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ABSTRACT Chest X-ray is a radiological clinical assessment tool that has been commonly used to detect
different types of lung diseases, such as lung tumors. In this paper, we use the Segmentation-based Deep
Fusion Networks and Squeeze and Excitation blocks for model training. The proposed approach uses both
wholes and cropped lung X-ray images and adds an attention mechanism to address the problems encoun-
tered during lesion identification, such as image misalignments, possible false positives from irrelevant
objects, and the loss of small objects after image resizing. Two CNNs are used for feature extraction,
and the extracted features are stitched together to form the final output, which is used to determine the
presence of lung tumors in the image. Unlike previous methods which identify lesion heatmaps from X-ray
images, we use the Semantic Segmentation via Gradient-Weighted Class Activation Mapping (Seg-Grad-
CAM) to add semantic data for improved lung tumor localization. Experimental results show that our method
achieves 98.51% accuracy and 99.01% sensitivity for classifying chest X-ray images with and without lung
tumors. Furthermore, we combine the Seg-Grad-CAM and semantic segmentation for feature visualization.
Experimental results show that the proposed approach achieves better results than previous methods that use
weakly supervised learning for localization. The method proposed in this paper reduces the errors caused by
subjective differences among radiologists, improves the efficiency of image interpretation and facilitates the
making of correct treatment decisions.

INDEX TERMS Lung tumor, chest X-ray, Seq-Grad-CAM.

I. INTRODUCTION
X-rays have been widely used clinically to detect lesions in
bones or soft tissues of organs to assist in diagnosing diseases.
As a result, image recognition technologies are crucial in clin-
ical examinations. Professional training and experience are
required to mark possible lesion areas in X-ray images. How-
ever, radiologists maymisjudge due to insufficient experience
and pressure from work, consequently affecting the accuracy
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of diagnosis and the treatment of patients. In this work,
we propose the application of automated or computer-assisted
deep learning tools to prevent misjudgments due to the lack
of experience, stress, or fatigue among radiologists. The pro-
posed automated image recognition tools accurately detect
the location of lesions in X-ray images, assist the doctors
in interpreting image data and improve the overall quality of
clinical care.

According to a WHO report [1], cancer is the leading
cause of death worldwide, accounting for nearly 10 million
deaths in 2020. Specifically, later diagnoses of lung cancer
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lead to higher mortality rates. In 2020, 2.26 million people
were diagnosed with lung cancer, and 1.8 million people
died from it. Lung cancer is often related to the patient’s
lifestyle and environment and can be treated through surgery
if it is detected in time. However, early-stage symptoms such
as coughing, weight loss, hemoptysis, and sudden fevers are
difficult to detect and notice in time. Available data indicate
that 80% of patients have already missed the golden treat-
ment period upon diagnosis. Thus, early cancer detection
is a great challenge for doctors and medical professionals.
While doctors or radiologists undergo professional training
and practice to interpret X-ray images correctly, they often
suffer from insufficient clinical experience, work pressure,
fatigue, and other factors that adversely affect the accuracy
of image interpretation.

The use of computer-aided diagnosis (CADx) in the
screening and diagnosis of cancer from X-ray images has
become a trend with the advancement of information tech-
nology. We believe that the development of a tool for
computer-aided detection of lung tumors with high sensitivity
and low false-positive rates can assist physicians or radiolo-
gists in providing positive clinical diagnoses.

In this paper, we combine deep learning models such as the
CNN, U-Net, and Seg-Grad-CAM (Semantic Segmentation
via Gradient-Weighted Class ActivationMapping) to propose
a classification and localization system for detecting lung
tumors from chest X-ray images. The main contributions of
this paper are as follows:

1. We add an SE block (Squeeze and Excitation block)
attention mechanism to improve the performance of
lung tumor image classification. The experimental
results show that the sensitivity is 99.01%, and the
accuracy is 98.51%.

2. We incorporate a Seg-Grad-CAM for lesion visual-
ization, which differs from state-of-the-art methods in
that our method outputs more precise tumor locations
instead of heatmaps of possible lesions.

3. The developed lung tumor detection software has been
clinically implemented in Tzu Chi Hospital to assist
doctors and radiologists in interpreting lung tumors in
chest X-ray images.

4. Lung tumors can be detected by combining relatively
inexpensive X-ray photography and the proposed lung
tumor detection software without the need for expen-
sive MRI equipment.

The rest of this paper is organized as follows. First,
we briefly describe the related research in Section II. Then the
proposed method is described in detail in Section III. Next,
we present the experimental results and discuss the results
in Section IV, and finally, the conclusions are delivered in
Section V.

II. RELATED WORKS
The early detection of lung tumors by reading chest X-ray
images is important for the curative treatment of the disease.

In particular, there is a high demand for diagnostic support
systems that provide accurate detection of lung tumors to
reduce the risk of missed lung tumor diagnoses.

Traditional lung disease detection using image processing
techniques has been investigated in detail by Mary et al. [2].
They concluded that computerized classification and detec-
tion of lung images consist of five stages: preprocessing,
segmentation, feature selection, feature extraction and clas-
sification stages.

Abed [3] proposed a system for detecting lung tumors from
X-ray images using the principal component analysis (PCA)
with a traditional backpropagation neural network (BPNN).
The main benefit of using the PCA for feature extraction is to
minimize the dimensionality of training images, improve the
recognition results of ANNs and reduce the execution time.

In recent years, the combination of artificial intelligence
and deep learning technology has provided one of the most
popular and effective solutions. Yahyatabar et al. [4] used a
deep CNN model called the Dense-Unet to segment regions
within the lungs. In this approach, the information flow across
the network was increased, and the network parameters were
reducedwhile maintaining the robustness of the segmentation
through dense connections between layers.

Ausawalaithong et al. [5] used a 121-layer convolutional
neural network, also known as the DenseNet-121, combined
with a transfer learning method for lung cancer classification
of chest X-ray images. Their proposed model yielded an
average accuracy of 74.43±6.01% and an average sensitivity
of 74.68±15.33%.

Wang et al. [6] used a weakly supervised learning approach
to classify 14 different classes of lung diseases on a large
public dataset of chest X-rays - ‘‘ChestX-ray14’’. A heatmap
of the lesion area in the X-ray image was detected using a
feature visualization technique. They achieved 69.3% lung
tumor classification accuracy on ‘‘ChestX-ray14’’ using the
ResNet-50 architecture [7]. Rajpurkar et al. [8] achieved
86.8% accuracy in tumor classification using a fine-tuned
DenseNet-121 [9] model with a Sigmoid activation function.

Since the approaches in [6] and [7] used the entire chest
X-ray image for training, the model loses excessive pixel
features in the convolution process, which adversely affects
the model’s performance. Therefore, Guan et al. [10] added
the use of a class activation mapping [11] as an attention
mechanism to obtain the image input as a local lesion region
and achieved a final tumor classification accuracy of 82.1%.

The three previously described approaches [6], [8], [10]
perform class activation mapping directly on the entire chest
X-ray image to detect lesion areas in X-ray images. Liu et al.
[12] changed the strategy of obtaining local images. First,
the U-Net [13] model was used to predict the location of the
chest X-ray lung region. A series of post-processing steps
were then performed to obtain the local images. The resultant
classification accuracy rate of tumors is 81.5%.

Although Liu et al. [12] used whole chest X-ray images
and images of lung regions that improved the accuracy of
lesion detection, the visualization results of the lesion area
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obtained by weakly supervised learning are ambiguous and
inaccurate. In this paper, we propose the addition of more
accurate pixel-level labels for model learning and use the Seg-
Grad-CAM [14] for semantic segmentation to obtain a more
accurate visualization interpretation.

Although clinically, when a lung tumor is detected on a
chest X-ray image, CT or MRI is used for further confirma-
tion. Li et al. [15] proposed an MRI lung tumor segmentation
model consisting of a cross-modal synthesis network and
a multi-modal segmentation network (Res-Unet). Based on
the principle of GAN, Jiang et al. [16] proposed a joint
probabilistic segmentation and image distribution matching
generative adversarial network (PSIGAN) for lung tumor
segmentation from MRI images. Jiang et al. [17] also pro-
posed a cross-modal technique with segmentation networks
called teacher and student combined with image-to-image
translation for lung tumor segmentation.

In this paper, we present a method for detecting lung
tumors from X-ray images alone, without the need for expen-
sive CT or MRI equipment, and with high accuracy. This is
of great help for the early detection and treatment of lung
tumors.

III. METHOD
A. SYSTEM ARCHITECTURE FLOWCHART
We implement a classification and localization system to
evaluate the feasibility and effectiveness of the proposed
method. The system is comprised of two phases: the classifi-
cation phase and the localization phase, as shown in Figure 1.

In the classification phase, the whole chest X-ray image
and its corresponding lung area image are used as input. The
classification CNN model is used to identify whether there is
a lung tumor, and a prediction result is provided to the doctor.

In the localization phase, the location of the lesion area
is segmented according to any cropped chest X-ray image,
and the results predicted by the localization CNN model are
visually interpreted using the Seg-Grad-CAM framework.
The purpose of using the Seg-Grad-CAM [14] framework
is to intercept the convolution of bottleneck from the local-
ization network and its prediction result and obtain the final
visualization by the linearly weighted summation of gradient
backpropagation.

B. LUNG REGION CROPPING
Chest X-ray images taken by different radiologists from dif-
ferent patients often contain black backgrounds, areas outside
of the lungs or tilted images, as shown in Figure 2. However,
important features may be lost if the images are directly
compressed for training due to the high resolution of chest
X-ray images. In addition, if an uncropped chest X-ray image
with black background is directly sent to the network for
training, the model will not perform well and cannot extract
useful features.

In this paper, we extract lung regions from the whole X-ray
image for subsequent operations to improve the accuracy of

FIGURE 1. Flowchart for X-ray tumor classification and localization.

FIGURE 2. (a) (b) black borders in X-ray images, (c) a tilted X-ray image
and (d) the presence of black borders and staples in the image.

lung tumor identification. We input the whole X-ray image
into a trained lung localization network, and post-processing
is performed to obtain a cropped X-ray image containing only
the lung region.

1) LUNG REGION CROPPING PROCESS
Figure 3 shows the flowchart to obtain a cropped chest X-ray
image containing only the lung area. First, a U-Net model
[13] for locating the lung region is trained using a whole
chest X-ray image and its corresponding mask of the lung
region. After that, an arbitrarily chest X-ray image is sent
to the trained U-Net model to obtain the prediction result of
its lung area. A series of post-processing is then performed
according to the result.

The post-processing process counts the number of all con-
tour regions in the prediction result, calculates their areas
respectively, and finds the largest contour among all contour
regions. Intestinal gas and lung air may be present in a chest
X-ray image, which can cause the U-Net model to predict the
wrong contour region. We delete contour regions with areas
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FIGURE 3. Flowchart for cropping the lung region from X-ray images.

less than 1/3 of the maximum contour area and recalculate the
number of contours after deletion. If the remaining contour
number is less than 2, the original chest X-ray image may not
be able to capture the complete left and right lung regions
due to poor image quality or lung disease. In general, the left
and right lobes of the lungs are symmetrical. We calculate
the contour areas of the left and right lungs according to the
midline of the chest X-ray image. The side with the larger
lung area is selected and mirrored to the left or right to obtain
two complete lung regions. If the number of contours is equal
to two, the detected left and right lung regions are dilated to
obtain the cropped chest X-ray image at the relative position
of the original chest X-ray image, according to the maximum
and minimum coordinates of the white pixel block.

2) LUNG REGION LOCALIZATION MODEL
Figure 4 shows the U-Net [13] model architecture for locat-
ing the lung region in a chest X-ray image. A chest X-ray
image of size 224 × 224 pixels is given as the input, and
the corresponding lung region mask is given as the label

during training to learn the characteristics of the lung region
in a chest X-ray image. The lung region of the image is
predicted, and the size of the output image is 2× 224× 224.
The U-net model performs down-sampling four times during
compression and up-sampling four times during expansion
to ensure that the features are of the same sizes and can be
stitched together.

3) DILATION
In the post-processing process, we use a dilation technique to
enlarge the predicted lung area to obtain a complete image of
the lung region. Dilation is a basic morphological operation
that convolves a selected kernel B based on a part of the image
area A to find the local maximum, as given by Eq. (1).

A⊕ B = {z|(B̂)z ∩ A 6= ∅}, (1)

where z represents the set of pixel values in the binarized
image. The shape of kernel B can be square or circular. When
the target, A, is inflated by the kernel, B, the target becomes
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FIGURE 4. Diagram of the lung localization U-net model.

larger. Figure 5(a) is an image of the lung region without
dilation, and Figure 5(b) is an image after dilations.

4) NEGATIVE LOG-LIKELIHOOD LOSS
In this paper, we use the Negative Log-Likelihood (NLL)
Loss to train the lung localization U-Net model, as given by
Eq.(2).

LossNLL (t, y) = −
∑

i
ti log yi, (2)

where t is the contour of the lung region in the chest X-ray
image, y is the result predicted by the U-Net model after a
Softmax operation, and i is the category used to distinguish
the background from the lung region. The significance of
calculating the NLL loss is that the smaller the loss value,
the higher the similarity between the prediction result and the
original label and vice versa.

C. CHEST X-RAY NORMAL / LUNG TUMOR
CLASSIFICATION NETWORK
1) THE SE-SDFN CLASSIFICATION MODEL
In this paper, we propose a more efficient SE-SDFN
(SE-Segmentation-based Deep Fusion Network) classifica-
tion model by integrating the architectures of DenseNet-121
[11] and SDFN [12]. The integrated model provides a quick
classification of lung tumors from chest X-ray images and
assists physicians to improve the efficiency of diagnosis.

As shown in Figure 6, the proposed SE-SDFN model
contains two modified SE-DenseNet-121 networks, and each
has 7 SE blocks [18] (indicated by the red blocks). The input
of the SE-SDFN model is a whole chest X-ray image and a
cropped lung X-ray image. Each of the two images is fed into
a modified SE-DenseNet-121 network. The corresponding

FIGURE 5. Images of the lung region before and after dilation.

lung region image is automatically cropped and generated by
the U-Net model and post-processing processes.

The SE blocks added to the classification model play
different roles according to their respective positions in the
model. The SE block at a higher level extracts the features
related to the class, and the SE block at a lower level shares the
various features of the class. The proposed model allows the
model to perform feature reconstruction based on the infor-
mation in different feature maps, thereby enlarging major
features and ignoring minor features to improve the model’s
accuracy. Our proposed model avoids focusing on unimpor-
tant features and concentrates on extracting effective features
in the lung region. Finally, the output from the global average
pooling layer of the two SE-DenseNet-121 is concatenated,
and the two-class result is obtained through the fully con-
nected layer and the Sigmoid activation function.

2) SE BLOCK
The structure of the SE block (Squeeze and Excitation block)
is shown in Figure 7. During the training stage, the SE blocks
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FIGURE 6. Flowchart of the model classification framework, SE-SDFN.

perform feature reconstruction based on the information in
different feature maps, enlarging major features and ignoring
minor features to improve the model accuracy. When the
input feature map, X, is subjected to the operation, Ftr, of the
convolutional layer, U will be obtained, where U = {u1,
u2, . . .uc}. The purpose of the SE block is to improve feature
extraction through channel recalibration that includes two
steps: Squeeze and Excitation.

a: SQUEEZE
The squeeze operation is performed through Fsq operation,
wherein the global information of U on the channel is
extracted. The purpose of the global average pooling (GAP)
is to extract the global information of the feature map and
obtain a feature map with a size of c×1 × 1, as given
by Eq. (3):

zc = Fsq (Uc) =
1

H ×W

∑H

i=1

∑W

j=1
uc(i, j), (3)

where H, W are the height and width of the feature map, i,
j corresponds to the pixel coordinates on the feature map,
c is the number of channels, and zc is the extracted channel
descriptor.

b: EXCITATION
A series of excitation operations are performed after the
squeeze operation. The purpose is to learn the importance of
the channel descriptors obtained by the squeeze operation that
also reflects the importance of each channel on the original
U. The extracted channel descriptor, zc, first passes through
a linear layer W1 to compress the feature channel to the
original c/r times, where r is equal to 16. The ReLU activation

FIGURE 7. The structure of the Squeeze and Excitation block.

function, δ, is then used to activate and restore the number of
feature channels through the linear layer, W2. The Sigmoid
function, σ , is used for further activation. In practice, these
two linear layers are both FC layers. The entire activation
process is given by Eq(4):

s = Fex(z,W ) = σ (g(z,W )) = σ (W2δ(W1z)). (4)

Finally, the output from the SE block is the result of
channel-wise multiplication of the feature, sc, obtained by
Excitation and the original input, uc, as given by Eq.(5).

x̃c = Fscale(uc, sc) = sc · uc. (5)

3) LOSS FOR THE CLASSIFICATION MODEL
We use the Binary Cross Entropy (BCE) to calculate the loss
since the classification network that classifies chest X-ray
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FIGURE 8. Flowchart of the localization model, Semantic-ResNet101-FPN.

images as normal or tumorous is a binary classification task,
as given by Eq.(6).

LossBCE = −
1
N

∑N

i=1
yi · log (p (yi))+ (1− yi)

· log(1− p (yi)), (6)

whereN is the total number of samples, i is the ith sample, y is
the label of the sample, and p(y) is the predicted probability.
We use a threshold of 0.5 to determine the class of the
classification model predicts. A larger loss value implies that
there is a greater difference between the classification result
and the real label, while a smaller loss value implies that there
is more similarity between the classification result and the
real label.

The proposed classification network, SE-SDFN, consists
of three sub-models that use BCE loss during training.
We slightly reduce the weight of learning on the whole chest
X-ray image to emphasize the classification model’s focus
on the lung images. The integrated loss function is given by
Eq.(7).

Losstotal = 0.3×Lwhole+0.6×Llung+0.1×Lfusion, (7)

where Lentire is the BCE loss of SE-DenseNet-121 trained
on the whole X-ray image, Llung is the BCE loss of SE-
DenseNet-121 trained on local lung images, and Lfusion is the
BCE loss of the fusion layer.

D. CHEST X-RAY LUNG TUMOR LOCALIZATION NETWORK
1) THE SEMANTIC-RESNET101-FPN LOCATION MODEL
In the localization phase, we propose a Semantic-ResNet101-
FPN as a chest X-ray lung tumor localization network,

as shown in Figure 8. The proposed network uses the FPN
[19] and ResNet-101 [7] as the backbone network and is
further designed based on the spirit of the Semantic-ResNet
[20] network architecture.

The network takes a 3 × 224 × 224 image as input and
outputs the result {C1, C2, C3, C4} for each residual block
after feature extraction using the Resnet101. The sizes of the
feature maps are 1/4, 1/8, 1/16 and 1/32 times the original
input size. These feature maps are connected by the FPN, and
the number of channels is reduced to 256 before the semantic
information of the upper layer is restored to the size of the
next layer through upscaling by a factor of 2. The new feature
maps, {P4, P3, P2, P1}, containing both the strong semantic
information of the upper layer and the high resolution of
the lower layer, are then obtained via feature fusion. Subse-
quently, a 3 × 3 convolution up-sampling, a Group Norm,
a ReLU and two times bilinear interpolation are applied to the
new feature map for 3, 2, 2, 1 times, respectively, resulting in
a final result of 128 channels. This result is then stitched with
the features and restored to its original size using 4× bilinear
interpolation to obtain the final predicted result.

2) THE DICE LOSS FUNCTION
The loss function used in the training of the Semantic-
ResNet101-FPN architecture is the Dice loss function. The
Dice loss function was proposed by Milletari et al[21] and
has been widely used in various segmentation tasks. The
mathematical expression is given in Eq.(8):

LossDice = 1−
2 |X ∩ Y |
|X | + |Y |

, (8)

124454 VOLUME 10, 2022



A. I. Suryani et al.: Lung Tumor Localization and Visualization in Chest X-Ray Images

FIGURE 9. Flowchart of the Grad-CAM framework.

where |X| and |Y| represent the pixel sets of the lung tumor
lesion location and the labeled lung tumor area segmented by
themodel, respectively, and |X∩Y| represents the intersection
of the lung tumor lesion area segmented by the model and
the labeled lung tumor area. Since the overlapping area is
counted twice when calculating the Dice loss, it needs to be
multiplied by two. A small Dice loss value indicates that the
model prediction is more similar to the real label, whereas
a large loss value indicates a greater difference between the
model prediction and the real label.

E. LUNG TUMOR VISUALIZATION
In this paper, the proposed lung tumor localization net-
work combines the Semantic-ResNet101-FPN and Seg-Grad-
CAM [14] and uses the bottleneck of its localization network
to generate heatmaps for the final visualization of lung tumor
on X-ray images. The Seg-Grad-CAM is a gradient-based
interpretation method for semantic segmentation. It is an
extension of the widely used Grad-CAM [22] and can be
applied locally to generate heatmaps showing the relevance
of individual pixels for semantic segmentation.

Figure 9 shows the encoder-decoder architecture of the
Grad-CAM framework [22]. The framework averages the
gradient of the class score over Z pixels (indexed by i, j)
in each feature map and generates a weight to indicate the
importance of the feature map. The algorithm is given by the
following equation:

LcSeg−Grad−CAM = ReLU

(∑
k

αkcA
k

)

withαkc =
1
Z

∑
i

∑
j

∂yc

∂Ak
ij

. (9)

The weight, αkc , is linearly summed with the feature maps,
Ak , using the ReLU function to zero out the negatively cor-
related outputs, thus highlighting the regions that contribute
positively to class c.

FIGURE 10. Lung localization samples: (left) chest X-ray images and
(right) mask images of the corresponding lung areas.

TABLE 1. Images for lung localization.

The Seg-Grad-CAM addresses the limitations of the Grad-
CAM in image segmentation tasks by replacing yc with∑

(i,j)∈M ycij, whereM denotes the set of pixels of the predicted
class, and i and j denote the pixel coordinates. As a result,
the use of the Grad-CAM is more flexible in the semantic
segmentation task. Furthermore, the approach uses the con-
volutional layers at the bottleneck of the decoder to extract
the feature maps.

IV. EXPERIMENTS AND RESULTS
A. DATASET FOR LUNG LOCALIZATION
The image datasets used in this paper for lung localization
were collected from the Department of Health and Human
Services of Montgomery County (MC), Maryland [23], and
the Third People’s Hospital of Shenzhen, Guangdong provi-
dence, China [24]. There were 704 chest X-ray images, and
each image has its corresponding lung area mask, as shown
in Figure10. We randomly divide the dataset images into
training and testing datasets with a ratio of 9:1, as shown in
Table 1.

B. CHEST X-RAY DATA SET FOR CLASSIFICATION
The chest X-ray images used for classification were provided
by the Da Lin Tzu Chi hospital, Taiwan. There are 2,004

VOLUME 10, 2022 124455



A. I. Suryani et al.: Lung Tumor Localization and Visualization in Chest X-Ray Images

TABLE 2. The chest X- ray images for lung tumor classification.

FIGURE 11. (a) Normal X-ray images and (b) X-ray images with lung
tumors are highlighted in red.

images in the dataset, including normal chest X-ray images
and images with pulmonary tumors. The samples labeled as
normal were confirmed by Tzu Chi Hospital’s professional
physicians through computed tomography (CT) to ensure that
the images were indeed free of lung tumors. As shown in
Table 2, the images in the dataset were randomly selected for
training, validation and testing in a ratio of 7:1:2. Figure 11
shows six image samples from the dataset.

In order to make the experiment process more comprehen-
sive and reduce the bias caused by data selection. We also
performed 3-fold cross-validation, and randomly divided the
total 2004 labeled images into three groups of 1069 images,
267 images and 668 images, which were used as training,
validation and test data respectively.

C. LUNG TUMOR DATASET
In this paper, imaging physicians from Tzu Chi hospital were
asked to mark lesion areas of 727 cropped X-ray images
containing lung tumors. During training, these images were
randomly divided into training and testing datasets in an 8:2
ratio. The numbers of training and testing images in this
dataset are given in Table 3. Figure 12 shows two image
samples from this dataset and the corresponding lesion area
markers.

D. PARAMETER SETTINGS FOR MODEL TRAINING
The input image size is 224 × 224 for training the lung
localization network, U-Net. We set the number of iterations
to 50, the batch size to 16, and use Adam as the optimizer

TABLE 3. Images used with lung tumor markers.

FIGURE 12. Lung tumor images with marked lesion areas.

with a learning rate of 0.0005. When training the chest X-ray
binary classification network, SE-SDFN, we set the number
of iterations to 50, the batch size to 16, and use Adam as the
optimizer. Since there are three sub-models in the classifica-
tion network, we adjust the learning rate of the two feature
extractors, SE DenseNet-121, to 0.0001 and the fusion layer
to 0.001. When training the lung tumor localization model,
Semantic-ResNet101-FPN, the input image size is 224×224.
Additionally, we set the number of iterations to 100, the batch
size to 16, and use Adam as the optimizer with a learning rate
of 0.0001.

E. EFFECTIVENESS ASSESSMENT
In this paper, the lung localization model (U-Net) and the
lung tumor localization model (Semantic-ResNet101-FPN)
are evaluated using Dice and IOU metrics during testing to
evaluate the quality of the localization results. Dice and IOU
are defined as follows:

Dice =
2 |X ∩ Y |
|X | + |Y |

, (10)

IOU =
|X ∩ Y |
|X ∪ Y |

, (11)

where |X| denotes the set of pixels labeled by lung tumors
or lung regions, |Y| denotes the set of pixels of lung tumors
or lung regions predicted by the model, |X∪Y| denotes the
union of labeled region pixels and model-predicted pixels,
and |X∩Y| denotes the set of pixels where labeled regions
overlap with the region predicted by the model.

In our work, Negative Prediction, Specificity, Precision,
Sensitivity, F1 Score, and Accuracy are used to evaluate the
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FIGURE 13. From left to right, the original X-ray images are predicted by the U-Net model, post-processed, and then cropped according to the chest
position of the original image.

TABLE 4. Comparative results of tumor classification.

TABLE 5. Comparison of computation time for tumor classification.
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TABLE 6. Comparative results of the confusion matrices and ROC curves.
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TABLE 7. Comparison of tumor classification results by 3-fold cross-validation.

TABLE 8. Comparison of different models for lung tumor localization.

overall performance of the model in classifying chest X-ray
images. The equations for these metrics are defined below:

Precision =
TP

TP+ FP
, (12)

Negative Prediction =
TN

TN + FN
, (13)

Sensitivity =
TP

TP+ FN
, (14)

Specificity =
TN

TN + FP
, (15)

F1 Score =
2× Precision× Sensitivity
Precision+ Sensitivity

,

(16)

Accuracy =
TP+ FN

TP+ TN + FP+ FN
, (17)

where TP represents the number of cases classified as lung
tumors, TN represents the number of cases classified as nor-
mal, FP represents the number of normal cases misclassified
as lung tumors, and FN represents the number of lung tumor
cases misclassified as normal.

F. LUNG LOCALIZATION RESULTS
In this paper, we localize the lung region in the chest X-ray
image with the weight of the lowest loss value obtained when
training the U-Net model. We use any chest X-ray image to
predict the lung area through the U-Net model. The presence
of air or other pathological influences in the image may
lead to false-positive areas. For this reason, the predicted
areas need to be optimized by post-processing procedures and

TABLE 9. Comparison of computation time for Tumor Localization.

cropped according to the original image position to obtain the
final result. In our work, the Dice and IOU metrics achieve
92.8% and 96.2% accuracy, respectively, whenwe use the test
dataset for validation. Figure 13 shows three original images
and the results obtained after the U-Net model prediction,
post-processing optimization, and the cropped results accord-
ing to the original image positions.

G. COMPARISON RESULTS OF TUMOR CLASSIFICATION
We have conducted an experiment to classify whether or not
given chest X-ray images contain lung tumors and compare
our method with four other methods proposed by Wang et al.
[6], Rajpurka et al. [8], Guan et al. [10] and Liu et al. [12].
The image dataset used for comparison was provided by the
Department of Imaging Medicine, Da Lin Tzu Chi Hospi-
tal. The comparison results of various effectiveness metrics
and computation time are shown in Table 4 and Table 5,
respectively.

From these results, we note that the methods proposed
by Wang et al. [6] and Rajpurkar et al. [8] use only whole
chest X-ray images for training and achieved sensitivities of
around 94-95%. Guan et al. [10] crop a discriminative region
from the whole chest X-ray image based on an attention
mechanism. However, inaccurate CAM cropping may lead to
misclassification, resulting in poor recognition rates.

The SDFN method proposed by Liu et al. [12] allows
the model to be trained using both the whole and local
lung-region X-ray images, thereby improving the model’s
attention. Our method extends this idea by adding an SE
block attention mechanism to the SDFN’s feature extractor

VOLUME 10, 2022 124459



A. I. Suryani et al.: Lung Tumor Localization and Visualization in Chest X-Ray Images

TABLE 10. Comparison of lung tumor localization results using different models.

to improve the model’s attention to specific features, enabling
our method to achieve better classification results. In Table 5,
although the computation time required by our method is a
little longer than other methods, better classification results
can be obtained. The confusion matrix and ROC curves of
the different methods are presented in Table 6, and the results
show that our proposed method has better performance.

In order to verify whether the proposed model pro-
duces consistent test results for different training data.
Table 7 shows a comparison of tumor classification by 3-fold
cross-validation with the same dataset. The experimental
results show the same trend as Table 4, which indicates that
our proposed method has better performance than the state-
of-the-art methods.

H. COMPARISON OF LUNG TUMOR LOCALIZATION
MODELS
To verify the effect of the proposed chest X-ray lung tumor
localization model, Semantic-ResNet101-FPN, we com-
pare the VGG16-CXR-U-Net[25], VGG16/19-CXR-U-Net
[25], and the proposed Semantic-ResNet101-FPN models,
as shown in Table 8. The proposed Semantic-ResNet101-
FPN model using the residual network combined with the
feature pyramid achieves higher Dice and IOU metrics than

TABLE 11. Comparison of different lung tumor localization models by
3-fold cross-validation.

the VGG16/19-CXR-U-NETmodel. Since the VGG network
cannot connect the feature maps between layers as tightly as
the residual network when the number of layers is deepened,
it eventually leads to excessive loss of target features.

The computational time required for tumor localization by
different methods is shown in Table 9. Although it took a
little longer to train the model compared to other methods,
the time spent on testing was about the same. But our method
can achieve better localization results.

Table 10 shows four lung tumor localization results using
different models. It can be seen from the experimental results
that the proposed Semantic-ResNet101-FPN model is more
advantageous in locating small objects, while the VGG16/19-
CXR-U-NETmodel often loses information for small objects
and makes false-positive predictions.

In order to verify the generalization of the proposed
method, Table 11 shows tumor localization comparisons with
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TABLE 12. Comparison of lung tumor visualization by different methods.

the same dataset by 3-fold cross-validation. Each fold ran-
domly selects 484 images from the same dataset for train-
ing and 243 images for testing. The same trend can be
seen when comparing the experimental results with Table 7.
Although IOU and Dice drop slightly, our proposed method
significantly outperforms using VGG16-CXR-U-NET versus
VGG19-CXR-U-NET.

I. COMPARISON OF LUNG TUMOR VISUALIZATION
METHODS
To further verify the effect of lung tumor visualization from
X-ray images, we compare the proposed method with three
weakly supervised learning models based on the DenseNet-
121, which generate heatmaps that correspond to lung tumor
lesion regions, namely the CAM [11], Grad-CAM [22] and
Ablation-CAM [26].

Our method uses the Semantic-ResNet101-FPN, a lung
tumor segmentation network trained with domain-level pixel
labels to generate the heatmap corresponding to lung tumor
lesion regions. The result is combined with the Seg-Grad-
CAM to visualize the heatmap of lung tumor lesion location

obtained at the bottleneck of the Semantic-ResNet101-FPN.
Experimental results show that the proposed method has
achieved accuracies of 67.11% and 78.39 on the IOU and
Dice indices, respectively.

Table 12 shows that the heatmaps of the lesion region
generated by the Grad-CAM and Ablation-CAM are roughly
the same. In comparison, our method achieves better and
more accurate localization and visualization than the other
methods.

V. CONCLUSION
This paper integrates clinical, medical image processing and
artificial intelligence deep learning technology to develop a
lung tumor detection system that can assist doctors or radiol-
ogists in clinically interpreting chest X-ray images. Experi-
mental results show that the proposed method has achieved a
classification accuracy of 98.51% and a sensitivity of 99.01%,
respectively. Unlike conventional methods, which identify
lesion areas using a heatmap generated through feature visu-
alization with a classification network, the proposed method
uses a semantic segmentation CNN network to localize lung

VOLUME 10, 2022 124461



A. I. Suryani et al.: Lung Tumor Localization and Visualization in Chest X-Ray Images

tumors and an Seg-Grad-CAM to visualize the model pre-
dictions. Our chest X-ray lung tumor detection system has
assisted doctors in clinical diagnosis at Dalin Tzu Chi Hospi-
tal in Taiwan. The proposed computer-aided medical system
effectively assists doctors to make diagnosis and treatment
decisions efficiently.

ACKNOWLEDGMENT
For the successful completion of this work, special thanks
to Da Lin Tzu Chi Hospital, Taiwan, for providing chest X-
ray images and assigning professionals to assist in image
labeling.

REFERENCES
[1] WHO Newsroom. (2022). Cancer. [Online]. Available: https://www.

who.int/news-room/fact-sheets/detail/cancer
[2] I. C. Mary and J. Preethi, ‘‘A survey on computerized, quantification and

classification of lung disease,’’ Int. J. Adv. Inf. Commun. Technol., vol. 4,
no. 3, pp. 631–634, 2017.

[3] I. Abed, ‘‘Lung cancer detection from X-ray images by combined back-
propagation neural network and PCA,’’ Eng. Technol. J., vol. 37, no. 5A,
pp. 166–171, May 2019.

[4] M. Yahyatabar, P. Jouvet, and F. Cheriet, ‘‘Dense-Unet: A light model for
lung fields segmentation in chest X-ray images,’’ in Proc. 42nd Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2020, pp. 1242–1245.

[5] W. Ausawalaithong, A. Thirach, S. Marukatat, and T. Wilaiprasitporn,
‘‘Automatic lung cancer prediction from chest X-ray images using the deep
learning approach,’’ in Proc. 11th Biomed. Eng. Int. Conf. (BMEiCON),
Nov. 2018, pp. 1–5.

[6] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
‘‘ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on
weakly-supervised classification and localization of common thorax dis-
eases,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2097–2106.

[7] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[8] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng,
‘‘CheXNet: Radiologist-level pneumonia detection on chest X-rays with
deep learning,’’ 2017, arXiv:1711.05225.

[9] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ 2016, arXiv:1608.06993.

[10] Q. Guan, Y. Huang, Z. Zhong, Z. Zheng, L. Zheng, andY. Yang, ‘‘Diagnose
like a radiologist: Attention guided convolutional neural network for thorax
disease classification,’’ 2018, arXiv:1801.09927.

[11] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learning
deep features for discriminative localization,’’ 2015, arXiv:1512.04150.

[12] H. Liu, L.Wang, Y. Nan, F. Jin, Q.Wang, and J. Pu, ‘‘SDFN: Segmentation-
based deep fusion network for thoracic disease classification in chest X-ray
images,’’ 2018, arXiv:1810.12959.

[13] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ 2015, arXiv:1505.04597.

[14] K. Vinogradova, A. Dibrov, and G. Myers, ‘‘Towards interpretable seman-
tic segmentation via gradient-weighted class activation mapping,’’ in Proc.
AAAI Conf. Artif. Intell., 2020, pp. 13943–13944.

[15] J. Li, H. Chen, Y. Li, Y. Peng, J. Sun, and P. Pan, ‘‘Cross-modality synthesis
aiding lung tumor segmentation on multi-modal MRI images,’’ Biomed.
Signal Process. Control, vol. 76, Jul. 2022, Art. no. 103655.

[16] J. Jiang, Y.-C. Hu, N. Tyagi, A. Rimner, N. Lee, J. O. Deasy, S. Berry, and
H. Veeraraghavan, ‘‘PSIGAN: Joint probabilistic segmentation and image
distribution matching for unpaired cross-modality adaptation-based MRI
segmentation,’’ IEEE Trans. Med. Imag., vol. 39, no. 12, pp. 4071–4084,
Dec. 2020.

[17] J. Jiang, A. Rimner, J. O. Deasy, and H. Veeraraghavan, ‘‘Unpaired cross-
modality educed distillation (CMEDL) for medical image segmentation,’’
IEEE Trans. Med. Imag., vol. 41, no. 5, pp. 1057–1068, May 2022.

[18] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, ‘‘Squeeze-and-excitation
networks,’’ 2017, arXiv:1709.01507.

[19] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, ‘‘Feature pyramid networks for object detection,’’ 2016,
arXiv:1612.03144.

[20] A. Kirillov, R. Girshick, K. He, and P. Dollár, ‘‘Panoptic feature pyramid
networks,’’ 2019, arXiv:1901.02446.

[21] F. Milletari, N. Navab, and S.-A. Ahmadi, ‘‘V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,’’ in Proc. 4th
Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 565–571.

[22] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ 2016, arXiv:1610.02391.

[23] S. Jaeger, A. Karargyris, S. Candemir, L. Folio, J. Siegelman, F. Callaghan,
Z. Xue, K. Palaniappan, R. K. Singh, S. Antani, G. Thoma, Y.-X. Wang,
P.-X. Lu, and C. J. McDonald, ‘‘Automatic tuberculosis screening using
chest radiographs,’’ IEEE Trans. Med. Imag., vol. 33, no. 2, pp. 233–245,
Feb. 2014.

[24] S. Candemir, S. Jaeger, K. Palaniappan, J. P. Musco, R. K. Singh, Z. Xue,
A. Karargyris, S. Antani, G. Thoma, and C. J. McDonald, ‘‘Lung segmen-
tation in chest radiographs using anatomical atlases with nonrigid registra-
tion,’’ IEEE Trans. Med. Imag., vol. 33, no. 2, pp. 577–590, Feb. 2014.

[25] S. Rajaraman, L. R. Folio, J. Dimperio, P. O. Alderson, and S. K. Antani,
‘‘Improved semantic segmentation of tuberculosis—Consistent findings in
chest X-rays using augmented training of modality-specific U-Net models
with weak localizations,’’ Diagnostics, vol. 11, no. 4, p. 616, Mar. 2021.

[26] S. Desai and H. G. Ramaswamy, ‘‘Ablation-CAM: Visual explanations for
deep convolutional network via gradient-free localization,’’ in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2020, pp. 972–980.

ADE IRMA SURYANI received the Diploma
IV degree in information technology from the
Electronics Engineering Polytechnic Institute of
Surabaya (EEPIS), Surabaya, Indonesia, in 2008,
and the Master of Information Technology degree
(M.T.I.) from the Faculty of Computer Science,
University of Indonesia (UI), Jakarta, Indonesia,
in 2013. She is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Information Engineering, National Yunlin Univer-

sity of Science and Technology (YunTech), Yunlin, Taiwan. She has been
a full-time Lecturer with the Information Technology Department, Padang
State Polytechnic (PNP), Padang, Indonesia, since 2014. Her research inter-
ests include computational intelligence and its applications to medical image
processing, artificial intelligence, implementation of information systems,
and the Internet of Things (IoT) analysis. In 2011, she awarded a Full
Scholarship from The Ministry of Research, Technology and Higher Edu-
cation Republic of Indonesia for her master’s program from the University
of Indonesia.

CHUAN-WANG CHANG received the M.S.
degree in electrical engineering from the National
Sun Yat-sen University, Taiwan, in 1995, and the
Ph.D. degree in electrical engineering from the
National Cheng Kung University, Taiwan, in 2010.
He is currently an Assistant Professor at the
Department of Computer Science and Informa-
tion Engineering, National Chin-Yi University of
Technology, Taichung, Taiwan. His research inter-
ests include application of artificial intelligence,

automated optical inspection, multimedia database, and application of the
Internet of Things.

124462 VOLUME 10, 2022



A. I. Suryani et al.: Lung Tumor Localization and Visualization in Chest X-Ray Images

YU-FAN FENG received the M.S. degree in com-
puter science and information engineering from
the National Yunlin University of Science and
Technology, Yunlin, Taiwan, in 2021. His research
interests include machine learning and their appli-
cations to medical image processing.

TIN-KWANG LIN graduated from the School of
Medicine, KaohsiungMedical University, in 1992.
He has been a Cardiologist with the Dalin Tzu Chi
Hospital, Buddhist Tzu Chi Medical Foundation,
since 2000. Since 2020, he has been an Assis-
tant Professor with the Department of Internal
Medicine, School of Medicine, Tzu Chi Univer-
sity, Hualien, Taiwan. He is currently the Director
of the Department of Cardiology and the Secretary
of Medical Affairs of the Superintendent’s Office

in the hospital. His specialties are in echocardiography, epithelium function,
and cardiac catheterization. He has authored or coauthoredmore than 30 pub-
lications in journals and conference proceedings in his research fields.

CHIH-WEN LIN received the Medical degree
from the Medical School, Chung Shan Medical
University, Taichung, Taiwan, in 1991, and the
Master of Business Administration degree from
the Continuing Education Program, Institute of
Information Management, National Chung Cheng
University, Chiayi, Taiwan, in 2015. Since 2002,
he has been the Chief of the Department of Medi-
cal Imaging, Dalin Tzu Chi Hospital, Taiwan. His
major medical specialties are diagnostic radiology

and interventional radiology, especially in hepatoma treatment, lung cancer
screening, and lung biopsy. He is currently a Lecturer with the Depart-
ment of School of Medicine, Tzu Chi University, Hualien, Taiwan. His
major research interests include medical image processing and lung cancer
diagnosis.

JEN-CHIEH CHENG received the M.S. degree
in information and electronic engineering from
the National Central University, Taiwan, in 1991,
and the E.M.B.A. degree from the National
Tsing Hua University, Taiwan, in 2009. He was
the Deputy General Director of the Computa-
tional Intelligence Technology Center, Industrial
Technology Research Institute (ITRI), Taiwan,
from 2013 to 2017, and as the Deputy Gen-
eral Director of Information and Communications

Research Laboratories, ITRI, from 2017 to 2019. He is currently the Vice
President of the ITRI, and the General Director of the Service Systems
Technology Center, ITRI. He works as an Executive Board Director of the
Information Service Industry Association of Taiwan, as a Consultant of the
General Chamber of Commerce of Taiwan, and as a Principal Investigator of
the Application and Industrial Development of Sports Technology Program.
He holds nine patents and has published 23 international academic articles.
He won more than 40 awards in his career includes Top 10 Outstanding
I.T. Elite Award, Taiwan, in 2001; and Top 10 Distinguished Engineer
Award, Taiwan, in 2008. Under his leadership, his team won research and
development 100 Award in 2020, Edison Awards in 2021, National Industrial
Innovation Award, MOEA in 2021, and CES Innovation Awards in 2020,
2021, and 2022. These awards across fields of intelligence medical, smart
wearable device, blockchain, and AI solutions.

CHUAN-YU CHANG (Senior Member, IEEE)
received the Ph.D. degree in electrical engineering
from the National Cheng Kung University, Tainan,
Taiwan, in 2000. From 2009 to 2011, he was the
Chair of the Department of Computer Science and
Information Engineering, National Yunlin Uni-
versity of Science and Technology (YunTech),
Taiwan. From 2011 to 2019, he was the Dean of
the Research and Development, and the Director
of the Incubation Center for Academia-Industry

Collaboration and Intellectual Property, YunTech. He is currently the Deputy
General Director of the Service Systems Technology Center, Industrial
Technology Research Institute, Taiwan. He is also a Distinguished Professor
with the Department of Computer Science and Information Engineering,
YunTech. He has authored or coauthored more than 200 publications in jour-
nals and conference proceedings in his research fields, which include com-
putational intelligence and their applications to medical image processing,
automated optical inspection, emotion recognition, and pattern recognition.
He is an IET Fellow, and a Life Member of IPPR and TAAI. He received
the National Award for Distinguished Contribution to Industry-Academia
Cooperation from Ministry of Education, and the Outstanding Electrical
Engineering Professor Award from the Chinese Institute of Electrical Engi-
neering, Taiwan, in 2021. He was the Program Co-Chair of TAAI 2007,
CVGIP 2009, 2010–2019 International Workshop on Intelligent Sensors
and Smart Environments, and the third International Conference on Robot,
Vision and Signal Processing (RVSP 2015). He was the General Co-Chair
of 2012 International Conference on Information Security and Intelligent
Control, 2011–2013 Workshop on Digital Life Technologies, CVGIP 2017,
WIC 2018, ICS 2018, andWIC 2019. From 2015 to 2017, he was the Chair of
the IEEE Signal Processing Society Tainan Chapter and the Representative
for Region 10 of IEEE SPS Chapters Committee. He is also the President of
the Chinese Image Processing and Pattern Recognition Society.

VOLUME 10, 2022 124463


