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ABSTRACT Here we propose a novel approach to image magnification that enables frame-by-frame motion
magnification application at a video streaming rate of around 30 fps. This novel approach can be used instead
of batch processing an image file in conventional phase-based magnification (PBM). This new PBMmethod
can instantly show a magnified video streaming on display at 30 fps, which is helpful for vibration measure-
ment and for monitoring tasks where magnified images need to be viewed simultaneously. To accomplish
video streaming-rate magnification, the proposed PBM uses time-domain convolution in temporal bandpass
filtering for frame-by-frame operation whereas conventional PBM employs a frequency-domain filter that
is applied to the entire image file at once. An experiment was conducted to monitor the vibration of a
cantilever using a webcam streaming at the same frame rate, and data were collected simultaneously using
a laser Doppler vibrometer for comparison. The experiment confirmed that the proposed PBM approach
is more effective than the conventional magnification method and it also analyzed the system performance
for vibration measurement. Additionally, the proper orthogonal mode could be found through the singular
value decomposition from vibration displacement data of the cantilever that was collected instantly from the
magnified image frames. Furthermore, the dominant mode could be effectively extracted from excitation at
the resonance frequency. Because of magnification factors, the vibration displacements from the proposed
method were estimated using linear regression and the accuracy of the estimated displacements was within
the permissible error bound. Since the proposed PBM is a frame-by-frame operation, instantaneous adjust-
ment of magnification parameters is available, even while the magnification is being processed. In addition,
the proposed PBM is independently adjustable to the number of image frames for temporal FIR filter order.

INDEX TERMS Phase-based magnification, time-domain convolution, video streaming rate, vibration
monitoring.

I. INTRODUCTION
To circumvent the limitations of commonly used vibration
sensors, such as accelerometers or laser vibrometers, com-
puter vision-based techniques utilizing high-speed or conven-
tional digital cameras have been investigated [1], [2], [3]. The
camera-based measurement method is unaffected by load-
ing and temperature errors and has the advantage of obtain-
ing a full-field image [4], [5], [6], [7]. Nevertheless, data
acquisition from video frames is challenging when the vibra-
tion motion tracked in video images is as tiny as subpixel;
however, small vibrations can be amplified using motion
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magnification algorithms [8], [9], [10], [11], [12], [13] and
can be applied to vibration measurements [14], [15], [16].

Liu et al. [8] developed an approach to visually show tiny
motions in an image by employing the Lagrangian descrip-
tion used in fluid mechanics. The Lagrangian approach is
a method for tracking individual particles with high preci-
sion, and it has a high computational cost. On the other
hand,Wu et al. [9] demonstrated an effective technique called
Eulerian video magnification (EVM) that is based on the
Eulerian description. EVM works similarly to optical flow
in that it amplifies the pixel intensities that change at a
fixed pixel position. While this Eulerian magnification con-
siderably reduces the amount of computing required, a high
magnification factor cannot be applied to high-frequency
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motion and noise increases linearly as the magnification fac-
tor increases [10]. To address this issue, Wadhwa et al. [10]
suggested phase-based magnification (PBM) using a com-
plex steerable pyramid (CSP) in the Eulerian framework.
[17] Magnification factors greater than those used in con-
ventional Eulerian magnification can be used, providing
a magnified image that is more robust to artifacts and
noise.

Despite the fact that CSP has a long computation time
due to overcompleteness and a computational disadvan-
tage [11], [17], it has substantial advantages in terms of
obtaining accurate magnified motion and in detecting motion
in many directions. Therefore, a method for reducing com-
puting time by employing the Riesz pyramid, instead of CSP,
has been proposed [11] for calculating faster using the local
Riesz pyramid approach [13]. However, compared to the CSP,
the Riesz pyramid has a disadvantage in detecting motion in
various directions, and the local Riesz pyramid has a lim-
itation in that motion is weakly magnified. Oh, et al. [12]
proposed a learning-basedmotionmagnificationmodel based
on convolutional neural network architecture. Their learning-
based method demonstrated superior performance in terms
of noise and accuracy without a temporal filter. This strategy,
however, has disadvantages of requiring a large amount of
training data and time to construct a trained model. Despite
these alternatives, many vision-based vibration analysis stud-
ies still use the steerable pyramid-based motion magnifica-
tion [14], [15], [16].

In contrast, the conventional phase-based motion magnifi-
cation approach can examine the outputs after all frames of a
finite-length video clip have been processed, but many appli-
cations require video streaming-rate processing. In conven-
tional PBM, all video frames are processed simultaneously,
and all video data are allocated and processed inmemory. The
processing time is proportional to the image resolution and
frame number. However, PBM applications, such as struc-
tural health monitoring, require instant results, and real-time
level performance for applying motion magnification would
be beneficial.

This paper introduces a novel approach that allows frame-
by-frame processing instead of batch processing of image
files in conventional PBM, allowing motion magnification to
be applied at the video streaming rate. In addition, vibration
measurement for a simple cantilever example was conducted
by applying magnification from real-time streaming video.
We propose an algorithm for frame-by-frame evaluation of
the magnification output by converting it from a bandpass
filter in the frequency domain to a convolution in the time
domain for video streaming processing. This streaming-rate
magnification is implemented on a small portable laptop
equipped with a GPU at a processing speed of 30 fps as the
webcam’s frame rate. An experiment was conducted to mon-
itor the vibration of a cantilever using a webcam streaming
at the same frame rates, and data were collected simulta-
neously using a laser Doppler vibrometer (LDV) for refer-
ence. The experiment confirmed that the proposed approach

is as effective as the conventional magnification method in
many circumstances, and it also evaluated the system validity
for vibration measurement in displacement, frequency, and
vibration modes.

II. PHASE-BASED MOTION MAGNIFICATION FOR
VIBRATION MEASUREMENT
A. PHASE-BASED MOTION MAGNIFICATION
The core idea of phase-based motion magnification is a CSP
that decomposes an image into complex-valued data scales.
As a result, phase-based motion magnification can handle
image motion data expressed as a phase angle difference.
The CSP [10] consists of multi-level complex steerable fil-
ters according to multiple orientations and spatial frequency
bands. As illustrated in Fig. 1, original image I (x, y) is
transformed by 2D Fourier transform into amplitude A(u, v)
and phase 8(u, v) regarded as complex-valued transformed
image data Î (u, v) = A(u, v)ej8(u,v), where (x, y) is geometry
coordinates and (u, v) is image frequency coordinates. Then,
steerable filters 9ω,θ (u, v) are applied. 9ω,θ (u, v) is a filter
component of the CSP that corresponds to the spatial fre-
quency bands with scale levels ω and orientation θ in the
frequency domain. This description is also a polar coordinate
scheme of the spatial frequency domain (u, v) because ω and
θ represent the distance and the direction from the origin,
respectively, as shown in Fig. 1.

After applying CSP, the results were show the magnitude
of inverse Fourier transformed image (of image geometry
domain), which displays multi-orientation and multi-scale
frequency components

∣∣Sω,θ (x, y)∣∣ in Fig. 1. The outer region
corresponds to the high frequency in the spatial frequency
domain, which correlates with a sharp change in pixel inten-
sity value or patterns with a short wavelength. On the other
hand, the inner region correlates with a low frequency, imply-
ing smooth variations in pixel intensity or long-wavelength
patterns in the image. The direction from the origin to a
specific steerable filter region in frequency coordinates is
the orientation that the filter extracts, as shown in Fig. 1.
For example, the center point of filter 9ω3,θ1 (u, v) at Scale
3 in Fig. 1 is horizontally aligned with the origin. Orienta-
tion θ1, therefore, represents the horizontal features of the
image so that the shape of the cantilever is well shown as∣∣Sω3,θ1 (x, y)∣∣.

The image reconstruction is a sequence of each spatial fre-
quency component, demonstrating mathematically howmag-
nification proceeds. The complex steerable filter is comprised
of windowing and sinusoids in the spatial domain. With spa-
tial domain (x, y) defined as vector x, the spatial frequency
of a decomposed image, Sω(x), applied with a filter of win-
dowing, W (x), and spatial frequency ω can be described as
follows:

Sω(x) = I (x)⊗W (x)ejωx = |Sω(x)| ejωx, (1)

where the⊗(circled times) represents the spatial-domain con-
volution and W (x)ejωx is the inverse Fourier transform of
steerable filter9ω(u), where u is a vector expression of (u, v).
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FIGURE 1. A complex steerable pyramid (CSP) decomposes an original
image (top) into scale and orientation components (bottom left). After
inverse Fourier transform through CSP, the filtered images match each
scale and orientation (right).

As the purpose of reconstructing an image is to collect all
frequency image components, Sω(x), the image notation can

be represented as an infinite series

I (x) =
∞∑

ω=−∞

|Sω(x)| ejωx. (2)

If I (x) is an initial state and it moves some position over time
t, the value yields

I (x+ δx(t)) =
∞∑

ω=−∞

|Sω(x)| ejω(x+δx(t)), (3)

where δx(t) is the subtle motion of the image. The phase
difference between the first and current image frames is cal-
culated using the phase angle in (2) and (3).

18(x) = arg
[
|Sω(x)| ejω(x+δx(t))

]
− arg

[
|Sω(x)| ejωx

]
= ω δx(t), (4)

where 18 denotes the phase difference between the two
images. As can be seen in the equation, phase difference18
encompasses the phase difference δx(t). To amplify the phase
difference, we apply a magnification factor α to 18, which
is then exp(jα18) multiplied by (3) to yield the magnified
image as

∞∑
ω=−∞

|Sω(x)| ejω(x+δx(t))ejωα18(x) = I (x+ (1+ α)δx(t)).

(5)

Therefore, motion-magnified images can be acquired in (5).
Practical phase-based video motion processing procedures

are illustrated in Fig. 2 using PBM. Although not explic-
itly stated above, 18 must be subjected to temporal band-
pass filtering prior to being inserted in order to focus on
motion and eliminate the DC component [10]. Consequently,
Fig. 2 depicts the filtered phase difference, 18̃, following
temporal filtering. Additionally, while the orientation of the
steerable filter is not depicted individually in Fig. 2 for clarity
of explanation, the actual process of image decomposition
must take the orientation into account.

B. TEMPORAL FILTERING AND CONVOLUTION
When contemplating frequency band filters to magnify the
motion of a particular frequency component, either a finite
impulse response (FIR) or an infinite impulse response (IIR)
filter might be considered. As shown in Fig. 2 as ‘‘Temporal
FIR Filtering,’’ located between the phase difference frame
stack and the magnification factor, the FIR filter is used due
to its implementation simplicity and frame-by-frame process-
ing capability in video processing [18]. The response of the
FIR filter has a linear phase and is always stable, making it
excellent for video processing, even during online streaming.
However, IIR filters have a non-linear phase response and
they cannot be guaranteed to operate in a stable manner [18].
In addition, because FIR filters may be designed to behave
similarly to IIR filters, even with lower filter orders, this high-
speed attribute contributes to the processing time reduction.
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FIGURE 2. The general concept of phase-based motion magnification (PBM). 1) In the frequency domain, a CSP
with scales and orientations is applied to the image. After decomposition and filtering, the images contain
complex values. 2) The phase angle of the decomposed image and the phase angle difference reflecting the
motion is calculated. 3) Temporal filtering is applied to the phase difference in order to extract the motion of
the specified frequency component. 4) The filtered phase difference is amplified by the magnification factor
and then combined with the original frame. 5) After completing the preceding procedures on each
CSP-decomposed local image, the reconstructed image exhibits a magnified motion.
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FIGURE 3. Schematic illustrating how conventional filtering employs
frequency-domain temporal filtering on all frames in a batch.

Conventional PBM [10] employs a Fourier transform to
perform bandpass filtering of an entire set of phase frames
in batch processing at once, as shown in Fig. 3. Let b(t) be
the FIR filter coefficients in the time domain prepared using
the windowingmethod [19]. Then, temporal filtering of phase
difference under the conventional method is represented as

18̃(t) = F−1
[̂
b(f )×18̂(f )

]
, (6)

where 18̃(t) is the filtered phase difference in the time
domain. Moreover, b̂(f ) and18̂(f ) are the Fourier transform
of filter coefficients b(t) and phase difference18(t), respec-
tively. Since the discrete Fourier transform returns a spectral
array with the same length as the input signal array, the FIR
filter coefficients will be of the same size as the filter length.
This temporal filtering is a multiplication operation in the fre-
quency domain, as shown in Fig. 3. Since the two arrays must
have the same size, the length of the FIR filter must be the
same as the length (number of frames) of the image sequence.
This frequency-domainmultiplication requires a higher-order
filter, leading to much computation but not improvement in
filtering performance as the filter order increases. Also, it is
impossible to ascertain whether the filtering band frequency
and magnification factor are correctly set in processing until
the entire frame is processed.

The proposed PBM conducts temporal bandpass filtering
using a convolution directly in the time domain, rather than
via frequency-domain operation, as denoted by

18̃(t) = b(t)∗18(t), (7)

where the ∗ (asterisk) represents the time-domain convolu-
tion. As illustrated in Fig. 4, in actual time-domain con-
volution, the digital filter operation is accomplished with a
presenting number of phase image frames by matching the
discrete FIR coefficients to the filter length. Considering
N = 2n as an even-numbered discrete filter order, the FIR
filter coefficient of order N is bN , which is also the impulse
response of the filter. Then, the filter length of bN isN+1 and
the center frame is on n. From (7), the discrete version of the

FIGURE 4. Schematic illustrating how the proposed phase-based
magnification technique uses time-domain convolution to perform
temporal filtering on a single frame sequence. The proposed PBM
supports frame-by-frame execution via image frame streaming.

filtered phase difference and the time-domain convolution are
described as

18̃ [ti−n] =
N∑
k=0

bN [k]×18 [ti − k], (8)

where ti represents ith discrete instance of the temporal frame.
As the filter has a group delay of n image frames, which
is half of the filter order [19], the result of the convolu-
tion corresponds to the phase difference at ti−n, as shown
in (8). The discretized time convolution (8) is employed
instead of (7) in the actual code implementation of temporal
filtering.

This filtering approach produces a single frame-by-frame
result for each processing iteration, allowing instantaneous
adjustment of the frequency bands and magnification fac-
tors. Additionally, the magnified image can be monitored in
real-time, which is advantageous for online video streaming
applications. Compared to conventional PBM, the proposed
approach is not order-dependent, hence computation is mini-
mized. As a result, the user can control the order of the filters
to improve processing time and image quality.

III. IMPLEMENTATION AND EXPERIEMENTS
A. IMAGE MAGNIFICATION SOFTWARE
The proposed PBM technique, which enables frame-by-
frame magnification processing, was implemented in Python,
executed on a laptop PC equipped with a GPU, and obtained
a video streaming rate of 30 fps. However, there are inten-
sive operations for multi-dimensional arrays in the motion
magnification image, so an ordinary CPU-only PC is insuffi-
cient. A GPU is required for faster processing, even without
optimized Python code. The proposed PBM code was tested
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FIGURE 5. The main routine of the proposed phase-based magnification code implemented in Python (pseudo-code).

on a small laptop equipped with an Intel Core i7 mobile
CPU and an NVIDIA GTX1650 GPU to process webcam
streaming (640 × 256-pixel resolutions at 30 fps) at the
same processing capabilities (at least 1/30-s each frame). The
PBM software was developed in Python (version 3.7) with
image processing and temporal FIR filtering implemented
using OpenCV (version 4.5.3) and SciPy (version 1.7) pack-
ages. While the NumPy (version 1.21.1) module is the de
facto standard for array operations in Python programs, the
CuPy (version 9.2 with CUDA 10.1) module was primarily
used here for working with arrays utilizing the GPU. NumPy
was only used to convert the processed data array back to
an image at the end. Fig. 5 shows the pseudo-code of the
core routine used to implement the proposed PBM algorithm
with the temporal convolution illustrated in Fig. 4. Within
the main loop, the camera reads the frame and the program
returns a result when processing is complete; the program
then obtains the next frame and repeats the subsequent cal-
culation, providing real-time processing via frame-by-frame
computation.

The following algorithm was used. (1) After filtering the
image with the steerable pyramid, the phase angle difference

is extracted by subtraction. (2) Direct temporal filtering with
convolution is employed to filter the object motion equal
to the subtracted phase whereas the conventional method
employs a Fourier and inverse Fourier transform of the time
domain before and after bandpass filtering. (3) After multi-
plying the filtered motion by the magnification factor, it is
merged into the existing frame. (4) Images from steps (1)
to (3) are re-merged for each level, along with the residual
image from the low-pass filter. (5) The magnified motion
image is saved. If checking is required, showing of the mag-
nified images, as illustrated in Fig. 6, can be added. While
the image is being streamed, steps (1) to (5) can be repeated
indefinitely.

B. EXPERIMENT
To verify the performance of the proposed PBM method,
which operates at a video rate, an experiment to measure
cantilever beam vibration was designed and compared with
batch processing of entire frames in the conventional PBM
method. The key parameters affecting the processing speed of
the proposed real-time method are the size (resolution) of the
image and the filter order chosen for temporal convolution,
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FIGURE 6. Screenshot executing the proposed phase-based
magnification code with slide bars for adjusting the frequency band and
the magnification factor.

which is dependent on the number of incorporated image
frames. The processing time for the proposed PBM method
on an image size of 640× 256 can be achieved by 1/30-s per
frame when the FIR filter order is 30. Therefore, we set the
temporal FIR filter order to 30 to achieve a video streaming
rate of 30 fps. In addition, the total length of the video file
is limited to 500 frames for convenience though the proposed
method can be applied to a continuous online video sequence.
We also used a conventional PBM of the same length as
the recorded video. As mentioned in Section II.B, the filter
length of the conventional PBM method should be set the
same as the frame length; therefore, the filter order is set to
499 as the filter length is 500. Moreover, the measurable fre-
quency at 30-fps video is up to 15 Hz according to sampling
theory.

As shown in Fig. 7, a thin metal cantilever was mounted
to an electromagnetic exciter and a function generator was
used to generate an excitation signal at a specific frequency.
An experiment was conducted to magnify images captured
through a webcam connected to a laptop PC. The actual
amplitude and frequency were determined using a reference
LDV. The experimental cantilever was constructed of stain-
less steel of 20.8-g and was 0.5-mm-thick, 15-mm-wide, and
400-mm-long with uniform cross-section. It was established
that the independently measured natural frequencies of the
cantilever were 1.53 and 12.2 Hz in the first and second
resonance modes, respectively. The applied frequencies of
the first two cantilever modes were less than 15 Hz, which
is the Nyquist limit in the experiment. When the base of the
cantilever was excited with a tiny excitation force accord-
ing to the natural frequency of each mode, 640 × 256-pixel
images at 30 fps were captured and processed using the con-
ventional and the proposed methods. The benchmark time
was recorded for each program step in each method. The
vibration displacement was extracted from the image using
the centroid tracking method [20] and compared with ref-
erence displacement data acquired simultaneously with the
LDV.

FIGURE 7. Experimental setup for cantilever vibration measurement with
webcam image streaming and reference LDV.

FIGURE 8. Transverse vibration displacement of the cantilever tip
captured from the magnified image with the centroid tracking method
followed by a red line segment, as shown in (a). (b) and (c) show
extracted data in the case of the 1st and 2nd mode frequencies,
respectively. The magnification factors were set at α = 15.

C. RESULT
We obtained the free-tip displacements of the cantilever from
the magnified video using the centroid tracking method [20].
Fig. 8(a) shows the frame stack process for extracting the
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TABLE 1. Estimated displacement from the intercept of the fitted curve.

FIGURE 9. RMS amplitude of vibration displacement increases linearly as
the magnification factor, α, increases and can be expressed as a linear
regression. The y-intercept value of the regression equation is the
estimated RMS amplitude expected without magnification (α = 0). The
estimated RMS amplitudes for both PBM methods are compared with
those of the no-magnification (original) image and the LDV measurement.

tip displacement of the cantilever from the magnified image.
First, the pixel displacement data were extracted from the
original (unmagnified), the conventional PBM, and the pro-
posed PBM videos, respectively, for the case of α = 15,
as shown in Fig. 8(b) and (c). Then, the pixel values were
conventional and proposed methods exhibit identical magni-
fied displacement waveforms, as shown in Fig. 8(b) and (c),
the proposed method only provides the magnification after
specific frames of the transient response due to the group
delay aspect of the FIR filter design [19]. Indeed, steady-
state magnified displacement may be obtained at the video
rate after the initial transient delay, even with the proposed
method. After an initial delay of as many frames as the
half order of the temporal filter, magnification processing is
carried out at the frame rate.

In theory, since both conventional and proposed PBMs
use a linear magnification mechanism, the displacement is
linearly magnified by magnification factor α. The linear rela-
tionship between magnified root-mean squared (RMS) dis-
placement amplitudes andmagnification factors ranging from
α = 1 to 15 is evident in Fig. 9, as is the linear regression with
excellent correlation. The amplitude value at the amplitude-
axis intercept of the regression line seen in Fig. 9 (when
α = 0) can be regarded as the de-scaled value from the
magnified amplitude and it is approximated as the actual

FIGURE 10. Data obtained through displacement extraction from the
α = 15 video, rescaled by the pixel-to-metric conversion, and then
compared with the LDV reference data. (a) and (b) show the 1st and 2nd
mode frequency cases, respectively.

unmagnified amplitude of the vibration. The estimated dis-
placement amplitude differs slightly from the displacement
amplitude extracted from the unmagnified image. Instead,
the estimated displacement amplitude from the magnified
image is much closer to the LDV reference amplitude. The
calibrated and estimated displacement RMS amplitudes for
each case and for the LDV measurement data listed in
Table 1.

As shown in Table 1 and Fig. 10, the data obtained from
the original unmagnified image, which imposes subpixel dis-
placement, is overestimated in comparison to the actual LDV
reference data, even after calibration. It is known that cali-
brated data obtained by rescaling a magnified image yield
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TABLE 2. Relative proportion of singular values of a vibrating cantilever with base excitation using SVD.

FIGURE 11. POMs of a vibrating cantilever with base excitation using SVD.
The mode extracted from the magnified image is closer to the resonance
mode at the excitation frequency than the original unmagnified image.
(a) and (b) show the 1st and 2nd mode frequency case, respectively.

a more precise result. In Fig. 10, each frequency can also
be estimated from the power spectrum transformed from the
temporal displacements. It can be seen that the estimated
frequency obviously coincides well with the excitation fre-
quency of the corresponding mode. The excitation frequen-
cies are 1.53 and 12.2 Hz.

We set regions of interest of six points along the cantilever,
including the base as shown in the screenshot in Fig. 6, and

simultaneously extracted dynamic displacement data of six
points from the original and magnified images using the cen-
troid tracking method. From the data extracted using singular
value decomposition (SVD) as a proper orthogonal decompo-
sition, the operational deflection shapes or proper orthogonal
modes (POMs) representing the dynamic signature of the
structure were obtained. These POMs represent the mode in
forced vibration [22]. The forced vibration modes obtained
in each case are shown in Fig. 11. The singular mode (i.e.,
POM) extracted from the magnified image is closer to the
normal mode at the resonance frequency than the original
unmagnified image. Table 2 shows the relative proportion
of singular values of a vibrating cantilever with base exci-
tation using SVD. The first POM has the largest singular
value and the first singular value from the magnified image
at each resonance frequency is larger than the singular value
from the original (unmagnified) image. This supports extract-
ing the vibration mode associated with the corresponding
frequency by image magnification from the vibrating struc-
ture. Fig. 12 shows the modal assurance criteria (MAC) [23],
which indicates how similar the POM is, according to the
magnification for each excitation frequency, to the analytical
resonance mode of the corresponding frequency. The first
POM in 1.53-Hz excitation (1st resonance) has the largest
MAC value with the first eigenmode, whereas the first POM
in 12.2-Hz excitation (2nd resonance) has the largest MAC
value with the second eigen mode. In particular, vibration
mode extraction through SVD in the proposed PBM is as reli-
able as that for the conventional PBM. In this case, if impor-
tant modes are selected among the measured POM modes by
calculating the optimal hard threshold [24] in SVD, the values
areMode 1 orMode 2 above the dotted line in Table 2. In each
POM of Fig. 11, not only is the singular value relatively very
small, but it also has a different shape from the normal mode
due to the influence of noise in the case of Mode 3 or higher.

IV. DICUSSION
A. PROCESSING TIME
The processing time of each algorithm routine was mea-
sured to evaluate whether the proposed PBM approach can
sustain a processing speed of lower than 30 fps. Since the
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TABLE 3. Total processing time and equivalent FPS.

FIGURE 12. Modal assurance criteria (MAC) correlation between POMs and theoretical eigenmodes.

conventional method processes the entire set of image frames
from a previously saved video file into memory, the pro-
cessing time was measured at five different process steps
(Table 3), ranging from applying complex steerable pyramids
to saving the image frames, except for the image loading
stage. The processing time is dependent on the hardware and
the results reported in Table 3 are based on the laptop PC
equipped with a GPU used in the experiment. The proposed
method can check every single frame result in real-time,
so the processing time for each iteration was measured and

averaged over 500 frames as seconds-per-frame. Since the
processing time of the conventional method can be measured
only as entire frames, it is measured in a total processing
time and then divided by the number of frames (500 frames
in this study) to evaluate the seconds-per-frame. Finally, the
processing times of both methods are transformed into equiv-
alent frame-per-seconds (fps) and compared. According to
Table 3, the conventional PBMmethod processed each frame
in 39.108 ms, whereas the proposed method processed each
frame in 32.697 ms. If the frames-per-second rate exceeds
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FIGURE 13. Image quality metrics applied on magnified videos with
α = 10.

30 fps, the images streamed from the webcam can be pro-
cessed at a real-time video streaming rate. Therefore, the
proposed PBM could achieve real-time performance.

The proposed method performs about 20% faster process-
ing than the conventional method because it needs only direct
temporal convolutions with the filter order from temporal
filtering to the magnification process, which takes advan-
tage of the frame-by-frame processing. However, the con-
ventional method requires Fourier and inverse transforms
and performs temporal bandpass filtering in the frequency
domain via filter multiplication. The (tensor) multiplication
is a computationally intensive operation for data arrays with
dimensions of 640 × 256 × 500, which correspond to the
image size and total frame count in this experiment. While
all transforming and filtering operations are expedited by
the GPU, managing such large amounts of data concur-
rently may be slower due to computational and hardware
constraints.

The overall processing time is not significantly different
between the two methods; the proposed method provides
the essential advantage of frame-by-frame processing and
enables real-time magnification of online streaming video
at around 30 fps. Additionally, the proposed method allows
instantaneous adjustment of magnification parameters, such
as bandpass frequencies andmagnification factors.Moreover,
users can specify an FIR filter with lower order, which is
less vulnerable to system restrictions. Because the proposed
method processes a fixed number of image frames required
for the FIR filter order for convolution, regardless of the total
number of frames, it is efficient for image memory access
in the program. On the other hand, the conventional method
should specify the FIR filter order in terms of the total number
of frames. Therefore, the proposed magnification approach
efficiently controls resources and processes them faster with
acceptable image quality and data extraction accuracy. Also,
as shown in Fig. 8, initial delay occurs as often as the number
of image frames equals the order of the applied FIR filter

FIGURE 14. Peak signal-to-noise ratio (PSNR) scores according to α for
2nd mode excitation.

in the proposed method. Therefore, magnification usually
occurs after an incomplete magnification (delay) time from
the initial stage of the image.

B. IMAGE QUALITY ASSESSMENT
The mean squared error (MSE), peak signal-to-noise ratio
(PSNR), and structural similarity indexmeasure (SSIM)were
used to determine the degree of distortion relative to the orig-
inal image [21]. MSE is a fundamental metric that calculates
the average squared difference between all pixel intensity
values. PSNR is the decibel-scale ratio of noise power to the
maximum possible power of an image, calculated usingMSE.
When the MSE equals zero, PSNR approaches infinity and,
asMSE increases, PSNR decreases in value. SSIM is a metric
that quantifies the similarity of the structure of an object
without quantitatively evaluating the error and evaluates the
quality based on image similarity [25]. Both conventional and
proposed PBMs exhibit a distorted object shape as the α is
increased excessively, which affects subsequent operations.
Visual noise becomes discernible only when the cantilever
image is magnified at around α = 10. Therefore, the results
were compared with the original video according to both
PBM methods when α = 10.

As can be seen, there is no noticeable difference in image
quality between the two methods and the images obtained
using the proposed method are as acceptable as those pro-
duced using the conventional magnification method. Nev-
ertheless, as shown in Fig. 13, the proposed magnification
method is slightly superior in the first-mode frequency while
the conventional method is slightly superior in the second-
mode MSE and PSNR values. As a result, it is difficult to
assign consistent superiority in image quality metrics com-
paring both magnification techniques. Fig. 14 shows the
PSNR score for each method at the second-mode frequency
as a function of α. As such, the proposed method tends
to be better with lower α values (i.e., α < 6), but as α
increases, the quality score of the conventional magnification
method takes precedence. Therefore, the appropriate α value
for better image quality varies from case to case. In particular,
when both PSNRs are greater than 30 dB, the image quality
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of the two methods is comparable at the human-perceived
level [26].

C. DATA ACCURACY AND APPLICATION
Both magnification approaches estimated the displacement
amplitude closer to the reference LDV value than the
extracted amplitude without magnification. The proposed
method shows slightly underestimated displacements than
conventional magnification in Table 1. From Fig. 9 and in
the same viewpoint as Table 1, the conventional method
tends to be magnified more for the same value of α, whereas
the proposed method tends to be less magnified. In partic-
ular, the displacement (green) in the case of no magnifica-
tion for the low-frequency first mode (Fig. 10(a)) is very
overestimated and more noticeably undersampled than the
scaled displacement data extracted from the magnified image
(blue and red) and the reference LDV displacement (black
dotted). This overestimation in displacement is because of
geometric discretization according to the pixel resolution
when converting the displacement of the vibration image
into the pixel intensity values. In the second-mode fre-
quency (Fig. 10(b)), the amplitude difference of displace-
ments extracted from magnified and unmagnified images is
insignificant, except for the time sampling effect, as they are
at the first-mode frequency. As illustrated in Fig. 9, the RMS
response in the second mode is set to be less than that in the
first mode in the experiment, but by chance the actual ampli-
tude matches the image unit pixel level, limiting overestima-
tion as in the first mode. Instead, the displacement may not
be extracted due to unpacking by the pixel resolution of the
image.

By integrating the proposed magnification technique with
the current system specifications in this study, real-time pro-
cessing at a 30-fps rate is conceivable. As a result, real-time
monitoring of structures and machinery will be possible by
acquiring monitoring video streams and magnifying subtle
motions and vibrations in real-time. The primary issue with
vibration measurement via images is the difficulty in accu-
rately quantifying tiny vibrations at the subpixel level. As a
result, magnification methods, particularly PBM, are bene-
ficial. The vibration can be observed and measured using
a conventional magnification algorithm. Nonetheless, it is
challenging to apply motion magnification to vibration mon-
itoring by post-processing image files. However, qualitative
real-time and online vibration monitoring might be easily
achieved by applying the proposed frame-by-frame magni-
fication technique.

V. CONCLUSION
The purpose of this study was to offer a novel approach
for effectively implementing a PBM algorithm that lever-
ages direct time-domain convolution at the temporal filtering
stage. The developed real-time PBM algorithm produced a
frame rate of up to 30 fps in dynamic displacement measure-
ments based on online vibration monitoring using a nominal
webcam. To verify the performance of the proposed PBM, the

magnification processing time, the magnified image quality,
and the vibration displacement extraction for a simple can-
tilever structure vibrating less than 15 Hz were compared to
the conventional PBM. Because of the magnification factors,
the vibration displacements from the proposed method were
estimated using linear regression and the accuracy of the esti-
mated displacements was within the permissible error bound.
Finally, the vibration characteristics were compared with the
frequency spectrum of the extracted displacement.

The following advantages of the proposed video
streaming-rate PBM can be summarized on the basis of the
discussion:

1) While conventional batch processing works at a speed
of 25.6 fps in a typical laptop PC environment, the
proposed frame-by-frame processing technique can
achieve a faster speed of 30.6 fps, which is 19.5%
improvement.

2) The proposed PBM has the advantage of not being
independent of the number of image frames for the tem-
poral FIR filter order. A low-order filter provides ratio-
nale for fast processing without significantly affecting
overall image quality and accuracy of the estimated
vibration displacement.

3) Since the proposed PBM is frame-by-frame process-
ing, instant adjustment of magnification parameters
is always available, even while the magnification
is being processed. This enables implementation of
online vibration monitoring.
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