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ABSTRACT The detection of rail surface defects is very important in railway transportation. However,
the edge defects on both sides of the rail and the multi-scale variation between different types of defects
both pose challenges to the detection of rail surface defects. In order to solve the above problems, this
paper proposes a novel rail surface defect detection network, YOLOv5s-VF. First, we design a sharpening
functional attentionmechanism (V-CBAM) that contains two key components: adaptive channel attention (F-
CAM) and sharpened spatial attention (SSA). In F-CAM, we use one-dimensional convolution with adaptive
convolution kernels for cross-channel connections, which reduces the number of parameters of the attention
mechanism without affecting its performance. In SSA, we design a sharpening filter suitable for spatial
attention, which is used to enhance the attention to the edge position defects of railway tracks and enhance
the detection effect of the network on edge defects. Second, we construct a microscale adaptive spatial
feature fusion (M-ASFF), which adds a high-resolution feature extraction layer to enhance the details of the
underlying features of tiny defects. At the same time, in order to prevent the loss of detailed information and
the excessive increase of the parameters of the model, the low-resolution feature layer is removed. Combined
with adaptive spatial feature fusion, it can prevent the semantic conflict caused by the fusion of features at
different scales. Finally, given the lack of labeled public rail surface defect datasets, this paper is based on the
collection of real rail images andmanually labels defects to train an object detection network and open source
it. The experimental results show that YOLOv5s-VF outperforms the existing rail surface defect detection
methods with a detection accuracy of 93.5% and a detection speed of 114.9 fps.

INDEX TERMS YOLOv5, attention mechanism, adaptive spatial feature fusion, rail surface defect.

I. INTRODUCTION
In In recent decades, the rapid development of high-speed
railways has made railways one of the foremost essential
modes of transportation for Chinese citizens [1]. The rail is
an important support for the railway track, and its role is to
ensure that the train runs forward and bears the extrusion of
the wheels. With the aggravation of railway transportation
tasks, the negative pressure on railways is also increasing,
as is the harsh environment and the ageing of materials.
These are the things that cause defects on the rail surface.
Therefore, timely detection of the health status of the rail
surface is essential for preserving the security of the train.
In traditional rail surface defect detection, the inspection
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methods are mostly ultrasonic [2], eddy current [3], and
magnetic particle [4] methods. Although these methods can
detect rail surface defects, they require much time.

Based on traditionalmachine vision techniques, researchers
combine imaging systems with defect detection. These
methods usually go through manual analysis of rail surface
defect images to design manual features or predefined
features and classify defects by a classification network.
In [5], defects are captured and segmented through an
automatic visual inspection system. In [6], a local Weber-like
contrast (LWLC) algorithm was proposed to enhance track
images. In addition, in [7], the original data were converted
into three-dimensional point cloud patterns, and the digital
rail surface defects were reconstructed. In [8], morphological
operations were combined with defect detection for the
detection and shape extraction of rail defects. In [9], the
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inhomogeneous illumination of the rail surface is eliminated
by partitioned edge features (PEFs). In [10], the rail image is
divided into three scales and filtered and segmented by the
coarse and fine models.

A method for detecting surface defects based on 3D
laser reconstruction was proposed in [11]. In practice, these
methods have proven to be effective for rail defect detection.
However, their common disadvantage is that the accuracy and
recall of the detection results are usually low. Some defects,
such as cracks, dents, and spalling, are challenging to detect
and categorize.

With the rapid development of deep learning, we combine
deep learning with rail images to achieve more accurate
detection of rail defects. Existing deep learning-based
defect detection strategies can be broadly categorized as
follows:

Image classification methods, such as hybrid detection
methods consisting of wavelet packet transforms (WPTs),
kernel principal component analysis (KPCA) and SVMs, are
proposed in [12]. For a limited data sample, the defect images
are treated as sequential data, and pixel lines were classified
by [13] using a one-dimensional convolutional neural net-
work to extract features. These studies are prospective for
identifying rail damage but are unable to detect and localize
multiple defects on a single image.

Pixel segmentation uses a classification network to pixelate
defects [14], [15] or large pixels [16], [17]. A local
pixel inhomogeneity factor (LPIF)-based image enhancement
method was proposed in [18] to enhance the contrast
pairs of defective images and to segment defects by the
maximum interclass difference method (Otsu). A pixel-level
segmentation network based on deep feature fusion was
proposed in [19] to improve defect segmentation accuracy
by combining a multibranch decoder and the multibranch
structure of the attention module to reply with defect details.
The method segments the defect contours at a high level,
while pixel classification is more sensitive to greyscale
changes in the background. In addition, the fixed large prime
number is not conducive to the scale adaptation of defect
segmentation.

For sliding windows, the original image is divided into
several subimages for detection [20]. In [21], the use of
three different scales of sliding windows is proposed, and
different computational methods are established to cope with
the variations of different scales of defects. In [22], the size of
the sliding window is obtained by the least squares method to
address the need for traditional sizes that are difficult to adapt
to the detection target. A temporal spectrogram was obtained
by [23] using a sliding window to scan the morphological
feature signals of the defect. However, fixing the size of the
sliding window can, to some extent, lead to localization errors
in multiscale defects.

For defect detection based on anchor frames, the field
uses Faster-RCNN [24], represented by two stages, and
YOLOv3 [25]. To address the low detection accuracy
and large number of network parameters in rail defect

detection in this field, many scholars have proposed different
improvement strategies. The recurrent neural network (CRF-
RCNN) proposed in [26] is a two-stage extractor combining
bilateral convolutional networks and conditional random
fields, which helps to smooth out constraints or obtain
fine-grained inspection results. An improved single-shot
multibox detector (SSD) is proposed in [27], which adds
a full convolutional compression and excitation (FCSE)
module. The attentional neural network based on joint
intersection consistency (IoU)-guided centroid estimation
(CCEANN) proposed in [28] achieves high accuracy in
defect detection. In [29], researchers use MobileNetv3
as the backbone network of YOLOv4 to extract image
features and simultaneously apply depthwise separable
convolutions, enabling lightweight networks and real-time
detection of railway surfaces. In [30], the researchers used
the fuzzy C-means algorithm to re-cluster the anchor boxes
based on YOLOv4 and added a shallow feature layer
to solve the problem of occlusion of hanging insulators
and power components. In [31], contextual information is
integrated into the backbone of the Swin Transformer, and
skip-connected BiFPN is used to improve detection of small
objects.

To sum up, in the area of defect detection based on
deep learning, a large number of researchers have conducted
research on problems such as small targets for defect
detection and proposed effective improvement methods.
However, in the above detection methods, the models are
generally large (greater than 50 MB), which is not conducive
to porting them to mobile devices, and the detection speed
is low. Therefore, we need to explore a new model that can
achieve a balance in detection accuracy, detection speed, and
model size so that it has the characteristics of being fast
(greater than 90 FPS), highly precise, and small model(size
below 20 MB).

Most rail surface defects are caused by rolling fatigue
contact (RFC) and can be classified into the following
categories depending on the texture characteristics: cracks,
dents, spalling and transverse fractures [32]. Although the
above methods have played a positive role in the detection of
rail surface defects, some unresolved problems still exist due
to the complexity of the railway environment. The challenges
of computer vision-based rail surface defect detection are as
follows.

(1) Rail surface defects are multiscale and have uneven
foreground and background. The number of different types
of defects varies, and some defects have a small sample
size, which creates an imbalance of defect categories and
makes it difficult to target them. Defects of the same type are
multiscale in nature; for example, spalling and concave have
extreme aspect ratios.

(2) Variations in the reflective properties of the track
surface: The brightness and contrast between the track surface
and defects in the image will change due to variations in
natural light and different weather conditions in the railway
environment. Moreover, the contrast between defects and
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wheel-rail contact areas is high, but the contrast between
defects and background in rough metal areas is low, which
results in uneven illumination for defect detection on the track
surface.

(3) Interference in complex environments: The debris on
both sides of the rails, fasteners and surface stains, wear and
tear increases the difficulty of computer vision-based defect
detection. In addition, as rails are exposed to the external
natural environment, they are affected by sunshine, shadows
and rain, resulting in reduced imaging quality and hence
detection effectiveness.

Aiming at the above problems, this paper proposes a
new detection framework for the detection of concave and
exfoliation defects dominated by small objects and multi-
scale objects. Its core contributions are as follows: (1) In
order to solve the problem of difficult and effective detection
of edge defects, we propose a hybrid attention mechanism
(V-CBAM) with a sharpening function that enhances the
attention mechanism by constructing a sharpener suitable
for the spatial attention module. Focus on edge defects
so that the network can effectively locate them.At the
same time, the one-dimensional convolution of the adaptive
convolution kernel is used in the channel attention module for
cross-channel connection to reduce the amount of parameters
in the attention module. Compared with other attention
modules, this module can effectively locate edge defects.
(2) Aiming at the situation that the detailed features of
tiny defects will be ignored in multi-scale feature fusion,
we propose a microscale adaptive spatial feature fusion
(M-ASFF). By adding a feature extraction layer for small
defects, the detailed features of small defects are enhanced,
and the low-resolution feature layer is removed to prevent
the loss of information about the underlying features.
At the same time, adaptive spatial feature fusion is used to
adaptively assign weights to features of different scales to
prevent semantic conflicts caused by fixed weight fusion.
(3) Given the lack of labeled datasets of rail surface
defects, we constructed a rail surface defect dataset to train
convolutional neural networks based on real rail images and
published it to the outside world.

The remaining portions of the article are organized as
follows: Section II presents pertinent prior research, while
Section III introduces the methodology; Section IV describes
the construction, comparison experiments, and ablation
experiments of the rail surface defect dataset; and Section V
concludes the paper.

II. RELATED WORK
This section introduces the current mainstream attention
mechanisms, including ECANet [33], SENet [34], CBAM
[35] and other modules, as well as adaptive spatial feature
fusion (ASFF) and YOLO target detection network. Among
them, the application of the YOLO network in defect
detection is analyzed, which lays the foundation for the
construction of the track surface defect detection network
YOLOv5s-VF.

A. ATTENTION MECHANISM
The visual attention mechanism is a brain signal processing
mechanism unique to human vision that enables humans
to find salient regional locations in complex natural envi-
ronments [36]. Inspired by this, the attention mechanism
was introduced to computer vision, which draws on the
attention mode of human vision and has been widely
used [37]. Attention mechanisms can be simply divided
into three categories: channel attention, spatial attention, and
coordinate attention mechanisms. SENet [33] introduced the
first effective channel attention mechanism, which adopts
the squeeze and excitation structure to adaptively recalibrate
the channel feature response and shows good performance
in DCNN. As an improved version of SENet, ECANet [34]
replaces the fully connected layer (MLP) in SENet with
a one-dimensional convolution with adaptive convolution
kernels to achieve cross-channel interaction. DANet [38] pro-
poses location attention and channel attention mechanisms
to enhance the correlation between global feature fusion and
semantic feature quality. CBAM [35] is a hybrid attention
mechanism that combines channel and space, where channel
attention is used to learnwhat to pay attention to, while spatial
attention is used to learn where to pay attention. In CBAM,
global pooling or maximum pooling structures are no longer
used, and instead, a combination of the two is used, using the
form of addition in the channel and the form of stacking in
the space. This paper proposes a novel lightweight attention
mechanism to strengthen the attention of CBAM to image
edge features.

B. ADAPTIVE SPATIAL FEATURE FUSION (ASFF)
The main problem solved by the FPN network is the
insufficiency of target detection in dealing with multiscale
changes. It performs multiscale feature fusion to improve
the richness of features. However, this fusion is carried
out in a fixed way; that is, in the detection branch, it is
suitable to detect the low-level features of small objects,
the high-level features of large objects, and the middle-level
features. Merging occurs in the form of direct splicing or
direct addition, which causes conflicts between features at
different scales. This conflict is mainly manifested when the
target is detected in a feature map of a certain scale and
regarded as a positive sample, and the feature maps of other
scales are regarded as the background in the corresponding
area when the area contains both large and small objects.
The information carried between the feature layers of
different scales for detecting large and small objects is
contradictory.

To address this issue, Songtao et al. [39] proposed ASFF
in 2019 and applied it to YOLOv3 with outstanding results.
This method can funnel features of various scales and retain
only valid features. For the features of a certain scale, we first
adjust the features of other scales to the same size and then
find the best fusionweight coefficient through training. In this
paper, three-layer ASFF is used.
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FIGURE 1. YOLOv5s-VF model.

C. YOLO TARGET DETECTION NETWORK
In this subsection, we introduce the application of the
YOLO series network in defect detection. In [40], the
authors use a YOLOv2-based network to detect void defects
in airport runways, combined with incremental random
sampling (IRS) and ResNet 18. The localization of hole
defects is enhanced, and the recall rate of defect detection is
improved.

In [41], researchers used a YOLOv3-based network to
detect bridge surface defects (cracks and exposed steel
bars), and using transfer learning and data enhancement,
the mAP of bridge surface defect detection was increased
by 6–10%.

In [42], researchers based on YOLOv4 network tunnel lin-
ing defect detection. After using EfficientNet and depthwise
separable convolution, the detection average accuracy and F1
of tunnel lining defects are improved to 81.84% and 81.99%,
respectively.

In [43], the researchers detected insulator defects based
on the YOLOv5 network. The F1 value of insulator defect
detection was 96.2% when the channel attention mechanism
SE was combined.

In summary, the YOLO target detection network is widely
used in defect detection. With the update of the YOLO
series of networks, the performance of defect detection has
been greatly improved. However, there are still some issues
that need to be resolved, as follows: (1) Some defects are
distributed in the edge part of the image, and the gray value
of the defect is the same as the gray value of the edge, so it is
difficult to be detected. (2) The scale of defects varies greatly,
and the fusion method of fixed weights will lead to the loss of
the underlying detail features, which will make the detection
effect of small target defects worse.

III. OUR METHOD
In this paper, YOLOv5s [44] is used as the benchmark
model, and the constructed sharpening attention mechanism
V-CBAM and microscale adaptive spatial feature fusion
M-ASFF are applied to the model to improve the detection
performance of small defects and multi-scale defects. The
improved YOLOv5s method is named YOLOv5s-VF, and
Fig. 1 shows the overall structure of the method.

A. SHARPENING ATTENTION MECHANISM (V-CBAM)
In Part A of the related work, we introduced the char-
acteristics and working principle of the CBAM attention
mechanism, which has a relatively good performance in the
field of object detection, but when we applied the CBAM
attention mechanism to the detection of rail surface defects,
we did not achieve a big improvement. We analyze the reason
because, because the rail surface contains many defects
combined with the edge of the rail surface, as shown in
Fig. 2, the edges of these defects are attached to the side
of the rail, and the gray value of the defect is the same
as the gray value of the side, it is difficult to effectively
localize these defects using the CBAM attention mechanism.
Therefore, to address the above problems, we construct a
sharpening filter to enhance the edge details of defects. At the
same time, in order to reduce the number of parameters
brought about by the introduction of CBAM, we use one-
dimensional convolution with adaptive convolution kernels
for cross-channel connections.We name the new attention
mechanism V-CBAM. Through the visualization of the heat
map shown in Fig. 3, we can clearly see that our V-CBAM
can pay more attention to the defects that fit the rail surface
than the source network and CBAM and is more sensitive
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FIGURE 2. Defects combined with rail edges.

FIGURE 3. Defect heatmap visualization? (a) original image (b) YOLOv5
(c) CBAM (d) V-CBAM.

FIGURE 4. F-CAM structure diagram.

to the edge portion of the defect. The specific workflow of
V-CBAM is as follows:

First, in the channel attention mechanism (CAM), the
fully connected layers in the CAM are replaced with 1D
convolutions with adaptive convolution kernels. The inherent
effect of one-dimensional convolution is that it is not fully
connected. Each convolution process only works with part
of the channel, that is, to achieve appropriate cross-channel
interactions instead of full-channel interactions such as those
of the fully connected layer.

It is empirically shown that using 1D convolution instead
of fully connected layers can significantly reduce model
complexity while maintaining model detection accuracy. The
improved CAM is named F-CAM. The structure of F-CAM
is shown in Fig. 4.

(1) The given feature map is first made subject toMax Pool
and Avg Pool in producing two [1,1,C] vectors. F1 and F2
are the features remaining after global maximum pooling and
global average pooling. The working process of F-CAM is as
follows:

(2) The two feature vectors are subjected to a
one-dimensional convolution with a convolution kernel
length of K to aggregate the information of the k channels
in the channel neighbourhood. The size of K is adaptively
determined by the number of input channels and calculated

using Formula 1:

k =

∣∣∣∣ lbC2 + 1
2

∣∣∣∣
odd

(1)

k represents the size of the convolution kernel, C represents
the number of channels of the input feature map, the base is
indicated, and 1 is added if the result is even. The size of the
convolution kernel can be altered, which is an advantage of
the adaptive convolution kernel. The convolution kernel will
grow correspondingly as the number of channels increases.

(3) The two features are connected after convolution
according to the corresponding elements and converted into
probability values (normalized) between 0 and 1 through the
sigmoid function. A channel of attention is generated.

(4) The generated channel attention is then broadcast and
expanded to H×W×C along two dimensions in space and
then dotted with the original feature map to output a final
feature map of channel attention.

Second, we construct a sharpening filter and apply it
in spatial attention in order to enhance the recognition
of object edges by the spatial attention module, focusing
on the ‘‘location’’ and ‘‘how much’’ of the object edge
to strengthen the edge for better localization, which is a
complementary enhancement to the target. The sharpening
filter is constructed as follows:

(1) Define a 5×5 initialization kernel. Since the defined
kernel is a 2-dimensional list, it cannot directly participate
in the operation as a parameter of convolution. It needs
to be converted into one that satisfies (batch, width,
height, channel) through dimension transformation. Only
four-dimensional tensors can participate in operations. There-
fore, first convert it to a tensor tensor using the FloatTensor
function in Pytorch and expand it to 4 dimensions using
2 times unsqueeze (0).

(2) In order to adaptively learn and change the sharpening
kernel according to the characteristics of the input image to
meet the learnability of the training parameters, the parameter
function is used to convert them into trainable parameters so
that for different input features, the adaptive learns the most
effective sharpening kernel.

(3) In the forward propagation, the 0 and 1 channels of the
feature map are extracted from the input feature map, and X1
and X2 are defined to perform convolution operations on the
extracted channels, and the results of the convolution output
by the convolution kernels X1 and X2 are in the column
direction splicing and compress the number of channels by
3×3 convolutions as the result.

We embed the constructed sharpening filter into spatial
attention and name it SSA. The SSA module structure is
shown in Fig. 5, and the specific implementation steps are
as follows:

(1) First, the output feature map of the channel attention
module is made subject to Max pool and average pool to
generate two weight vectors of [H,W,1], namely, maximum
pooling and average pooling by channel. The number of
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FIGURE 5. SSA structure diagram.

channels is changed from [H,W,C] to [H,W,1], pooling all
channels of the same feature point.

(2) The generated feature map is spliced into a feature map
of [H, W, 2] based on the number of channels. Then, after
a 7×7 convolution operation, the dimension is reduced to
1 channel number, that is, [H×W×1]. Form the spatial feature
weights of [H,W,1].

(3) Pass the obtained feature map through a 5×5-order
sharpening filter, and stack the convolution output results X1
and X2 in the column direction to form a [H×W×1] feature
map. And through the sigmoid function, it is converted into a
probability value between 0 and 1 (normalized).

(4) The obtained spatial weight [H,W,1] is multiplied by
the original feature map [H,W,C] so that each [H, W] point
on the feature map is assigned a weight, and the weight
represents the importance of this area, which allows the
network to adaptively focus on areas with larger weights.

The calculation method of our sharpened spatial attention
module is as follows:

MS (I ) = δ(S5×5(f 7×7([Maxpool(I );Avgpool(I )])))

= δ(S5×5(f7×7(Imax;Iavg))) (2)

Formula 2, δ is the sigmoid function, where Sn×n represents
the convolution for sharpening when the sharpener size is n
and f 7×7 is a convolution with a parameter of 7×7, whose
channel is equal to the channel of the feature map.

The F-CAMmodule and the SSA module are combined to
form the V-CBAMmodule, as shown in Fig. 6. V-CBAM can
be expressed by the following Formula 3 and Formula 4:

IC = Mc(I )⊗ I (3)

Isc = Ms(Mc(I ))⊗ I (4)

MC andMS represent the F-CAMmodel and the SSA model,
respectively. The dot product is presented by elements. The
precise results of the two parts are Ic and Isc.
Finally, we explore the different ways in which the

attention mechanism can be inserted. As the attention
mechanism is a plug-and-play module, it can be adapted
to any part of the YOLOv5 network in principle, but the
introduction of the attention mechanism will inevitably bring
in some parameters. Embedding too many parameters will
lead to an overly large number of model parameters and an
overly complex network model, making it difficult to reach
the fitted state in a short time during training.

To satisfy the need for a lightweight model, we consider
adding the attention mechanism only at the backbone of

FIGURE 6. Structure diagram of V-CBAM.

FIGURE 7. Insertion position structure of the attention mechanism.

the YOLOv5 network because the scope of the attention
mechanism is global, so adding it only at the backbone will
also have an impact on the whole network. In Fig. 7, on the
left, attention is added at the last layer of the backbone, and
on the right, it is added to the csp residual module. The
first method requires modifying the connections and number
of channels of the entire network layer, which needs to be
adjusted manually when performing experiments; the second
method is integrated with the C3 module, which does not
require modifying the number of network layers and channels
and is convenient for conducting experiments. In this paper,
we use the second addition method, adding V-CBAM to the
C3 module to form a new C3VCBAM module and replacing
all the C3 modules in the backbone.

Our construction process is as follows: in the common.py
file of YOLOv5, we define the F-CAM and SSA classes and
the C3VCBAM class and call the F-CAM and SSA classes in
C3VCBAM; in yolo.py, we register our modified C3VCBAM
class; and in the yaml file, we replace the original C3 module
with C3VCBAM.

B. MICROSCALE ADAPTIVE SPATIAL FEATURE
FUSION(M-ASFF)
To perform feature fusion on the features extracted by the
backbone network, YOLOv5s adopts Feature Pyramid (FPN)
and Path AggregationNetwork (PANet). However, this fusion
is a fixed-weight fusion and adopts a direct splicing method,
which will lead to the loss of low-scale features containing
more location information. At the same time, as shown in
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FIGURE 8. Multiscale defects.

FIGURE 9. M-ASFF structure diagram.

Fig. 8, the larger size of the defects on our rail surface
is 26 × 260 pixels, and the smaller size of the defects is
19× 22 pixels. Since the YOLOv5 source network uses three
scales of detection heads (with 640×640 size input as an
example): are 20×20, 40×40, 80×80, corresponding to the
detection of 32×32, 16×16, 8×8 size targets, the smaller
the size of the detection head, the larger the corresponding
receptive field, which can extract richer semantic information
for detecting large objects; on the contrary, the smaller the
receptive field, the more position and detail information
can be extracted for detecting small objects. So even if
our larger-sized object becomes a 1×8-scale feature after
downsampling by a factor of 32, it will be treated as a
pixel in the 20×20-scale detection layer and ignored by
the network. For small-sized defects, due to their small
pixel values, their own feature information will be lost after
multi-layer convolution operations; even the 80×80-scale
detection layer is not easy to detect. Therefore, in order
to realize the feature extraction of small defects and fully
fuse the semantic information of high-level features with the
location information of low-level features, we construct a
microscale adaptive spatial feature fusion (M-ASFF). Fig. 9

depicts the M-ASFF structure.
First, we output a 160×160-scale feature layer after the

first C3 module in the backbone network and remove the
last layer of convolution in the backbone network and
the corresponding output layer in the neck part, which
corresponds to removing 20×20 detection. As shown in
Fig. 10, the 160×160 detection head can be used to detect
tiny objects with a size of 4×4 pixels.In this way, it can
meet the needs of feature extraction for small defects, and at
the same time, removing redundant 20×20 detection heads
can reduce the loss of details in defect features and position
information and at the same time prevent the excessive
increase of network parameters that results in a complex
network structure. From the visualization of the feature map
in Fig. 11, it can be seen that the P2 layer can obtain more

FIGURE 10. Micro-scale detection head.

FIGURE 11. Feature map visualization: (a) original image (b) P3 layer
(c) P2 layer.

defect features than the P3 layer, and the defect shape is
clearer. Therefore, adding a 160×160-scale detection layer
can effectively improve the feature extraction of micro-sized
defects.

Then, a three-layer ASFF is added after the output
three-scale feature layer, which we nameMASFF-YOLOv5s.
Three-layer ASFF is capable of adaptively studying weights
and combining multiscale data for adaptive feature fusion.
M-ASFF then performs weighted fusion after adjusting the
T2, T3,and T4 layers to have identical numbers of channels
and resolutions. The entire procedure consists of the first step,
feature size adjustment, followed by the second step, adaptive
fusion.

Since the three different scale feature layers of YOLOv5s
have distinct channel counts and resolutions, the upsampling
and downsampling techniques of each scale must be modi-
fied. For upsampling, we compress the number of channels
of features to level l using a 1×1 convolution, and then,
we use interpolation to increase the resolution. For 1/2
proportion downsampling, we use 3×3 convolutional layers,
which simultaneously modify the number of channels and
the resolution. Before the convolution for 1/4 proportion,
a two-step max pool layer is added. M-ASFF-2 is taken as an
example. First, the channel counts of T3 and T4 are equalized
through convolution, and after interpolation processing, the
size is adjusted to the same ratio as T2. Then, M-ASSF-2
is weighted and fused through the obtained weights. The
whole process of obtainingM-ASFF consists of the following
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FIGURE 12. Marking process.

formula 5.

M − ASFF lij = α
l
ij × Interpolate(Conv(T

4→l
ij , 1, 1), 4)

+β lij × Inter − polate(Conv(T
3→l
ij , 1, 1), 2)

+ γ lij × Conv(T
2→l
ij , 1, 1) (5)

M −ASFF lij represents feature mapM −ASFF lij eigenvectors
at (i,j), T n→l

ij represents the feature vector adjusted from level
n to level l on the feature map divided by position (i, j) on
the PAN network, Interpolate(I, i) indicates that the step size
is i, and the interpolation value is I. αlij, β

l
ij, and γ

l
ij represent

the adaptively learned spatial weighting factors of the feature
space from three levels to the l-level. αlij, β

l
ij, and γ

l
ij can be

simple scalar variables shared across all channels, αlij+ β
l
ij+

γ lij = 1, αlijβ
l
ij and γ

l
ij are ∈[0,1], and the defined as Formula

6:

αlij =
e
λlαij

e
λlαij + e

λlβij + e
λlγij

(6)

αlij, β
l
ij, and γ

l
ij are defined by using λl∂ij , λ

l
βij
, and λlγij as the

softmax function of the control parameters, but λl∂ij , λ
l
βij
, and

λlγij are defined through the changed feature map T 4→l
ij , T 3→l

ij
T 2→l
ij obtained by 1×1 convolution. Therefore, they can be

learned by standard backpropagation.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The effectiveness of V-CBAM and M-ASFF in ablation
experiments is demonstrated in this section. In addition, the
method is then compared to the target detection algorithm to
validate its efficacy on the track defect dataset, and then, the
experimental conclusions are presented.

A. DATASET
To evaluate the efficacy and robustness of YOLOv5s-VF,
a dataset consisting of real rail inspection video supplied
by the Chinese Academy of Railway Sciences was created.
On the track, high-speed cameras with a resolution of
1920 × 1080 were utilized to record forty 100-minute
videos from various sections of the railway site. With
these acquisitions, the video of the railroad tracks was
converted to 1250 × 55 pixel stills using frame-by-frame
interception, and the images were saved in PNG format.
Using the LabIImage annotation tool, the generated images
were marked. To enhance the capacity of the YOLOv5

FIGURE 13. Partial picture of the dataset.

network to detect flaws, we utilized the minimum outer
rectangle method for marking, with the goal of including the
defects while framing the background as little as possible.
Fig. 12 depicts the marking process.

The tagged files are in XML format, and the names of the
original images are maintained. The dataset contains a total
of 5027 images of the concave and exfoliation classes studied
in this paper, and a representative example of the dataset 9is
shown in Fig. 13. There are approximately 2604 images in the
concave category and 2423 in the exfoliation category. In the
exfoliation category, severe exfoliation samples and small
exfoliation samples account for approximately 15% and 34%,
while in the concave category, large concave samples and
small concave samples account for approximately 15% and
19%, respectively. In this dataset, 4022 images are utilized for
training and 1005 for testing. All noted flaws must be verified
by technicians.

B. EVALUATION STANDARD
The assessment index serves as a crucial foundation for
assessing the effectiveness of the target detection model. The
evaluation indicators include precision (P), recall (R), average
precision (AP), average category precision (mAP), frame
processing speed (FPS), and F1 score. In our experiments,
we utilized AP, mAP, F1, frame processing speed (FPS) [45],
and model size.

The ideal state for the target detection model is when
both accuracy and recall are relatively high, but in reality,
an increase in accuracy will result in a decrease in recall,
and vice versa [9]. Consequently, the PR curve and F1
score are utilized to analyse the model’s performance from
a global perspective. The PR curve sorts all detection targets
within each category based on their scores and calculates
the precision and recall from greatest to least. The curve
formed by connecting various points along the coordinate
axis is known as the PR curve. The F1 value is the weighted
harmonic average of accuracy and recall. When there is a
discrepancy between the P and R indicators, the F1 value can
counterbalance the anomaly between them. The calculation
process is shown in Formula 7:

F1 =
2 ∗ P ∗ R
P+ R

(7)

In general, AP and mAP indicators are used in multicategory
detection tasks. A particular variety of AP refers to the region
encompassed by the PR curve introduced previously. mAP is
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TABLE 1. Comparison of YOLOv5 models with different network depths.

TABLE 2. YOLOv5 models with different network depths add V-CBAM attention module comparison.

the average of all AP categories. The calculation process is
shown in Formulas 8 and 9:

AP =
∫ 1

0
PRdR (8)

mAP =
1
C

∑
ci∈C

AP(Ci) (9)

In addition to detection accuracy, the speed of a target
detection algorithm is an important evaluation factor. Real-
time detection can only be achieved when the speed is
high [46]. FPS is a metric that measures the rate of target
detection. It indicates how many frames (images) per second
the network can process (detect). Assuming that it takes the
target detection network 0.02 seconds to process one image,
the frame rate is 1/0.02 = 50.

C. PARAMETER SETTING
All experiments are conducted on a server running Ubuntu
16.04 with an Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40 GHz, an NVIDIA RTX 3090 GPU, and 24G video
memory using the PyTorch framework. Note that none of the
parameters in the experiments were loaded with pretrained
models. A total of 300 epochs were trained in the experiment,
and the batch size was set to 8. The initial learning rate was
set to 0.001, and the NMS threshold was set to 0.5.

D. ABLATION EXPERIMENT
To evaluate the functionality of V-CBAM and M-ASFF,
we quantitatively evaluate and analyse the results of different
settings of YOLOv5s.

1) THE EFFECT OF V-CBAM
In this subsection, we explore the impact of V-CBAM on the
task of rail surface defect detection using a self-made rail
surface defect dataset. Since the introduction of the attention
mechanism will increase the number of parameters, it is not
appropriate to add too many attention mechanism modules.
In this experiment, we only added the attention mechanism to

FIGURE 14. (a) Concave PR curve (b) Exfoliation PR curve (c) mAP-PR
curve.

the backbone to verify its impact. We first tested the detection
effects of YOLOv5 models with different depths, and then
verified the effects of different depth models after adding
V-CBAM by introducing V-CBAM. Meanwhile, we conduct
ablation experiments on the V-CBAMmodule to find the best
use of V-CBAM. Finally, we compare the detection effects of
different attention mechanisms and verify the effectiveness of
the improved attention mechanism in defect detection.

All parameters were kept stable during the experiment. The
YOLOv5 network models of different depths are shown in
Table 1. It can be seen that as the network depth increases,
the detection accuracy continues to rise, but the speed also
decreases. From Table 2, we can conclude that YOLOv5s-
VCBAM has the highest mAP value among YOLOv5models
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TABLE 3. Comparison of different attention mechanisms.

TABLE 4. Comparing the effects of different edge detection operators on V-CBAM.

TABLE 5. Comparison of different attention mechanisms.

with V-CBAM attention modules embedded at different
depths. The mAP value of YOLOv5n and YOLOv5s both
increased by about 2.6% after embedding the V-CBAM
module, and the improvement effect was obvious. YOLOv5m
increased the mAP value by 0.4% after using the V-CBAM
module, but the V-CBAM module was used in YOLOv5l
and YOLOv5x. After that, the AP, mAP, and F1 values of
the concave and exfoliated types all decreased to different
degrees, and the deeper the network, the more severe the
decrease. This is because, with the increase of network
depth, the model complexity and parameter volume gradually
increase, the convergence speed gradually decreases, and
there is also an effective problem of gradient propagation,
which will make it difficult to fit the parameters of the
attention module during training, good result. Therefore, our
attention module is more suitable for lightweight models.
Since the basic detection accuracy of YOLOv5n is low, even
if the V-CBAM attention module is added, its mAP value
fails to reach more than 90%, so we choose YOLOv5s as
the benchmark model. The detection accuracy of YOLOv5s
after using the V-CBAM module is comparable to that of
YOLOv5l.

Table 3 show that V-CBAM using the combination
of F-CAM+SSA has achieved the highest index value,
indicating that V-CBAM is better than CBAM, especially
since V-CBAM has achieved 91.2% compared to that of the
source model, the mAP increased by 2.6%, the exfoliation AP
increased by 2.5%, and the mAP increased by 2.6%.

In Table 3, we found an interesting phenomenon: when
only the spatial attention mechanism SSA module is used,
all indicators are 0. We speculate that the SSA module is
not suitable for use alone because the edge enhancement

module in SSA is directly placed into the feature extraction
network when the feature map is not squeezed or stimulated
by the channel attention mechanism, which would induce
the weight of the contour segment to fluctuate, resulting
in considerable loss and the failure to successfully achieve
convergence during the training process. Therefore, the SSA
module is not suitable for use on its own.

We compared the effects of using different edge detection
operators on V-CBAM, as shown in Table 4. Compared to
the effects of 3×3 order and 5×5 order initialize the kernel
on V-CBAM, we found that a 5×5 sharper with a higher
order can produce better results. Because the 5×5 initialize
the kernel is larger than 3×3 and has a large receptive field,
more feature information can be captured. Therefore, for this
paper, we chose 5× 5 initialize the kernel.
Through Table 5, comparing the channel attention mech-

anism ECA and the coordinate attention mechanism CA,
it can be concluded that the AP, mAP, and F1 values of our
V-CBAM attention module in Neg and Bol are higher than
those of the ECA module and the CA module. The degree of
mAP was higher by 1.5% and 1.1%, and the F1 value was
higher by 1.4% and 1.2%, respectively. As shown in Fig. 14,
it can be concluded that the area enclosed by the PR curve of
V-CBAM is larger than the area enclosed by the contrasting
attention modules.

2) INFLUENCE OF M-ASFF
In this section, we explore the impact of micro adaptive
feature fusion (M-ASFF) on the model. Since the main goal
of M-ASFF is to achieve adaptive fusion of features at
different scales, we selected comparative models of different
feature fusion methods, mainly including YOLOv3 using
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TABLE 6. M-ASFF comparison results.

TABLE 7. Detection results of different feature layers combined with ASFF.

TABLE 8. YOLOV5s-VF comparison results.

FIGURE 15. (a) Concave PR curve (b) Exfoliation PR curve (c) mAP-PR
curve.

only the FPN structure, the YOLOv5s source model using
FPN+PANet, and a combination of The Swin Transformer’s
Weighted Bidirectional Feature Pyramid Network (TBIFPN)
[31]. From Table 6, we can conclude that the YOLOv5s
model with the addition of the M-ASFF module performs

the best on the rail surface defect dataset. On the basis of the
source YOLOv5s, M-ASFF only increases the model size by
0.72 MB, the mAP is increased by 3.1%, and the AP of the
concave and exfoliation types is increased by 3.3% and 2.9%,
respectively. The effect is significantly improved.Compared
with TBIFPN, our M-ASFF has a 0.4% higher mAP in
detection results and 0.4% and 0.6% higher AP in concave
and exfoliated categories, respectively; however, our model
is faster than TBIFPN in detection speed out of 23 fps, the
model is smaller.It can be seen that the feature fusion method
of FPN+PANet+M-ASFF has a better detection effect on
the surface defects of the rail. Through Fig. 15, the area
enclosed by M-ASFF in the PR curve is larger than that
of other comparison models, which can also reflect that the
performance of the YOLOv5s model using M-ASFF is better
than the three compared models.

We also conducted an experimental analysis of the impact
between the micro-object detection layer and adaptive spatial
feature fusion. Through Table 7, we compared the perfor-
mance of different scale feature layers combined with ASFF
and found that the combination of micro-scale detection
layer P2, small-scale detection layer P3, and medium-scale
detection layer P4 combinedwithASFF has the best detection
effect. Compared with the combination of P3, P4, and
P5 layers combined with ASFF, our combination method
improves the mAP by 1.2%, and the AP of concave and
exfoliation types increases by 1.8% and 0.6%, respectively.
Our analysis is that the defect size on the surface of the rail
is small, so it cannot be detected in the P5 layer. The P4
and P3 layers actually play the role of detection. However,
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FIGURE 16. (a) PR curve representing concave (b) PR curve representing
exfoliation (c) PR plot of mAP.

some small defects are due to their small pixels. When
downsampling to extract features, it will be ignored as a pixel,
so adding a P2 layer can better extract the features of this part
of the defect, and after weighting by ASFF, the multi-scale
features are further fused.

The above experimental results show that the performance
of the model is improved after adding the micro-detection
layer, but the feature fusion of YOLOv5s is of a fixed
scale, so the performance is not optimal. By using ASFF to
adjust the scale of the feature map, the performance can be
further improved. This experiment shows that M-ASFF can
perform weighted fusion of multi-scale feature information
more efficiently, thereby improving detection accuracy.
In conclusion, the use of ASFF in combination with a
micro-detection layer has a positive impact on the detection
of rail surface defects.

E. COMPARISON WITH RELATED FRAMEWORKS
We compare YOLOv5s-VF with five current mainstream
detection networks based on deep learning, including the
two-stage target detector Grid RCNN [47], Faster RCNN [24]
and the improved superposition model hourglass network
CCEANN [39], as well as the single-stage target detector
SSD [48], YOLOv4 [49]. Table 8, shows the values of
various indicators of these detection frameworks on the rail
surface defect detection data set. From the table, we can
see that our YOLOv5s-VF model achieves the highest
average detection accuracy compared to other detection
models. Compared with CCEANN, our model has a 0.9%
higher average detection accuracy, the model size is only
1/18 of the CCEANNN model, and the detection speed

FIGURE 17. Comparison of YOLOv5s-VF detection results.

is about 70 FPS faster, so our model is more suitable
for deployment on mobile terminals and mobile micro-
development boards, thereby saving the human resources
of the railway system. Compared with the source network
YOLOv5s, we achieved a large improvement in detection
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FIGURE 18. Comparison of YOLOv5s-VF detection results.

accuracy when the model only increased by 1.2 MB, the
detection accuracy of our model in the concave category is
improved by 5%, the exfoliation category is improved by
4.8%, the mAP is improved by 4.9%, and the F1 is improved
by 4.9%. At present, in the actual engineering application

of rail surface defect detection, the detection speed of the
rail mobile detection terminal is required to be 60–90 FPS.
Therefore, although our YOLOv5s-VF detection model is
about 20 FPS lower than the detection speed of the source
network, it can still meet the actual requirements, and our
model is faster than other detection models in terms of
detection speed. For Grid RCNN, Fast RCNN, YOLOv4 and
SSD, the four models do not exceed our models in terms
of detection accuracy and speed. The Fig. 16, shows the PR
curves of the concave type and the exfoliation type. From the
area enclosed in the figure, the superiority of the YOLOv5s-
VF model is more verified.

With Fig. 17 and Fig. 18, we canmore clearly see the actual
detection effect of different models on the rail surface defect
dataset. For the source networks YOLOv5s, Fast RCNN, and
SSD, there are multiple missed detections in YOLOv4, while
our model is able to detect small defects due to the use of an
attention mechanism with sharpening.Also, our model is able
to locate defects in the complete edge portion. For SSD, there
is error detection in YOLOv4, and our model uses microscale
adaptive spatial feature fusion, which enhances the feature
extraction ability of small defects while allowing the network
to better learn the features of concave and exfoliation classes,
so that when classifying objects, it can better distinguish
between large-scale spalling and small-scale concave.

V. CONCLUSION
In order to solve the problems that edge position defects
cannot be effectively located in rail surface defects, informa-
tion about small size defects is lost during feature extraction,
and semantic conflicts are generated when the features of
multi-scale defects are fused, this paper proposes a rail
surface defect detection framework, YOLOv5s-VF, with a
sharpening attention mechanism (V-CBAM) and microscale
adaptive spatial feature fusion (M-ASFF). First, we design
a sharpening filter for the spatial attention mechanism to
strengthen the localization of edge defects by the network
and use 1D convolution with adaptive convolution kernels
for cross-channel connections to reduce the parameters of
the attention mechanism. Second, we add a micro-object
detection layer to the detection head to enhance the feature
extraction of micro-scale defects and remove low-resolution
feature layers to reduce the loss of local details and the
amount of network parameters. Then, ASFF is used to fuse
the extracted features to satisfy the adaptive fusion of features
of different scales while retaining the underlying fine-grained
features to the greatest extent. Finally, we created a dataset of
5024 labeled rail surface defects based on real rail videos for
training and testing.

The experimental results show that in the rail surface defect
dataset, YOLOv5s-VF achieves better detection performance
than other deep learning-based detection frameworks in terms
of average detection accuracy (93.5%) and detection speed
(114.9 fps), which verifies model validity and has potential
for practical application in non-destructive testing of railway
tracks.
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Although our model can effectively detect the surface
defects of rails, there are still some problems that we need
to solve further. First, the net structure will be further
improved to improve the detection of occlusion defects.
Second, consider optimizing the loss function to accelerate
the convergence of the model, thereby reducing the time for
model training.
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