
Received 11 October 2022, accepted 19 November 2022, date of publication 24 November 2022,
date of current version 30 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3224720

Modbus Protocol Performance Analysis in a
Variable Configuration of the Physical
Fieldbus Architecture
VASILE GHEORGHIŢĂ GĂITAN, (Member, IEEE), AND IONEL ZAGAN , (Member, IEEE)
1Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, 720229 Suceava, Romania
2Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control
(MANSiD), Stefan cel Mare University, 720229 Suceava, Romania

Corresponding authors: Ionel Zagan (zagan@usm.ro) and Vasile Gheorghiţă Găitan (vgaitan@usm.ro)

This work was supported in part by the Integrated Center for Research, Development and Innovation in Advanced Materials,
Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University, Suceava, Romania; in part
by the Project 119722/Centru Pentru Transferal de Cunoştinţe Către întreprinderi Din Domeniul ICT—CENTRIC—Contract Subsidiary
21773/04.10.2022/DIGI-TOUCH/Fragar Trading through the Infrastructure from the Project ‘‘Integrated Center for Research,
Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control’’ under
Contract 5/AXA 1/1.2.3/G/13.06.2018 and Contract SMIS 2014+119722 (ID P_40_305); and in part by the Sectoral Operational Program
for Increase of the Economic Competitiveness co-funded from the European Regional Development Fund under Contract 671/09.04.2015.

ABSTRACT Few developments have changed the evolution of the automation process as substantially
as the development of industrial local area networks and communication protocols. Especially fieldbus
systems, networks created for the lowest levels of the automation hierarchy, have an enormous influence
on the flexibility and performance of modern automation systems in all application areas. The technique of
updating data on Modbus type devices involves a procedure of reading data at regular time intervals called
polling. Some automation processes include interdependence between different control variables belonging
to different hardware devices. This paper presents and analyzes various scenarios related to a variable
architecture configuration of physical modules based on Modbus communication protocol. The proposed
Modbus Extension (ModbusE) concept is presented by defining the new optimized message format, and
the structure of the acquisition cycle to obtain a deterministic temporal behavior, solutions for describing
devices at the Modbus protocol level being presented. The status update of each Modbus module is done
according to the address of the device, but also the number of registers per device. The paper analyses the
worst-case scenario of communication involving Modbus devices on the same network and exchanging data
corresponding to one or more server registers.

INDEX TERMS Modbus, acquisition cycle, remote terminal unit (RTU), communication.

I. INTRODUCTION
The need to solve the wiring problems in the field of
automation, that has become a problem in large industrial
processes, was certainly the main constraint for the devel-
opment of fieldbus systems. Other obvious and attractive
advantages of the fieldbus concept are the modularity, the
possibility of easily expanding the installations and the option
of having much more intelligent field devices that can com-
municate not only for process data transfer, but also for

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

maintenance, security, and configuration [1]. Another point
of view that led to different design approaches was to consider
network systems in industrial process control as constituent
entities of real-time distributed systems. While cabling opti-
mization concepts were in many cases simple bottom-up
approaches, these real-time distributed ideas led to sophis-
ticated and usually well-researched designs.

Fieldbus systems must be seen as an integrated part of a
complex automation concepts and not as stand-alone solu-
tions. Considering the large dimensions of process automa-
tion installations, the fieldbus system benefits are particularly
obvious. However, the concept was not uncontested when

123942 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1322-4516
https://orcid.org/0000-0002-6921-7369


V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

it was introduced. The fieldbus approach was an ambitious
concept: a step towards decentralization, including data pre-
processing in field devices, security [2], [3], which together
increases the quality of the control process and reduces the
computational limit of centralized controllers.With the devel-
opment of implementation technologies, the ability to config-
ure and parameterize field devices remotely via the network
was also added.

This advanced concept, on the other hand, required
increased communication between devices that goes far
beyond simple data exchange [4]. A more detailed defini-
tion of fieldbus is given by the Fieldbus Foundation, orga-
nization that supports one of the major fieldbus systems [1]:
Fieldbus is a digital, bidirectional, multi-drop communication
link between intelligent measurement and control devices.
It serves as a Local Area Network (LAN) for advanced pro-
cess control, remote input/output applications, and secure
high-speed factory automation applications [5], [6]. This is
somewhat restrictive though, as it limits the application to
advanced processes and factory automation. Thus, the generic
term fieldbus defines cable networks or industrial buses,
in this context ‘‘field’’ meaning relatively far from the ‘‘cen-
ter’’. Fieldbus systems were not the result of an invalidated
ideas, they appeared in a continuous and often difficult pro-
cess of evolution based on existing technology.

Today, numerous application fields are unthinkable with-
out them: factory automation [7], distributed process con-
trol [8], building automation and energy distribution in
general, but also the automotive industry, railway applica-
tions and aeronautical field. All these sectors rely heavily
on the availability of suitable networks that meet spe-
cial requirements of individual applications [9], [10]. Cur-
rent modern anomaly detection and classification methods
for industrial control systems are based on network traffic
data of industrial field protocols such as Modbus TCP and
S7 Communication [11].

Based on research related to the Modbus communication
protocol, the contributions of this paper are summarized as
follows:

1) Decomposition of a typical industrial protocol func-
tionality;

2) Analysing, testing, and validation of various scenarios
related to variable architecture configuration of physi-
cal modules based on Modbus protocol.

3) Defining the structure of an acquisition cycle
(ModbusE) corresponding to incompletely defined
networks;

4) Development and definitions of the ModbusE protocol
basic aspects.

As a main contribution in the field of industrial com-
munication protocols, the structure of an acquisition cycle
for incompletely defined networks has been implemented
by adding a timestamp to achieve wide time consistency.
Thus, the Base Station Gateway (BSG) can add a time stamp
to a unit of information or a set of information. The main

advantage of adding a timestamp to a simple protocol, such as
Modbus, is to achieve time consistency (a common view of
the controlled and/or monitored process). Time consistency
is very important in the implementation of industrial process
control algorithms. By introducing this additional informa-
tion we can add a low-cost feature specific to sophisticated
protocols. This option is implemented at fieldbus level for
Modbus (the time stamp is added by the BSG) and on both
the controller and the ModbusE fieldbus. These options are
enabled or disabled at the installation stage of the BSG and
in stations that have ModbusE functionality.

The rest of this paper is organized as follows. Chapter
II reveals the fieldbus systems general characteristics and
chapter III describes the mathematical model for Modbus
communication performance analysis. Chapter IV validates
the experimental results and chapter V reviews the previous
Modbus based designs. Chapters VI and VII presents the
discussions and conclusions.

II. GENERAL CHARACTERISTICS OF FIELDBUS SYSTEMS
Networks data transmission was possible only with special
investments in specialized hardware and software solutions.
The purpose of Open Systems Interconnection (OSI) model
was to control this development. The International Organiza-
tion for Standardization (ISO) introduced and supports open
system concepts [12]. These systems integrate hardware and
software components that adhere to a specific set of stan-
dards. These standards guarantee that systems from different
manufacturers are compatible and can communicate easily.
Within fieldbus systems, like all modern communication sys-
tems, fieldbus protocols are essentially modeled based on
ISO/OSImodel. However, in most cases only layers 1, 2 and 7
are used [13]. This is actually the result due to the Manu-
facturing Automation Protocol (MAP), where a full seven-
level stack was found to be too resource-intensive and not
allow for efficient implementation. For this reason, the Min-
iMAP approach (a version containing only layers 1, 2 and 7)
and based on it the IEC fieldbus (International Electrotechni-
cal Commission) standard explicitly prescribes a three-layer
structure, which consists of the physical layer, data link and
the application layer [1]. The classification of Fieldbus traf-
fic is divided into two types, namely: automation-oriented
traffic and parallel traffic (Figure 1). Two categories can be
distinguished for automation-oriented traffic, namely the first
real-time (process data) and the second non-real-time (man-
agement data). In terms of process data, this type is some-
times also referred to as cyclic traffic or identified traffic
because once the request is specified the communication rela-
tionships must be known. Depending on the process charac-
teristics, this data can be periodic or aperiodic. Periodic traffic
is mostly about the state of a process and is usually handled
by time-slotted communication strategy, where each variable
is allocated a dedicated bandwidth slot.

Network bandwidth is improved depending on the sam-
pling time or generation rate of the data source. Aperiodic,
acyclic, or spontaneous traffic is generated on demand in an

VOLUME 10, 2022 123943



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

FIGURE 1. Traffic classes within fieldbus systems.

event-driven manner and transmitted based on the availability
of free communication bandwidth. Management data is typ-
ically aperiodic because it usually occurs depending on the
system state. Traditionally, they are often transmitted in cer-
tain dedicated communication channels for parameters that
use a small percentage of the bandwidth. The parallel traffic
type does not belong to application processes that refer to the
actual control of technical process [1]. Rather, it is generated
by parallel independent processes sharing a common com-
munication medium. Modbus is a communication protocol
developed by Gould Modicon (now Schneider Electric) for
process control systems. This is still considered a public pro-
tocol and has become the de facto standard in multi-vendor
integration [14].

FIGURE 2. General MODBUS framework including ADU and PDU.

III. THE MATHEMATICAL MODEL FOR MODBUS
COMMUNICATION PERFORMANCE ANALYSIS
A. DESCRIPTION OF MODBUS PROTOCOL FUNCTIONS
The Modbus protocol defines the Protocol Data Unit (PDU)
as the elementary protocol data unit, regardless the underly-
ing communication levels [15]. Modbus protocol mapping
for a specific bus or network is done at the Application
Data Unit (ADU) level by introducing additional fields (Fig-
ure 2). Considering the interdependence between the client-
server model and Media access control (MAC) strategies,
it should be noted that, in principle, client-server communi-
cation can be implemented in both single-master and multi-
master systems. In the latter case, which can be based on
Carrier-sense multiple access (CSMA), Time DivisionMulti-
ple Access (TDMA) or Transport Protocol (TP), each master
can take over the role of a client, whereas in single-master
systems this position is reserved for the bus master. Thus, the
client-server paradigm is mainly used for master-slave sys-
tems, represented by PROFIBUS, ASi, MODBUS, P-NET,
BITbus and INTERBUS, and for reliable application-level
data transfer (file transfer, network and device management).

Especially for management functions, the client-server model
is also widely used in fieldbus systems that organise regular
data transfer according to the publisher-subscriber model,
such as WorldFIP, EIB, CANopen, DeviceNet, ControlNet or
LonWorks. Within this project, the register update times are
tested and analyzed on a Modbus device that has a maximum
number of 50 holding registers, these being at consecutive or
dispersed addresses.

In Figure 3, a client has been defined, in this case an appli-
cation (SMARTConvert), which runs on a PC-type comput-
ing system. The main features and development stimuli of
fieldbus systems are:
• Focused solutions: Fieldbus systems had no stated gen-
eral purpose. They have always been developed with
a concrete scope and designed to meet the respective
boundary conditions (such as not only time behavior,
efficiency and reliability, but also costs) in the best pos-
sible way.

• Smart devices: A key goal of embedded systems and
fieldbuses is to bring more intelligence to the domain,
i.e. the end devices. As with embedded systems, field-
bus developers also used technology building blocks
available at the time, such as off-the-shelf microcon-
trollers, to keep costs down. However, dedicated solu-
tions have also been developed to meet special fieldbus
needs.

• Limited resources: Embedded applications and fieldbus
embedding systems share the fundamental problem of
limited resources. Regardless of the state of the art in
microelectronics, embedded devices are less powerful
than standard computers. Communication subsystems
typically have less bandwidth than computer networks,
and power consumption is an issue.

• Comprehensive concepts: Fieldbus systems are not just
networks. Communication is only one part of a dis-
tributed automation concept with comprehensive soft-
ware applications and numerous other tools. In some
advanced cases, fieldbuses have been incorporated into
special frameworks that exhibit many features of dis-
tributed operating systems.

• Distribution: A distributed network is a prerequisite
of real-time distributed systems. Many data process-
ing tasks can be removed from a central controller and
placed directly in field devices if the interface can handle
sufficiently complex communication modes.

• Flexibility and modularity: A fieldbus installation like
any other network can be expanded much more eas-
ily than a centralized system, if the limits of the
address space or cable length are not exceeded. For
the special case of fieldbuses, system-commissioning
process is more advantageous due to a more simpli-
fied parameterization and configuration of complex field
devices.

• Maintenance: Monitoring devices, applying updates and
other maintenance tasks are easier if possible over a
network.

123944 VOLUME 10, 2022



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

FIGURE 3. The support architecture for mathematical model description and Modbus acquisition cycles times definition.

The concept was to create a transparent, multi-level
network as a basis for Computer-Integrated Manufactur-
ing (CIM). Usually, this model comprises up to five levels,
sometimes even more.

While networks for the upper layers already existed when
defining the automation pyramid, the field level was still gov-
erned by point-to-point connections. Fieldbus systems have
also been developed to bridge this gap. The actual integration
of field-level networks into the rest of the hierarchy was,
in fact, considered in the original standardization [1]. How-
ever, for most proprietary developments the actual integra-
tion of networks into the automation hierarchy was never a
primary intention.

A device implementing the Modbus client service can ini-
tiate Modbus messaging requests to another device defining
a specific Modbus server. These requests allow the client
to transmit data and/or send commands to a remote device.
Regarding the Modbus server services, a device implement-
ing the Modbus server can respond to requests from any
Modbus client. In this paper, we will use the term server
for slave, and client for master, in accordance with the new
Modbus specifications. The Modbus server service allows a
device to make all of its internal and input/output data avail-
able to remote devices for reading and writing, and allows
other commands to be executed. The communication speed
for which the tests were done is 9600 bps. For this, the math-
ematical model will be defined to facilitate the definition and
implementation of tests necessary to determine update times
of the values from/to a device on MODBUS RTU (Remote
Terminal Unit) bus. Figure 3 illustrates the message com-
munication diagram, highlighting the various components
that could produce measurable delays. For unicast addresses,
Modbus defines a transaction (T) that consists of a client
request and the related response issued by server that received
the request uniquely. In this context, four components were
highlighted:

• SMARTConvert application;

TABLE 1. Modbus acquisition cycle notations.

• Operating system (in this case WINDOWS 10).
• Sniffer that monitors messages on virtual COMx.
• USB driver;
• USB RS485 converter;
• Server i Modbus RTU.

The only place we can monitor activity on the client device
is at the sniffer level. This message path may not be very
precise. The notations used in this paper are presented in
Table 1. Therefore, we consider the functions that work with
this type of registers. From the analysis of the control function
codes, the possible functions are:

1) FC03 (0× 03): Read holding register;

VOLUME 10, 2022 123945



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

2) FC06 (0× 06): Write single register;
3) FC16 (0× 10): Write Multiple registers;
4) FC22 (0× 16): Mask write register;
5) FC23 (0× 17): Read/Write multiple registers.
Function FC03 (0×03) readmemory registers and store the

data. This function code is used to read the contents of a con-
tiguous block of memory registers from a remotely accessed
device.

Of these functions, we will only use FC03 and FC16.
Thus, registers numbered from one to 16 are addressed with
addresses from zero to 15. The PDU request specifies the
address of the start register and the number of registers.In the
PDU, registers are addressed starting at zero address. Thus,
registers are located with addresses 0 through 15. Register
data in the response message is packed as two bytes for each
register, with the binary contents right aligned for each byte.
The FC16 function organizational chart is shown in Figure 4.
For each data, the first byte contains the most significant bits
and the second byte contains the 7-0 bits. Memory alloca-
tion is done at the byte level using fc03_registers area. The
acquisition is accomplished with a specialized task, then it
will access the fc03_registers area to write, and the Modbus
function implementation task will read. In order to eliminate
race conditions a mutexmust be provided on the access to this
memory area which will eliminate this inconvenience. The
transaction time in terms of Modbus message length for func-
tion FC03 is calculated using the following equation. First,
the number of bits of the transaction is obtained. Now we can
calculate the transaction time on the physical communication
medium.

TF03 = TreqF03+ TrspF03 (1)

TreqF03 = h+ data+ crc = (1 addr + 1 function code

+ 2start address+ 2 amount of registers)

+ 0+ 2 = 8 frame (2)

TrspF03 = TrspOkF03 = (1 addr + 1 function code

+ 1 amount of registers)+ nreg× 2+ CRC

= 3+ nreg× 2+ 2 = 5+ nreg× 2 (3)

TF03OK = 13+ nreg×2 (frames) (4)

TF03OK = (13+ nreg× 2)× lframe (bits) (5)

tTF03OK = (13+ nreg×2)× lframe× tbit (6)

If the server response is an error then:

TrspF03 = TrspErrF03 = (1 addr + 1 error code

+ 1 exception code)+ 0+ CRC

= 3+ 0+ 2 = 5 (7)

tTF03ERR = 13× lframe×tbit (8)

Function FC16 (0× 10) is used to write a continuous block
of registers (from 1 to 123 registers) to a remotely accessed
device. The values to be written are specified in the data
field of the Modbus request. Data is packed as two bytes per
register. A normal response returns the function code, starting

FIGURE 4. MB_Function03 function flowchart.

TABLE 2. Example of request to write two registers.

address, and the amount of registers written. The example
in Table 2 shows a request to write two registers starting at
address 1 with the values 0× 00AA and 0× 5502. Transac-
tion timing in terms of Modbus message length for FC16 is
calculated using the equation (9).

TF16 = TreqF16+ TrspF16 (9)

The transaction time slot on physical medium is given by
the following equation:

tTF16OK = (17+ nreg× 2)× lframe× tbit (10)

For these formulas, we must take into account the Modbus
specifications, which say that between two consecutive char-
acters the maximum time, can be 1.5 characters, and between
two consecutive messages, there must be a time distance
of at least 3.5 characters. This timing actually specifies the

123946 VOLUME 10, 2022



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

end of a Modbus message. As a result, an addition of times
occurs between zero and the frames maximum number of the
message minus one (after the last character follows the pause
between messages of 3.5 characters).
Si acquisition slot encompasses all operations on the Mod-

bus transaction from sending a request, until receiving the
response from server or a timeout. Based on Figure 3, the slot
i timing is defined by equation (11):

tSi(adr,FCxx, nreg) = tSiReq (adr,FCxx, nreg)

+ tSiRsp (adr,FCxx, nreg) (11)

Request and response times have been highlighted sep-
arately because Modbus transaction messages are highly
asymmetric.

Thus, in the Modbus protocol, the asymmetry depends
on the control function and nreg. The equations presented
defined the Modbus transaction that takes place on Modbus
physical layer. Based on this, an acquisition slot has been
defined at the level of a client running on an advanced oper-
ating system (Windows 10). This slot encapsulates a sin-
gle Modbus transaction, and next we will define a complete
acquisition cycle.

tAC (AC_S) =
∑i∈MCA

i
tSi (adr,FCxx, nreg)

+

∑i∈MCA

i
tadjust (12)

The tadjusti parameter represent the time to introduce
a specific delay between slots when some Modbus RTU
servers have high jitter behavior when responding to requests.
Usually tadjusti parameter is zero.

B. MATHEMATICAL EQUATIONS PARTICULARIZATION
BASED ON PROJECT CONFIGURATION
An acquisition cycle, which only runs on the client, consists
of any set of acquisition slots (AC_S) that can refer to:

1) Consecutive addresses (no gaps of Modbus RTU server
type devices);

2) Addresses scattered, but also with or without consecu-
tive address sequences;

3) Addresses that are repeated interspersed with different
control functions or the same control function;

4) Performing operations such as reading from a server
and sending the value to another server on the same
network or on a network connected to a virtual COM or
Modbus TCP/IP gateway client that sends remotely to
a TCP/IP gateway, which is the client of a local virtual
COM etc.

Depending on the character transmission using theModbus
protocol α parameter can take values in the range 0 to 1.
If there is no delay between transmitted characters then α
is 0, and if a delay is introduced between the transmissions
of two characters on Modbus α parameter is different from 0.
If the distance between two successive transmitted charac-
ters is 1.5 characters, as specified in the Modbus standard,
the value for α is 1 (maximum value). α1and α2 have been

introduced for Modbus functions FC03 and FC16, as there
are different averages in message transmission. Modbus is an
incompletely defined protocol because it does not determine
how and in what order data acquisition is performed on the
communication bus. Thus, the ModbusE concept proposes an
extension of the Modbus protocol, defined by an acquisition
cycle on the client-server bus, resulting in a deterministic
communication protocol. Additionally, the ModbusE proto-
col incorporates the option to add a time stamp to data acqui-
sition messages that are part of the acquisition cycle.

In this subchapter we calculate the AC_S acquisition cycle
time with the equation (13).

tAC (AC_S) =
∑i∈MCA

i
(tClienti(adri,FCxx, nregi)

+ tServeri(adri,FCxx, nregi)

+ tTFxxi(FCxx, αi, erri, tout, nregi)

+ tHWneti)+
i∈MCA∑

i

tadjusti (13)

We assume that tadjusti is zero because there is no signif-
icant jitter for servers requests, so we consider the following
case. A single read for all 10 registers from all addresses
(1-246, without address 247 assigned to the fan coil server),
the thermostat having the address in the range 1-246, and a
single write for the 10 registers to the server with address 247
(the worst case regarding the fan coil address). For this case,
we need to read 10 registers from 246 server stations andwrite
10 registers to address 247. The AC_S set for the read can be
expressed by the equation (14).

AC_S (adr,FCxx, adrReg, nrReg)

= {(1, 3, 5, 10),

(2, 3, 5, 10), . . . , (246, 3, 5, 10), (247, 16, 5, 10) (14)

From the communication time point of view, the tTFxxi
function is not affected by the address value or the register
address. In this test, we send 246 time-identical messages
on the Modbus. The acquisition cycle time for AC_S can be
calculated by means of the equation (15).

tAC = 246 x tAll1(1,FC03, 10)

+ 246 x tTF031(FC03, α1, err1, tout, 10)

+ tAll247(247,FC16, 10)

+ tTF16_247(FC16, α2, err2, tout, 10) (15)

In this scenario, we can have multiple instances at the slot
level. If the Modbus message is transmitted correctly, the
following equations is defined:

tTF03_i (FC03, α1, 0, 0, 10)

= 41.668+ 50.0016×α1 ms (16)

tTF16_247 (FC16, α2, 0, 0, 10)

= 45.8348+ 56.2518× α2 ms (17)

VOLUME 10, 2022 123947



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

The time for the Modbus acquisition cycle is defined by
equation (17):

tAC = 246 x tAlli (i,FC03, 10)+ tAll247(247,FC16, 10)

+ 10250, 328 ms+ 12300, 3936× α1 ms

+ 45, 8348 ms+ 56, 2518× α2 ms (18)

If α1= 1, α2= 1, err1= 0, err2= 0 and tout= 0 then the
acquisition cycle time is calculated as follows.

tAC = 246 x tAlli(i,FC03, 10)+ tAll247(247,FC16, 10)

+ 22652, 8082 ms (19)

If α1 = 0, α2 = 0, err1 = 0, err2 = 0 and tout = 0, then
tAC is calculated according to equation (19).

tAC = 246 x tAlli(i,FC03, 10)

+ tAll247(247,FC16, 10)+ 10296.1628 ms (20)

If the message is transmitted with errors, then tTF03i is
calculated with the following equations.

tTF03i(FC03, α, 1, 0, x)

= tTF03ERR = 20834+ 18750, 6×α1 us (21)

tTF16_247(FC16, α2, 1, 0, x)

= tTF16ERR = 42709.7+ 51564.15× α2 (22)

If α1 = 1, α2 = 1, err1 = 1, err2 = 1 and tout = 0 then
tTF031(FC03,1,1,0,x) = 39.5846 ms and tTF162(FC16,
1,1,0,x) = 94.27385 ms. The time for acquisition cycle is:

tAC = 246 x tAlli((i,FC03, 10)+ tAll247(247,FC16, 10)

+ 9832.07385 ms (23)

If α1 = 0, α2 = 0, err1 = 1, err2 = 1, and
tout = 0 then tTF031(FC03,0,1,0,x) = 20.834 ms and
tTF162(FC16,0,1,0,x) = 42.7097 ms. In this case, the acqui-
sition cycle time is calculated according to equation (23).

tAC = 246 x tAlli((i,FC03, 10)+ tAll247(247,FC16, 10)

+ 5167.8737 ms (24)

As there aremore transactions, it is difficult to highlight the
timeout. Any timeout adds about 50 ms to the communication
delay.

IV. EXPERIMENTAL RESULTS
A. MESSAGE TRANSMISSION TIMING BETWEEN DEVICES
BELONGING TO THE SAME MODBUS COMMUNICATION
PROTOCOL
In order to test the communication platform regarding the
exchange of messages between devices belonging to the same
Modbus type communication protocol, an application was
made on STM32F7-Discovery development kit on which
247 stations each with 50 registers were simulated. Thus,
using a device, the tests related to the project can be carried
out, namely the use of all server addresses, from one to 247.
For these 50 registers available at the level of each station

(server), the requiredModbus functions are available, namely
FC03 for reading and FC16 for writing.
The STM32F7-Discovery is a development platform that

includes the STM32F746NG MCU microcontroller. The
development kit allows users to develop and share applica-
tions with the STM32F7 series of microcontrollers based on
the ARM Cortex M7 core. Arduino connectivity provides
unlimited expansion facilities with a wide range of special-
ized boards. The experiments in chapter V and the shortcom-
ings found on this occasion led to the choice of this design
kit. In addition, different editions of STM32 series microcon-
trollers have different hardware integrated Modbus protocol
facilities. Only the STM32F7 implements them all in one
chip. The facilities offered are the following:

• 7, 8, 16 and 32-bit cyclic redundancy check (CRC)
calculation hardware unit with the possibility to freely
choose the polynomial;

• Programmable sampling, which allows obtaining serial
communication speeds of up to 27 Mbps;

• Hardware direction control for the RS485 driver with
programmable delay times both when changing direc-
tion and returning from it;

• Fast transfer through Direct memory access (DMA);
• Time-out facilities (which allows the easy implemen-
tation of measuring time distances of 1.5 charac-
ters between characters and 3.5 characters between
messages);

• USART 7 was used for the tests.

Connection between the PC and the development kit was
made with a USB – 3.3V converter identified as Prolific
USB-to-serial - Comm Port. In the following, the times
for exchanging values from a thermostat to a fan coil are
validated for the worst-case scenario, (the thermostat has
address 1, and the fan coil has address 225 (247), and there are
no free addresses between them). In this experiment, it will
be taken into account that all devices have 10 consecutive
registers that need to be updated. Tests will include update
times for 9600 bps communication speed. In terms of device
numbers, the application has been designed to use all user
addresses from 1 to 247. ID 0 is used for Broadcast commands
and device IDs 248 to 255 are reserved and are generally
used for vendor-specific gateway functions. For practical lab-
oratory tests, using an STM32F7 microcontroller on which
Modbus devices were emulated, the PC did not have enough
resources to communicate with more than 39 devices. Thus,
it was concluded that the operating system in this case should
only be used for a specific application. Using Modbus Poll
software and Modbus server stations, PDU request/response
messages with associated time stamps were monitored and
analyzed. In the case of the Modbus request message ‘‘03 00
00 00 00 00 01 84 0A’’, related to function FC03, the time
stamp ‘‘001833-10:32:18.939-01’’ is associated.
In case of the 39-station tAC acquisition cycle measure-

ment, the times for 9600 bps communication rate are as
follows: 4.526 s, 4.527 s, 4.533 s, and 4.554 s. As we

123948 VOLUME 10, 2022



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

FIGURE 5. FC03 and FC16 Modbus messages interprettion. a) The time period between two requests sent by the client to the servers 37 - 38; b) Time
between two consecutive requests with FC03 and 10 registers – FC16, 1 register (experimental values: 115.8 ms, 116.3 ms, and 116.2 ms).

can see in Figure 5, C1 cursor marks the trigger on server
1 and C2 cursor indicates the driver transition to the queried
server from receive to transmit state. Stations with IDs 1 and
39 have shorter transmission periods because only one data
register is read. The red (C2) pulses are commands for the
server driver to switch to broadcast. Longer C3 pulses cor-
respond to requests of type FC03, when reading 10 regis-
ters, and the shortest are F16 when writing a register (fan
coil – server address 39) and FC03 when reading a register
(thermostat – server address 1).

Thus, between two consecutive requests a period of
116.7 ms was measured (Figure 5.a). It includes querying
the server with ID 37, switching the driver in the broad-
cast, the time for processing at the server level that includes
the request analysis, sending the response to the client with
10 registers (C4) as the message payload, respectively the
period between two messages according to Modbus speci-
fications. The practical data from the oscilloscope capture
illustrates the time between two requests sent by the client to
the servers 37 and 38. The experimental data obtained in Fig-
ure 5.a validate the theoretical notions presented in chapter
IV, so that for two consecutive requests of FC03 type func-
tion with 10 registers the following periods were obtained
115.5 ms, 115.8 ms, 116.7 ms and 116.7 ms. The time
between two FC03 – FC16 requests is 116.3 ms and 115.9 ms
(Figure5.b).

For the case where there are 257 servers, specifying the
equations for the project purpose with α1 = 1, α2 = 1,
err1 = 0, err2 = 0, and tout = 0 gives a period of 246 \time

tAlli(i,FC03,10)+ tAll247 (247,FC16,10)+ 22652.8082 ms
for tAC, so the practical results obtained validate the pre-
sented mathematical model. For α1 = 0, α2 = 0, err1 =
0, err2 = 0 and tout = 0 a maximum of 246 \time
tAlli(i,FC03,10) + tAll247(247,FC16,10) + 10296.1628 ms
can be obtained.

The acquisition cycle defined in this paper applies to pro-
tocols based on the time-triggering paradigm. This is not
essential when using the IEC 61131-3 standard, which is the
dominant standard for Programmable Logic Controller (PLC)
programming, as it uses a centralized model to control cyclic
program execution. Conversely, it can be a disadvantage for
the IEC 61499 standard, as it implements function blocks
event-based execution activation. The execution semantics of
a function block is not clearly defined in this standard, so two
major aspects related to the notion of time can be identified.
The first of them relates to the lifetime of an event and the
second to notions of block communication, i.e. if there is a
command to execute the block. However, for this standard,
increasing the determinism of the functional blocks behav-
ior [16] involves the use of the synchronized execution [17],
the cyclic execution [18], [19] and the ISaGRAF model [20].
These patterns are close to the cyclic execution of function
blocks.

Analyzing, for example, the Modbus specification as well
as other non-standard extensions [21], we can argue that only
Modbus RTU is suitable for real-time communications. Mod-
bus ASCII allows a maximum of 6 seconds between charac-
ters, which is unacceptable for any real-time application [22],

VOLUME 10, 2022 123949



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

and Modbus TCP/IP uses the TCP/IP stack, which is of the
best-effort type.

A Modbus RTU message can be up to 256 bytes [14].
A Modbus network allows 247 addresses for the server
station, address zero is used for broadcast messages, and
addresses from 248 to 255 are reserved. An Application Pro-
tocol Data Unit (APDU) message contains a station address
byte, a function code byte, and the data area containing the
request or response parameters and a checksum. Data is
always 11 bits long, of which one start bit, 8 data bits, one
parity bit and one stop bit, or two stop bits and no parity.
With Modbus RTU, each frame must be separated from the
other by a minimum of 3.5 characters of inactivity. If there is
more than 1.5 characters of inactivity between two consecu-
tive characters, the framework is considered incomplete and
is rejected. Based on these characteristics, we can conclude
that maximum length of a message is (256+ 3.5+ 255×1.5)
\time 11 = 7062 bits, where 256 is the maximum number of
characters in a message and 255 is the maximum number of
spaces in the message which is 256 characters long.

Modbus messages, except broadcast messages, are sent in
command-response pairs. Consequently, we need to deter-
mine the maximum length of the command or response,
given that the request or response is of maximum length.
Most requests and responses are five characters, but there are
exceptions when the length can reach the maximum value.

The proposed acquisition cycle wants to transform non-
deterministic protocols (Modbus,M-Bus, andASCII-DCON)
into deterministic protocols. This acquisition cycle is time-
triggered because a low-cost microcontroller implementation
using synchronous serial communication is desired.

This concept does not allow bus arbitration via the pro-
tocols mentioned above. However, implementation on serial
port microcontroller systems is cheaper, allowing actual
implementation and validation of the Modbus extension for
affordable distributed embedded systems. This timing should
be specified, but unfortunately, only a few manufacturers
guarantee a value for this parameter, and the protocol does
not specify anything about this issue. A solution could be to
develop, at the BSG level, a command-processing-response
time evaluation function for all requests used in application,
with a reasonable timing for different operating modes corre-
sponding to the tested devices. An alternative solution could
be to approximate the processing time and attach four coun-
ters to each slot. We need a counter for messages correctly
received, a counter for errors generated by exceeding the
1.5-character idle time between two consecutive characters
in a Modbus frame, a counter for CRC errors, and a counter
for time-out errors.

The experimental data obtained from the laboratory tests
validate the mathematical model for the analysis and test-
ing imposed on this project, thus for the response message
time period of the server with ID 1 and function Modbus
FC03 with 1 register a time period between 7.116 ms and
7.221 ms can be obtained (Figure 6). The measured times for
processing on server one are as follows: 5.087 ms, 5.306 ms,

5.635 ms, and 5.689 ms, with an average of 5.429 ms. Thus,
the query message time period is not greater than 8.26 ms.

If there are errors generated by exceeding the 1.5 character
idle time between two consecutive characters in a Modbus
frame, it is desirable to replace the station because it does not
comply with theModbus specification. If significant time-out
errors are generated, then the estimated time to process the
commands is wrong and the slot jitter should be increased.
This operation can be performed dynamically by the BSG or
statically by the designer configuring the network. Increas-
ing the slot time is performed until the generated errors are
acceptable, which are a few percent of all messages, depend-
ing on the application requirements.

If there are many CRC errors without accompanying other
errors, such as 1.5 characters or time-out, then the network
may be affected by noise or there are physical faults in
the network or at the server station. For each message, the
Round-trip time (RTT) is calculated and the maximum value
is considered. These values will be taken into account when
the acquisition cycle is set up.

It is desirable that the difference between the minimum and
maximum RTT values does not increase in value. Each slot
may have a margin of safety determined by the performance
requirements of the acquisition cycle (its time).

A slot must have a transmission time multiple of three and
less than or equal to the maximum value of the RTT plus the
safety margin, which mainly includes the processing time of
the BSG. The slot allocated to Service Data Object (SDO)
messages should not exceed 10-15% of the acquisition cycle,
and if there are longer orders, then they should be segmented.

Most Modbus commands allow segmentation, so one or
more commands can be attached to a slot. It would be prefer-
able for a command to be attached to a single slot, and in
case of critical situations, the second message could be a sta-
tion status query, thus checking whether critical events have
occurred or not.

B. MODBUS EXTENSION PROPOSED SOLUTION
Fieldbuses implement only layers 1, 2, and 7 of the OSI
protocol stack, with the current approach-addressing layer 2.
For shared bus networks, addressing is handled by the Media
Access Controller subsystem. Usually, incompletely defined
protocols do not include time variable specification, so at the
server station level, the time variable is not explicitly used.
So a master station called BSG is required to manage the
time variable. This station allows access to the fieldbus via
the Internet, via direct connection or via a host computer.
BSG can add a timestamp to a unit of information or a set
of information. In this case, we can achieve broad temporal
coherence.

The time interval is dictated, on the one hand, by the broad-
cast command protocol specification, such as the start of data
acquisition, and, on the other hand, by the acquisition cycle
structure at the level of each station (usually the binary vari-
ables are written and read faster than analog variables, which
require more time for data conversion). We must not neglect

123950 VOLUME 10, 2022



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

FIGURE 6. Response times corresponding to the client-server devices. a) Time period of the request message corresponding to the server ID 1, FC03,
1 register (experimental values: 8.26 ms, 8.206 ms, 8.3 ms); b) Server processing time (request analysis and response sending, forced delay = 1ms) ID 1,
FC03, 1 register, (experimental values: 5.635 ms, 5.689 ms, 5.306 ms); c) Time period required to issue the server response message ID 1, FC03, 1 register
(experimental values: 7.212 ms, 7.166 ms, 7.18 ms).

the time required for signal processing in such a network, the
stations being totally synchronized. Therefore, the implemen-
tation effort is only on the BSG station. For this acquisition
cycle, as a result of the research carried out we present a prac-
tical example for the Modbus protocol, which is widely used
in SCADA systems. Analyzing the practical results obtained
with the Modbus protocol, we establish that its performance
can be improved. To achieve this goal, we propose an original
extension called ModbusExtension (ModbusE). A ModbusE
acquisition cycle consists of n slots. As a result, the time
period for a tAC acquisition cycle is given by the following
equation:

tCA =
∑n−1

i=0
tsi (25)

The time period for slot i (tSi) is made up of the times
required for software processing at the client, respectively
at the server (tswi, tswMi, tswSi). To these are added the
hardware delay times at the client and at the server (thwi,
thwMi, thwSi, tlinei), the times required for the characters
issued by the client through the request message and those
sent by the server in response to these requests (tcommi,
tcommMi, tcommSi) and the slot adjustment time (tadjusti).

FIGURE 7. Measured times for acquisition cycle slots at the server.

Figure 7 and Table 3 show the times measured for client
and server acquisition cycle slots when ModbusE is used.
Thus, tsmove represents the time required to transmit the
message from the server’s reception buffer to the final buffer.
In the proposed ModbusE approach, research has led to a
main contribution, namely, the structure of an acquisition
cycle corresponding to incompletely defined networks to add
a time stamp and achieve temporal coherence.

VOLUME 10, 2022 123951



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

TABLE 3. Times measured for acquisition cycle slots.

Based on the Table 3 experimental data, tmCRC repre-
sent the CRC calculation timing for message received in the
previous slot, and tmswitchi is the time required to switch
mbeThreadCycleRTU task (the most priority in the system).
The symbol tmpsnsli defines the time to prepare the emis-
sion of the command for the new slot (the client prepares
the emission of the new slot i), and tmfosli represents the
time required to finish the operations related to the old slot
(the client finishes the old slot). The solutions proposed in
this paper are simple and inexpensive, as they allow the inte-
gration of existing acquisition modules without hardware or
software changes.

V. RELATED WORK
Researchers in the literature have proposed various exten-
sions and architectures to address the main Modbus protocol
challenges and fieldbus requirements. From a general per-
spective, it is not enough to define new fieldbus proposals that
are not based on decentralized transmission technology or
Ethernet. Developing an extension of already available solu-
tions is perfectly acceptable, as long as full backward compat-
ibility is ensured and the extension offers tangible advantages
in the perspective of one or more application areas. In [23],
the authors describe a case study of the Protege language in
an industrial setting. The authors implemented the Modbus
protocol over TCP/IP and the serial line and tested it using
an industrial gateway. The implementation described in [23]
demonstrates Protege’s advantages for software productivity,
maintenance, and code reuse so that it achieves many desir-
able properties of industrial integrated networking software.
The authors’ main technical contribution is exemplifying how
to decompose the functionality of a typical industrial proto-
col to improve code modularity and reusability. In the test
presented by the authors, 128 bytes were reserved for time
variables used by packet processing or protocol logic. Since
Modbus does not support retransmission, no buffer has been
reserved for storing temporal packets.

The information in [24] highlights and validates a secure
command and control channel over the Modbus/TCP proto-
col, which is the logical next step for attackers, and evaluates
its suitability. The channel stores information in the least

significant bits of the working registers to carry informa-
tion using Modbus read and write methods. This provides an
explicit trade-off between bandwidth and channel stealth that
can be set by the attacker. As the security posture improves,
attackers will likely move to more stringent approaches such
as secured channels. To test the validity of the approach for
implementing a secured communication channel, the Mod-
bus protocol and the control channel were implemented. The
implementation was accomplished in Python 2.7 using the
Modbus library. The instrumented code is then used to run
multiple transfers of a compressed file from the server, or to
the client, the equivalent of ex filtering a compressed data
archive. This action is selected as the most suitable for the
benchmark test because it maximizes bandwidth channel uti-
lization. In [25], researchers suggest an innovative Modbus
extension, in a backward compatible way, to cover deficien-
cies such as address space size, guaranteed bandwidth alloca-
tion, and shared transfer between multiple client stations. The
proposed extension does not require any additional hardware,
so it is suitable for low-cost distributed embedded systems.
The concept proposed by the authors in [25]was implemented
with a low development effort, starting from the available
Commercial Off-The-Shelf (COTS) protocol stack.

In [26], Al-Dalky et al. propose an automated tool for
generating malicious SCADA traffic. Recently, the connec-
tivity of SCADA systems to the Internet has introduced new
vulnerabilities, thus becoming the target of a huge number
of attacks. For this implementation, traffic generation of the
popular SCADA Modbus protocol is considered. The gen-
erated traffic characteristics are derived from the Modbus
protocol based on Snort Network Intrusion Detection System
(NIDS). The proposed tool uses Scapy to generate packets
considering extracted traffic characteristics. The authors suc-
cessful validates tool results, which is used to read a Snort rule
file containing Modbus rules to extract the required traffic
characteristics. The paper [26] describe and highlights how
to develop an automated tool for generating malicious Mod-
bus traffic from the NIDS. Thus, in order to secure SCADA
systems, Scapy is used to evaluate the effectiveness of the
proposed solutions. The proposed tool successfully generates
malicious SCADA traffic triggering Snort NIDS rules. How-
ever, is useful and necessary to extend proposed tool [26]
to generate other types of SCADA protocols like those of
DNP3. In [27], the over-control and jitter of Modbus TCP
communication are well evaluated by theoretical analysis and
experimental data. The results presented by the authors vali-
dates that TCP recognition mechanism is mainly responsible
for RTT jitter, which in turn can affect the system security and
reliability. In contrast, the related implementation expenses
are much more affordable for typical embedded applica-
tions. The experimental results analysis is supplemented with
theoretical aspects. The TCP Acknowledgment (ACK) seg-
ment mechanism, which is an elementary component of the
TCP/IP protocol used by receivers to acknowledge receipt of
data from senders, has been tested to introduce a significant
amount of jitter into Modbus TCP communication.

123952 VOLUME 10, 2022



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

FIGURE 8. Modbus acquisition timings within a tSi slot (141 µs).

FIGURE 9. The degree of operations overlap during a slot corresponding to the oscilloscope capture shown in Figure 8.

In [28], the authors have addressed the transmission quality
improvement in industrial communications based on Mod-
bus RTU, using relay devices with the ability to detect and
correct errors. This method respects the Modbus RTU proto-
col parameters, so that the enhanced bus with relay devices
can be used together with common devices. Arguably, this
feature has not been found in previous approaches. Tests
performed on repeaters/error correctors validate the fulfill-
ment of design requirements and demonstrate their effective-
ness in improving transmission quality for industrial Modbus
RTU data transmission networks. The authors in [28] present
the design and implementation of error detection and cor-
rection scheme in a Modbus RTU network based on the
REED-SOLOMON code. Parity bits transmission is done
following Modbus protocol parameters, so the bus can be
used by common devices without error detection/correction
scheme. The detection, respectively the correction, of errors
is carried out by means of specialized repeater type devices in
the receiver and transmitter. This method respects the param-
eters of the Modbus RTU protocol, so the enhanced bus with

relay devices can be used together with tested devices. At a
transfer rate of 19.200bps, relay devices enable full com-
patibility with equipment that is directly connected to the
communication bus, if response times to Modbus requests
are not less than 5ms. Connecting with equipment that has
lower response times must be done through repeaters to avoid
data collisions. Thus, the implementation of error correc-
tion methods using the Modbus RTU protocol, such as the
one presented in the work [28], proved to be efficient and
up-to-date.

VI. DISCUSSION
Evaluating the wired and wireless technologies in the com-
puter world available today, regarding their applicability
in automation is a first step in this direction. Ultimately,
we can expect completely new optimized automation net-
works where the communication network segments are seam-
lessly integrated and perhaps only the application protocol
remains compatible with traditional wired solutions to
integrate.

VOLUME 10, 2022 123953



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

From Modbus protocol analyzes, we determine that its
performance can be improved. To achieve this goal, we pro-
pose an original extension called ModbusE. The innovative
solutions are simple and inexpensive, as they allow the inte-
gration of existing acquisition modules without hardware or
software changes. To achieve time consistency, the solution
described in this paper for the acquisition cycle uses the
Data Link Layer (DLL). This solution does not deal with the
application layer (AL) and user layer (such as IEC61499),
but can serve as support for these layers. A data acquisi-
tion cycle at the BSG level that satisfies time coherence has
been defined and evaluated. The important points at the slot
level for implementation are presented in Figure 8. Thus, the
degree of operations overlap during the time of an acqui-
sition slot can be drawn. The meaning of these points and
the times they delimit are described in the following. The
start and end position T1/T24 mark the timing of acquisition
slot i. Figure 9 indicates the degree of acquisition slot overlap
operations.

Time moment T1 represents the time at which the acquisi-
tion slot begins. The interrupt period given by timer 4, which
measures the slot timing, is indicated by the period T1-T2.
The time to execute mbeThreadCycleRTU task is marked
by T2-T3. At the time period T4-T6 the client prepares the
emission of the new slot i, and during the period T6-T7
mbeThreadCycleRTU deletes the event sent by the interrupt
given by timer 4, when the operations related to the old slot
(T10) are finished. At time moment T11 ThreadCycleRTU
task switches to waiting state for an event from timer 4, which
indicates the start of a new slot. T12-T14 represents the time
period of the handler for interrupt generated by DMA with
the emission of the entire message, and at time T16 the client
has finished the emission and the server begins the CRC cal-
culation. The time period of sending the message by DMA
from the server to the client is given by T17-T19, and the
handler jitter for the interrupt generated by DMA with the
entire message reception from server is given by T20-T21
period.

Testing the SMARTConvert platform regarding the mes-
sages exchange between devices belonging to the same Mod-
bus type communication protocol in the worst case scenario
(the thermostat has address 1 and the fan coil has address
247, and there are no free addresses between them) involved
the following practical considerations. The tAC acquisition
cycle for 39 stations was measured and the timing measured
with the PicoScope 6404B oscilloscope by Pico Technology
(St Neots, UK) are as follows: 4.526 s, 4.527 s, 4.533 s
and 4.554 s. Customizing the equations for the project pur-
pose with α1 = 1, α2 = 1, err1 = 0, err2 = 0 and tout =
0 indicate a time period of 246 \time tAlli(i,FC03,10) +
tAll247(247,FC16,10) + 22652.8082 ms for tAC, thus that
the practical results obtained validate the presented mathe-
matical model.

ModbusE brings improvements in Modbus message merg-
ing, thus reducing communication times and improving data
flow on the RS485 network. Thus, the ModbusE project is

implemented at the application level and was initially defined
in [14]. Here the communication message structure, the BSG
as the Client device and the data acquisition cycle were
defined. The microcontroller validation of the ModbusE con-
cept is due to the new communication message structure,
a deterministic temporal behaviour due to the acquisition
cycle, the proposal ofModbus devices in an industrial Internet
of things (IIoT) integrated architecture.

VII. CONCLUSION AND FUTURE WORK
This research report based on the Modbus protocol tests the
update times of values from a thermostat to a fan coil for
the worst-case scenario where the thermostat has address
1 and the fan coil has address 247, and there are no free
addresses in between. Measurements were made for the
communication speed is 9600 bps, along with Modbus Poll
and related time stamps. The customization of the mathe-
matical equations for the purpose of the project based on
the proposed mathematical model consisted of two cases,
namely AC_S (adr, FCxx, adrReg, nrReg) = {(1,3,7,10),
(2,16,7,10 )} respectively AC_S (adr, FCxx, addrReg,
nrReg) = {(1, 3, 5, 10), (2, 3, 5, 10), . . . , (247, 16, 5, 10)}.
For both situations, the cases of error, timeout and correctly
transmitted Modbus message were considered.

In the ModbusE protocol, only the slot number, data and
CRC cyclic redundancy check are transmitted during a slot,
thus increasing the bandwidth of the communication chan-
nel. ModbusE messages do not have function code fields
and function parameters in either the request message or
the response message, and the required bandwidth is clearly
lower than in Modbus RTU. For the same useful amount
of data, the ModbusE message is shorter than the Modbus
RTU message. The data structure and length information is
either configured offline with simple Modbus configuration
tools or done online by BSG. Devices that can integrate
the ModbusE concept are those embedded in systems with
medium and high response times, industrial data acquisition
processes and IoT applications. In this paper, we measured
the delays corresponding to the Modbus communication pro-
tocol in a PC (client) - STM32F7 (servers) configuration
by emulating on the microcontroller several configurations
of Server stations, and at the same time sending on Mod-
bus different messages each with a different number of
registers.

The performance of ModbusE regarding the acquisition
cycle time efficiency is a useful support for IoT gate-
way (IIoT_MBE_Gateway) implementation. For this, in this
paper, mathematical relationships have been defined for
determining the jitter within Modbus RTU acquisition cycle
slot. By using DMA channels, it led to improved commu-
nication channel utilization by parallelizing software opera-
tions whose control was provided by DMA. For future work,
a deterministic temporal behavior will be obtained for the
Industrial IoT smart gateway based on ModbusE. An appli-
cation instance of BSG, named IIoT_MBE_System, can be
successfully used for industrial process control management.

123954 VOLUME 10, 2022



V. G. Găitan, I. Zagan: Modbus Protocol Performance Analysis in a Variable Configuration

At the same time, the description of the Modbus and Mod-
busE devices will be carried out, as well as the definition of
an architecture for the integration in IIoT.

REFERENCES
[1] R. Zurawski, The Industrial Communication Technology Handbook.

Boca Raton, FL, USA: CRC Press, 2015.
[2] Z. Li, H. Zhao, J. Shi, Y. Huang, and J. Xiong, ‘‘An intelligent fuzzing

data generation method based on deep adversarial learning,’’ IEEE Access,
vol. 7, pp. 49327–49340, 2019, doi: 10.1109/ACCESS.2019.2911121.

[3] J. Qian, X. Du, B. Chen, B. Qu, K. Zeng, and J. Liu, ‘‘Cyber-physical
integrated intrusion detection scheme in SCADA system of process man-
ufacturing industry,’’ IEEE Access, vol. 8, pp. 147471–147481, 2020, doi:
10.1109/ACCESS.2020.3015900.

[4] V. G. Găitan and I. Zagan, ‘‘Reţele industriale locale—Modbus extins,’’
Dept. Comput. Sci., Editura Universităţii Ştefan cel Mare din Suceava,
Bucharest, Romania, Tech. Rep., 2019.

[5] J. Johnson, B. Fox, K. Kaur, and J. Anandan, ‘‘Evaluation of interoperable
distributed energy resources to IEEE 1547.1 using SunSpec modbus, IEEE
1815, and IEEE 2030.5,’’ IEEE Access, vol. 9, pp. 142129–142146, 2021,
doi: 10.1109/ACCESS.2021.3120304.

[6] R. Sánchez-Herrera, M. A. Márquez, and J. M. Andújar, ‘‘Easy and secure
handling of sensors and actuators as cloud-based service,’’ IEEE Access,
vol. 8, pp. 10433–10442, 2020, doi: 10.1109/ACCESS.2020.2965639.

[7] L. Rosa, M. Freitas, S. Mazo, E. Monteiro, T. Cruz, and P. Simões,
‘‘A comprehensive security analysis of a SCADA protocol: From OSINT
to mitigation,’’ IEEE Access, vol. 7, pp. 42156–42168, 2019, doi:
10.1109/ACCESS.2019.2906926.

[8] V. G. Găitan and I. Zagan, ‘‘Experimental implementation and perfor-
mance evaluation of an IoT access gateway for the modbus extension,’’
Sensors, vol. 21, no. 1, p. 246, Jan. 2021, doi: 10.3390/s21010246.

[9] B.-W. Park, S.-J. Park, and F.-S. Kang, ‘‘A novel communication method
using PWM and capture function of DSP for parallel controlled power
electronics systems,’’ IEEE Access, vol. 10, pp. 68266–68280, 2022, doi:
10.1109/ACCESS.2022.3186690.

[10] M.Urbina, A. Astarloa, J. Lázaro, U. Bidarte, I. Villalta, andM. Rodriguez,
‘‘Cyber-physical production system gateway based on a programmable
SoC platform,’’ IEEE Access, vol. 5, p. 20408–20417, 2017, doi:
10.1109/ACCESS.2017.2757048.

[11] J.-R. Jiang and Y.-T. Chen, ‘‘Industrial control system anomaly detec-
tion and classification based on network traffic,’’ IEEE Access, vol. 10,
pp. 41874–41888, 2022, doi: 10.1109/ACCESS.2022.3167814.

[12] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, 8th ed. London, U.K.: Pearson, 2020.

[13] P. Pleinevaux and J.-D. Decotignie, ‘‘Time critical communication net-
works: Field buses,’’ IEEE Netw., vol. 2, no. 3, pp. 55–63, May 1988.

[14] V.-G. Gaitan, N.-C. Găitan, and I. Ungurean, ‘‘A flexible acquisition cycle
for incompletely defined fieldbus protocols,’’ ISA Trans., vol. 53, no. 3,
pp. 776–786, May 2014, doi: 10.1016/j.isatra.2014.02.006.

[15] MODBUS Messaging on TCP/IP Implementation Guide. Accessed:
Jul. 2022. [Online]. Available: https://modbus.org/docs/Modbus_
Messaging_Implementation_Guide_V1_0b.pdf

[16] V. Vyatkin, ‘‘IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,’’ IEEE Trans. Ind. Inf., vol. 7, no. 4,
pp. 768–781, Nov. 2011, doi: 10.1109/TII.2011.2166785.

[17] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, ‘‘A syn-
chronous approach for IEC 61499 function block implementation,’’
IEEE Trans. Comput., vol. 58, no. 12, pp. 1599–1614, Dec. 2009, doi:
10.1109/TC.2009.128.

[18] P. Tata and V. Vyatkin, ‘‘Proposing a novel IEC61499 runtime frame-
work implementing the cyclic execution semantics,’’ in Proc. 7th
IEEE Int. Conf. Ind. Informat. (INDIN), Jun. 2009, pp. 416–421, doi:
10.1109/INDIN.2009.5195840.

[19] J. Lastra, A. Lobov, and L. Godinho, ‘‘Closed loop control using an
IEC 61499 application generator for scan-based controllers,’’ in Proc.
10th IEEE Conf. Emerg. Technol. Factory Autom. (ETF), vol. 1, 2005,
pp. 323–330, doi: 10.1109/ETFA.2005.1612541.

[20] V. Vyatkin and J. Chouinard, ‘‘On comparisons of the ISaGRAF imple-
mentation of IEC 61499 with FBDK and other implementations,’’ in Proc.
6th IEEE Int. Conf. Ind. Informat. (INDIN), Jul. 2008, pp. 289–294, doi:
10.1109/INDIN.2008.4618111.

[21] Daniel Flow Products. (Nov. 1992). Modbus Communications Model
2500, Part Number: 3-9000-545 REVISION D. [Online]. Available:
https://www.emerson.com/documents/automation/daniel-modbus-
communications-model-2500-manual-en-43890.pdf

[22] Z. Wang, X. Shen, J. Chen, Y. Song, T. Wang, and Y. Sun, ‘‘Real-time
performance evaluation of urgent aperiodic messages in FF communica-
tion and its improvement,’’ Comput. Standards Interfaces, vol. 27, no. 2,
pp. 105–115, Jan. 2005, doi: 10.1016/j.csi.2004.05.001.

[23] Y. Wang and V. Gaspes, ‘‘A compositional implementation of modbus in
protege,’’ in Proc. 6th IEEE Int. Symp. Ind. Embedded Syst., Jun. 2011,
pp. 123–131, doi: 10.1109/SIES.2011.5953654.

[24] A. Lemay, J. M. Fernandez, and S. Knight, ‘‘A modbus command and
control channel,’’ in Proc. Annu. IEEE Syst. Conf. (SysCon), Orlando, FL,
USA, Apr. 2016, pp. 1–6, doi: 10.1109/SYSCON.2016.7490631.

[25] G. Cena, M. Cereia, I. Cibrario Bertolotti, and S. Scanzio, ‘‘A MOD-
BUS extension for inexpensive distributed embedded systems,’’ in Proc.
IEEE Int. Workshop Factory Commun. Syst., Nancy, France, May 2010,
pp. 251–260, doi: 10.1109/WFCS.2010.5548625.

[26] R. Al-Dalky, O. Abduljaleel, K. Salah, H. Otrok, and M. Al-Qutayri,
‘‘A modbus traffic generator for evaluating the security of SCADA
systems,’’ in Proc. 9th Int. Symp. Commun. Syst., Netw. Digit.
Sign (CSNDSP), Manchester, U.K., Jul. 2014, pp. 809–814, doi:
10.1109/CSNDSP.2014.6923938.

[27] T. Hu and I. C. Bertolotti, ‘‘Overhead and ACK-induced jitter in modbus
TCP communication,’’ in Proc. IEEE 1st Int. Forum Res. Technol. Soc. Ind.
Leveraging Better Tomorrow (RTSI), Turin, Italy, Sep. 2015, pp. 392–397,
doi: 10.1109/RTSI.2015.7325130.

[28] C. Urrea, C. Morales, and R. Muñoz, ‘‘Design and implementation of
an error detection and correction method compatible with MODBUS-
RTU by means of systematic codes,’’Measurement, vol. 91, pp. 266–275,
Sep. 2016, doi: 10.1016/j.measurement.2016.05.055.

VASILE GHEORGHIŢĂ GĂITAN (Member,
IEEE) received the M.Sc. and Ph.D. degrees
from the Gheorghe Asachi Technical Univer-
sity of Iasi, Iasi, Romania, in 1984 and 1997,
respectively. He is currently a Professor with
the Department of Computers, Stefan cel Mare
University of Suceava, Suceava, Romania. His
research interests include real-time scheduling,
embedded middleware, digital systems design
with field-programmable gate arrays, fieldbuses,

and embedded system applications.
Mr. Găitan is a member of the IEEE Computer Society.

IONEL ZAGAN (Member, IEEE) received the
M.Sc. degree in computer science from the
Stefan cel Mare University of Suceava, Suceava,
Romania, in 2005, where he is currently pur-
suing the Ph.D. degree in engineering. He is
also a Lecturer with the Department of Com-
puters, Stefan cel Mare University of Suceava.
His research interests include real-time systems,
field-programmable gate arrays, microcontrollers,
and pipeline processors with parallel execution of

tasks.
Mr. Zagan is a member of the IEEE Computer Society.

VOLUME 10, 2022 123955

http://dx.doi.org/10.1109/ACCESS.2019.2911121
http://dx.doi.org/10.1109/ACCESS.2020.3015900
http://dx.doi.org/10.1109/ACCESS.2021.3120304
http://dx.doi.org/10.1109/ACCESS.2020.2965639
http://dx.doi.org/10.1109/ACCESS.2019.2906926
http://dx.doi.org/10.3390/s21010246
http://dx.doi.org/10.1109/ACCESS.2022.3186690
http://dx.doi.org/10.1109/ACCESS.2017.2757048
http://dx.doi.org/10.1109/ACCESS.2022.3167814
http://dx.doi.org/10.1016/j.isatra.2014.02.006
http://dx.doi.org/10.1109/TII.2011.2166785
http://dx.doi.org/10.1109/TC.2009.128
http://dx.doi.org/10.1109/INDIN.2009.5195840
http://dx.doi.org/10.1109/ETFA.2005.1612541
http://dx.doi.org/10.1109/INDIN.2008.4618111
http://dx.doi.org/10.1016/j.csi.2004.05.001
http://dx.doi.org/10.1109/SIES.2011.5953654
http://dx.doi.org/10.1109/SYSCON.2016.7490631
http://dx.doi.org/10.1109/WFCS.2010.5548625
http://dx.doi.org/10.1109/CSNDSP.2014.6923938
http://dx.doi.org/10.1109/RTSI.2015.7325130
http://dx.doi.org/10.1016/j.measurement.2016.05.055

