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ABSTRACT Object segmentation in cluttered environments is a fundamental pre-processing step for many
perception-related tasks such as vision-based robotic grasping. Most of the existing object segmentation
methods are incapable of precisely segmenting unknown objects, particularly in scenarios exhibiting
significant occlusion. In this paper, we propose a novel approach for refining the segmentation of unknown
objects in cluttered scenes. More specifically, a ConvMixer-based UNet model is designed to enhance the
segmentation mask and boundary of unknown objects appearing in cluttered scenes. In our model, we lever-
age the object’s semantic and localization information, which are essential for successful segmentation, using
a ConvMixer-based Cross Fusion (CMCF) module. Furthermore, we propose to use patch embedding as a
pre-processing step, where input data is rearranged to expedite processing and improve the efficiency of
the system. CM-UNet was trained and extensively tested on various challenging publicly available datasets,
including unknown objects in un-structured scenes. Thorough evaluations, in terms of segmentation accuracy
and processing efficiency, were conducted against state-of-the-art solutions, where the superiority of our
model was proven. CM-UNet has shown its ability to efficiently improve the segmentation accuracy of
unknown objects in cluttered scenes, even in presence of occlusion.

INDEX TERMS ConvMixer-based network, UNet, object segmentation, cluttered scene, unknown objects,
robotic grasping.

I. INTRODUCTION
Robotic grippers have enabled the automation of key man-
ufacturing processes in the industry and hence have gained
immense importance over the past years, especially with
assist of perception such as vision-based tactile sensing [1],
grasping slip detection [2] and robotic sorting applica-
tions [3]. Robotic grasping is one of the tasks that robotic
grippers have excelled in the industrial field, where they
have been shown to expedite manufacturing while improving
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throughput. Robotic grasping is a complex task by which a
robotic gripper grasps a particular object from its surround-
ings, after attentively perceiving the environment, identifying
and locating the object of interest, and finally planning the
kinematics of the system. The success of robotic grasping is
directly affected by the quality of the segmentation technique
used to locate the object prior to grasping it. Several segmen-
tation approaches have been proposed in the literature, yet
the majority assumes structured task environments that do
not resemble the actual industrial production line. This makes
the segmentation approaches prone to high errors and hence
hinders the full automation of the system. Therefore, there is
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an absolute necessity to improve the accuracy and efficiency
of object segmentation approaches, particularly in the case of
unknown object geometries in cluttered environments.

State-of-the-art object segmentation approaches can
be classified into two main categories; model-based
and learning-based. Model-based segmentation approaches
assume that objects exhibit a particular geometry, without
considering their structural shape variations. In the past
decades, a multitude of model-based segmentation meth-
ods were proposed based on the Active Contour Model
(ACM) [4], whose efficiency for object segmentation was
verified through various approaches [5], [6], [7]. Model-
based segmentation approaches were also developed based
on the Gaussian mixture model (GMM) [8], [9], which is a
statistical model that can well describe the spatial distribution
and the characteristics of the data in the parameter space.
However, the recognition model is generally developed based
on various parameters and priors, the selection of which
is very significant yet challenging. Moreover, such models
suffer from imaging noise caused by the intensity inhomo-
geneity and the local characteristics of image gradients. This
has motivated the introduction of learning-based approaches
to achieve more efficient segmentation that is resilient to
variations in object geometries across various environmental
scenarios.

Learning-based object segmentation approaches are
developed based on various deep learning models that have
demonstrated unprecedented performance and have achieved
significant results. For example, the authors in [10] proposed
a new hybridmethod for switching between linear and nonlin-
ear spectral unmixing of hyper-spectral data based on neural
networks as a possible way to achieve segmentation. Convo-
lutional neural network (CNN) is the most widely used class
of neural networks for such applications. The problem of
object detection, which constitutes a significant component of
object segmentation, involves processing an image to identify
and locate instances of objects of interest in a particular scene.
Locating an object implies estimating its location and size
to facilitate defining its bounding box. In view of the fact
that multiple objects may appear in a single scene and that
objects may be at various locations in different sizes, the
object detector is presented with endless possibilities to work
out the problem. In other words, the object detector has to
process a huge amount of ‘‘regions’’ in the image to correctly
pinpoint the location of the object of interest. Alternatively,
Region CNN (R-CNN) was proposed in [11] to mitigate this
issue by reducing the amount of regions that have to be
examined by the neural network. A selective search [12] is
used to select a fixed number of regions, referred to as region
proposals, to pass to the CNN to carry out object detection.
Nevertheless, having to perform feature extraction for every
region proposal is computationally expensive, rendering the
performance inefficient for the target applications. To further
alleviate the shortcomings of this approach, Fast R-CNN was
proposed in [13] where the convolution operation is carried
out only once per image instead of region proposal. A feature

map is generated and processed by a set of fully connected
layers that generate the detection results. In addition to the
bounding box, Mask R-CNN was proposed in [14] where an
object mask is also generated. Transformers neural networks,
which currently lead the trend in computer vision [15], were
shown to successfully perform object segmentation with
high precision. This is attributed to their ability to process
global features in the image by means of their self-attention
module [16].

Despite their ability to achieve high segmentation accu-
racy in simple environments, the majority of the existing
approaches to object segmentation suffer to correctly segment
objects of interest in cluttered environments, under various
illumination conditions, an in presence of occlusions [17].
Depending on the environment, the size of the object in the
observed scene, and the camera’s field of view, different parts
of the object of interest may be occluded [18]. Hence, for
successful object segmentation, it is necessary to recover or
at least predict the occluded part of the object prior to object
detection, which is challenging to achieve. Another major
limitation is that of the assumption of prior knowledge of
the objects of interest, since segmentation approaches depend
on object detection networks for known objects. However,
the majority of the practical scenarios involve target objects
that are unknown. This has motivated the emergence of
approaches for refining the predicted object segmentation,
which in combination with existing segmentation approaches
is capable of improving the accuracy of prediction.

In this work, we address object segmentation refine-
ment for unknown objects in cluttered environments. More
particularly, we present a novel ConvMixer-based U-Net
(CM-UNet) for segmentation refinement of unknown objects,
as illustrated in Fig. 1. Themodel consists of an encoder (conv
block and ResNet block) and a decoder (ConvMixer Cross
Fusion (CMCF) module) for contextual feature extraction
and spatial information fusion, respectively. We developed
the CMCF module to leverage the semantic and localization
information while filtering out unrelated features using a
light-weight architecture. Compared to the state-of-the-art
transformer-based U-Net, our CM-UNet with CMCF shows
a huge advantage of around 50% reduction on time effi-
ciency, in addition to better refinement accuracy. Through
ablation study and experiments, we provide evidences that
patch embedding (PE) is of great importance to both trans-
former and ConvMixer based architectures due to its ability
of locality preservation. Furthermore, our developed CMCF
module has the ability to filter out non-semantic features to
achieve more accurate segmentation.

II. RELATED WORK
A. OBJECT SEGMENTATION
Object segmentation approaches in the literature can be clas-
sified into recognition/model-based approaches and learning-
based approaches. The latter are more prevalent among the
state-of-the-art approaches and heavily depend on feature
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FIGURE 1. Proposed CM-UNet which is a fully convolutional network with developed CMCF module using spatial-locations mix
mechanism. The model consists of encoder (conv block and ResNet block) and decoder (ConvMixer Cross Fusion (CMCF) module) for
contextual feature extraction and spatial information fusion, respectively.

extraction. Convolutional neural networks (CNNs) are known
as a powerful tool for extracting representative features in
images. Nevertheless, it suffers from the loss of spatial infor-
mation, which is attributed to the convolution operation that
downsamples the features in every convolutional layer [19].

On the other hand, standard transformers neural networks
can capture long-range correlations between feature elements
by means of the self-attention mechanism. Besides the self-
attention mechanism, U-Net transformer networks make use
of cross attention in skip connections to further filter out
non-semantic information from the spatial information and
hence obtain the correlations between elements [20]. Accord-
ingly, U-Net transformer networks outperform U-Net and
attention U-Net in terms of segmentation accuracy when
applied on a small dataset.

The transformer’s self-attention module is limited to
explore intra-sample correlation. To contemplate intra- and
inter-correlation, researchers have developed Mixed Trans-
former U-NET (MT-Unet) with Mixed Transformer Module
(MTM) as presented in [21]. MTM consists of two parts;
Local-Global Gaussian -Weighted Self-Attention (LGG-SA)
with lower computation cost, and External Attention (EA)
for inter-correlation learning. Experimentation results have
shown that MT-Unet surpasses other state-of-the-art methods
without pre-training.

For unknown object segmentation, some examples demon-
strate that two-stage prediction, initial segmentation and

refinement, can work well [22]. A two-stage Fully Con-
volutional Neural Network (FCNN) pipeline was proposed
in [23] to predict and refine the segmentation of human
hairs. Specifically, the second stage was designed as a bor-
der refinement with a symmetric encoder-decoder FCNN
architecture to refine the hair boundary. In [24], Progressive
Boundary Refinement Network (PBRNet) whose structure is
similar to that of U-Net, was firstly applied into temporal
action detection problem. The network structure is designed
for multiple tasks including coarse pyramidal detection and
refined pyramidal detection, then the output goes through the
fine-grained detection module to localize the action boundary
and segment action instances precisely. A two-stage cascaded
U-Net was developed in [25], which fine segments objects in
the second refining stage based on the coarse segmentation in
the first stage, thanks to the automatic context from the orig-
inal input. Inspired by the two-stage learning-based segmen-
tation, we developed CM-UNet which exhibits a symmetric
architecture with skip connections to refine the initially pre-
dicted segmentation. Segmentation refinement benefits from
such architecture due to its ability to enrich the semantic
information associated with the object of interest.

B. ConvMixer
When using the standard Vision Transformer (ViT)
model [26], the first step is to embed the input images as
patches then pass them as inputs to transformer encoders.
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However, its performance highly relies on and is sensitive
to the training hyper-parameters such as the optimizer and
learning rate. By comparing the performance of standard
ViT on ImageNet, the authors in [27] observed that it under-
performs state-of-the-art CNNs. Moreover, the self-attention
mechanism in transformer networks has a quadratic time
computation complexity O(n2) and requires O(n2) mem-
ory, that could be computationally expensive applied on
the dataset of large-size images [20]. However, the com-
plexities of a point-wise and a depth-wise convolutions
are O(patches ∗ channels2) and O(patches ∗ channels ∗
kernel_size2), respectively. By comparison, the ConvMixer
network is more suitable for large-size image datasets. Then,
the authors replace the patch stem with a standard convolu-
tional stem, which demonstrates a better performance on Ima-
geNet with faster convergence and greater in-sensitiveness
to hyper-parameters. Enlightened by the idea of mixer’s
MLPs blocks [28] and the direct processing of embed-
ding patches [26], the MLP-mixer is developed based on
multi-layer perceptrons (MLPs) without any convolutions
or self attention [29]. Two types of MLPs are used; the
channel-mixing MLPs and the token-mixing MLPs, allowing
the communication between channels and spatial locations.
It shows competitive performance to the image classification
benchmarks. Besides, the order of patches in images and pix-
els in patches does not affect the MLP-mixer’s performance.

Then, the question that whether transformer benefits more
from its architecture or input patches was explored in [30].
The experimental results indicate that the patch representa-
tion probably leads to the great performance of ViT and other
new architectures. Building on this discovery, ConvMixer
was developed based on a simple architecture that consists
of a patch embedding layer and repeated fully-convolution
block [30]. Different from ViT and MLP-Mixers, ConvMixer
only uses standard convolutions, yet it outperforms both ViT
and MLP-Mixers and is competitive with the standard vision
models such as ResNet with sub-optimal hyper-parameters.

In this work, we developed CM-UNet for object segmen-
tation refinement based on learning long-term spatial and
contextual features, but with less computational complexity
and higher efficiency compared to transformer-based U-Net.
In addition, we explored that patch embedding does play an
important role in the segmentation refinement task.

III. PROPOSED APPROACH
In this section, the overall architecture of the proposed
ConvMixer UNet (CM-UNet), illustrated in Fig. 1, will be
presented in detail. The system consists of three main com-
ponents; patch embedding, spatial-locations mix mechanism,
and CMCF module as will be discussed in Section III-A,
Section III-B, and Section III-C, respectively.
As mentioned in Section I, U-Net is capable of fusing both

contextual and positional information. However, it cannot
perform complex segmentation and refinement tasks with tra-
ditional convolution layers due to the lack of global features.
ConvMixer exhibits a transformer-like structure that directly

operates on embedded patches to allow a larger receptive
field, but with less complexity and parameters compared
to a transformer. As the patches go through more encoder
and decoder layers in the network, the size of the feature
map decreases and hence the amount of contextual features
reduces. To that end, we developed ConvMixer-based Cross
Fusion module to filter out the non-semantic information and
to enrich the semantic information in the deep network layers.

A. PATCH EMBEDDING
While transformer neural networks show outstanding
performance in natural language processing (NLP), their
computational complexity is very high when used for image
processing due to the high execution time and memory
consumption requirements. For an image with height H and
width W , the computational cost can reach (H ×W )2 which
cannot be executed on general hardware. The use of trans-
former networks in computer vision was pioneered by A.
Dosovitskiy [26] upon the proposal of ViT with patch
embedding module.

Patch embedding is the process by which an image x ⊆
RH×W×C is first split into patches of the same height and
width P, analogous to word tokens in NLP, then re-arranged
into a flattened 2D sequence, while preserving their locality.
The patch embedding process is described in Equation (1).

x ⊆ RH×W×C → x ⊆ RN×H/P×W/P (1)

where N = C × H ×W/P2 is the output channel. H ,W ,C
and P represent the height, width, image channels, and patch
size [26]. Such rearrangement drastically reduces the compu-
tational complexity of the algorithm as compared to process-
ing the whole image directly. The remaining modules in the
processing pipeline are applied to the patches directly.

In this work, input images in both training and testing
datasets are resized as 224 × 224 × 3. After applying patch
partitioning with patch size 16 and depth 4, a sequence of
784 patches will be obtained as expressed in Equation (1).
Then a 786 × 14 × 14 image is obtained for the subse-
quent convolutional operations of ConvMixer as shown in
Equation (2).

zpe = BN (σ · Conv(zin, stride = P, kernel_size = P))} (2)

where Conv, sigma and BN represent convolution operation,
activation function and batch normalization, respectively, and
zin represents the inputs.

B. SPATIAL-LOCATIONS MIX MECHANISM
The key function of the self-attention mechanism in trans-
former networks is to extract the long-term and global fea-
tures [28]. In the field of computer vision, this technique is
widely used to enhance feature discrimination [31]. In Con-
vMixer, convolutions are employed with a large kernel to mix
spatial locations from different distances. As illustrated in
Fig. 2, the ConvMixer layer is a residual structure that utilizes
pure convolutions. To achieve the goal of mixing spatial
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FIGURE 2. ConvMixer layer: residual connection of depth-wise
convolution and normalization, followed by point-wise convolution.

locations, the result of residual connection of the inputs and
outputs processed by depth-wise convolution goes through
the point-wise convolution as calculated in Equation (3).

zr = BN (σ · DepthConv(zpe))+ zpe
zc = BN (σ · PointConv(zr ) (3)

The difference among standard, depth-wise, and point-wise
convolutions is as depicted in Fig. 3. For the case of normal
convolution, illustrated in Fig. 3 (a), the filter is applied to the
input to mix channel information. More particularly, as the
input image and the filter have the same depth C , the channel
information will be convolved and hence the output’s depth
will be equal to 1. As for the depth-wise convolution, shown
in Fig. 3 (b), the filter has the same depth as the input, yet
channel-wise convolution is carried out. Hence, the number
of the channels in the output remains unchanged and the
channel information is reserved and inherited throughout the
convolution operation. Point-wise convolution, on the other
hand, refers to the standard convolution with 1× 1×C filter
as indicated in Fig. 3 (c), and hence considers information of
individual input elements.

C. ConvMixer CROSS FUSION MODULE (CMCF)
Inspired by the self-attention mechanism and ConvMixer’s
structure, we designed the ConvMixer Cross Fusion Mod-
ule (CMCF) to enrich the semantic information of the
low-resolution maps obtained from the ResNet blocks. The
global dependencies and relationships between the contextual
and spatial information can be learned explicitly. Moreover,
it allows to filter out the non-semantic features and to obtain
a fine spatial resolution.

As illustrated in Fig. 4, after position embedding, point-
wise convolution is applied to the higher-resolution feature
maps xenc with d channels and 2H × 2W resolution to mix
spatial locations and output xp. Similarly, the depth-wise con-
volution is applied to the lower-resolution feature maps ydec
with 2d channels and H ×W resolution to mix channel loca-
tions and output yp. Inspired by the transformer architecture,
the xpe, zu, and yu are analogous to the key, value, and query
in the self-attentionmechanism. After aggregating spatial and
channel information, zu is up-sampled and multiplied by xpe
to get the attention map from key and query. Finally, we apply

FIGURE 3. Working principle and comparison of standard convolution,
depth-wise convolution and point-wise convolution.

the dot-product attention to output the feature maps as in
Equation (4), where Conv2D represents the 2D convolution
block in Fig. 4:

outj = Conv2D(
N∑
i=1

[xpei · zuj, yu{i,j}]) (4)

IV. PERFORMANCE EVALUATION
A. DATASETS
To train the proposed segmentation refinement method for
unknown objects for robotic grasping tasks, the Tabletop
Object Dataset (TOD) [32] is used. TOD is a synthetic, large-
scale dataset consisting of 20k cluttered scenes and a total of
100k images of objects in an indoor environment. For eval-
uations and testing, the OCID and OSD public datasets [33]
were employed. For each scene in the OCID dataset, a 640×
480 organized XYZRGBL point cloud, depth image, RGB
image and 2d-label-masks with unique integer-label for each
object are provided. A total of 89 representative objects are
selected from the Autonomous Robot Indoor (ARID) and
YCB Object and Model Set (YCB) subsets. Such objects
were placed in various arrangements where they appeared
separated from each other, physically touching each other,
or occluded. As for the OSD, the RGB image, depth image,
and the segmentation ground truth are provided. The OCID
contains 2346 images labeled semi-automatically and the
OSD contains 111 images labeled manually. Such images
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FIGURE 4. Architecture of ConvMixer Cross Fusion Module (CMCF), which is inspired by the self-attention module but with full
convolution operations.

include objects placed on a table or on the floor in cluttered
and real scenes.

B. IMPLEMENTATION DETAILS
Our proposed segmentation refinement network consists of
a U-shape four encoder blocks and four decoder blocks,
with a four-channel input concatenating the initial predicted
segmentation mask and the original RGB image. We trained
CM-UNet in 30 training epochs and used a batch size of
16 on TOD datasets using ADAM optimizer with 10e-4
learning rate. During training, we used the weighted BCE
loss Lseg to calculate the difference between the predicted
masks y = {y1, y2, . . . , yn} and the ground truth masks ŷ =
{ŷ1, ŷ2, . . . , ŷn} as:

Lseg =

∑N
i (Ln ·Maskw)∑N

i Maskw
(5)

where Maskw is the weighted mask, and Ln = − 1
N [ŷn ·

logσ (yn)+(1−ŷn)·log(1−σ (yn))] is the BCE loss to measure
the predicted mask error of a single batch.

We evaluate the performance from two aspects; (1) the
overlapping area between the segmented mask and the cor-
responding ground truth, which will be referred to as over-
lap hereafter, and (2) the overlap between the detected and
ground truth boundaries that outline the objects, whichwill be
referred to as boundary. The F_score, Precision and Recall
are used to evaluate the matching degree of the predicted
segmentation and the corresponding ground truth [34]. Par-
ticularly, Precision indicates the quality of segmentation cal-
culated as the percentage of correctly labeled pixels. Recall
represents the ratio of correctly segmented pixels to the total
of pixels in the ground truth scene. Consequently, theF_score

is computed as the harmonic mean of Precision and Recall.

Precision =

∑N
i=1 obi ∩ gti∑N

i=1 obi
(6)

Recall =

∑N
i=1 obi ∩ gti∑N

i=1 gti
(7)

F_score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(8)

where ob = {ob1, ob2, . . . , obi} represents the segmentation
results, and gt = {gt1, gt2, . . . , gti} represents the corre-
sponding ground truth.

∑N
i=1 obi ∩ gti indicates the number

of pixels in the overlapping area between the predicted seg-
mentation and the matched reference object.

C. EXPERIMENTAL RESULTS
We employed our CM-UNet to refine the segmentation pre-
dicted by DSN [35] on OCID and OSD datasets, and evalu-
ated the performance using Precision, Recall, and F_score,
as described in Section IV-B. Tables 1 shows the evaluation
results of segmentation refinement on OCID dataset. Table 2
shows the quantitative evaluation of segmentation refinement
on OSD dataset. It is clear from both tables that the proposed
ConvMixer-UNet improves the segmentation done by DSN
with around 8% higher F_score on mask overlap. Besides,
Fig. 5 illustrates sample scenes from the testing set, along
with the corresponding segmentation ground truth, predicted
segmentation, and refined segmentation. It can be noticed
that the proposed segmentation refinement method was able
to improve the initial segmentation output and resulted in a
higher number of correctly segmented objects. In addition,
the refined masks obtained from the proposed method are
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TABLE 1. Quantitative evaluation of segmentation refinement on OCID
dataset. Precision, Recall , and F _score (as described in Sec IV-B) are
utilized to compare the initial segmentation predicted by DSN [35] and its
refined segmentation by our model.

TABLE 2. Quantitative evaluation of segmentation refinement on OSD
dataset. Precision, Recall , and F _score (as described in Sec IV-B) are
utilized to compare the initial segmentation predicted by DSN [35] and its
refined segmentation by our model.

closer to the instant contours observed from real RGB images.
It is also worth noting that our proposed model can refine
the predicted mask of OCID to more accurately resemble the
scene than the ground truthmask. This is attributed to the pos-
sible errors of ground truth resulting from the semi-automatic
labeling of the dataset.

D. COMPARISON TO STATE-OF-THE-ART METHODS
In this section, the same experimental protocols described
in Section IV-B will be carried out to demonstrate the per-
formance improvement achieved by our proposed method as
compared to state-of-the-art segmentation approaches; par-
ticularly mask-RCNN [14], UCN [36], PointGroup [37], and
DSN [35]. Testing scenarios are taken from the OCID and
OSD datasets [38] and segmentation performance is quan-
titatively evaluated using the normalized metrics, because
the values obtained using the unnormalized metrics in
Equations (6)-(8) are heavily affected by the size of the
objects in the scene. For instance, if there are two objects in
the scene; one ismuch bigger than the other and the individual
accuracies of their segmentation are drastically different, the
overall accuracy will be closer to the segmentation accuracy
of the large object. To circumvent this issue, we utilized
the normalized metrics to make them independent of the
object sizes in the scene, as listed in Equations (9) and (10),
where m, n are the labels of prediction and ground truth of
individual objects, and E represents the Hungary assignment
between the predicted and ground truth instance masks IMm
and INn . Besides, Pm,n, Rm,n, and Fm,n represent Precision,
Recall, and F_score of IMm and INn . M ,N are the number of
segmented objects and the true number of objects in the scene,
respectively.

Fm,n =
2 ∗ Pm,n ∗ Rm,n
Pm,n + Rm,n

(9)

F_score′ =

∑
(m,n)⊂E Fm,n
max(N ,M )

(10)

TABLE 3. Results of segmentation refinement performance quantified
using overlap F _score and F _score′ on both OCID and OSD datasets as
compared to state-of-the-art segmentation approaches.

Table 3 lists the F_score and F_score′ of the predicted seg-
mentation results obtained by state-of-the-art segmentation
methods with and without our proposed refinement approach
on two testing datasets. The table shows the refinement
improvement achieved by our approach as compared to the
listed state-of-the-art segmentation techniques. Based on the
predicted segmentation by mask-RCNN [14], UCN [36],
PointGroup [37], and DSN [35], our model improves the
overlap F_score′ by 9.33%, 3.95%, 9.96%, and 14.40% on
OCID dataset, respectively. Besides, our model improves the
overlap F_score′ by 15.76%, 2.23%, 3.88%, and 7.87% on
OSD dataset, respectively. Similarly, our model improves the
overlap F_score by 5.65%, 6.21%, 3.86%, and 11.53% on
OCID dataset, respectively. Besides, our model improves the
overlap F_score by 11.87%, 1.13%, 6.77%, and 11.03% on
OSD dataset, respectively. Therefore, these tests have proven
the effectiveness of our model and have demonstrated its
ability to enhance the segmentation accuracy on challenging
datasets comprising unknown objects in cluttered scenes.

E. ABLATION STUDY
In this section, the selection of (1) the network architecture,
i.e. transformer network or ConvMixer, and (2) the modules
along the processing pipeline, i.e. patch embedding, CMCF,
and input modes, in the proposed segmentation refinement
method will be justified through an ablation study. The
segmentation results will be compared for different mod-
els as listed in Table 4 and as illustrated in Fig. 6. Simi-
larly, F_score, Precision and Recall in Equation (6)-(8) are
utilized to quantify the accuracy of refinement. Moreover,
Frames Per Second (FPS) is computed to indicate the rate
at which images are being processed. We computed FPS
on NVIDIA V100 Tensor Core GPU. Giga floating-point
operations (GFLOPs) required for one single pass, are also
calculated to evaluate the time efficiency.

1) ConvMixer VS. TRANSFORMER NETWORKS
In this section, a comparison between convolution-based
segmentation refinement and attention-based segmentation
refinement will be conducted, while maintaining the input
and output dimensions of the system. More particularly,
a Convmixer network with a convolution-based decoder,
CMCF, will be compared to a transformer network with an
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FIGURE 5. Visualization of initial predicted segmentation by DSN on the testing set and the refined segmentation by our model.

attention-based decoder, namely Multi-Head Cross Attention
(MHCA) module [20]. Fig.6 depicts the segmentation refine-
ment results achieved by various structures. In this section,
the performance of the models referred to as (a), (b), (c), and
(f) will be evaluated.

By analyzing the results obtained by model (a), (b), (c),
and (f), it was observed that the segmentation refinement
was comparable in terms of improving the mask overlap and
boundary of the segmented objects, yet the ConvMixer-based
models achieved a slightly higher accuracy. However, the
image processing time of the ConvMixer-based architec-
tures, models (c) and (f), is reduced by approximately 55.8%
compared to the transformer-based architectures, models
(a) and (b). Hence, it is concluded that the ConvMixer-based
architecture outperforms the transformer-based architectures
in terms of computation and time efficiency. This is attributed
to the simple architecture exhibited by the ConvMixer-based
models which only consists of a patch embedding layer and
repeated fully-convolutional layers block.

2) IMPACT OF CMCF
In this section, the effectiveness of the CMCF module
will be investigated by comparing the performance of the
ConvMixer-based architecture with (model (f)) and without
(model (e)) the CMCF module. The same training param-
eters, experimental protocols, and evaluation metrics were
used. As listed in Table 4 and depicted in Fig.6, both mod-
els demonstrate outstanding performance on the evaluation
set, however, model (f) which contains the CMCF module

achieves higher accuracy on overlap and boundary estima-
tion of the predicted segmentation. This is attributed to the
fact that CMCF is capable of filtering out the non-semantic
features, and hence can provide a more accurate refinement
result when mixing the spatial and contextual information.
Besides, it is noteworthy that the time efficiency is improved
by 18%, due to the separable convolution structure of CMCF
module. The number of parameters of a single separable
convolution is only 3 × 3 + 1 × 3 × 4 = 39, which is
much less than the one of the traditional convolution block
4× 3× 3× 3 = 108.

3) IMPACT OF PATCH EMBEDDING
So far, the best performing model in terms of segmentation
refinement accuracy and time and memory complexity is
the ConvMixer-based model with CMCF. In this section, the
impact of adding a patch embedding module, introduced in
Section III-A, will be studied. The segmentation refinement
results obtained by model (c), ConvMixer + CMCF without
Patch Embedding, and model (f), ConvMixer + CMCF +
Patch Embedding, are shown in Fig. 6 and the evaluation
metrics are listed in Table 4. It is clear from the results that the
model with patch embedding performs better than the model
without patch embedding in terms of F_score, precision, and
recall of both overlap and boundary prediction. Particularly,
the F_score of overlap is improved by approximately 2%
due to the use patch embedding. The improvement that patch
embedding adds to segmentation refinement can also be seen
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FIGURE 6. Ablation study results - Input RGB image, initial segmentation mask predicted by DSN, and the corresponding segmentation ground truth
are depicted on the right side of the figure. The segmentation refinement results achieved by the transformer-based and ConvMixer-based models
that were considered in the ablation study are shown and labeled accordingly.

TABLE 4. Ablation study on the effect on ConvMixer, inputs mode, PE and CMCF module by the quantitative asset on accuracy and efficiency. The FPS is
computed on NVIDIA V100 Tensor Core GPU.

in the transformer-based models, models (a) and (b). These
results justify our choice of this module in the system.

4) IMPACT OF THE INPUT MODE
In this section, the choice of the input to the proposed seg-
mentation refinement method will be justified. As described
in the Section IV-B, the input to our system consists of
4 channels; the RBG image and the corresponding initial

mask predicted by any segmentation technique, DSN in our
case. A fifth dimension, referring to the depth of the scene,
was added to the input to test if such information is needed
to further refine the segmentation. This model is referred to
as model (d) in Fig. 6 and Table 4 and is compared to model
(f) which exhibits the exact same architecture and modules,
but does not use the depth information in the input. The
results obtained from both models appear to have the same
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FIGURE 7. Mask overlap F_score and processing speed achieved by the
models listed in Table 4.

refinement performance in terms of quantitative evaluation.
This is due to that depth information is already incorporated
in the initial mask obtained by DSN, and hence having it
as an input adds nothing to the accuracy of segmentation.
Rather, it negatively affects the computational efficiency of
the algorithm by increasing the number of operations needed
to carry out the prediction.

The F_score of the overlap prediction and the computation
complexity for all the models discussed so far are depicted
in Fig. 7. Higher F_score and lower GFLOPs indicate better
capacity on both segmentation refinement accuracy and time
efficiency and hence better overall performance. It can be
noticed from Fig. 7 that the ConvMixer-based models (d)
and (f) with both PE and CMCF present prominent per-
formance where they scored the highest F_score and low
GFLOPs. Also, it can be seen in Table 4 that model (f)
has the highest frame processing rate. In addition, PE and
CMCF modules can bring significant improvement on seg-
mentation refinement accuracy when compared to model (c)
and (e). On the contrary, transformer-based refinement net-
works (Model (a), (b)) show poorer performance than Con-
vMixer basedmodels, both in terms of F_score and GFLOPs.

V. CONCLUSION
In this paper, we proposed a CM-UNet for segmentation
refinement of unknown objects in cluttered scenarios. The
ConvMixer-based Cross Fusion module was developed to
fuse the large-scale contextual features and spatial informa-
tion through encoding the inter-dependent information.When
applying the proposed method on the predicted segmentation
of the state-of-the-art methods on unseen objects, the aver-
age overlapping accuracy is improved by 8.42% compared
to the initial prediction by DSN [35] on OCID and OSD
datasets [33]. We conducted a thorough ablation study to
justify the choice of the ConvMixer-based UNet architecture
and we have shown that our proposed method performs better

than transformer-based UNet in terms of accuracy and time
efficiency in refinement tasks. In addition, we have proven
that patch embedding and CMCF modules do bring positive
effect on segmentation accuracy.

In the future, we will conduct real robotic grasping exper-
iments for unknown objects using segmentation refinement
network. Besides object segmentation, this work can also
be applied to semantic segmentation and object localization
refinement by transfer learning.
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