01/

819-3659/beaje/index.html

ANTONIO NAVARRO received the Ph.D. degree
in mathematics computer science from Universi-
dad Complutense de Madrid, Spain, in 2002. He is
an Associate Professor at the Departamento de
Ingenieria del Software e Inteligencia Artificial,
Universidad Complutense de Madrid. His research
interests include software engineering, software
architectures, software design patterns, software
modeling, and model-driven architecture. He is the
| author and the coauthor of several papers related to
these research topics.

VOLUME 10, 2022

http://dx.doi.org/10.1109/TCC.2021.3116516

