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ABSTRACT This work investigates a data-driven approach to detect the number of incoming signals for a
lens antenna array (LAA). First, the energy-focusing property of an electromagnetic (EM) lens is utilized
to generate an input spectrum, which can be used to enumerate both the multipath and independent signals.
Next, we present the deep learning (DL)-assisted sharp peak recognition method referred to as the power
spectrum-based convolutional neural network (PSCNet). Unlike classical techniques, such as constant false
alarm rate (CFAR) detection, this data-driven detector can count received signals adaptively based on the
LAA power spectrumwithout requiring any initial configurations. In addition, the PSCNet outperforms other
state-of-the-art subspace-based detectors, even under challenging conditions, such as a low signal-to-noise
ratio (SNR), a small observation size, and angular ambiguity. For the training phase, we propose a pretrained-
model reusing strategy and an input pre-processing approach referred to as the power spectrum shortening
(PSS) to alleviate the training burden and achieve lower complexity compared to fully retraining all isolated
networks. The simulation results demonstrate that our proposed sharp peak-recognition algorithm not only
accomplishes the improved signal enumeration performance but also requires lower computational resources
than other subspace-based approaches.

INDEX TERMS Signal enumeration, lens antenna array (LAA), convolutional neural network (CNN), signal
power spectrum.

I. INTRODUCTION
The lens antenna array (LAA) is among the most
promising technologies to reduce the hardware cost and
signal-processing complexity for massive multiple-input
multiple-output (MIMO) systems and millimeter wave com-
munications based on the power-focusing property of the
electromagnetic (EM) lens [1]. The energy of the received
signal is concentrated on a subset of array elements, which
can then be distinguished and connected to a limited num-
ber of radio frequency (RF) chains. Therefore, it is crucial
to identify the beams from the transmitter and accurately
estimate the direction of arrival (DoA). Recently, various
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DoA-estimation strategies have been reported [2], [3].
A three-step algorithm based on a class of multiple signal
classification (MUSIC) called the root-MUSIC was proposed
to estimate the DoA in a scenario of entirely uncorrelated sig-
nals [2]. The study [3] investigated path number detection and
simultaneously presented a signal direction estimator consid-
ering the power leakage phenomenon of an LAA. However,
the coherence of the incoming signals has been overlooked,
and significant difficulties occur when they are highly corre-
lated. A preprocessing stage is crucial in handling the coher-
ent received signals because the reflected components are
combined into the direct ones, resulting in the rank deficiency
of the signal subspace. Spatial smoothing techniques, such as
forward/backward spatial smoothing (FBSS) algorithms [4],
[5], [6], and the full-row Toeplitz matrices reconstruction
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(FTMR) [7], [8], [9] in the rotational invariance technique
(ESPRIT)-like family [10], [11], [12], are effective prepro-
cessing tools to circumvent the problems of coherent signals.
However, it is worth emphasizing that these approaches
are applied when employing a linear antenna array, whereas
no studies on LAA-assisted direction estimation have been
conducted. For example, each complex-valued element of
the steering matrix of a uniform linear array (ULA) can be
expressed as an exponential form. On the other hand, the
array response of an antenna in an LAA follows a ‘‘sinc’’
function [1], which cannot form the Vandermonde structures
of the modified steering matrices appearing in the closed-
form expressions of the FBSS or FTMR’s output matrices.
As a result, the LAA’s smoothed covariance matrices have a
full rank, so that the signal and noise eigenvalues cannot be
distinguished. In other words, the spatial smoothing methods
fail to decorrelate the coherent signals received by an LAA.

Most of the existing DoA-related works [1], [2], [3], [4],
[7], [11], [12] rely on the subspace-based array process-
ing algorithms, whose common drawback is that the signal
number must be known as a prerequisite. Compared to the
subspace-based approaches, the compressed sensing (CS)
method [13] solves the issue of coherent DoA estimation
without a priori knowledge of the number of signals. This
method can be used to reconstruct the spatial spectrum based
on the sparsity of the non-zero entries in the angle space of the
array signals. In the CS sparse signal recovery variants, the
orthogonal matching pursuit (OMP) has a noticeably lower
computational complexity and a higher recovery speed [14];
thus, it is an appropriate choice for both signal enumeration
and direction approximation [15], [16]. However, the OMP
is susceptible to noisy signals and multipath distortion. As a
result, combining the CS-assisted estimation with a sharp
peak detector based on the recovered spectrum may result
in an enormous detection error probability of signal number
detection.

The signal-enumeration problem has been investigated
for several signal-processing and wireless communications
applications. The most commonly used techniques are the
gap measurements of two consecutive eigenvalues, such as
the Akaike information criterion (AIC) [17] and minimum
description length (MDL) [18]. In addition, the second-order
statistic of the eigenvalues (SORTE) [19] and eigenvalue ratio
(ER) [20] are employed to strengthen the detection capability
of conventional methods. Furthermore, two deep learning
(DL)-aided detectors called the eigenvalue-based classifica-
tion network (ECNet) and regression network (ERNet) [21]
have been introduced to overcome the severe performance
degradation in some challenging situations, including a low
signal-to-noise ratio (SNR) and limited number of snap-
shots. However, the difference in the LAA’s physical structure
from that of the classical ULA hinders the implementation
of these algorithms and other supporting dimensionality-
reduction methods [8], [9] in a coherent scenario. Moreover,
the eigenvalue decomposition (EVD) with a complex-valued
matrix creates a substantial computational burden, which

generally contributes about half of the total complexity of
these subspace-based algorithms. To alleviate the compu-
tational demands of the aforementioned data-preprocessing
step, the signal power distribution across the LAA elements
can be utilized as an alternative solution for the EVD. This
feature can then be combined with a simple sharp peak recog-
nition mechanism like the constant false alarm rate (CFAR)
scheme [22] to count the number of incoming signals. How-
ever, the CFAR detector needs to be configured with several
parameters, such as the number of training cells, number of
guard cells, and false alarm probability for operation. It is
noted that different values of configuration parameters affect
the performance of the CFAR detector. Last but not least, the
angle ambiguity affects the signal enumeration performance
of the spectrum-assisted and subspace-fitting algorithms. Pre-
cisely speaking, the peaks representing neighboring antennas
in an EF spectrum may be merged into one, which hinders
the prediction of a peak-finding algorithm, such as CFAR.
In addition, angle ambiguity results in the degeneration of
the steering vectors, each of which is approximated as a linear
combination of the others [23]. This undesirable phenomenon
causes the failure of the eigenvalue-based schemes. These
problems motivate the proposal of an efficient signal enumer-
ation algorithm for the LAA in this work. The contributions
of this work are as follows:
• The power spectrum-based convolutional neural net-
work (PSCNet), which utilizes the energy-focusing (EF)
property of an LAA, is proposed to obtain high signal-
enumeration accuracy without assigning values to any
configuration parameters. The simulation results show
that the PSCNet not only outperforms the eigenvalue
gap-based detectors and CFAR, even in harsh condi-
tions, such as a highly contaminated environment or a
limited sample size, but also improves the enumeration
capability in the case of manifold ambiguity.

• The input power spectrum is analyzed to show its adap-
tation to both the noncoherent and coherent scenarios.
In addition, it has been mathematically proven that the
proposed PSCNet has lower computational complex-
ity than the prior state-of-the-art subspace-based algo-
rithms, and OMP-assited path number detector.

• The power spectrum shortening (PSS) technique, which
eliminates some abundant elements in the original spec-
trum, is employed as an input conversion method so that
a transferred model can be reused to efficiently predict
the number of signals. Additionally, a model reusing
strategy is proposed to save on training time and compu-
tational resources as well as achieve better performance
compared to the traditional single-task learning model.

Notations: In this paper, lowercase, boldface lowercase,
and boldface capital letters denote scalars, vectors, and matri-
ces, respectively. The superscripts (·)∗, (·)T , and (·)H denote
the conjugate, transpose, and conjugate transpose of a com-
plex vector or matrix, respectively. The (m, n)th (or mth)
element of a matrixA (or vector a) is denoted by am,n (or am).
The expression ‖A‖0 (‖a‖0) indicates the `0-norm that is the

123836 VOLUME 10, 2022



D. T. Hoang, K. Lee: Deep Learning-Aided Signal Enumeration for Lens Antenna Array

FIGURE 1. Descriptions of (a) system model and (b) typical symmetric
LAA.

number of non-zero elements in matrix A (vector a). The
notationE {·} represents the expectation of a random variable.
Finally, the operator (∗) denotes convolution.

II. SYSTEM MODEL
As shown in Fig. 1(a), there are P far-field signals from K
transmit (Tx) sources impinging upon a receive (Rx) LAA.
For the kth cluster, let Lk be the number of signals, and

let q1 (k) =
k∑
l=1

Ll−1 + 1, and q2 (k) =
k∑
l=1

Ll be indices

of the first and last signals, respectively. It is obvious that

P =
K∑
k=1

Lk and L0 = 0. In some applications such as air-

borne radar [24] and global navigation satellite systems [25],
multipath echo is modeled as multiple incident signals that
are coherent with the direct one. Hence, we assume that
βi = ϑiejϕi represents the complex attenuation coefficient of
si(t), which is the replica of the first signal in the kth cluster,
sq1(k) (t), whereas ϑi and ϕi denote the fading amplitude and
phase difference of si(t) and sq1(k) (t), respectively.

1 Then the
ith coherent signal can be written as

si(t) = βisq1(k)(t), i ∈ [q1 (k) , q2 (k)]. (1)

Fig. 1(b) illustrates an LAA system with a Dy × Dz EM
lens, which is placed on the y–z plane. The thickness of this
lens is negligible compared with the focal length F , and its
center is at the origin. Assume P far-field narrowband signals
impinge upon an LAA composed of M0 = 2M + 1 identical
omnidirectional sensors from distinct directions φi, where
i = 1, 2, . . . ,P. Let the central element of the LAA be the
reference. Then, the array elements are placed based on the

1Without loss of generality, we assume that ϑq1(k) = 1, and ϕq1(k) = 0.
For noncoherent sources, only one incoming signal appears in each cluster.
In other words, Lk = 1 for k ∈ [1,K ] and βi = 1 for i ∈ [1,P].

angular resolution of the lens as follows [1]:

sin θm =
mλ
Dy
, (2)

where m represents the index of the sensor such that m ∈
[−M ,M ], λ is the carrier wavelength, and θm denotes the
angle of sensor m. According to [1], the array response of
antenna m to a signal from direction φ is given as

am (φ) =
√
αsinc

(
m−

Dy
λ

sinφ
)
, (3)

where α = DyDz
/
λ2 is the effective aperture, and

sinc (x) = sin (πx)
/
(πx).

The received signal xm(t) at the mth sensor at time t over
T uniquely spaced time snapshots can be expressed as

xm (t) =
P∑
i=1

si (t) am (φi)+ nm (t)

=

K∑
k=1

sq1(k) (t)
q2(k)∑
i=q1(k)

βiam (φi)+ nm (t) , (4)

where nm(t) represents the zero-mean Gaussian noise at the
mth sensor. The noise is independent and identically dis-
tributed (i.i.d) with a variance σ 2

n . It is assumed that the sig-
nals and noise are mutually independent. The entire received
signal in (4) can be rewritten in vector notation as

x(t) = [x−M (t), . . . , x0(t), . . . , xM (t)]T

= A (8) s (t)+ n(t), (5)

where s(t) = [s1(t), . . . , sP(t)]T denotes the source sig-
nal, 8 = {φi}Pi=1 contains all signal directions, A (8) =
[a(φ1), a(φ2), . . . , a(φP)] is the steeringmatrix with each col-
umn vector a (φi) = [a−M (φi) , . . . , a0 (φi) , . . . , aM (φi)]T ,
and n(t) = [n−M (t), . . . , n0(t), . . . , nM (t)]T denotes the
white Gaussian noise vector.

III. SIGNAL-ENUMERATION ALGORITHM
A. INPUT FEATURE SELECTION
From the received signal x(t), we define r = [r−M , . . . ,
r0, . . . , rM ] ∈ RM0 as the vector of signal power distribution.
Then, the mth element of r can be expressed as

rm = E
{
xm (t) x∗m (t)

}

= E



[
K∑
k=1

sq1(k) (t)
q2(k)∑
i=q1(k)

βiam (φi)+ nm (t)

]

×

[
K∑
k=1

s∗q1(k) (t)
q2(k)∑
l=q1(k)

β∗l am (φl)+ n
∗
m (t)

]


=

K∑
k=1

Pk

q2(k)∑
i=q1(k)

βiam (φi)
q2(k)∑
l=q1(k)

β∗l am (φl)+ σ
2

=

P∑
i=1

am (φi) di,m + σ 2, (6)
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FIGURE 2. Signal power distributed across LAA elements for SNR = 0 dB,
P = 6, and M0 = 65 in both noncoherent and coherent environments.

where Pk = E
{∣∣sq1(k)(t)∣∣2} denotes the signal power of the

direct component in the kth cluster, and the pseudosignal di,m
is given as

di,m = Pkβi

q2(k)∑
l=q1(k)

β∗l am (φl),

k ∈ [1,K ], i ∈ [q1 (k) , q2 (k)]. (7)

From (3) and (7), it is noted that any value of m and φi sat-

isfying
∣∣∣m− Dy

λ
sinφi

∣∣∣ ≈ 0 yields am (φi) ≈
√
α and di,m ≈

Pk |βi|2
√
α. In other words, a signal arriving from a particular

direction φi is focused by the EM lens on certain antenna
elements, whose energy is rm ≈ αPk |βi|2 + σ 2, whereas
those of the unexcited ones are approximately zero. Fig. 2
visualizes the power distribution of an M0 = 65-element
LAA system in the case of P = 6 signals from directions
8 = {−58◦,−42◦,−22◦, 15◦, 30◦, 56◦}. From the figure,
the normalized spectrum r provides sharp peaks representing
the indices of the antenna elements capturing the maximum
energy of the incoming signals. The conspicuous peak recog-
nition based on spectrum r does not rely on any subspace-
based signal analysis; therefore, it can be utilized to predict
the source number in both coherent and noncoherent environ-
ments. In addition, a classical sharp peak detector, the CFAR
scheme [22], can be applied in this situation. However, the
peak representing the multipath signal is possibly ignored by
the CFAR detector owing to its power degradation, as illus-
trated by the square marker in Fig. 2.

As mentioned in Section I, the OMP can be employed
to recover a sparse signal and subsequently reconstruct the
spatial spectrum. In the OMP algorithm, the number of grid
points P̃ can be computed as P̃ = (φmax − φmin)

/
ρ, where

ρ denotes the resolution of DoA in the range of [φmin, φmax).
Fig. 3 depicts the spectrum constructed by theOMP algorithm
with different values of ρ in the case ofP = 6 signals from the
same aforementioned directions. We note that the signal with

FIGURE 3. Spatial spectrum recovered by the OMP algorithm for
(a) SNR = 0 dB, and (b) SNR = 10 dB.

an arrival angle of φ = −22◦ is a multipath signal. As shown
in Fig. 3(a), the recovered spectra contain the noise elements
in all direction samples. Therefore, the features obtained by
the OMP-based recovery cannot be used for DoA estimation
and signal enumeration in a highly contaminated scenario.
In a high-SNR region, although the normalized spectrum
provided by the OMP has conspicuous peaks that can be
utilized for a subsequent peak recognition process, it is still
a saw-tooth waveform, as shown in Fig. 3(b). Furthermore,
the peaks representing the direction φ = −22◦ in the cases
of ρ = 0.5◦ and ρ = 1◦ are not clearly visible due to the
power degradation of multipath propagation, and are likely
to be considered as the noise elements. Thus, the OMP-based
spatial spectrum reconstruction is not an efficient feature
engineering process for signal enumeration.

B. PROPOSED SIGNAL ENUMERATOR
As can be seen in Fig. 4, the structure of our proposed PSCNet
comprises LC layers of one-dimensional (1D) convolutions,
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FIGURE 4. Description of the proposed PSCNet.

a flattening layer, and LD fully connected (FC) layers. Let
r[0] and M0 be the input array of PSCNet and its number of
elements, respectively. The estimated output is obtained via
consecutive nonlinear transformations of r[0] as

ŷ = T [LC+LD]
(
. . .
(
T [1]

(
r[0]; η[1]

)
; . . .

)
, η[LC+LD]

)
,

(8)

where T [l] (·), η[l], and r[l] are the transformation function,
learnable parameters, and output in the lth layer of the model,
respectively. In the lth convolutional layer, we assume that
the number of feature maps is C, whereas a bank of filters

W [l]
C =

{
W [l,c]

C

}C
c=1

, the element of which is W [l,c]
C ={

W [l,c,c′]
C

}C
c′=1

, and bias vectors b[l]C =

{
b[l,c]C

}C
c=1

are

employed. Then, the cth channel of this convolution result
is calculated by

T [l,c]
C

(
r[l−1]; η[l]C

)
= T [l]

(
r[l−1]; η[l]

)
= ψ [l]

 C∑
c′=1

W [l,c,c′]
C ∗ r[l−1,c

′] + b[l,c]C

 ,
l ∈ [1,LC], c ∈ [1, C], (9)

where W [l,c,c′]
C ∈ Rh×1 denotes the cth weighting kernel

sliding along the c′th component of previous feature map

r[l−1,c
′] ∈ RM0×1, and b[l,c]C ∈

M0×1 is the cth bias element of

b[l]C . In addition, ηC =
{
η[l]
}LC
l=1 =

{
W [l]

C , b
[l]
C

}LC
l=1

contains

the trained parameters, and ψ [l] (·) represents an activation
function at the output of layer l, which is determined by a
scaled exponential linear unit (SELU) because of its self-
normalizing property and faster training convergence than
other commonly used functions [26]. Specifically, the SELU

function is given by

ψ [l](z) = SELU(z) = ζ1 ·

{
z, if z > 0,
ζ2 (ez − 1) , if z ≤ 0,,

l ∈ [1,LC + LD − 1] , (10)

where ζ1 and ζ2 are two fixed parameters. Furthermore,
we utilize a padding method and single-stride convolutions to
avoid rapid downsampling on the feature spatial sizes. After
feature extraction, the data is flattened for conversion into a
1D vector, r̃ ∈ RCh, to feed the subsequent FC layers.

The FC layers include an input layer, (LD − 2) hidden
layers, and a single node in the output layer. Let 3l be the
number of neurons in the lth layer of the FC network. ηD ={
η[l]
}LC+1
l=LC+LD

=

{
W [l]

D , b
[l]
D

}LD
l=1

contains the weight matrix

W [l]
D ∈ R3l×3l−1 and bias vector b[l]D ∈ R3l×1 between the

(l − 1)th and lth layers, whereas r̃[l] ∈ R3l×1 represents
the output of the lth layer. Then, the transformation function
T [l]
D (·) utilized in the FC layers is defined as

T [l]
D

(̃
r[l−1]; η[l]D

)
= T [l+LC]

(
r[l+LC−1]; η[l+LC]

)
= ψ [l+LC]

(
W [l]

D r̃
[l−1]
+ b[l]D

)
,

l ∈ [1,LD] . (11)

We assume that the maximum number of signals is P and
note that the proposed convolutional neural network (CNN) is
designed to handle multiclass classification problems. There-
fore, the softmax activation function is employed to map P
outputs ỹi in the output layer to P probabilities ŷi, which is
calculated as

ŷi = ψ [LC+LD] (̃yi) =
ẽyi∑P
i=1 ẽ

yi
, i ∈ [1,P]. (12)

For the training session, the adaptive moment estimation
(Adam) [27] optimizer is employed to minimize the categor-
ical cross-entropy loss function L (·) given by

L (η) = −
1
B

B∑
b=1

P∑
i=1

yi (b) log [̂yi (b)], (13)

where B denotes the number of samples in each batch � ={
r[0] (b) , y (b)

}B
b=1, which is stochastically selected from the

training set. In addition, r (b) and y (b) are the input spectrum
and one-hot output vector at the bth data point, respectively.

C. TRAINING STRATEGIES
First, the elements of the input array r[0] feeding the PSCNet
has to be considered deliberately. It is worth emphasizing that
a peak in r is only generated if there is a signal direction φ
satisfying Dy

λ
sin (φ) ≈ m, for m ∈ [−M ,M ]. This yields a

constraint that M must be large enough to cover all values
of Dy

λ
sin (φ). Thus, to accurately detect the signal from any

direction, the array must satisfy

M ≥
⌈
Dy
λ

⌉
. (14)
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FIGURE 5. Description of the PSS technique.

FIGURE 6. Pretrained-model reusing strategy in the scenario of M ≥ Dy /λ.

We also note that the data points for the offline training phase
are generated without any assumptions about the angle differ-
ence χ of the two received signals. Therefore, our proposed
PSCNet can learn to determine the signal number based on
the width of the peaks, which are possibly formed by two
closely adjacent directions.

It is also noted that the peaks representing the energy
of signals only appear in the antenna indices m ∈[
−

⌈
Dy
λ

⌉
,
⌈
Dy
λ

⌉]
. However, the spectrum outside this range

corresponds to the noise power, which is the abundant infor-
mation for counting incoming signals. From this perspec-
tive, we propose a feature engineering method referred to
as the power spectrum shortening (PSS) that saves computa-
tional resources for the latter forward propagation of PSCNet.
As shown in Fig. 5, this approach cuts off some components
from two heads of the spectrum r, then the output of the PSS
method is r =

[
r
−M , . . . , r0, . . . , rM

]
, which has half of the

r’s size ofM . From (14), the value ofM can be calculated as

M = min
{
M ,

⌈
Dy
λ

⌉}
. (15)

In a specific scenario of
{
T ,SNR,Dy

/
λ

}
, the spectrums

formed by theM0 central elements of r are similar, regardless
of the number of antennas M0 ≥ M0. Thus, we propose the
application of a pretrained-model of an M0-antenna system
to enumerate signals with an LAA withM0 sensors. With the
help of the PSS technique, this strategy can overcome the lim-
itations of time and computational resources of independent
training for anM0-antenna LAA. As shown in Fig. 6, the PSS
technique is included in this strategy to pre-process raw data.

Algorithm 1 Proposed PSCNet-Based Signal Enumeration

Input: {x(t)}Tt=1, M0, T , SNR, and Dy
/
λ.

Output: P̂.
1: Initialize r as an empty array.
2: ComputeM = min

{⌊
M0
2

⌋
,
⌈
Dy
λ

⌉}
.

3: for m = −M to M do

4: Compute rm = 1
T

T∑
t=1

xm (t) x∗m (t).

5: Append rm to r.
6: end for
7: Load the trained parameters η for the PSCNet based on{

M0,T ,SNR,Dy
/
λ

}
, whereM0 = 2M + 1.

8: Obtain ŷ using (8).
9: Predict P̂ = arg max

i∈[1,P]
(̂y).

Subsequently, the transferred model can utilize this desired
information to predict the number of incoming signals.

In the training phase, the noise power can be randomly
generated, thus, the model has to adapt to a wide SNR
range of the environment. This means that PSCNet needs an
enormous number of hidden layers and learning parameters,
which requires significantly high complexity and execution
time in both the training and testing phases. To efficiently
train PSCNet, we consider dividing the entire SNR range into
smaller ones

[
SNR−1

/
2,SNR+

1
/
2
]
, and independently

trainingmultiple networks in those intervals. Here, SNR is the
medium value of the SNR range for which a CNN model is
trained, and1 ≥ 0 represents the SNR interval. For example,
SNR = 0 dB and 1 = 4 dB indicate that the SNR values of
the incoming signals are stochastically chosen in the range of
[−2, 2] dB. Although this strategy requires additional mem-
ory to store multiple sets of trained parameters, we can reduce
the training convergence time and achieve a higher prediction
accuracy. Notably, the proposed model should also be trained
with different numbers of snapshots, and ratios of lens’ size
to the carrier wave length, which significantly influence the
formation of the power spectrum. Consequently, we consider
training PSCNet for consistent situations regarding the SNR
value, the number of snapshots, and theDy–λ ratio, i.e., SNR,
T , and Dy

/
λ.

D. PRACTICAL DEPLOYMENT AND COMPUTATIONAL
COMPLEXITY ANALYSIS
Algorithm 1 summarizes the practical deployment of the
PSCNet. Step 2 involves computing half of the input size M
based on the LAA’s parameters. Subsequently, steps 3–6 are
iterated to construct the power spectrum r. The signal energy

is computed practically as rm = 1
T

T∑
t=1

xm (t) x∗m (t) instead of

using (6). In step 7, the pretrained parameters are loaded into
the PSCNet based on information on the environment’s SNR,
the number of snapshots, T , the array configuration param-
eters, M0 and Dy

/
λ. Steps 8 and 9 indicate the feedforward
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propagation of the PSCNet to predict the one-hot vector, ŷ,
and number of signals, P̂, respectively.
The computational complexity in our study is mea-

sured by counting the number of floating-point operations
(FLOPs) [28]. In Algorithm 1, the complexity mainly relies
on the iterations of steps 3–6 and step 8. Because the compu-
tation of rm yields (2T − 1) operations, the total number of
operations in steps 3–6 can be expressed as

OSteps 3 - 6 = (2T − 1)M0. (16)

According to (8), the computational cost of the feedfor-
ward propagation of PSCNet comes from the successive con-
volutions and matrix multiplication in the FC layers. In the
first layer, because the spectrum r is fed as a single channel,
the multiplications and bias additions of the first convolu-
tion cost 2M0hC FLOPs. For the subsequent convolutions,
the padding technique keeps the output size in one channel
unchanged; therefore, we have r[l] ∈ RM0×1×C . According
to (9), the complexity of the lth convolution with l ∈ [2,LC]
is 2M0hC2. Regarding the propagation in the lth FC layer, the
computational load includes 3l (23l−1 − 1) multiplications
and additions between the current weight matrix and the
output of the previous layer and 3l additions with the bias
vector. Then, the number of FLOPs in the lth FC layer is
23l−13l . As a result, the total complexity of step 8 is given
by

OStep 8 = 2M0hC (LCC + 1)+ 2
LD∑
l=1

3l−13l . (17)

IV. SIMULATION RESULTS AND ANALYSIS
In our simulations,2 an LAA system with half-wavelength
element spacing is used to receive a maximum of P = 8 far-
field signals coming from directions that are stochastically
chosen in a range of φ ∈

[
−60◦, 60◦). The received signals

are assumed to be captured over a finite number of spaced
time snapshots T ∈ [10, 100]. We also examine the perfor-
mance of antenna arrays with the various numbers of sensing
elements M0 and different Dy–λ ratios, i.e., M0 ∈ [53, 117]
and Dy

/
λ ∈ [10, 90]. Unless otherwise stated, we assume

that M0 = 65 antennas, T = 40 snapshots, SNR = 0 dB,
and Dy

/
λ = 30. Without loss of generality, we assume that

the normalized aperture α = 1, and a carrier frequency
fc = 1 GHz is used to transmit the signals. In addition, the
number of incoming signals P and the number of clusters K
follow the i.i.d. uniform distribution within [1,P] and [1,P],
respectively. The attenuation coefficient βi in the kth cluster
is generated as βi ∼ CN (0, 0.2), for i ∈ (q1 (k) , q2 (k)].
For the convolutions of PSCNet, the parameters of feature
extracting kernels are set as C = 8 and h = 3. The dataset
is created for both the training and testing phases by subse-
quently following steps 1–6 of Algorithm 1. PSCNet should

2For more details, please refer to our simulation code in
https://github.com/daihoang25/LAA_SignalEnum.git.

FIGURE 7. Comparison of computational complexity between OMP-based
and EF-based spectrum reconstruction for SNR = 10 dB.

be trained for consistent cases regarding the SNR value, num-
ber of snapshots, and Dy–λ ratio, whereas the related param-
eters can be randomly chosen within their ranges. Moreover,
the output y ∈ NP of the deep network is a one-hot vector,
whose pth element is determined as yp = ϒP (p), where
ϒP (i) can be defined as:

ϒP (p) =

{
1 if p = P
0 if p 6= P

(18)

For a specific situation of
(
SNR,T ,Dy

/
λ

)
, a collection of

B0 = 5× 104 data-label pairs (r, y) is generated. In addition,
B1 = 80%B0 data points are chosen for training, whereas the
remaining B2 = 20%B0 samples are used for testing. Finally,
the detection error probability (DEP) metric with B2 trials is
employed to evaluate the signal enumeration performance of
the examined detectors, which is expressed as

DEP =
1

2B2

B2∑
b=1

‖y (b)− ỹ (b)‖0, (19)

where ỹ denotes the categorical encoded vector, whose pth
element is computed as ỹp = ϒP̂ (p). It is noted that the term
‖y (b)− ỹ (b)‖0 in (19) is equal to 2 when the bth sample
is misclassified; thus, the sum of these terms divided by
2 becomes the number of misdetected cases.

Fig. 7 illustrates the complexity versus M0 of the EF
property-based spectrum formation and the OMP algorithm.
We note that an error-tolerant factor, i.e., ε = 10−6, is used
for early termination of signal recovery in one snapshot, then
the number of FLOPs of the OMP, i.e.,OOMP, can be obtained
by the Monte Carlo simulations. In case that there is no
termination condition, a signal is recovered afterP iterations,
and the upper bound of OMP complexity, i.e., OOMP,max,
can be computed. As shown in Fig. 7, the computational
load of the EF method is substantially lower than those of
the OMP scheme, regardless of the values of ρ. It is noted
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FIGURE 8. DEP validation of (a) PSCNet and (b) ECNet with different
hidden configurations for Dy /λ = 30 and M0 = 61 antennas.

that the matching steps and solving least square problems
occupy most of the OMP complexity [13], and these steps

yield OOMP,max = O
(
M0

(̃
P+ P3

)
T + P̃2T

)
≥ OOMP =

O
(
M0P̃T + P̃2T

)
which is substantially larger than the com-

plexity of the EF-based method, shown in (16). In addition,
Fig. 7 shows that the complexity of the EF scheme with
T = 40 snapshots still remains lower than those of the OMP
technique with T = 10 snapshots. Therefore, the CS-based
feature selection is excluded from the latter simulations,
based on the aforementioned analysis.

ECNet and ERNet [21] are state-of-the-art data-driven
methods to handle the signal-enumeration problem. It is
noted from [21] that ECNet achieves better performance than
ERNet. In addition, the enumeration mechanisms based on
ECNet and ERNet are similar, so their computational com-
plexities are approximately equal. Therefore, the ECNet is
the only DL-based benchmark to compare with our proposed
PSCNet in this paper. Fig. 8 shows the DEP in the validation

FIGURE 9. DEP validation of PSCNet and ECNet for various 1.

stage of our proposed PSCNet and ECNet [21] with different
numbers of hidden layers and neurons. In Fig. 8(a), the CNN
networks with two convolutional layers provide more reliable
enumeration results than those with one layer. In addition,
too many hidden nodes in the FC layers lead to an overfitting
phenomenon that worsens the performance of the PSCNet.
It is observed that the PSCNet with LC = 2 and LD = 4
with 2M0 total neurons offers the highest accuracy; thus,
this configuration is applied for subsequent simulations. For
the ECNet, let L̃D be the number of neurons. As shown in
Fig. 8(b), the ECNet with a total of 5M0 neurons distributed
into L̃D = 4 layers achieves the lowest DEP. Consequently,
these parameters are utilized for the ECNet in the following
experiments.

The DEP performance based on our proposed CNN and
ECNet for 1 ∈ {0, 2, 4, 8, 16} dB is illustrated in Fig. 9.
It is observed that the detection performance is significantly
enhanced as 1 decreases. It is worth noting that training a
deep network with signals having the same SNR values, i.e.,
1 = 0 dB, is impractical. Thus, the dataset is generated with
the assumption of 1 = 4 dB for the latter simulations.
Fig. 10 presents the DEP performance of our proposed

PSCNet in different cases ofDy
/
λwith two deploymentmeth-

ods. The first one involves applying a pretrained network of
an M0-antenna system with the PSS technique subsequently.
The other solution is to employ an independent trainingmodel
of an LAA with M0 sensing elements. It is apparent that the
DEP of PSCNet is enormous when the number of sensing
elementsM0 is limited. For example, a 53-antenna LAA with
Dy
/
λ = 50 achieves only 30% of the accuracy of signal

enumeration in both coherent and noncoherent environments.
In this case, half of the array size M = 26 violates the
constraint (14), leading to high misdetection probabilities.
Furthermore, in both Fig. 10(a) and Fig. 10(b), it is observed
that the PSS process helps retain the error probability when
the number of array elements increases. In contrast, the
single-task learning models, which utilize all the elements
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FIGURE 10. DEP versus number of antennas of PSCNet and ECNet with
different values of Dy /λ in (a) a noncoherent environment and
(b) a coherent environment.

of the power spectrum r, have higher error probabilities than
those of the counterpart. In Fig. 10(a), the upward trend also
occurs in the DEP of ECNet asM0 increases.

Fig. 11 compares the signal-enumeration performance of
the PSCNet with that of six other detection schemes, includ-
ing AIC [17], MDL [18], ER [20], SORTE [19], ECNet [21],
and CFAR [22]. We note that the signal power spectrum
can be constructed in both the coherent and noncoherent
scenarios with an LAA, but the eigenvalues cannot; therefore,
the PSCNet and CFAR detectors are the only methods that
can predict the number of coherent signals. In Fig. 11(a), it is
observed that the PSCNet outperforms the other compared
enumerators. For example, for SNR = 5 dB, the fully uncor-
related signal misdetection of PSCNet is approximately 11%,
whereas those of CFAR, ECNet, and SORTE are approx-
imately 27%, 32%, and 71%, respectively. Fig. 11(b) also
shows that the performance gain of the proposed method
significantly increases as the number of snapshots T increases

FIGURE 11. DEP versus (a) SNR for T = 40 snapshots, and (b) number of
snapshots T for SNR = 0 dB.

in the environment where SNR = 0 dB. Additionally, the
amplitudes of attenuation factors associated with the coherent
signals are typically weaker than those of direct ones [29].
This yields |βi|2 <

∣∣βq1(k)∣∣2; thus, the peak representing
the energy of a multipath signal impinging upon the mth
antenna, i.e., rm ≈ Pk |βi|2

√
α+σ 2, can be misclassified as a

noise element due to its power degradation. This phenomenon
makes the detection performance in a coherent environment
worse than that in a noncoherent case, as shown in Fig. 11.

In Fig. 12, we compare the error probability of PSCNet,
ECNet, and CFAR for various values of angular separation
χ > 0. In this simulation, we assume that two signals are
coming from directions of φ1, and φ2 = φ1 + χ in each data
point, whereas other angular difference satisfies |φm − φn| >
χ , for 1 ≤ m < n ≤ P, and (m, n) 6= (1, 2). It is apparent
that the PSCNet outperforms other schemes in both the high
and low-SNR regions. Specifically, for SNR = 10 dB, the
error probability for detecting fully independent signals of
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FIGURE 12. DEP versus angular separation for two DoAs of φ, and (φ + χ).

FIGURE 13. DoA distribution on antennas for various Dy /λ.

PSCNet is lower than 1% at χ = 9, whereas those of ECNet
and CFAR are 4.4% and 5.4%, respectively. In addition, our
proposed PSCNet resolves the angular ambiguity problem
better than CFAR by utilizing the same input feature, which is
the EF power spectrum. It is worth emphasizing that the con-
dition of having conspicuous peaks representing two closest

DoAs is given as |sin (φ + χ)− sin (φ)| ≥ 2
(
Dy
λ

)−1
, which

means χ ≥ sin−1
(
sin (φ)+ 2

(
Dy
λ

)−1)
− φ. For example,

for φ = 58◦, the CFAR may miscount the signals unless χ
satisfies χ ≥ 8.2◦. On the contrary, the PSCNet can learn
to predict the signal number based on the peak width; thus,
it provides a better performance.

To further analyze the ambiguity effect of two closely
incoming waves, we examine the distribution of signal direc-
tions on themth antenna for different values of theDy–λ ratio,
as shown in Fig. 13. A far-field signal from the direction φ
concentrating the most energy on the mth antenna satisfies

FIGURE 14. DEP versus half of the array size M =
⌈
Dy /λ

⌉
.

m − 1 < Dy
/
λ sinφ < m + 1. Then the condition of φ is

given by

sin−1
(
m− 1

Dy
/
λ

)
< φ < sin−1

(
m+ 1

Dy
/
λ

)
. (20)

In Fig. 13, the upper and lower limits in each case of the
Dy–λ ratio are plotted by computing the right- and left-hand
sides of (20), respectively. In addition, a shaded area between
two bounds (indicated by dotted dashed lines) illustrates the
possible DoAs of a signal arriving at the mth antenna. It is
shown in Fig. 13 that the shaded area becomes more narrow
as the value of Dy

/
λ increases. For example, in a case of

Dy
/
λ = 30, the antenna with m = 12 can receive a signal

from direction φ ∈ [21◦, 25◦], which results in an ambiguity
error of 4◦. However, this error is reduced to only 1◦ when
Dy–λ ratio is 70. Therefore, it is worth claiming that the DoA
difference on an LAA’s element can be reduced by expanding
the normalized lens dimension Dy

/
λ.

Fig. 14 indicates the DEP performance when the Dy–λ

ratio increases. We assume thatM =
⌈
Dy
/
λ

⌉
without loss of

generality. In Fig. 14, it is shown that the DEP of the PSCNet
considerably decreases for both the coherent and nonco-
herent scenarios when the number of antennas increases.
Particularly, the increase of M yields a narrow DoA differ-
ence, improving the probability of accurately enumerating the
incoming signals. In addition, the PSCNet also outperforms
the CFAR detector. The explanation for this phenomenon is
similar to the analysis in Fig. 12.
Fig. 15 compares the computational complexity between

the feedforward propagation of ECNet and PSCNet with dif-
ferent input features. It is clear that the PSCNet-based signal
enumeration has relatively lower complexity than the ECNet.
According to [8] and [9], the eigenvalue decomposition in
the ECNet-based scheme requires the complexity of O

(
M3

0

)
as M0 increases. In contrast, for the proposed methods, the
numbers of the operations are approximately O (M0) and
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FIGURE 15. Computational complexity of PSCNet with different input
features compared with ECNet for T = 40 snapshots.

FIGURE 16. Complexity comparison between signal enumeration
algorithms.

O
(
M0
)
for the independent learning and transferred model,

respectively. Furthermore, it can be observed that the PSS
technique and reused models contribute to computational
resource saving because the size of the input spectrum r[0]

remains unchanged as the number of antennas increases.
Fig. 16 illustrates the complexity of the PSCNet-based

signal-enumeration algorithm compared with those of the
prior schemes. It is shown that the computational load
of the proposed method is substantially lower than those
of subspace-based schemes as M0 and T increase. In the
eigenvalue-aided enumeration, the computation of the sig-
nal covariance matrix and eigenvalue decomposition process
occupy the most complexity, which is O

(
M3

0 +M
2
0T
)

[8],
[9], whereas the maximum computational cost of the pro-
posed method, according to (16) and (17), is OPSCNet =

O (M0T ) whenM0 and T are large enough. Furthermore, it is

noted that our scheme requires more computational resources
than the CFAR method owing to the use of CNN. Although
the feedforward propagation of the PSCNet is more compu-
tationally expensive than determining the CFAR threshold,
it yields reliable detection performance.

V. CONCLUSION
In this paper, we have presented a novel CNN-based signal-
enumeration scheme for a symmetric LAA. The power spec-
trum, which is formed based on the energy distributed across
antenna elements, is used in both the noncoherent and coher-
ent scenarios. The proposed PSCNet employs several 1D
convolutional layers to extract the featuremaps from the input
spectrum and generate a one-hot vector representing the num-
ber of impinging signals. Furthermore, the PSS technique
maintains the size of the input feature so that the reusedmodel
can be applied regardless of the number of antennas. This
saves on the computational resources in practical deploy-
ment and reduces the time for training. Compared with its
predecessors [17], [18], [19], [20], [21], the proposed detec-
tor provides more reliable performance with substantially
lower computational complexity. Lastly, based on the numer-
ical simulation and analysis results, we can conclude that a
large-scale LAA system with an extensive normalized lens
dimension can achieve a more reliable signal enumeration
performance.
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