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ABSTRACT Robust authentication for low-power consumer devices without a keyboard remains a chal-
lenge. The recent availability of low-power neural accelerator hardware, combined with improvements in
neural facial recognition algorithms provides enabling technology for low-power, on-device facial authenti-
cation. The present research work explores a number of approaches to test the robustness of a state-of-the-art
facial recognition (FR) technique, Arcface for such end-to-end applications. As extreme lighting conditions
and facial pose are the two more challenging scenarios for FR we focus on these. Due to the general lack
of large-scale multiple-identity datasets, GAN-based re-lighting and pose techniques are used to explore the
effects on FR performance. These results are further validated on the best available multi-identity datasets
- MultiPIE and BIWI. The results show that FR is quite robust to pose variations up to 45-55 degrees,
but the outcomes are not definitive for the tested lighting scenarios. For lighting, the tested GAN-based
relighting augmentations show significant effects on FR robustness. However, the lighting scenarios from
MultiPIE dataset - the best available public dataset - show some conflicting results. It is unclear if this is
due to an incorrectly learned GAN relighting transformation or, alternatively, to mixed ambient/directional
lighting scenes in the dataset. However, it is shown that the GAN-induced FR errors for extreme lighting
conditions can be corrected by fine-tuning the FR network layers. The conclusions support the feasibility of
implementing a robust authentication method for low-power consumer devices.

INDEX TERMS Directional lighting, face illumination, face recognition, face re-lighting method, FR eval-
uation, Internet of Things.

I. INTRODUCTION
Human Face Recognition (FR) has been an active research
field in computer vision since the early 1960s [1] and early
Convolutional Neural Network (CNN) based approaches
were in evidence before the end of that century [2]. Over the
last two decades, FR has been well-studied in the literature
with the most recent advances being driven by advances
in CNN and deep learning [3], [4], [5], [6], [7]. In much
of the literature the test samples for FR are assumed to be
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normalized in terms of pose, facial expression and illumina-
tion to simplify the challenge of accurately distinguishing an
individual identity among a very large population. But, as it is
not always feasible to capture optimal facial samples, some
studies have explored the effects of different factors on the
accuracy of state-of-the-art (SoA) FR systems.

The main factors that affect FR include (i) pose [8], [9],
[10], [11], (ii) illumination [12], [13], [14], (iii) facial expres-
sion [15], [16], [17], (iv) age [18], [19], (v) gender varia-
tions [20], [21], and (vi) facial occlusions [22], [23], [24].

In this work, the focus is on the latest end-to-end fully
neural FR techniques [25] as these represent current SoA in
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terms of accuracy and have the potential for implementation
in the latest neural accelerators [26], [27]. The initial focus for
the implementation of neural algorithms in embedded devices
was on network optimizations such as parameter quantization
and pruning, compressed convolutional filters andmatrix fac-
torizations [27]. However, the attention has recently shifted
towards specialized neural topologies [28], [29] and ultra-low
power realizations in hardware [30], [31]. Such optimizations
enable SoA neural FR architectures to be implemented in a
low-power consumer appliance, enabling a new generation
of devices capable of identifying their owners, providing
access control, and personalizing the device’s responses and
behavior.

Ideally, for optimal data security and user privacy, such
devices should be capable to authenticate a user, without
sending facial data to a network or cloud service. However,
this introduces new challenges as such FR embodiment can
no longer rely on pre-processing input facial samples to opti-
mize power consumption. Thus, all image processing must
be achieved in a fully neural implementation, requiring a
neural end-to-end FR to be robust to factors such as pose
and illumination. Here our goal is to determine the feasibility
of modifying a high-accuracy SoA neural FR architecture
to demonstrate robustness to uncompensated input image
samples.

More specifically, this research studies the effects of direc-
tional illumination and larger pose facial samples in an
end-to-end fully neural FR system. Key research questions
include:

1) What metrics can be used to measure and compare FR
at various directional lighting and different pose angles?

2) How robust are the latest FR algorithms to illumination
and pose variations? In particular, can we quantify the
effects of extreme lighting and pose variations on the
robustness of FR?

3) Can a SoA FR algorithm be fine-tuned to mitigate per-
formance degradation?

One of the challenges in setting up experiments to test
and answer these questions is the lack of large datasets with
accurate and extensive ground truth data on lighting and head
pose. Thus a secondary set of research questions arises with
regard to testing hypotheses on real data. More specifically,
a real lighting dataset is introduced to address the following
questions.

4) Does a synthetic dataset created by a relighting/pose-
adapting GAN behave in the same way as a real multi-
lighting/multi-pose dataset?

5) What are the reasons for this gap?What have we learned
from these experiments?

As a first step toward answering these research questions,
this work employs a SoA re-lightingmethodology to augment
a set of high-quality facial images with directional lighting
effects. The effect of these augmentations on the performance
of the ArcFace, which is a SoA FR model that ongoing
provides the latest public code support, is quantified using

Receiver Operating Characteristic (ROC) curve techniques.
A similar approach was used recently to validate synthetic
facial identities [32]. Note that a re-lighting augmentation
approach was adopted to evaluate the synthetic directional
lighting data on the FR model. Then this work introduces
a real public dataset, MultiPIE which includes more than
300 individual identities and 19 lighting scenes, to validate
the results of this hypothesis on a real dataset with illumina-
tion variation. In this way, the robustness of the FR model
to illumination is verified. Similarly, a SoA rotate-and-render
technique is adopted to augment the face images with multi-
ple head poses. The robustness of the FRmodel to head poses
is veri?ed by synthetic head poses and head poses from a real
dataset with a limited identity number. This work also studies
the feasibility of handling lighting variations by fine-tuning
the neural FR network. The results for directional lighting are
promising and indicate the potential for an end-to-end neural
face authentication solution for in-the-wild faces.

The major contributions of this work are as follows:

• Evaluate the effect of directional facial lighting and
multiple head poses on a state-of-the-art face recognizer.

• Fine-tuning alleviates the effect of direct light on the face
recognizer.

• Public face datasets with illumination and head pose
are quantified but concluded that they do not provide
adequate variation in the context of extreme directional
lighting conditions.

The optimization and compression of a CNN-based model
for porting onto a neural accelerator require a complex and
involved process of quantization and pruning of network
layers, coupled with the extensive tuning of weights and
validation experiments to retain model performance on one
or more reference datasets [33], [34], [35], [36]. This work
is not concerned explicitly with this process but rather seeks
to establish if the original FR model can achieve sufficiently
robust performance, thus justifying the effort involved in this
model optimization and compression process.

The remainder of the paper is structured as follows. The
literature survey is initially presented in Section II. Section III
describes the datasets and methodology we adopted in our
experiments. Subsequently, the initial experiments on GAN
augmentations are described and discussed in Section IV
and Section V. Further experiments and discussion about the
inconsistent results between real and synthetic lighting are
conducted in Section VI and Section VII. The fine-tuning
strategies were proposed to compensate for the lighting vari-
ations in Section VIII. Finally, the findings of this research
are summarized and discussed in Section IX.

II. RELATED WORKS
A. PORTRAIT RELIGHTING
Light Stage [37] captures the reflection field of faces by
taking various photos of the same person under distinct
lighting conditions, and subsequently re-rendering the 3D
faces under novel lighting conditions. The method works
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quite efficiently, but it requires expensive equipment and
constrained experimental conditions, which is not suitable for
consumer-level usage. This has promoted the development of
single image portrait relighting without hardware conditions
and constrained environments. Early approaches [38], [39]
controlled lighting mainly by modifying the parameters of
the directional lightingmodel, and the advent of deep learning
has promoted the capability of authentic lighting effects. Ref-
erence [40] utilize deep neural networks to decompose image
composition for relighting, however, it can only obtain coarse
facial geometry, albedo and relighting results. Sun et al. [41]
andWang et al. [42] employed environment maps to build the
illumination model, yielding more challenging results.

Zhou et al. [43] relight a facial image by adopting the
Spherical Harmonics (SH) lightingmodel and using synthetic
data to train the deep neural network. This model is able to
produce renderings for arbitrary light directions that exhibit
realistic shadows and specular highlights, and is able to gen-
eralize across a wide variety of subjects without introducing
artifacts. The advance in the relighting techniques gives the
ability to augment ‘in the wild’ face datasets introducing
any variation in the direction, illuminance and intensity of
the lighting while generating high-quality samples without
artifacts. In our work, we evaluated the effect of directional
illumination, and this model provides a solution for the lim-
ited variation of illuminated face datasets.

B. FACE ROTATION
The face rotation, also known as synthetic multi-view faces,
generates a face with a specified pose according to the input
face. Face frontalization, which has the ability to recognize
faces in various pose conditions, has attracted more attention
in previous research. The existing methods can be roughly
classified into 3D fitting based method [44], [45], encoder-
decoder architecture based deep learning method [46],
[47] and generative adversarial networks (GAN) based
method [48], [49]. Most existing technologies require paired
face images, and the quality of synthetic faces depends heav-
ily on the training set, which limits the practical application of
these technologies. Rotate-and-Render [50] proposed a novel
self-supervised framework that can synthesize multiple views
of faces using only single-view image collections in the wild.
The key point of the rotate-and-render method is that they
adopt a strong self-supervision by rotating faces in a 3D space
and re-rendering these faces to a 2D plane. One of the aims
in this work is to quantify the effect of arbitrary pose data
on state-of-art neural face recognition. The rotate-and-render
technology provides enough photo-realistic head pose data
variations for us to answer the previous research questions.

C. FACE RECOGNITION
With the advances in computational resources and with a
surge in access to very large datasets, deep learning archi-
tectures have been developed and pushed the state-of-the-art
in the FR task achieving exceptional accuracy results [7].
For example, the emergence of network architectures such

as VGGNet [51], GoogLeNet [52], ResNet [53], Mobile-
FaceNet [54], FR3DNet [55] and etc. has improved the
performance of face recognition. Another direction that
has contributed to the development of face recognition in
recent years has focused on exploring new approaches for
learning loss functions for metrics including DeepFace [4],
FaceNet [3],CosFace [6], ArcFace [5], CurricularFace [56],
MagFace [57] and Elasticface [58], etc. Most of the loss
functions are designed according to the criteria of maximiz-
ing the inter-class distance and minimizing the intra-class
distance. More information regarding the state-of-the-art of
deep neural FR approaches as well as the entire pipeline of
the FR and the methods used are given in [25] and [59].

Despite the improvements, the FR task remained challeng-
ing in several cases. Studies revealed that many factors can
have a negative impact on FR performance, with the main
factors being pose, illumination, and others. Specifically,
regarding the challenge of recognizing faces in various poses,
the approaches employed include frontalizing faces [48],
[49], building a mapping of side faces to frontal faces [60],
combining head pose estimation with face recognition [61],
[62], or using pose invariant face recognition (PIFR) [4], [63],
[64]. On face samples with lighting variation, techniques
were proposed that complement both the traditional and deep
learning FR methods reporting improved performance [7],
[65]. The approaches include pre-processing the facial sam-
ples to normalize any variation, before feeding it to the face
recognition algorithm. This paper explores the impact of
lighting and pose conditions on the robustness of state-of-
the-art facial recognition (FR) techniques, and provides some
insights into the study of end-to-end face recognition systems
for multi-task scenarios such as extreme lighting conditions
and facial poses.

D. FACE DATASETS
Databases have been introduced to facilitate the development
of FR models with light, pose, expression, and other vari-
ations. The Yale B dataset [66] contains 28 subjects under
9 poses and 64 illumination conditions in grayscale. The AR
face dataset [67] was introduced with 4000 corresponding to
126 people’s faces in 1998. Their images are characterized
by frontal faces with different facial expressions, illumination
conditions, and occlusions. The CAS-PEAL face dataset [68]
contains 99594 images of 1040 individuals, and each sub-
ject has 5 expressions, 6 accessories, and 15 lighting direc-
tions. All the subjects are from China. The PF01 (Postech
Faces ’01) [69] contains true-color face images of 103 people
with 4 illumination variations, and all of the subjects in the
database are Asians. More recently the UHDB31 [70] was
published having 21 poses and 3 lighting variations. Despite
existing face datasets typically considering various lighting
and pose conditions, they have various drawbacks such as
limited human subjects, image resolution, ethnographic vari-
ation, and color variations. All of these datasets are not
designed for portrait re-illumination or synthetic head pose
purposes, so they do not contain multiple illuminations and
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head pose information and are not able to represent ’in the
wild’ conditions.

III. DATASETS AND METHODOLOGY
A. DATASET
1) CelebA-HQ
CelebA-HQ [71] is a high quality face dataset derived from
the CelebA [72] dataset. It contains 30k images of 1024 ×
1024 faces with roughly 6000 identities. This dataset is
acquired by cropping faces from the original dataset by face
landmarks and enhancing the image quality using a GAN
trained super-resolution model. A bilinear interpolation and
frame filter were used to scale the images to 1024 × 1024.
The dataset was created and initially used to train PGAN [71]
and StyleGAN [73]. CelebA-HQ is high quality synthetic
dataset with sufficient subjects and limited lighting variation,
which is a valid dataset for face recognition. In Section IV-A,
CelebA-HQ is utilized to produce multiple directional illumi-
nated face data using a face relighting method.

2) BIWI
The Biwi Kinect Head Pose Dataset [74] contains around
15.8k images of 20 people (6 females and 14 males, 4 people
were recorded twice). Each frame is provided with a depth
image, corresponding RGB image and annotation. The res-
olution of each sample is 640 × 480, and the head pose
range is yaw ∈ (−75,+75), pitch ∈ (−60,+60) and roll
∈ (−50,+50). Ground truth is provided in the form of
the 3D position and rotation angle of the head. The BIWI
is a ‘real-world’ dataset, which was captured by a Kinect
at about one meter distance. BIWI is used in this work to
generate synthetic head poses, though it has a limited number
of identities. Then the synthetic head pose and the real head
pose could be evaluated on the FR model.

3) MultiPIE
The CMU Multi-PIE face database [75] contains 337 sub-
jects, captured under 15 view points and 19 illumination
conditions in four recording sessions for a total of more than
750,000 images. This dataset was published in 2013, which
has a single background and a small span of illumination.
Although it has some limitations, it has 337 subjects and
19 illumination conditions, making it in use by the research
community. The cropped images from the original MultiPIE
used for the experiment are shown in Figure 1.

B. FACE RELIGHTING METHOD
The lighting variation is applied to the CelebA-HQ
dataset [71] and the MultiPIE dataset [75] via the Deep
single image Portrait Relighting (DPR) technique [43]. In this
method, a CNN is trained to generate a relighted image based
on a Spherical Harmonics (SH) description of a lighting
source. The method achieves SoA results, and in particular
avoids introducing artifacts to the relighted samples - a
drawback of other re-lighting methods [40], [42] that were

FIGURE 1. The original cropped images from CMU MultiPIE. The first
column is for images without any flash (no lighting), and the rest of the
column only used one flash (one lighting condition).

FIGURE 2. The target SH lighting that is examined in this work is
presented on the top row. The original images of CelebA-HQ are on the
left column. Examples of lighting injected in the original images using the
DPR method [43] are shown for each examined illumination scenario
(right, left, top & bottom).

considered for use in this study. The selected DPR method
is trained on the well-known CelebA-HQ dataset which pro-
vides good variability in terms of subject identity, combined
with consistent face image quality. This makes the com-
bination of the DPR re-lighting methodology and CelebA-
HQ ideal for this work as side effects are eliminated due to
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either variable facial sample quality or re-lighting artifacts,
either of which could distort our experimental outcomes.
Note that DPR employs a generative adversarial network
for re-lighting and obtains synthetic portraits with different
directional lighting, so in this paper both synthetic lighting
faces and GAN-generated lighting faces represent the portrait
re-lighting.

In this work, experiments are restricted to a select set
of directional lighting components in order to gain a better
understanding of the overall effect of directional lighting. The
selected scenarios that are examined include lighting from
4 main directions: right, left, top, and bottom of the face
image. This has the added benefit of keeping the computation
requirements for experiments bounded to a reasonable time
frame, with most individual experiments completed in less
than a 48-hour period.

The representative Spherical Harmonic (SH) lighting
sources used are shown in Figure 2. More SH lighting sce-
narios can be found in.1 The illumination variations (right,
left, top and bottom) are introduced to each sample of the
CelebA-HQ dataset, resolving with 4 new sets of the
CelebA-HQ, each containing of one illumination variation
(CelebA-HQ-right, CelebA-HQ-left, CelebA-HQ-top and
CelebA-HQ-bottom). Examples of the CelebA-HQ samples
after introducing the illumination variations are illustrated in
Figure 2. It can be seen from Figure 2 that the DPR method
has high quality outputs incorporating the target SH lighting
to the images realistically andwithout generating any artifacts
to the face images. Instructions on how to generate the sets
of CelebA-HQ and MultiPIE with the different illumination
scenarios are given in the Github repository of this work.2

C. SYNTHETIC HEAD POSE METHOD
Rotate-and-render technique [50] is adopted to synthesize the
head pose of the BIWI dataset. Specifically, 3D faces are gen-
erated from 2D using the 3D face fitting network 3DDFA [76]
and a neural renderer. These faces are then rotated in 3D
space and re-rendered to the 2D plane. An image-to-image
translation network is then adjusted to fill in the invisible
parts and get the output head pose. In this way, a single
portrait image can be rotated to arbitrary angles, and the
results eliminate artifacts caused by rotation, while existing
local texture information can be preserved. Additionally, this
technique is training face rotation in a fully unsupervised
manner under in-the-wild scenarios. The above reasons make
the rotate-and-render technique an ideal method for this work,
which is strongly suitable in real-world circumstances.

The rotation of the head pose is divided into yaw, pitch
and roll, as shown in Figure 3 [77]. Yaw is the rotation
around the vertical axis, i.e., profile and frontal. Pitch is the
rotation around the side-to-side axis, i.e., head up and head
down and roll is planar rotation. Since the rotation of roll

1https://zhhoper.github.io/dpr.html
2https://github.com/C3Imaging/Deep-Learning-

Techniques/tree/Quantify-Retrain-FR-for-Light

FIGURE 3. Head rotation with Pitch, Yaw and Roll [77].

only involves the translation rotation of the image and the
rotation of pitch faces in real-world are poor, we discuss the
effect of yaw generated by the rotate-and-render technique
in this research. We restrict our experiments to generating
a series of fixed-angle faces to gain a better understanding
of the synthetic head pose data. The synthesized pose also
allowsmore granular control of pose angles than the real data,
thus introducing an option for future research on head-pose
to benefit from GAN-driven augmentation of frontal portrait
images.

Examples of the CelebA-HQ samples after introducing the
head pose variations are shown in Figure 4. It can be seen
from Figure 4 that, subjectively, the rotation results have high
quality, especially in rotation in a small range. In this work,
the impact of face pose on the face recognition algorithm
is further validated by the BIWI dataset, which is a real
multi-view dataset obtained from a real environment. Since
the BIWI dataset has limited identities and poses data, we use
synthetic multi-view faces to further validate the impact of
synthetic face pose on the face recognition algorithm. To get
the best results when generating various head pose images,
we select ‘frontal’ faces from the dataset as input to synthe-
size profile faces at arbitrary-angle faces. The synthesized
pose also allows more granular control of pose angles than
the real data - thus introducing an option for future research
on head-pose to benefit from GAN-driven augmentation of
frontal portrait images.

D. ROC CURVES AS A METRIC
The Receiver Operating Characteristic (ROC) curve [78]
illustrates the ability of a binary classifier system, which is
created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. X-axis,
called false positive rate (FPR) or probability of false alarm,
is defined as the proportion of negative data divided into
positive categories. Y-axis, called true positive rate (TPR) or
hit rate, means the proportion of positive data being divided
into positive categories.
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FIGURE 4. Examples of head pose variations generated by rotate-and-render method [50]. The images from the first column are original CelebA-HQ. The
rest columns are the head pose with different angles.

The ROC curve illustrates the performance of the classi-
fier under different thresholds, which can visually demon-
strate the uniqueness of the identity and is widely used to
evaluate the performance of face recognition models [32].
Specifically, to compute a ROC curve, an equal number of
positive-identity pairs (PP) and negative-identity pairs (NP)
are created. Using the corresponding embeddings (extracted
from the FR model for each image) of the pairs, similarity
scores are calculated and used to plot the ROC curve.

The higher the TPR and the smaller the FPR, the better the
classifier effect. Based on the performance of the ROC curve,
the top-left curve of the ROC is close to 1 (i.e., the closer the
TPR is to 1 when the FPR is close to 0), indicating that the
performance of the FR model in the selected sample is more
effective.

In this work, the ROC curve is used to evaluate the per-
formance of the face recognition model. A PP is two images
from the same identity and a NP is two images from distinct
identities. The PPs are created by the whole dataset, and
NPs are generated randomly with the same image pairs as
PP. Then, the identity similarity score is calculated by the
embeddings obtained from the face recognition model. True
positive and true negative were obtained by calculating the
identity similarity scores of PP. Similarly, false positive and
false negative were obtained by using the identity similarity
scores of NP. Then, TPR and FPR were calculated and the
ROC curve is plotted.

E. FACE RECOGNITION MODEL
A public reference implementation of the ArcFace [5]
model is available, as the authors have released optimized,

FIGURE 5. The ROCs comparison on different FR models.

pre-trained, weights for the model. This reference ArcFace
model has high performance on the dataset used in this work
and provides a useful public baseline for future performance
comparisons. In general, any face recognition method could
be used for experiments as long as they are state-of-the-art
models and have a high performance on the datasets used
in this work. Other SoA FR models such as FaceNet [3] or
CosFace [6] do not provide reference implementations and
thus restrict direct experimental comparisons. The unofficial,
but public, implementation of Deepface framework3 were
also tested as shown in Figure 5 but could not provide a
similar level of performance on the baseline or test datasets

3https://github.com/serengil/deepface
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used in this work. This has motivated our use of official
ArcFace throughout this study.

ArcFace loss, or Additive Angular Margin Loss, is a loss
function that maximizes the classification boundaries directly
in the angular space used in face recognition tasks. In this
work, the recommended workflow, by the authors of ArcFace
is followed before the face samples are fed to the network.
Firstly, the MTCNN [79] is used for detection. The detected
area is cropped and resized to 112 × 112, using bilinear
interpolation. Then the cropped faces are fed into the ArcFace
network and 512-embeddingwill be computed corresponding
to the faces. Finally, the identity similarity of two faces is
obtained by calculating the cosine similarity, which is using
two 512-embeddings. The pretrained network used in this
work is provided by the authors of ArcFace and can be found
in.4

Due to the introduction of lighting variation and pose
variation, face detection is not able to process all the face
images from the datasets. In the experiments, only the images
which the face detection network was able to process in all the
illumination scenarios and head pose conditions along with
the original image, are used in order to keep the consistency in
the experiments. A list of the images used in the experiments
can be found in 2.

IV. INITIAL EXPERIMENTS ON LIGHTING AND HEAD
POSE
In this section, the experiments were conducted to quantify
the effects of synthetic and real illumination conditions on FR
performance, followed by experiments conducted to quan-
tify the effects of synthetic and real pose conditions on FR
performance.

A. EXPERIMENTS WITH SYNTHETIC LIGHTING
VARIATIONS
In this experiment, we evaluate the synthetic lighting vari-
ations from CelebA-HQ on the face recognition model.
CelebA-HQ, as an initial base dataset, is utilized to produce
multiple directional illuminated face data by the face relight-
ing method.

The effects of the 4 directional lighting scenarios shown
in Figure 2 on the FR’s performance are examined. Initially,
a ROC curve is calculated using only the samples from the
test set of the original CelebA-HQ (ROC-Original) following
the procedure described in section III-D. All possible PPs
from the test set of the original CelebA-HQ are used, in total
31k image pairs and an equal number of NPs are created
randomly. Using the corresponding FR embeddings, the sim-
ilarity scores are calculated and used to plot the ROC curve.

The ROCs corresponding to re-lighting augmented scenar-
ios is calculated following a similar procedure. The same
positive and negative identity pairs as in ROC-Original are
used but one of the samples from each pair has a re-lighting

4https://www.dropbox.com/s/ou8v3c307vyzawc/model-r50-arcface-
ms1m-refine-v1.zip?dl=0

FIGURE 6. ROC curves, representing the performance of the FR model 4

on the original images and the 4 initial directional illumination scenarios
(left, right, top, bottom) examined in this work.

augmentation applied. This results in 4 main ROC curves
(ROC-Left, ROC-Right, ROC-Top, ROC-Bottom) represent-
ing the FR’s performance in each illumination scenario. The
positive and negative pairs used to compute each ROC can be
found in 2. The resulting ROCs enable a direct comparison of
the effects of different types of directional illumination with
the original set of test image pairs and between them. This is
presented in Figure 6.

From Figure 6 the initial experimental results are largely
self-consistent and show well-defined performance degrada-
tion of the FR which is largely consistent with what might
be expected. The ROC-Original curve illustrates that the
FR model has a SoA performance on the non-augmented
test dataset approaching close to unity, of 0.99 TPR on the
corresponding to 10−4 FPR value. The re-lighting augmented
ROC curves show significant deviations from this baseline
performance and are largely consistent with what might be
expected. Thus, the smallest deviation is for the ROC-Top,
which starts at 0.925 TPR, followed by the ROC-Right and
ROC-Left curves at 0.86 and 0.85 respectively. The worst
performing ROC is that of the bottom light, starting with a
TPR of only 0.725.

Looking at the examples shown in Figure 2 these results
make sense - the top lighting augmentation causes the least
distortion to the facial image from a human perspective,
whereas the bottom-lighting creates more obvious distortions
in the facial features. Finally, the left/right lighting augmen-
tations would be expected to have similar effects due to the
symmetry of a human face. Note that the statistical variation
between ROC-Left and ROC-Right is most likely due to
statistical left-right pose variations in some facial samples
leading to eccentricities in the corresponding lighting aug-
mentations.

The initial results shown in Figure 6 encouraged a more
extensive set of experiments to include additional top-
right, top-left, and bottom-right, bottom-left lighting aug-
mentations, to further improve our understanding of mixed
directional lighting modes. The new SH lighting used and
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FIGURE 7. The additional SH lighting that is examined in Figure 8 is
presented on the top row. The original images of CelebA-HQ are in the
left column. Examples of lighting injected in the original images using the
DPR method [43] are shown for each examined illumination scenario
(top-left, top-right, bottom-left, bottom-right).

FIGURE 8. Additional ROC curves, representing the performance of the FR
model 4 on the original images and the 8 directional illumination
scenarios (left, top-left, bottom-left, right, top-right, bottom-right, top and
bottom) examined in this work.

examples of the CelebA-HQ samples after introducing these
illumination variations are illustrated in Figure 7. The goals
of this additional set of experiments were to provide a second
validation of our results, in addition to exploring the effects
of more varied re-lighting augmentations.

Due to the introduction of the new lighting variations, face
detection is not able to process all the face images from the
test set of the CelebA-HQ. Similarly as in section III-E, only
the images which the face detection network was able to
process in all 8 illumination scenarios and the original images

are used in order to keep the consistency in the experiments.
Therefore, the initial test set of 8,654 images from 2k identi-
ties is reduced to 8,552 images from 1,979 identities. In order
to calculate the ROCs, corresponding to the original images
and the 8 illuminations scenarios the procedure described
in III-D and IV-A, is followed, using the new tests. As the
size of the test set is reduced, so is the number of all possible
positive image pairs used to compute the ROCs. For this set
of experiments 30k positive pairs and an equal number of
negative pairs are used. These pairs can be found in 2.

The primary directional ROCs curves (top, bottom, left,
and right) presented in Figure 8, differ slightly from those
of Figure 6, as the image pairs used in these experiments are
different. However, their behavior has broadly similar charac-
teristics. The bottom, bottom-left and bottom-right lighting
augmentations are seen to be the most challenging for the
FR task, while the top-left and top-right illuminations have
the least effect on the FR’s performance. There is a small
drop and a small increase in the FR’s performance from
the top and right light respectively, compared to Figure 6.
These are attributed to the use of different pairs. These results
are useful as a baseline for the section VIII, as they help
demonstrate that fine-tuning the primary set of directional
lighting augmentations can generalize across a broader range
of directional lighting effects.

B. EXPERIMENTS WITH REAL LIGHTING VARIATIONS
In this experiment, we evaluate the real lighting variations
fromMultiPIE on the face recognitionmodel. SinceMultiPIE
has multiple views which may have an uncertain effect on
the results, we only choose frontal faces as an initial exper-
iment. Similar to the previous experiments, we create PPs
and NPs at the beginning. First, two different frontal images
with the same identity under ambient illumination condi-
tions are employed to acquire a positive pair. Two frontal
images with different identities under ambient illumination
conditions are employed to acquire a negative pair. We can
obtain 10059 positive pairs and subsequently generate the
same number of negative pairs randomly from ambient illu-
mination conditions. Then, for the other lighting conditions,
we simply replace one image from the pair with a correspond-
ing image having the relevant lighting condition. By applying
the method in section III-D, we obtain the ROC curves of the
real MultiPIE dataset in Figure 9.

The effects of 5 lighting conditions (ambient, central,
left, right, and top lighting) shown in Figure 9, the initial
experimental results show good performance across different
lighting conditions. The ROC curves show that the FR model
has a high performance on all conditions, which starts at
0.99 TPR. The ROC curve of ambient lighting condition is
a bit poor. And the ROC curve of central lighting condition
has good performance. This indicates that the ambient light-
ing condition is darker than others. These results appear to
contradict the GAN-augmented results derived from CelebA-
HQ, showing that the face recognition model can identify the
original MultiPIE dataset very well. This is inconsistent with
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FIGURE 9. ROC curves, representing the performance of the FR model 4

on the original MultiPIE images with the 4 illumination scenarios (the
flashes we chose from MultiPIE are 00, 01, 07, 13, 16) examined in this
work.

the results of Section IV-A, and some possible reasons for
these outcomes will be further discussed in Section V and VI.

C. EXPERIMENTS WITH SYNTHETIC HEAD POSE
VARIATIONS
This experiment quantifies the effect of synthetic multi-pose
faces on face recognition. First, we validate the effect of yaw
variation from 0 to 35 degrees on face recognition. Second,
we extend the angular range of the BIWI dataset to study the
effect of large yaw variation on face recognition.

The frontal faces are adopted to synthesize faces at 0, 10,
20, 25, 30, 35, 45, and 55 degrees with the rotate-and-render
technique [50] to generate a large-scale synthetic head pose
dataset. PPs with the same identity are generated using real
frontal faces, and then NPs with the same number of different
identities are generated to obtain 3.5K PPs and 3.5KNPs. The
original ROC curve is plotted by using the PPs and NPs. For
PP and NP, one image is from real frontal faces and the other
image includes synthetic head pose variations. In this way,
we can obtain the PPs and NPs of faces from the different
head pose. Finally, the images from PPs and NPs are fed into
ArcFace and the ROC curves are plotted via the method in
Section III-D.

The resulting eight ROC curves (Degree00-ROC,
Degree10-ROC, Degree20-ROC, Degree25-ROC, Degree30-
ROC, Degree35-ROC, Degree45-ROC, and Degree55-ROC),
respectively, represent the performance of face recognition
under different pose variations. The plotted ROC curves
enable a direct comparison of the effect of multi-pose faces
with the original frontal image pairs, and between them.
Figure 10 (a) shows the ROC curves drawn from 0 to
35 degree face pose, and (b) shows the ROC curves drawn
from 35 to 55 degree face pose.

The BIWI original ROC curve in Figure 10 (a) shows that
the face recognition model performs close to 1 on the original
frontal dataset. The performance of Degree00 ROC curve and
Degree10 ROC curve in Figure 10 (a) is almost unchanged
and close to the performance of the original ’frontal’ dataset

FIGURE 10. The ROC curves, representing the performance of the FR
model 4 on the original images and the 8 synthetic head pose conditions
examined in this work. Here the data are generated by the original BIWI,
which yaw, pitch and roll ∈ (−5, 5) degrees.

on the FR model. This illustrates 10 degree head faces have
almost no effect on FR performance. Then Degree 30 ROC
curve notices a slight decrease in Figure 10 (a), the start of
the ROC curve is still greater than 0.98 TPR.

Observing Figure 10 (b), the ROC curve at 35 degree,
we can see that the accuracy starts to drop obviously. As the
angle increases, the accuracy decreases more and more obvi-
ous. The start of the 45-degree ROC curve is 0.9 TPR and the
55-degree ROC curve is 0.86 TPR. It shows that the pose of
55 degrees is the most challenging one for the face recogni-
tion task in this experiment. This is consistent with our expec-
tation that the face recognition performance decreases signif-
icantly with increasing input head pose, especially when the
angle is greater than 35 degrees.

D. EXPERIMENTS WITH REAL HEAD POSE VARIATIONS
This experiment explores the use of ROC to measure and
quantify the impact of real multi-pose head data on face
recognition. While there is a wide range of pose variations in
the BIWI dataset, this experiment explores the effect of yaw
variations. We first limit the pitch and roll to a certain range
to reduce their effect on the yaw. There is also a requirement
that there are enough face images in the experiment to form
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FIGURE 11. ROC curves, representing the performance of the FR model 4

on the original BIWI images with the 6 head pose examined in this work.

PPs and NPs. Restricted by these two factors, we define a
certain range of varying angles as a fixed angle to increase
the number of images, and this range is also called bias,
which we set to 5 degrees. Also, we assume that faces have
symmetry, and symmetrical faces have the same effect on face
recognition. The pitch ∈ (−5, 5) and roll ∈ (−5, 5) remain
constant during the experiment. As shown in Table 1, when
yaw is greater than 35 degrees, the number and identities
of images are less, and the effect of individual images on
face recognition will have a significant impact on the ROC,
causing the results to be unstable not to have reference value,
so we only selected 0, 10, 20, 25, 30 and 35 degrees pose
images in this experiment.

The method for generating PPs and NPs used to calculate
face similarity is as follows. The PPs and NPs of the frontal
faces are the same as Section IV-C, and approximately 3.5K
PPs and 3.5K NPs could be obtained from the frontal faces.
To maintain consistency in the experiment, the PPs for the
remaining angles of the head pose consisted of one frontal
face and one head pose (10, 20, 25, 30, and 35), respectively.
In this way, 10 degree head poses have 4K PPs, 20 degree
head poses can get 2.2K PPs, 25 degree head poses can
generate 2.2K PPs, 30 degree head poses can get 2.3K PPs
and 35 degree head poses can get 2.8K PPs. The image pairs
from PPs and NPs were then fed together into ArcFace to
calculate the similarity and get the TPR and FPR. Thus the
ROC curves of real BIWIwere plotted, as shown in Figure 11.

Figure 11 shows that the change in real-world pose will
lead to a slight change in face recognition performance as
expected. From Figure 11, we can see that frontal faces
and 10-degree faces perform almost the same on the FR
model, indicating that real data frontal and 10-degree head
pose have almost no effect on FR performance. Observing
the ROC curve at 20 and 25 degrees in Figure 11, we can
find that the face recognition model can still achieve 99%
accuracy. The ROC curve at 30 and 35 degrees in Figure 11
has an obvious drop, but the face recognition model can reach
close to 98% accuracy. This phenomenon indicates that the
face recognition model has high robustness for real faces

rotated within 35 degrees along the yaw direction. Compare
to the synthetic head pose result in Figure 10 (a), it shows
that the performance of the FR model on synthetic faces
in Figure 10 (a) are consistent with the performance of FR
model on real faces in Figure 11.

V. DISCUSSION THE INITIAL EXPERIMENTS
Section IV illustrates and quantifies the effect of GAN-
generated data and real data with lighting and pose variations
on the face recognition model. First, the effect of synthetic
illumination data and real illumination data on face recogni-
tion is evaluated, and the ROC curves show that the perfor-
mance of synthetic illumination from CelebA-HQ and real
illumination from MultiPIE are inconsistent on the SoA face
recognition model. The performance of the ROC curve of real
illumination ismuch better than that of synthetic illumination.
Subsequently, the experimental results of Section IV-C and
Section IV-D show that the performance of synthetic pose
data and real pose data on the face recognition model is
similar. The ROC curves illustrate the impact of various head
pose data on the face recognizer and explore the behavior
and capabilities of real pose samples compared to synthetic
pose samples. Experiments have shown that the FR model
is challenged by various pose conditions. Head pose (>35
degrees) will cause degradation of the FR model, but the
FR model is still robust enough even at 55 degrees for head
poses. The synthetic pose dataset agrees with the real pose
dataset, indicating that the synthetic pose dataset can replace
or enhance the real dataset to some extent.

The relighting model is trained on CelebA-HQ, which
has about 6000 identities. And the number of identities in
MultiPIE is 337. The number of identities between MultiPIE
and CelebA-HQ may lead to differences in ROC curves.
Further work should focus on experiments to determine if
the difference of scale between datasets affects the results,
but lies outside of the scope of this work. The next set of
experiments explores the potential probabilities for inconsis-
tent results between real lighting and relighting portraits.

VI. FURTHER EXPERIMENTS TO ILLUSTRATE THE
RELIGHTING EFFECTS
It is clear that GAN + CelebA (G+C) gives very different
results fromMultiPIE in Section IV-A and Section IV-B. The
reasons for this inconsistent outcome are explored and clar-
ified in this section. First, the effect of relighting portraits is
quantified atMultiPIE on the face recognizer. Second, the dis-
crepancy between samples of relighting faces and real-world
faces is measured, as well as the potential explanations for
that discrepancy.

A. EXPERIMENTS WITH RELIGHTING VARIATIONS ON
MultiPIE
In this section, the effect of relighting on MultiPIE perfor-
mance is evaluated as away to compare the effect of real light-
ing with synthetic lighting on face recognition performance.
Firstly, ambient lighting images from MultiPIE are selected
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TABLE 1. Define yaw angle of real BIWI (pitch ∈ (−5,+5) and roll ∈ (−5,+5)).

FIGURE 12. The target SH lighting that is examined in this work is
presented on the top row. The original images of CMU MultiPIE from no
lighting condition are shown in the left column. Examples of lighting
injected in the original images using the DPR method [43] are shown for
each examined illumination scenario (right, left, top and bottom).

as original images, and the samples of the relighting images
are shown in Figure 12. Similar to the section IV-B, we create
positive pairs and negative pairs from original ambient light-
ing images inMultiPIE. Subsequently, we simply replace one
image from the pair with the relighting images. For example,
a positive pair for directional right lighting is one image
with ambient lighting from the original MultiPIE and another
image with right lighting generated by relighting method.
In this way, we could get one real pair and four relighting
pairs. The relevant images are fed into the face recognition
model and through calculation the directional lighting ROC
curves from MultiPIE are plotted in Figure 13.

The ROCs in Figure 13 present the performance of the
FR model on the original ambient lighting images from
multiPIE and 4 directional lighting images. From Figure 13,
the ROC-Top obtains almost the same performance as the
ROC-Original on face recognition. Followed by a slight drop
in the ROC-Right and ROC-Left, and the worst degradation
is ROC-bottom, where the starting TPR is only slightly above
0.7. Compared to Figure 6, it is illustrated that the ROCs

FIGURE 13. ROC curves, representing the performance of the FR model 4

on the original MultiPIE images with no lighting and the 4 initial
directional illumination scenarios (left, right, top and bottom) examined
in this work.

FIGURE 14. The target SH lighting that is examined in this work is
presented on the top row. The original images of CMU MultiPIE from
central lighting condition are shown in the left column. Examples of
lighting injected in the original images using the DPR method [43] are
shown for each examined illumination scenario (right, left, top and
bottom).

corresponding to the performance of the face recognition
has a similar result with the initial ROCs from CelebA-HQ.
Compared to Figure 9, the ROCs from the original Multi-
PIE are significantly better than the ROCs with relighting
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FIGURE 15. ROC curves, representing the performance of the FR model 4

on the original MultiPIE images with central lighting and the 4 initial
directional illumination scenarios (left, right, top and bottom) examined
in this work.

method. From Figure 12, the relighting samples are dark and
have many artifacts, far inferior to the synthetic results of
CelebA-HQ in Figure 2.
We suspect that the initial ambient relighting images are

too dark, which affects the outcome of the re-lighting por-
traits. Thus the central lighting images from MultiPIE are
selected as initial images to generate the relighting samples,
as shown in Figure 14. FromFigure 14, the relighting portraits
are brighter than the samples in Figure 9, and the artifacts
disappear apparently. This indicates that the lighting condi-
tions of initial images will affect the relighting results. The
PPs and NPs from the original central lighting images are
also created to calculate the ROC curve. Same with the last
experiment, one of the images from PP and NP is replaced
by relighting images, which are used to plot the ROC curves.
Figure 15 illustrates the performance of the FR model on the
original central lighting images from MultiPIE and 4 direc-
tional lighting images. The ROCs in Figure 15 show that the
bottom lighting results are better than the one in Figure 13,
but it is still inconsistent with the ROCs from the real lighting
experiment.

B. COMPARE THE SAMPLES FROM RELIGHTING METHOD
WITH THE SAMPLES FROM REAL LIGHTING ON MultiPIE
To further elaborate on the differences between synthetic
samples, we employ image quality evaluation and color his-
tograms to detail the differences between synthetic samples
and real samples.

1) COMPARE WITH IMAGE QUALITY ASSESSMENT
To evaluate the effectiveness of GAN-generated re-lit images
with real-world images, we compute the structural simi-
larity index (SSIM) and peak signal-to-noise ratio (PSNR)
between real-world images and relighting images. SSIM is
a perception-based model that treats image degradation as a
change in perceptible structural information and also incorpo-
rates important perceptual phenomena, including luminance
and contrast. PSNR compares the absolute error between the

maximum signal and the background noise. Here we take
real lighting images as the reference images and compute
the SSIM and PSNR via reference images and the target
relighting images.

From Figure 16, the quality of the re-lit images is degraded
to varying degrees compared to the original images. The
relighting images which are generated by original no lighting
images have a better quality than the relit images which
are generated by original central lighting images. From the
second row of Figure 16, we could find the images generated
by the original no-lighting images havemore artifacts than the
real images (first row). From the third row of Figure 16 (b),
we could find that the relighting images generated by central
lighting images have more realistic lighting compared with
the second row of (b), but the human face is blurred and
smoothed clearly in the third row of (b). This might be the
reason why they have lower SSIM and PSNR than the second
row.

2) COMPARE WITH COLOR HISTOGRAM
The color histogram is a representation of the distribution of
colors in an image. For digital images, the color histogram
denotes the number of each pixel in a fixed list of color ranges
that span the color space of the image, i.e., the set of all
possible colors. The color histogram is a statistic that can
be viewed as an approximation of a potentially continuous
distribution of color values. This experiment measures the
differences in the global distribution of colors between the
real and synthetic images by comparing the differences in the
color histograms.

Figure 17 shows the color histogram of two sample iden-
tities. For the histograms of real faces in the first column,
the highest peaks are mainly concentrated between 0 and
100 levels, which means that the faces are relatively dark. The
histograms of the real right lighting face and the histograms
of the real left lighting face are consistent for the same face,
indicating that the left and right illumination of the same face
are symmetrical. The histograms of the top lighting face are
uniform, implying that the brightness of the entire image is
almost uniform.

From the second column in Figure 17, the histograms of
GAN1 left lighting faces and GAN1 right lighting faces are
similar. And the level of the highest peaks is 256, which
means they are ’over-exposed’ or ’saturated’. And the second
highest peaks are closer to 0 levels than the histograms of the
real images, implying that GAN1+lighting images are darker
than the real lighting images. It indicates that there is signifi-
cant ambient lighting in addition to the directional lighting in
the images of the second column and the ambient illumination
level is low from the input images of GAN1+lighting. This
is consistent with the experimental conditions since the input
images in the second column are images without illumination
conditions.

From the third column in Figure 17, the level of the highest
peaks is 256 from the histograms of left/right light which is
similar to the second column. And some features in these
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FIGURE 16. Two samples with different lighting conditions are presented here. The first row of each sample is the real lighting images from MultiPIE. The
second row of each sample is the relighting images generated by the no-lighting images from the original MultiPIE. And the third row of each sample is
the relighting images generated by the central images from the original MultiPIE. The first, third, and fifth columns are left lighting, right lighting, and top
lighting conditions. The 2nd, 4th and 6th columns are their details respectively.

images such as eyes appear subjectively better than the ones
in the second column because the initial image is a frontal
illumination image. This comparison of real samples from
the multi-PIE dataset with GAN-adjusted samples can only
give us some subjective clues as to the origins of the observed

discrepancies in FR performance. A full resolution of this will
need to be addressed in separate research work.

As we could see in Figure 18, the ambient light from the
laboratory is at the top, and the walls of the laboratory may
cause the reflections of flash lighting. This indicates that the
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FIGURE 17. Two samples with color histograms are presented here. The first column of each sample is the cropped real lighting images from MultiPIE
and their color histogram. The second column of each sample is the cropped relighting images generated by the ambient lighting images from the original
cropped MultiPIE and their color histogram. And the third column of each sample is the cropped relighting images generated by the cropped central
images from the original MultiPIE and their color histogram. The first, second, and third rows are right lighting, left lighting, and top lighting conditions.

mix of directional and ambient lighting is not controlled in
Multi-PIE. It is hard to be sure how much of the directional
lighting in the real data is ‘directional’ and how much is due
to ambient reflections in the lab space. In addition, the GAN
does cause some overexposure of the background pixels and
the GAN images lack shadows - it is not clear how much
overexposure is on the face or if this is enough to cause
the observed deterioration in the ROC curve. These may
the reasons for the difference between the real images and
relighting images.

VII. DISCUSSION THE ADDITIONAL EXPERIMENTS
Section VI illustrates that the effect of relighting faces from
MultiPIE is consistent with the relighting faces from CelebA-
HQ. So the difference between the effect of real lighting por-
traits and the effect of relighting portraits is not due to its scale
or the underlying MultiPIE. We also gained an understanding
that the input image of the relighting model will affect the re-
illuminated portraits.

FIGURE 18. The collection laboratory of MultiPIE, and original images
with ambient lighting.

From the comparison of the histograms, it shows that the
color histogram is inconsistent between the real lighting faces
and the relighting faces; it may imply that this is not only
due to the GAN lighting model we used is not as good as
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the real lighting, but also due to different mix of ambient and
directional levels between the real lighting and GAN lighting.

In the first part of this work the potential effects of in-the-
wild lighting conditions and multiple head pose, in particular
directional lighting effects on a state-of-the-art neural face
recognition method have been demonstrated and quantified.
Thuswe could get the conclusion that while GAN lighting has
‘issues’ the multi-PIE is not representative of true directional
lighting either.

GAN lighting does give us extreme lighting conditions and
it tells us the ‘worst’ effects we can expect. Next question is
that should we be able to fine-tune for less significant distor-
tions? As was indicated in [7] this problem is typically solved
by additional pre-processing of image samples to correct for
lighting conditions. Next experiment is to determine whether
the FR can be fine-tuned to compensate for lighting effects.

VIII. FINE-TUNING THE ArcFace
In this section the selected FR model is fine-tuned, using
a similar approach to [80] with samples augmented with
directional lighting.

A. FINE-TUNING PROCESS
The initial pretrained network provided by the authors of Arc-
face 4, is fine-tuned using a training set comprising samples
from the original CelebA-HQ dataset and samples with all
4 primary directional lighting augmentations (CelebA-HQ-
Left, Right, Top and Bottom). In this experiment, 28,224
images were used from each set (CelebA-HQ-Left, Right,
Top, Bottom and original) that the face detection network
was able to process in all the illumination scenarios along
with the original CelebA-HQ images. Then the dataset is
divided into a train and test set with 19,570 images from 4k
identities and 8,654 images from 2k identities, respectively.
This is applied to each CelebA-HQ-set. Thus, 97,850 high-
quality facial samples were used for fine-tuning, or 19,570
from the original data and each of the four primary lighting
sub-categories.

For the re-training process, the standard Arcface loss func-
tion is used, with the learning rate set to 0.005 and a batch
size of 128, following the instructions from the authors of
ArcFace. The network is fine-tuned for 40 epochs, as the
number of images used is relatively large and all network lay-
ers are unfrozen for the fine-tuning process. After 40 epochs
the network showed satisfactory results on the training data
used and therefore stopped. Longer training could result in
over-fitting to the training data and thus not being able to
generalize. More details regarding the fine-tuning process
and the corresponding training code can be found at.5 The
fine-tuned network resulting from this re-training process is
released at 2.
The fine-tuned network is used to calculate the embed-

dings of the test samples. The same procedure as
described in III-D and IV-A is followed to calculate the

5https://github.com/deepinsight/insightface

FIGURE 19. ROC curves, representing the performance of the finetuned
FR network 2 on the original images and the 8 directional illumination
scenarios (left, top-left, bottom-left, right, top-right, bottom-right, top and
bottom) examined in this work.

ROC-Original-finetuned (ROC-Original-FT) and the ROCs
corresponding to the 8 different illumination scenarios
(ROC-Left-FT, Right-FT, Top-FT, Bottom-FT, Top-Left-FT,
Top-Right-FT, Bottom-Left-FT, Bottom-Right-FT,), using
the positive and negative pairs from section IV-A. These
ROCs are compared with the ROC-Original-FT and between
them to explore whether the fine-tuned FR model is able to
handle the variation in illumination as well as whether can
generalize across the illuminations that were not used for the
fine-tuning process.

B. ROCs COMPARISON
The ROCs representing the performance of the fine-tuned
FR model on the original images and on the 8 directional
lightings are presented in Figure 19. From Figure 19 it is
illustrated that the ROCs corresponding to the fine-tuned FR
model on the 4 main illuminations (left, right, top, bottom)
used in the fine-tuning process (Figure 19) are at higher
levels compared to the ROCs corresponding to the perfor-
mance of the initial network (Figure 8) on these illumination
scenarios. More importantly, the ROCs corresponding to the
fine-tuned model on the 4 illuminations scenarios that are
not used during the fine-tuning (top-left, top-right, bottom-
left, bottom-right), are also at higher levels, thus showing
that the network is able to generalize to other variations of
illumination that it was not trained on. Overall, the perfor-
mance of the fine-tuned FR model on any given illumination
scenario has increased and its above 0.95 TPR, even on the
lower FPR values. Notably, the ROCs are very close to the
performance of the FR on the original images. Therefore,
concluding that the FR model when trained with lighting
variation is able to adapt and handle face samples that include
illumination and achieve high accuracy results and also gener-
alize across different illumination variations that are not used
during fine-tuning. Thus, showing that the illumination can
be compensated through training methods and augmentation
techniques eliminating the need for pre-processing methods
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to correct the lighting, which are not optimal for use in neural
accelerators.

IX. CONCLUSION AND FUTURE WORKS
It is clear from the results of the experiments, illustrated in
Figure 10 and Figure 11 that a fully end-to-end neural face
recognition model is robust to head pose. It is feasible to
synthesizemultiple head pose for large-scale training datasets
in face recognition application. Through lighting experiments
from Section IV and Section VI illustrated that there is still
a gap between the current stage of the re-lighting method
and the real environment. The potential reasons that lead to
this difference may be the shadows in synthetic faces and a
mixture of ambient and directional illumination in the origi-
nal MultiPIE. The original images used for relighting experi-
ments will affect the synthetic relighting results. In addition,
SoA neural FR algorithms can be fine-tuned to handle dif-
ficult in-the-wild acquisition conditions such as directional
lighting. In section VIII-B the practicality of fine-tuning a
high-performing neural FR model has been demonstrated,
recovering performance levels close to the original baseline
for such lighting conditions. The fine-tuning process also
indicated that generalization from the primary directions to
combinations of directional lighting is achieved - a promising
result given the non-linear nature of lighting conditions.

One of the reasons for the poor relighting results is
shown in Figure 16 that the shadows in the synthetic images
are inconsistent with the real images. Recent re-lighting
method [81] deals with the hard shadows and relighting
together, but only the nose shadow is considered and the
experimental results we conducted on MultiPIE still have
artifacts and blur, which affect the performance of the face
recognition model. Other GAN relighting methods as we
mentioned in the introduction, mostly concentrate on the
environmental lighting condition, which is not in accordance
with our work.

Future work we will improve the effect of shadows, and
explore how shadows will affect the robustness of the face
recognition model. We will collect face images with direc-
tional lighting conditions in the lab and real-world to pro-
duce a portrait lighting dataset. We also plan to generate a
large synthetic dataset with various head pose and lighting
conditions to explore the effect of combining pose and light-
ing on FR models. In addition, there are other challenges
for FR algorithms in-the-wild, including those listed in the
introduction. A broader study on factors that can affect FR
is indicated. In this regard the availability of several large
3D facial model datasets [82] could provide sufficient indi-
vidual identities and support more complex data variations to
support such a study.

REFERENCES
[1] W. W. Bledsoe, ‘‘Some results on multicategory pattern recognition,’’

J. ACM, vol. 13, no. 2, pp. 304–316, 1966.
[2] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, ‘‘Face recognition:

A convolutional neural-network approach,’’ IEEE Trans. Neural Netw.,
vol. 8, no. 1, pp. 98–113, Jan. 1997.

[3] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[4] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, ‘‘DeepFace: Closing the
gap to human-level performance in face verification,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1701–1708.

[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ‘‘ArcFace: Additive angular
margin loss for deep face recognition,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4690–4699.

[6] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, ‘‘CosFace: Large margin cosine loss for deep face recognition,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5265–5274.

[7] M. M. Ghazi and H. K. Ekenel, ‘‘A comprehensive analysis of deep learn-
ing based representation for face recognition,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2016, pp. 34–41.

[8] L. Tran, X. Yin, and X. Liu, ‘‘Disentangled representation learning GAN
for pose-invariant face recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1415–1424.

[9] J. Zhao, Y. Cheng, Y. Xu, L. Xiong, J. Li, F. Zhao, K. Jayashree, S. Pranata,
S. Shen, J. Xing, S. Yan, and J. Feng, ‘‘Towards pose invariant face
recognition in the wild,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 2207–2216.

[10] S.-I. Choi, C.-H. Choi, and N. Kwak, ‘‘Face recognition based on 2D
images under illumination and pose variations,’’ Pattern Recognit. Lett.,
vol. 32, no. 4, pp. 561–571, 2011.

[11] A. Lanitis, C. J. Taylor, and T. F. Cootes, ‘‘Automatic interpretation and
coding of face images using flexible models,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 19, no. 7, pp. 743–756, Jul. 1997.

[12] J. R. Beveridge, D. S. Bolme, B. A. Draper, G. H. Givens, Y. M. Lui, and
P. J. Phillips, ‘‘Quantifying how lighting and focus affect face recognition
performance,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit.-Workshops, Jun. 2010, pp. 74–81.

[13] J.-Y. Zhu, W.-S. Zheng, F. Lu, and J.-H. Lai, ‘‘Illumination invariant single
face image recognition under heterogeneous lighting condition,’’ Pattern
Recognit., vol. 66, pp. 313–327, Jun. 2017.

[14] J. W. Wang, N. T. Le, J. S. Lee, and C. C. Wang, ‘‘Illumination compen-
sation for face recognition using adaptive singular value decomposition in
the wavelet domain,’’ Inf. Sci., vol. 435, pp. 69–93, Apr. 2018.

[15] A. Pena, A. Morales, I. Serna, J. Fierrez, and A. Lapedriza, ‘‘Facial
expressions as a vulnerability in face recognition,’’ in Proc. IEEE Int. Conf.
Image Process. (ICIP), Sep. 2021, pp. 2988–2992.

[16] Y. Peng and H. Yin, ‘‘Facial expression analysis and expression-invariant
face recognition by manifold-based synthesis,’’ Mach. Vis. Appl., vol. 29,
no. 2, pp. 263–284, Feb. 2018.

[17] M. Pavlovic, R. Petrovic, B. Stojanovic, and S. Stankovic, ‘‘Facial expres-
sion and lighting conditions influence on face recognition performance,’’
in Proc. IcETRAN Conf., 2018, pp. 777–781.

[18] S. Riaz, Z. Ali, U. Park, J. Choi, I. Masi, and P. Natarajan, ‘‘Age-invariant
face recognition using gender specific 3D aging modeling,’’ Multimedia
Tools Appl., vol. 78, no. 17, pp. 25163–25183, Sep. 2019.

[19] D. Deb, L. Best-Rowden, and A. K. Jain, ‘‘Face recognition performance
under aging,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jul. 2017, pp. 46–54.

[20] C. Werther, M. Ferguson, K. Park, T. Kling, C. Chen, and Y. Wang,
‘‘Gender effect on face recognition for a large longitudinal database,’’ in
Proc. IEEE Int. Workshop Inf. Forensics Secur. (WIFS), Dec. 2018, pp. 1–7.

[21] N. Narang and T. Bourlai, ‘‘Gender and ethnicity classification using deep
learning in heterogeneous face recognition,’’ in Proc. Int. Conf. Biometrics
(ICB), Jun. 2016, pp. 1–8.

[22] A. Nabatchian, E. Abdel-Raheem, andM. Ahmadi, ‘‘Illumination invariant
feature extraction and mutual-information-based local matching for face
recognition under illumination variation and occlusion,’’Pattern Recognit.,
vol. 44, nos. 10–11, pp. 2576–2587, Oct. 2011.

[23] L. Cimmino, M. Nappi, F. Narducci, and C. Pero, ‘‘M2FRED: Mobile
masked face REcognition through periocular dynamics analysis,’’ IEEE
Access, vol. 10, pp. 94388–94402, 2022.

[24] D. Zeng, R. Veldhuis, and L. Spreeuwers, ‘‘A survey of face recognition
techniques under occlusion,’’ IET Biometrics, vol. 10, no. 6, pp. 581–606,
Nov. 2021.

[25] H. Du, H. Shi, D. Zeng, X.-P. Zhang, and T. Mei, ‘‘The elements of end-
to-end deep face recognition: A survey of recent advances,’’ ACMComput.
Surveys, vol. 54, no. 10s, pp. 1–42, Jan. 2022.

123676 VOLUME 10, 2022



W. Yao et al.: Toward Robust Facial Authentication for Low-Power Edge-AI Consumer Devices

[26] P. Corcoran, J. Lemley, C. Costache, and V. Varkarakis, ‘‘Deep learning for
consumer devices and services 2—AI gets embedded at the edge,’’ IEEE
Consum. Electron. Mag., vol. 8, no. 5, pp. 10–19, Sep. 2019.

[27] A. Goel, C. Tung, Y.-H. Lu, andG.K. Thiruvathukal, ‘‘A survey ofmethods
for low-power deep learning and computer vision,’’ in Proc. IEEE 6th
World Forum Internet Things (WF-IoT), Jun. 2020, pp. 1–6.

[28] F. Li, B. Liu, X. Wang, B. Zhang, and J. Yan, ‘‘Ternary weight networks,’’
2016, arXiv:1605.04711.

[29] Z. He, B. Gong, and D. Fan, ‘‘Optimize deep convolutional neural network
with ternarized weights and high accuracy,’’ in Proc. IEEE Winter Conf.
Appl. Comput. Vis. (WACV), Jan. 2019, pp. 913–921.

[30] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky, and N. Cao, ‘‘A scalable
multi-TeraOPS deep learning processor core for AI trainina and inference,’’
in Proc. IEEE Symp. VLSI Circuits, Jun. 2018, pp. 35–36.

[31] W. Guicquero and A. Verdant, ‘‘Algorithmic enablers for compact neural
network topology hardware design: Review and trends,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[32] V. Varkarakis, S. Bazrafkan, G. Costache, and P. Corcoran, ‘‘Validating
seed data samples for synthetic identities–methodology and uniqueness
metrics,’’ IEEE Access, vol. 8, pp. 152532–152550, 2020.

[33] W. Zhang, N.Wang, L. Li, and T.Wei, ‘‘Joint compressing and partitioning
of CNNs for fast edge-cloud collaborative intelligence for IoT,’’ J. Syst.
Archit., vol. 125, Apr. 2022, Art. no. 102461.

[34] S. Kalapothas, G. Flamis, and P. Kitsos, ‘‘Efficient edge-AI application
deployment for FPGAs,’’ Information, vol. 13, no. 6, p. 279, May 2022.

[35] S. A. Bhalgaonkar, M. V. Munot, and A. D. Anuse, ‘‘Pruning for compres-
sion of visual pattern recognition networks: A survey from deep neural
networks perspective,’’ in Pattern Recognition and Data Analysis With
Applications. Singapore: Springer, 2022, pp. 675–687.

[36] U. Kulkarni, S.Meena, S. V. Gurlahosur, P. Benagi, A. Kashyap, A. Ansari,
and V. Karnam, ‘‘AI model compression for edge devices using optimiza-
tion techniques,’’ in Modern Approaches in Machine Learning and Cog-
nitive Science: A Walkthrough: Latest Trends in AI. Cham, Switzerland:
Springer, 2021, pp. 227–240.

[37] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker,W. Sarokin, andM. Sagar,
‘‘Acquiring the reflectance field of a human face,’’ in Proc. 27th Annu.
Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), 2000, pp. 145–156.

[38] Y. Wang, Z. Liu, G. Hua, Z. Wen, Z. Zhang, and D. Samaras, ‘‘Face re-
lighting from a single image under harsh lighting conditions,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2007, pp. 1–8.

[39] Y. Wang, L. Zhang, Z. Liu, G. Hua, Z. Wen, Z. Zhang, and D. Samaras,
‘‘Face relighting from a single image under arbitrary unknown lighting
conditions,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11,
pp. 1968–1984, Oct. 2009.

[40] S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Jacobs, ‘‘SfS-
Net: Learning shape, reflectance and illuminance of faces ‘in the wild,’’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6296–6305.

[41] T. Sun, J. T. Barron, Y.-T. Tsai, Z. Xu, X. Yu, G. Fyffe, C. Rhemann,
J. Busch, P. E. Debevec, and R. Ramamoorthi, ‘‘Single image portrait
relighting,’’ ACM Trans. Graph., vol. 38, no. 4, pp. 1–79, 2019.

[42] Z. Wang, X. Yu, M. Lu, Q. Wang, C. Qian, and F. Xu, ‘‘Single image
portrait relighting via explicit multiple reflectance channel modeling,’’
ACM Trans. Graph., vol. 39, no. 6, pp. 1–13, Dec. 2020.

[43] H. Zhou, S. Hadap, K. Sunkavalli, and D. Jacobs, ‘‘Deep single-image
portrait relighting,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 7194–7202.

[44] Y. Feng, F.Wu, X. Shao, Y.Wang, and X. Zhou, ‘‘Joint 3D face reconstruc-
tion and dense alignment with position map regression network,’’ in Proc.
ECCV, 2018, pp. 534–551.

[45] A. Jourabloo, M. Ye, X. Liu, and L. Ren, ‘‘Pose-invariant face alignment
with a single CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 3200–3209.

[46] Y. Zhang, M. Shao, E. K. Wong, and Y. Fu, ‘‘Random faces guided sparse
many-to-one encoder for pose-invariant face recognition,’’ in Proc. IEEE
Int. Conf. Comput. Vis., Dec. 2013, pp. 2416–2423.

[47] M. Shao, Y. Zhang, and Y. Fu, ‘‘Collaborative random faces-guided
encoders for pose-invariant face representation learning,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1019–1032, Apr. 2018.

[48] R. Huang, S. Zhang, T. Li, and R. He, ‘‘Beyond face rotation: Global and
local perception GAN for photorealistic and identity preserving frontal
view synthesis,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2439–2448.

[49] S. Zhang, Q.Miao,M.Huang, X. Zhu, Y. Chen, Z. Lei, and J.Wang, ‘‘Pose-
weighted GAN for photorealistic face frontalization,’’ in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2019, pp. 2384–2388.

[50] H. Zhou, J. Liu, Z. Liu, Y. Liu, and X. Wang, ‘‘Rotate-and-render:
Unsupervised photorealistic face rotation from single-view images,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 5911–5920.

[51] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[53] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[54] S. Chen, Y. Liu, X. Gao, and Z. Han, ‘‘MobileFaceNets: Efficient CNNs
for accurate real-time face verification on mobile devices,’’ in Proc.
Chin. Conf. Biometric Recognit. Cham, Switzerland: Springer, 2018,
pp. 428–438.

[55] S. Z. Gilani and A. Mian, ‘‘Learning from millions of 3D scans for large-
scale 3D face recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 1896–1905.

[56] Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and F. Huang,
‘‘CurricularFace: Adaptive curriculum learning loss for deep face recogni-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 5901–5910.

[57] Q. Meng, S. Zhao, Z. Huang, and F. Zhou, ‘‘MagFace: A universal
representation for face recognition and quality assessment,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 14225–14234.

[58] F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper, ‘‘ElasticFace:
Elastic margin loss for deep face recognition,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2022,
pp. 1578–1587.

[59] I. Adjabi, A. Ouahabi, A. Benzaoui, and A. Taleb-Ahmed, ‘‘Past, present,
and future of face recognition: A review,’’ Electronics, vol. 9, no. 8,
p. 1188, Jul. 2020.

[60] K. Cao, Y. Rong, C. Li, X. Tang, and C. C. Loy, ‘‘Pose-robust face
recognition via deep residual equivariant mapping,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5187–5196.

[61] C. Bisogni, M. Nappi, C. Pero, and S. Ricciardi, ‘‘PIFS scheme for HEad
pose estimation aimed at faster face recognition,’’ IEEE Trans. Biometrics,
Behav., Identity Sci., vol. 4, no. 2, pp. 173–184, Apr. 2022.

[62] M. S. Sarfraz and O. Hellwich, ‘‘Head pose estimation in face recognition
across pose scenarios,’’ in Proc. 3rd Int. Conf. Comput. Vis. Theory Appl.,
vol. 8, 2008, pp. 235–242.

[63] C. Ding, J. Choi, D. Tao, and L. S. Davis, ‘‘Multi-directional multi-level
dual-cross patterns for robust face recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 3, pp. 518–531, Mar. 2016.

[64] K. Okada, S. Akamatsu, and C. Von der Malsburg, ‘‘Analysis and synthesis
of pose variations of human faces by a linear PCMAP model and its
application for pose-invariant face recognition system,’’ in Proc. 4th IEEE
Int. Conf. Autom. Face Gesture Recognit., Sep. 2000, pp. 142–149.

[65] H. Han, S. Shan, X. Chen, and W. Gao, ‘‘A comparative study on illumina-
tion preprocessing in face recognition,’’ Pattern Recognit., vol. 46, no. 6,
pp. 1691–1699, Jun. 2013.

[66] K.-C. Lee, J. Ho, and D. Kriegman, ‘‘Acquiring linear subspaces for face
recognition under variable lighting,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 5, pp. 684–698, May 2005.

[67] A. Martinez and R. Benavente, ‘‘The AR face database,’’ CVC, Barcelona,
Spain, Tech. Rep. 24, 1998.

[68] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, and D. Zhao,
‘‘The CAS-PEAL large-scale Chinese face database and baseline evalu-
ations,’’ IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 1,
pp. 149–161, Jan. 2008.

[69] H. Dong and N. Gu. (2001). Asian Face Image Database PF01. [Online].
Available: http://nava.postech.ac.kr/archives/irndb.html

[70] H. A. Le and I. A. Kakadiaris, ‘‘UHDB31: A dataset for better understand-
ing face recognition across pose and illumination variation,’’ in Proc. IEEE
Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 2555–2563.

[71] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive grow-
ing of GANs for improved quality, stability, and variation,’’ 2017,
arXiv:1710.10196.

VOLUME 10, 2022 123677



W. Yao et al.: Toward Robust Facial Authentication for Low-Power Edge-AI Consumer Devices

[72] Z. Liu, P. Luo, X. Wang, and X. Tang, ‘‘Deep learning face attributes
in the wild,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3730–3738.

[73] T. Karras, S. Laine, and T. Aila, ‘‘A style-based generator architecture for
generative adversarial networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4401–4410.

[74] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Gool, ‘‘Random forests
for real time 3D face analysis,’’ Int. J. Comput. Vis., vol. 101, no. 3,
pp. 437–458, 2013.

[75] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, ‘‘Multi-PIE,’’
Image Vis. Comput., vol. 28, no. 5, pp. 807–813, 2010.

[76] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, ‘‘Face alignment in full pose range:
A 3D total solution,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 1, pp. 78–92, Jan. 2019.

[77] S. Basak, P. Corcoran, F. Khan, R. Mcdonnell, and M. Schukat, ‘‘Learning
3D head pose from synthetic data: A semi-supervised approach,’’ IEEE
Access, vol. 9, pp. 37557–37573, 2021.

[78] A. Mansfield, Information Technology—Biometric Performance Testing
and Reporting—Part 1: Principles and Framework, Standard ISO/IEC
1 97 951, Apr. 1, 2006.

[79] J. Xiang and G. Zhu, ‘‘Joint face detection and facial expression recogni-
tion withMTCNN,’’ in Proc. 4th Int. Conf. Inf. Sci. Control Eng. (ICISCE),
Jul. 2017, pp. 424–427.

[80] V. Varkarakis, S. Bazrafkan, and P. Corcoran, ‘‘Deep neural network and
data augmentation methodology for off-axis iris segmentation in wearable
headsets,’’ Neural Netw., vol. 121, pp. 101–121, Jan. 2020.

[81] A. Hou, M. Sarkis, N. Bi, Y. Tong, and X. Liu, ‘‘Face relighting with
geometrically consistent shadows,’’ in Proc. IEEE/CVFConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 4217–4226.

[82] H. Yang, H. Zhu, Y. Wang, M. Huang, Q. Shen, R. Yang, and X. Cao,
‘‘FaceScape: A large-scale high quality 3D face dataset and detailed rig-
gable 3D face prediction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 601–610.

WANG YAO (Graduate Student Member, IEEE)
received the B.Sc. degree in computer science
from Southwest University, China, in 2016, and
the M.Sc. degree in control engineering from
the University of Chinese Academy of Sciences
(UCAS), in 2019. She is currently pursuing the
Ph.D. degree with the University of Galway
(NUIG). She is also an Intern at FotoNation/Xperi.
Her research interest includes computer vision.

VIKTOR VARKARAKIS (Graduate Student
Member, IEEE) received the B.Sc. degree in com-
puter science and intelligent systems from the Uni-
versity of Piraeus, Greece, in 2017. He is currently
pursuing the Ph.D. degree with the National Uni-
versity of Ireland Galway (NUIG). He is also with
FotoNation/Xperi. His research interest includes
machine learning using deep neural networks for
tasks related to computer vision.

GABRIEL COSTACHE received the B.Sc. and
M.Sc. degrees from the Faculty of Electronics
and Telecommunications, Politehnica University
of Bucharest, Romania, in 2003 and 2004, respec-
tively, and the Ph.D. degree in image processing
from the National University of Ireland Galway
(NUIG), in 2006. He has been a part of FotoNa-
tion, since 2006. He is currentlty the Director of
biometrics at FotoNation/Xperi, which develops
technologies to process 2-D and 3-D imaging data.

JOSEPH LEMLEY (Member, IEEE) received the
B.S. degree in computer science and the M.S.
degree in computational science from Central
Washington University, Ellensburg, WA, USA, in
2006 and 2016, respectively, and the Ph.D. degree
from the National University of Ireland, Galway.
He is currently Leading the Xperi’s Sensing
Group, which develops novel algorithms and arti-
ficial neural networks for upcoming sensor tech-
nologies. His research interests include artificial

intelligence, deep learning, and computer vision. He received the 2017 Best
Paper Joint Award for the IEEE Consumer Electronics Magazine, the Best
Paper Second Place Award at ICCE 2018, and other awards in previous years.

PETER CORCORAN (Fellow, IEEE) holds the
Personal Chair of electronic engineering at the
College of Science and Engineering, University
of Galway. He was a Co-Founder of several start-
up companies, notably FotoNation, currently the
Imaging Division of Xperi Corporation. He has
over 600 technical publications and patents, over
100 peer-reviewed journal articles, 120 interna-
tional conference papers, and a co-inventor of
more than 300 granted U.S. patents. He is cur-

rently an IEEE fellow recognized for his contributions to digital camera
technologies, notably in-camera red-eye correction and facial detection. He is
a member of the IEEE Consumer Electronics Society for over 25 years. He is
the Editor-in-Chief and the Founding Editor of IEEE Consumer Electronics
Magazine.

123678 VOLUME 10, 2022


