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ABSTRACT This study developed a novel method for analyzing and decomposing a signal into its
main dynamics for small and large timescales. Our proposal is based on a decoupled hybrid system of
convolutional and recurrent neural networks that uses as inputs the power spectrum and spectrogram of
a given signal, giving as output the dynamic behavior. We define the dynamic classification predicted of the
signal using previously known dynamics characterized through training signals: periodic, quasi-periodic,
aperiodic, chaotic, and randomness. We created a synthetic dataset comprising more than 50 training
signals from different categories. For the real-world dataset, we used photoplethysmographic signals from
40 students obtained from a Spanish medical study. We tested the developed system’s performance in real
biological and synthetical signals, obtaining noteworthy results. All the results are evaluated qualitatively
and quantitatively. Still, given the novelty and the lack of similar works, we cannot compare reliably and
rigorously our results with other works, at least quantitatively. We can retrieve from the exposed results in
this work three key ideas: the DNN-based solutions are capable of learning and generalizing the dynamics
behavior of signals; the proposal learned correctly to distinguish between the reference dynamics provided
and find some unidirectional similarities in the aperiodicity cases; and the results obtained using real-world
PPG signals reveal that biological signals seem to exhibit a multi-dynamic behavior that changes depending
on the used timescale, being quasi-periodically dominant in the short-term and aperiodically dominant in the
long-term.

INDEX TERMS Biological signals, DNN architecture, dynamic behavior, power spectrum, spectrogram,
timescales.

I. INTRODUCTION
In recent years, the theory of nonlinear dynamical systems
has gained momentum in the scientific community with
chaos theory, sensor technology, and increasing computa-
tional power. The acquisition and analysis of vast amounts
of data are already a reality. Understanding signal dynamics
makes it possible to conjecture themechanisms that trigger its
generation and develop mathematical functional models that
increasingly support more reliable reproductions and predic-
tions. Among the data sources that have been the subject of
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dynamic studies are medical imaging and volumes [1], voice
signals [2], radio signals [3], and, more specifically, biolog-
ical signals, such as the EEG [4], [5], ECG [6], EMG [7] and
PPG [8], [9], [10], the latter being the focus of this work.

In the context of physiological systems, the dynamic evo-
lution of their biological responses has become particularly
interesting in the last decade, mainly because nonlinear anal-
ysis tools have allowed the early diagnosis of pathological
diseases or premature somatic disorders [11]. The multi-
dimensional nature of biological signals involves nonlinear
dynamics that combine deterministic and stochastic compo-
nents [12]. The intrinsic complexity of inextricable coupling
between multiple subsystems that comprise physiological

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 123885

https://orcid.org/0000-0002-2844-1858
https://orcid.org/0000-0002-3727-0093
https://orcid.org/0000-0002-0757-2445
https://orcid.org/0000-0002-2532-1674


J. de Pedro-Carracedo et al.: From Frequency Content to Signal Dynamics Using DNNs

systems is a bottomless source of physiological informa-
tion [13], [14], [15]. The dynamic richness of biological
responses is a hallmark of the ability to functionally adapt
to the organic needs of an unstable environment [16]. In this
work, we primarily study PPG signal dynamics; this signal
is easily accessible by a pulse oximeter and is a source
of physiological information related to the cardiovascular
system [17].

The PPG technique, an acronym for photoplethysmogram,
dates back to the American physiologist Alrick Hertzman in
the 1930s [18]. Hertzman devised a photoplethysmograph,
which he described as a device that uses light absorption by
transilluminated tissue to estimate blood volume. It is possi-
ble to record variations in the peripheral blood volume with
each heartbeat using this optical technique [19]. The PPG sig-
nal, while seemingly simple, contains dynamic subtleties that
make it extraordinarily complex. The PPG signal contains
relevant physiological information that is not limited to heart
rate or blood oxygen saturation and is broadly representative
of clinical settings [20]. This optical monitoring technique
has become a common diagnostic tool for some diseases,
such as hypertension and coronary artery disease, because
of its electronic simplicity, cost-benefit ratio, ease of signal
acquisition, and above all, its noninvasive nature [21].

Technological advances have made it possible to easily
access experimental data by observing natural and biologi-
cal phenomena. New mathematical analysis techniques have
been translated into computational algorithms capable of
deciphering dynamic behaviors and, perhaps more interest-
ingly, their temporal variations or, in other words, their
dynamic variation with timescale. Over time, various dynam-
ical behaviors have been typified, from the most regular,
such as pendulum motion, to the most random, at the atomic
level, in agreement with the laws of quantummechanics [22].
Within these two ends of the spectrum, there is a whole range
of processes that, as they approach true randomness, enhance
their dynamic complexity in terms of the unpredictability
or variability of repetitive patterns [23]. Future research
may reveal new behaviors in dynamic systems. In either
case, real-world processes often exhibit the mixing of differ-
ent behaviors at different timescales. Dynamical transitions
uncover modulation mechanisms of biological rhythms that
faithfully reflect an individual’s physiological state in the case
of dysfunctional disorders. Therefore, analyzing the nonlin-
ear dynamics present in a biological signal can be a paradigm
shift in modeling the physiological processes that originate
from it.

The attempt toward a unifying framework for the differen-
tiation of dynamic behavior has been reflected in an excellent
work by Toker et al. [24]. However, the automatization of
the dynamic identification process is reduced to discriminate,
with certain variations, between chaos and non-chaos accord-
ing to a whole tool kit from nonlinear time series analysis.
In the case at hand, as far as we know, few research works
have endeavored to resolve the dynamic richness hidden
in biological signals, and even less at different timescales,

particularly as concerns the PPG signal [25], [26], [27]. Some
approaches directly tackle the modeling of the morphology of
the PPG signal [28], [29], [30], [31], [32]. In previous work,
we looked at the behavior of the PPG signal dynamics from a
stochastic perspective bymodifying the 0–1 test [10].We also
carried on with the study of its chaoticity level using methods
based on DNNs [9].

This study aimed to evaluate the dynamic composition of
the PPG signals. Future work will be the same with other
biological signals, given the clinical interest in understanding
the underlying physiological mechanisms that give rise to the
dynamics of each biological signal in question. The original-
ity of our proposal lies in the use of deep neural networks
(DNNs) that use the power spectrum and spectrogram of
reference signals to approximate the dynamics present in
the input signal. The DNNs learn the dynamics in a super-
vised manner using reference signals. The reference signal’s
database compiles 60 different signals divided by categories.
They are periodic, quasi-periodic, aperiodic, random, and
chaotic signals. Many reference signals allow a complete
dynamic study of the PPG signals, achieved in previous work
with a less exhaustive demonstration [9]. Once the DNNs
retain the dynamical singularities of the reference signals,
the system provides a combined (mixed) dynamical charac-
terization of the input signals on large and small timescales.
In the field of PPG signals, previous studies have used similar
classification systems to detect cardiovascular pathologies
based on features extracted from the time domain [33].

The remainder of this paper is organized as follows.
Section II describes the databases used to train and test the
system, the proposed neural network, its architecture, and
the training process. Section III presents the obtained results,
both graphically and numerically, for various experimental
settings and analyzes and interprets the obtained results.
Finally, in Section IV, we briefly outline the conclusions
drawn from this study and suggest future research directions.

II. MATERIALS AND METHODS
Subsection II-A includes the data to train and check the DNN
system proposed, reference signals, and biological data to
study real-world PPG signals. Subsection II-B describes the
newly proposed method for dynamic behavior classification
based on DNN. Subsection II-C describes the main param-
eters employed on the DNN-based system as a full system
architecture.

A. DATASETS
This section describes the databases used for the dynamic
identification of biological signals. On the one hand, the syn-
thetic databasewith all the reference signals will train and val-
idate the neural network, encapsulating the dynamic essence
of a characteristic behavior: periodic, quasi-periodic, aperi-
odic, chaotic, and random. The database had ten different
signals to account for fine subtleties in the specific behavior
of each reference signal (cf. § II-A1). By contrast, a database
of real-world biological signals (cf. § II-A2) acquired from
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a nationwide project experiment to identify acute emotional
stress biomarkers is used to evaluate its dynamic behavior.
From all biological signals recorded experimentally in this
pilot project, only the dynamic behavior of the PPG signal is
reported. Following the master research line, we aim to infer
the physiological mechanisms governing and regulating the
hemodynamics driven by the cardiovascular system from the
PPG signal dynamics.

1) REFERENCE SIGNALS (SYNTHETIC DATASET)
To date, no unambiguous criteria clearly define com-
plexity [23], [34]. Complexity is a system with multiple
components interacting inextricably [35]. In physiological
systems, different organic functions involve numerous active
and coordinated organic components at different spatiotem-
poral scales, ranging from cellular to visceral. Because it
is practically impossible to dissociate the functionality of
each part concerning the whole, a reasonable proposal is
to evaluate the time response of the constituent parts’ joint
(macroscopic) action. Thus, physiological system behavior
varies between regular (periodic) and very irregular (random)
dynamics. However, a meaningful measure of complexity
moves between these two ends, where the system exhibits
a greater exchange of information in cross-coupling its
components. The structural richness of the coupling can be
quantified using different thermodynamic complexity mea-
sures, such as those based on information theory [12]. In this
sense, a previous step was identifying repetitive temporal
patterns that encode their dynamic variability through a quan-
titative measure.

The primary purpose of this study is the dynamic typifi-
cation of the repetitive patterns present in the PPG signal
according to five major dynamic categories, as stated ear-
lier in a preliminary work [9]. Future studies will expand
the dynamic classification of other biological signals. The
dynamic typology includes periodic dynamic behavior (the
most regular) and random dynamic behavior (the most
irregular or erratic) through intermediate behavioral regimes,
such as chaotic, quasi-periodic, and aperiodic. The latter,
in turn, is broken down into two sub-classes: open aperi-
odic behavior, without any particular constraints, and spe-
cific aperiodic behavior, associated with strange nonchaotic
attractors (SNAs) [36]. As regularity is lost, the degrees of
freedom increase until, eventually, even losing determinism
as it occurs with random dynamics.

Ten different signals were set up for each dynamic cate-
gory and generated analytically. All signals retained a similar
behavioral pattern in each category but with heterogeneous
structural and temporal variations. The generated signals con-
tain 150,000 points or observations (samples). Their dynamic
congruencewas verified using a previously formulated proce-
dure [10]. The spectrum of dynamical behaviors could exhibit
most of the dynamical behaviors found in the phenomena of
the natural world, except for the fruitful dynamism present
in the dynamical transitions between stable regimes. A rep-
resentative example of each dynamic reference category is

shown in Fig. 1, with the categories ranked in the order
of decreasing regularity—periodic, quasi-periodic, aperiodic,
chaotic, and random—.

a: PERIODIC SIGNALS
Periodic signals have a strictly repetitive regular pattern for
every specific fixed and finite time, known as a period. Unlike
the previous study [9], in which we used a basic triangular
cycle that included a discontinuity, we generated ten peri-
odic signals (see Fig. 1a for a representative sample) from
parametric analytical models because many of them have a
dynamic equivalent in the real world.

b: QUASI-PERIODIC SIGNALS
Quasi-periodic signals showed a seemingly repetitive pattern,
irregular periodicity, and dynamic recurrence. If the data pre-
cision is infinite, the pattern never repeats, and its dynamics
run along a tori in the phase hyperspace.

Biological regulation is a vital sign of organic homeostasis.
Physiological systems are forced to continually rebalance
themselves according to their organic demands at any given
time. Therefore, it is hardly surprising that many biological
signals show nonlinear oscillations at small timescales that
are not strictly periodic but rather quasi-periodic, as with
the PPG signal. Based on the PPG signal, we investigated
whether these deviations from periodicity are due to nonlinear
deterministic dynamics—chaotic or nonchaotic—or nonlin-
ear stochastic dynamics. Both cases stem from nonlinear cou-
pling at large timescales of the multiple systemic components
involved in the organic re-equilibrium.

Ten quasi-periodic signals were generated based on con-
tinuous and discrete parametric models (see Fig. 1b for a
representative sample).

c: APERIODIC SIGNALS
An aperiodic signal has non-self-similar repetition, even with
infinite precision data. The opposite of a periodic signal is
an aperiodic signal, although mathematically, it can be con-
sidered a periodic function with an infinite period. Aperiodic
signals do not have only one particular frequency. Instead,
they spread over a continuous range of frequencies.

However, the diversity of aperiodic behaviors from a phys-
iological perspective has yet to be explored. In recent years,
dynamic transitions in complex systems have attracted the
attention of physicians and clinicians. A pathological state
or aging leads to greater dynamic regularity (physiological
rigidity) than a healthy state where dynamic hatching is great-
est in chaos [35, and references therein].

Twenty aperiodic signals are generated to cover the greater
dynamic structure of aperiodic behavior. Ten correspond to
no apparent well-defined dynamic structure (see Fig. 1c for
a representative sample)—we have called these aperiodic
(pure) signals—and ten fall into what is called strange non-
chaotic attractors (SNAs) (see Fig. 1d for a representative
sample) [36], [37], [38], [39].
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FIGURE 1. Representative signal examples of each dynamical category create in the synthetic dataset. The plots show training or reference signals
generated synthetically with amplitudes normalized to the interval [0, 1]. For visual clarity in each sample, a brief time interval is shown so that its time
structure can be easily identified: (a) Periodic signal (e.g., circle map); (b) Quasi-periodic signal (e.g., two-dimensional quadratic map); (c) Aperiodic
(pure) signal (e.g., speech waveform); (d) Aperiodic (SNA) signal (e.g., quasiperiodically forced Ricker family); (e) Chaotic signal (e.g., tent map);
(f) Random signal (e.g., combined multiple recursive generators).

SNAs are particularly interesting in the context of
PPG signals because most known SNAs result from
quasi-periodically forced dynamics, which are also character-
istic of PPG signals at small timescales. This forcing causes a
dynamic transition to chaotic behavior. During this transition,
the dynamics are chaotic-like and yet predictable in time.
It has an aperiodic fractal dynamic. However, they do not
satisfy the dependence property sensitive to initial condi-
tions [39], which is the distinguishing feature of deterministic
chaos.

d: CHAOTIC SIGNALS
The characteristic footprint of chaotic behavior is the sensi-
tivity of certain deterministic functions for small changes in
the initial state. The initial uncertainty—an arbitrarily small
change or perturbation—grows exponentially with time, and
it is impossible to predict the system’s final state after the
observation period begins [40]. Ten known chaotic signals
(see Fig. 1e for a representative sample), including time-
delayed systems, have been generated since many real-world
systems, such as the cardiovascular system, utilize nonlinear
delayed control loops in their self-regulation process [14].

e: RANDOM SIGNALS
Random signals also called stochastic signals, contain uncer-
tainty in their parameters [41]. Because of this uncertainty,

a precise mathematical relationship cannot describe a random
signal. Instead, the signal value may be expressed only in
certain describable probabilities of occurrence at a particular
time. Thus, a continuum of frequencies can be used to char-
acterize the function [42]. More precisely, random signals
are non-deterministic and are, therefore, most often analyzed
using statistical techniques that require the treatment of the
random parameters of the signal with probability distribu-
tions [41]. Ten random signals (see Fig. 1f for a representative
sample) were generated by combining different probabilistic
distributions, including not in all cases, linear and nonlinear
correlations.

2) REAL-WORLD PPG SIGNALS (BIOLOGICAL DATASET)
This paper focuses only on a single biological signal, the pho-
toplethysmographic (PPG) signal; future publications will
describe the results for more biological signals. The PPG sig-
nal was chosen because it is easily accessible through a pulse
oximeter. The information provided allows us tomonitor vital
physiological signs, mainly about the cardiovascular system
and, overall, the cardiorespiratory system. In its original ver-
sion, the pulse oximeter is an optical device for detecting
blood volume changes in the microvascular bed of tissue,
in our case, the middle finger of the left hand. Today, self-
care, a culture that improves the quality of life and promotes
the sustainability of the healthcare system, encourages the
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FIGURE 2. These subfigures show two real PPG signal examples from two different healthy subjects. The signal amplitude is normalized in
the interval [0, 1] for better visualization and generalization of the PPG case. Time evolution with amplitude normalized to the interval
[0, 1] of real-world PPG signals (two individuals chosen randomly). For visual clarity in each sample, a brief time interval is shown to
identify its time structure easily: (a) PPG subject number 33; (b) PPG subject number 37.

widespread use of wearable pulse oximeters for home health-
care. New genera of pulse oximeters, such as contactless, aim
at better ergonomic fitting to daily life events. The medical
device industry is committed to getting out of the hospital and
improving the population’s quality of life through personal
self-diagnosis at home. New pulse oximeters and PPG-based
biomedical applications will likely emerge shortly, with more
thorough screening for the patient’s physiological condition.
For a review of biomedical applications and PPG meteoric
advancement PPG in health monitoring, the reader is referred
to the works of John Allen [43] and Toshiyo Tamura [44],
respectively, and most recently, an extensive compilation
of significant contributions edited by Panicos Kyriacou and
John Allen [45].

A better understanding of PPG signal dynamics would
reveal the intricate physiological mechanisms involved in
the cardiovascular system, facilitating biomedical appli-
cations for a more accurate early diagnosis of possible
cardiorespiratory pathologies. The PPG signal is complex.
It is composed of a peripheral pulse synchronized to each
heartbeat (AC component of the PPG signal) and modulated
by a quasi-DC component. The quasi-DC component varies
slowly owing to respiration, vasomotor activity, and vaso-
constrictor waves [46]. As we will show later, the mutual
coupling between the components is intricate and operates
at different timescales to regulate the blood volume based on
physiological needs. The dynamic transition between small
and large timescales encloses the entire structural frame
that explains the dynamic modulation of the heart rate to
safeguard the functional homeostasis of the body smoothly.
The transfer of information from large to small timescales
can uncover a natural self-organizing mechanism and an
efficient mechanism for conducting or releasing energy
(heat transfer).

This database records PPG signals from 40 students,
between 18 and 30 years old and non-regular consumers
of psychotropic substances, alcohol, or tobacco, selected to
participate in a national research study [47], [48]. All sig-
nals captured from the middle finger of the left hand and
sampled at a frequency of 250 Hz [47], say, sampling time
1t = 4 ms with the psychophysiological telemetric system
‘‘Rehacor-T’’ version ‘‘Mini’’ fromMedicomMTD Ltd [47].
According to the experimental protocol, we had 40 mins or
600,000 observations or measurements for each PPG signal.
Figs. 2a-2b depict, for illustrative purposes, two segments of
PPG signals acquired from two randomly chosen individu-
als, identified as subjects 33 and 37. The seemingly regu-
lar sequence of PPG cycles hides variations, in many cases
extremely subtle, making the PPG signal a very complex
signal inherent to each subject.

B. DYNAMIC BEHAVIOR CLASSIFICATION
This study proposes a classification DNN-based system to
infer the dynamic behavior of each signal used from their
segments. The proposed CNN uses a decoupled perspective
to classify input signal dynamics. As inputs of the general
system, the spectrograms and power spectrums of input signal
segments are used as a block. The decoupling of the problem
allows the classification of simple dynamics using only the
power spectrum calculation to make the first general classifi-
cation. Then, using the spectrogram of the signal segment of
interest and those surrounding it, more complex features are
obtained, defining erratic dynamics, such as chaotic dynam-
ics. Therefore, we divide the complete system into two sub-
blocks: the coarse dynamics predictor block (cf. § II-B1) and
the complex dynamics refinement block (cf. § II-B2).
The complete system receives input time segments of a

fixed length of the input signal. It produces a normalized
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FIGURE 3. Complete proposed architecture. The shown figure tries to
clarify the connection between the different stages of the system, plotting
the Coarse dynamics predictor and the Refine dynamics predictor as
yellow blocks. The coarse dynamics stage tries to distinguish between
Periodicity, Quasi-periodicity, and what we call others (complex
dynamics). At the same time, the Refine dynamics predictor reuses the
output of the Coarse dynamics and its output to predict the complex
dynamics that represent the ‘‘others’’ category, if they exist.

likelihood vector that describes the dynamic behavior of
the input segments in terms of the trained dynamics with
probabilities ranging from 0 to 100%. It is important to
note that the complete system takes care of the full range
of previously explained dynamics, but the used sub-blocks
divide the proposed task. The coarse dynamics predictor
block uses the most straightforward cases to discern between
periodic or quasi-periodic behaviors and others (two types of
aperiodic, chaotic, and random behaviors). This first analy-
sis helps to discern between simple dynamics to refine the
prediction. The complex dynamics refinement block uses pre-
viously determined features and information to constrain the
remaining dynamics. This block adds the time variable to the
prediction using spectrograms to add more complex features
to the system in a normalized domain. The entire system
decomposes the signal within the full range of dynamics.
A schematic of the entire system is shown in Fig. 3.
It is important to recall that the analysis of the dynamics

of time series using DNNs is not usually studied by the
scientific community, as far as the authors know, but from
other perspectives [10], [26], [33], [49].

1) COARSE DYNAMICS PREDICTOR BLOCK
The first CNN proposed the use of a classic 1D encoder con-
figuration that uses residual stages based on the idea stated
by He et al. [50]. This type of architecture is widespread in
classification tasks, such as regression [51], [52] and indoor
localization [53] or other ones [54], [55], [56]. In addition,
the first block of the system is a preprocessing custom block
that uses the input segments of the signal. It uses the FFT
transform to obtain its power spectrum, which subsequently
passes to the 1D convolutional encoder that processes the
features of the signal spectrum, using them to make the first
prediction of the dynamics. Fig. 4 shows a schematic of the
proposed block.

2) COMPLEX DYNAMICS REFINEMENT BLOCK
The second refinement block is more complex than the coarse
block. This second block processes the spectrograms of the
signal; therefore, it needs to process 2D information in the

FIGURE 4. Coarse dynamics predictor block proposed architecture. This
figure goes into the Coarse dynamics block and shows the architecture
deep. In this case, we can see that the block uses a power spectrum
signal as input that we encode using a 1D residual CNN encoder. After
this, we use fully connected layers plus Leaky ReLU activations to predict
a likelihood vector that helps select between the three main dynamic
categories.

FIGURE 5. Complex dynamics refinement block proposed architecture.
This figure centers attention on the Refine dynamics block, showing its
architecture and composition in depth. As we can see, to improve the
analysis of the Coarse predictor, we provide a long-range analysis of
signal frequency context using the spectrograms of the signal around a
temporal window. Using these spectrograms along with LSTM cells, this
block analyzes the temporal features that define the trend changes,
improving the quality of the features provided by the Coarse predictor.

format of spectrograms. To provide an additional context,
the block that helps with more erratic dynamics uses three
spectrograms of the input signal covering three windows
before and after the segment with a 50% overlap. This last
procedure helps the network visualize the signal’s continuity,
and the power of the functions learned over time.

The proposed architecture uses a 2D convolutional residual
encoder. It constitutes the time-independent feature extractor
that feeds an LSTM layer covering the three input spectro-
grams over time, ensuring it considers the time context of
the signal. In addition to the coarse architecture, the first
block performs preprocessing, which in this case finds the
spectrogram of the input signal segments. It then passes
the spectrograms to a time-distributed convolutional extrac-
tor that feeds the LSTM blocks in the different time steps
selected, which in this case is three, because there are three
spectrograms. The features obtained by the LSTM blocks
were combined with those obtained from the coarse block to
refine the prediction of the most complex possible dynamics.
Fig. 5 shows a schematic of the proposed block and a detailed
layer-by-layer network analysis.

C. FULL SYSTEM ARCHITECTURE
This subsection comments on aspects of the full system.
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TABLE 1. Proposed full system detailed architecture. From left to right column: layer number in ascendant order; type of layer used; and parameters that
characterize the used layer (kernel, activation, size, and others). The table shows banks of convolutional layers to filter more complicated and abstract
features from the input signal and intermediate results before these banks [57].

Once the input time segment is introduced into the sys-
tem, it is first processed to obtain the signal spectrum over
the frequencies and spectrograms. After the signal is pre-
processed, the power spectrum enters the coarse-predictor
sub-block, composed of a 1D encoder. The 1D encoder is
formed by multiscale residual blocks that obtain the latent
space representation L of the input power spectrum. This
latent space represents high-complexity features extracted
by the encoder through the signal spectrum. The encoder
layers are multiscale blocks that capture the spectrum’s
high- and low-frequency internal variations from a signal
point of view. Once the latent space is obtained, these
features pass through fully connected layers to obtain the
final prediction between the three easier dynamics: periodic,
quasi-periodic, and others (aperiodic pure, SNA, chaotic, and
random).

When the coarse predictor provides the first classification,
the refinement predictor stage process with the spectrograms
of the segments 0 − t , −0.5 − t , and t − +0.5 as input
passes the spectrograms through a time-distributed 2D con-
volutional feature extractor to model the complex features
extracted through the spectrograms. After extracting the time
features, they pass through an LSTM layer that receives
the features sequentially in chronological order, considering
the time context. Finally, the LSTM features were obtained
through the entire sequence of spectrograms. These features

were combined with those obtained in the coarse predictor
to produce a final feature vector. This vector feeds the final
classification of the fully connected layers that use a final
softmax layer to predict the dynamics, in these cases, the
complex ones.

Table 1 summarizes the architecture of the proposed sys-
tem in detail. The reason for proposing this architecture is that
it perfectly fits the problem it is trying to solve and poses an
advantageous feature that can help solve it. The main features
to comment on are as follows:
• Decoupled perspective: The decoupled perspective
allows for efficient distribution of the number of filters
and network capacity along with the complexity of the
dynamics. The first part of the network is a lightweight
one that discerns between less complex dynamics, and
the second part is a more intensive architecture that
uses the previous information of the first part to discern
between more complex dynamics.

• Normalized space for inputs:The inputs used were in a
normalized space represented by the frequency spectrum
or spectrograms, allowing variable signal segments to
calculate the network’s input. This feature allows us
to analyze the used signals in short or long segments,
which, in the case of the PPG signal, could mean near
a quasi-periodic dynamic or a long aperiodic dynamic,
as we showed in previous studies [9].
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• Residual and multiscale structures: The residual
structures used help alleviate the information loss
problem that suffers the deep CNN architectures,
a well-known problem, helping preserve all the signal
features [57]. In addition, the multiscale structures pro-
posed to capture all the high and low-frequency features
of the spectrogram or power spectrum help to define
complex and easier dynamics. Recall that providing an
accurate prediction of dynamics is vital to preserving all
the information across low and high frequencies because
the high frequency is fundamental, especially for com-
plex dynamics, and low and medium for any of them.

Section III shows the result of the proposed architecture’s
capacity test.

1) TRAINING
This subsection explains the training steps for the systems
mentioned above. First, all the reference signals created to
represent the dynamics of interest and previously explained
to train our systemwere applied. This training must be decou-
pled and not end to end. First, the coarse dynamics predictor
block predicts the easiest dynamics and uses its features in
the complex dynamics refinement block that detects the most
difficult dynamics. If the reference signals come from the
real-world labeled signals, training for classification on a
given dynamic is tricky, as they are generally not unique
dynamics and can vary due to the effects of the measurement
sensor or the environment. In training the network with the
synthetic dataset, the data divide into three classical sets of
training, validation, and test, with a proportion of 80% train-
ing, 10% validation, and 10% test. It chooses this division
because the validation and test sets typically range from 20 to
40 percent of the datasets.

Next is defining the essential training characteristics and
parameters.

1) Optimizer. It uses an Adam (adaptive moment estima-
tion) optimizer [58]. Adam is used because it combines
the advantages and avoids the drawbacks of other previ-
ous optimizers such as [59] and [60], which in layman’s
terms, mean that Adam is an adaptable optimizer that
makes use of the first and second moments of the
gradient, helping to learn without static learning rates.
Despite this, Adammust define the user’s first learning
rate as a starting point for modification. This adaptation
factor helps to avoid unoptimized training, which is a
major problem. The initial learning rate was 10−4. The
networks were trained for 200 epochs with 50 samples
and the best-evaluated weights of a validation set. The
total training time was approximately eight h with
an Intel R© CoreTM i7-9700K Processor 12M Cache,
up to 4.90 GHz.

2) Loss Function. The proposed system uses training
composed of input signal spectrums and spectrograms,
and output likelihood vectors that classify these sig-
nals into dynamics. The proposed loss function for

this multiclass classification task is categorical cross-
entropy, which measures the differences in the classi-
fications between the predicted labels and the ground
truth. The classical approximation of this loss is cross-
entropy (CE), as indicated in (1), namely, the binary
classification between the distributions of p(x), the cor-
rect one, and the estimated q(x), associating the scores
of similarity to the distributions used.

CE(p, q) = −
∑
∀x

p(x) log (q(x)) . (1)

Cross-entropy loss measures the classification perfor-
mance by assigning score levels between the network
inputs and labeled distributions. There is a propor-
tionally inverse relationship between the cross-entropy
and prediction score. The ideal classifier had 0 cross-
entropy and a 100% score. This loss function is neces-
sary to adapt the network outputs in activation because
it cannot work with all types of activations. The most
commonly used activation is sigmoid in the binary clas-
sification case, which outputs a score between 0 and
1. Softmax activation is typically used in the multi-
class case because it guarantees a normalized vector of
scores that sum 1.
In our specific case, it performs multiclass classifica-
tion, which leads us to use categorical-cross-entropy
(CCE) loss, as defined by (2), and the last layer with
softmax activation. Combining this loss and the soft-
max activation allows the previously mentioned output
vector to be obtained through optimization, whose sum
equals 1. The multiclass classification case implies that
all labels are configured in one-hot encoding format,
with only the positive class Cp in the losses. Only the
target element in vector t differs from the zero value
ti = tp. By discarding the zero elements, the loss can
be rewritten from equation (2) to (3), where C is the
number of classes, sj is the score of each class, and sp
is the score of positive classes.

CCE = −
C∑
i

ti log

(
esi∑C
j e

sj

)
. (2)

CCE = − log

(
esp∑C
j e

sj

)
. (3)

Moreover, last is explain how the training is carry-out.
First, it must train the uncoupled system, which means that
the coarse and refinement predictors are trained separately.
The coarse predictor uses the signal spectra obtained from
signal segments, with a length of 5,000 samples representing
a short timescale or 60,000 samples representing a large
timescale. In the case where the refinement predictor is the
same as the coarse one, three spectrograms substitute the
spectrum. One spectrogram centers on the segment of inter-
est, and the other two cover 50% of the original segment in
the backward and forward directions to provide a better tem-
poral context to the network. The training of these CNNs is
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FIGURE 6. Dynamic behavior on a large timescale (for small timescales, the results are similar in terms of dynamic behavior) with our proposed DNN
architecture for the reference signals, for purposes of validation and verification: (a) Periodic signal; (b) Quasi-periodic signal; (c) Aperiodic (pure)
signal; (d) Aperiodic (SNA) signal; (e) Chaotic signal; (f) Random signal.

performed using synthesized reference signals composed of
periodic, quasi-periodic, aperiodic pure, strange nonchaotic
attractors, and random and chaotic dynamics. Because these
CNNs have been designed from a classification point of view,
the problem to be solved is a multiclass classification, with
five possible classes or dynamic behaviors to find, inferred at
the output of the complete system.

All the segments of the input signal used have labels
associated, linking these signals with concrete dynamics,
which subsequently allows us to recognize multi-dynamics in
non-single dynamic signals. It uses randomized training that
combines training batches randomly with different dynamics
to provide more variability in training. We use 80% of the
signals for the training set, equal to 6,000,000 samples, and
20% for validation and testing, equal to 1,500,000 samples.
Once the test set, with the reference signals, is applied for
training, the system quantitatively evaluates using real-world
PPG signals that combine multiple dynamics. This combina-
tion implies that it is normal not to obtain pure dynamics in
the final results of these signals but, in contrast, to obtain a
composite.

III. RESULTS AND DISCUSSION
Different experimental tests allowed us to perform the appro-
priate operation to correctly identify the different reference
dynamic behaviors based on the proposed neural network

and a qualitative and quantitative evaluation of the dynamic
behavior of a PPG signal at different time scales. Results
present both graphically and numerically.

A. REFERENCE SIGNALS (SYNTHETIC DATASET)
EXPERIMENTAL PERFORMANCE TEST
To evaluate the accuracy and stability of the proposed DNN
system, the DNN trains with 20% of the reference signals
such that the network has all the testing dynamics that make
up the experiment.

Periodic signals do not pose any problem to the
DNN-based classification system. Their recognition is clear,
as shown in Fig. 6a. In the case of quasi-periodic signals,
the discriminating power of the system is evident, as shown
in Fig. 6b.

However, in some intermediate stretches or ranges, it can
observe weak dynamic inferences that correspond to the ape-
riodic behavior characteristics of SNAs. Some quasi-periodic
reference signals are quasi-periodically forced systems oper-
ating at the boundary that marks the dynamic transition
towards an SNA. As seen in Fig. 6c, the system correctly
assigns a higher weight (70%) to the aperiodic signal (pure)
but does not ignore a dynamic component typical of SNAs
totaling 30%. Although both dynamics indeed share common
properties as they are aperiodic signals, it can be suspect that
the spurious attribution is because some of the pure aperiodic
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TABLE 2. Validation results with the reference signals. From left to right, the columns are the type of Testing signal, which represents the reference signal
trend to evaluate, and Normalized matching-up vector weights, which represent the similarity of the output vector with each one of the considerate
dynamic categories. The scores are expressed as a matching-up percentage of reference signals.

signals come from the real world, such as speech signals.
Real-world signals can contain dynamic traces of SNAs,
which can confuse the classification process. In all events, the
system assigns a higher dynamic bias to the right aperiodic
option, as is also the case in Fig. 6d for the SNA-based
aperiodic signals.

Likewise, the system does not waiver the chaotic nature
of a signal, as shown in Fig. 6e. However, at some short
time spans, the system challenges the chaotic dynamics in
defense of random dynamics (brief spikes of randomness).
The same applies to random signals, where the system occa-
sionally encounters patterns that induce peaks of chaoticity,
as Fig. 6f illustrates, although it correctly discerns stochastic
dynamics. Dynamical subtleties of the erratic behavior of
SNAs, chaotic systems, and random systems entail a chal-
lenge in the dynamic discrimination process; however, the
discriminating power of the proposed neural network exhibits
remarkable performance. Table 2 lists the numerical values
of the normalized matching-up vector (target pattern) output
that contemplates the success rate of each possible dynamic
behavior assigned to the input signal. The available dynamic
behaviors are periodic, quasi-periodic, aperiodic (pure), ape-
riodic (SNA), chaotic, and random.

B. PPG SIGNALS DYNAMIC DISCRIMINATION
EXPERIMENT
After confirming the good performance of the discriminant
power of the signal dynamics, with validation conducted
on the same reference signals, we identified the dynamic
content present in the PPG signal at different timescales.
As stated in Section II, we used 40 real-world PPG signals
from healthy young people aged 18 to 30, complying with the
experimental protocol defined by Aguiló et al. [47]. Unless
stated otherwise, to avoid high-frequency noise and, to some
extent, motion artifacts, all PPG signals are filtered with a
simple Butterworth bandpass filter with cutoff frequencies
of 0.01 and 15 Hz, as some studies have reported clinical
information up to 15 Hz [43], [61].

Previous works first resolved the dynamicmulti-scalability
of the PPG signal. They embarked on the first analyses
to reveal its dynamic complexity at large timescales, far
removed from the quasi-periodic character present at small

FIGURE 7. PPG signal used timescales. On a small timescale (5,000 points
or 20 s), the quasi-regular pacing of PPG cycles can be seen. However,
on a large timescale (60,000 points or 4 min), respiration-induced
variations come into the dynamic spectrum, such as the intensity
fluctuations marked in red.

timescales. As in [9], the timescale is stepped. In such a way,
each temporal window encompasses an increasing number
of PPG cycles, thus achieving a multiscale analysis mode,
as illustrated in Fig. 7. The minimal temporal window for
analysis defined the smallest timescale; in our experiment,
it was 5,000 points (20 s). The maximal temporal window
specifies the largest timescale in this study; in our case,
it amounts to 60,000 points (4 min).

Based on the PPG signal complexity and, strictly speak-
ing, the singular and exclusive dynamic variability of each
individual, we chose to show in this work the specific
results of three users that somehow represent in qualitative
terms the dynamic variations found in the total of the ana-
lyzed 40 individuals. On a small timescale, the PPG signal
shows an unambiguous quasi-periodic pattern owing to the
quasi-periodic modulation of the respiratory function on the
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FIGURE 8. Dynamic behavior on a small timescale (5,000 points dynamic
time step) with our proposed DNN architecture for three randomly picked
PPG signals from the experiment: (a) PPG signal from individual 4;
(b) PPG signal from individual 10; (c) PPG signal from individual 12.

cardiovascular system, as shown in Figs. 8a-8c. However,
depending on the subject, the prevalence of quasi-periodic
dynamics is more or less continuous but sometimes truncated,
and there are interspersed aperiodic and random episodes.

A dynamic transition characteristic of the SNAs is
observed in the case of aperiodic episodes. This suggests
that the subject’s psychosomatic state, such as an episode
of stress or intense activity, could ‘‘quasi-periodically’’ force
the quasi-periodic dynamics. To the extent of inducing a
transition towards a more complex behavior, we are still
determining if it would eventually become genuinely chaotic.
These brief but intense shocks or bursts temporarily trigger
the indices of aperiodicity and randomness and indicate the

FIGURE 9. Dynamic behavior on a large timescale (60,000 points dynamic
time step) with our proposed DNN architecture for the same three PPG
signals in Fig. 8: (a) PPG signal from individual 4; (b) PPG signal from
individual 10; (c) PPG signal from individual 12.

organism’s response to exogenous or endogenous stimuli.
It adapts to the new circumstances and presumably restores
the quasi-periodic regularity with other conditions once the
excess organic requirements have been absorbed.

The dynamic paths are aperiodic on a large timescale,
in coherence with the SNA dynamic features, as shown in
Figs. 9a-9c. Nevertheless, depending on the individual, there
is a certain latent quasi-periodicity, which could indicate
the system’s capacity to recover more or less quickly the
normal operating conditions, which, of course, are governed
by the unique characteristics of each individual. The abil-
ity to restore the dynamic regularity of the pre-stimulus
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TABLE 3. Dynamic composition of some evaluated PPG signals, both for the three PPG signals used as dynamic illustrative examples and for the average
of all evaluated PPG signals entered into the study, expressed as a matching-up percentage of reference signals in both small and large timescales.

cardiovascular system, which might be called normal oper-
ating conditions, is a key indicator of the biological health of
the cardiovascular system.

The dynamic complexity inherent to large scales implies
an infinity of subsystems that act simultaneously and without
interruption. Including stochasticity as an essential part of
the coordination process (we will report on this possibility
in a future publication). A physiological system open to the
unforeseen contingencies of a constantly changing environ-
ment requires flexibility in adapting while minimizing the
energy consumption involved in the transition to new organic
demands and its subsequent reestablishment. In this sense,
the dynamics of an SNA, operating halfway between chaos
and a more regular dynamic regime, emerge as a biological
solution whose physiological implications are still unknown
but deserve further study.

Table 3 lists the numerical values of the normalized
matching-up vector (target pattern) as the output. This value
considers each possible success rate of the dynamic behavior
assigned to the input signal. It shows the PPG signals that
serve as illustrative examples and the average of all 40 PPG
signals that participated in the experiment. The mean val-
ues show the prevailing characteristic dynamics of SNAs
at the expense of occasional episodes linked to secondary
but no less important dynamic trends in the PPG signal
dynamic evolution. Because of averaging such a large time
window, these dynamic collateral behaviors, whose physi-
ological impact is evident, are masked. Nevertheless, this
study reinforces the hypothesis already suggested in previous
works [9], [10] of the multi-dynamic (multiscale) charac-
ter present in the PPG signal. In some way, this dynamic
multi-scalability confirms the information transfer from large
to small timescales, whereby a wide variety of subsystems
contribute to the regulatory mechanisms of the cardiovascular
system.

IV. CONCLUSION
This paper proposes a neural network-based dynamic clas-
sification system to track the dynamics in signals of var-
ious natures at different timescales. We initially tested its
effectiveness using a biological signal, the PPG signal, with
40 PPG signals acquired from 40 healthy young individuals.

Future research will extend the analysis to other biological
signals and signals picked up from outer space.

The neural network was trained with 60 reference sig-
nals covering, in their multiple variants, the most common
dynamic behaviors found in nature’s physical phenomena:
periodic, quasi-periodic, aperiodic (pure), without apparent
structure, aperiodic (SNA), chaotic, and random (stochas-
tic). After training the neural network, the classification
system can decipher a priori the dynamic composition of
any complex signal at different timescales, as proven for
PPG signals. The PPG signal followed a predominantly
quasi-periodic dynamic trend at small timescales, capturing
the dynamic quasi-regular of the heart rate. However, at large
timescales, the governing dynamics respond to a singular ape-
riodic behavior referring to SNAs. The dynamic complexity
involving SNAs could explain the physiological mechanism
that naturally allows the heart rate to adapt to physiological
needs at any given time. The dynamic transition to chaotic
behavior—the most complex behavior that preserves deter-
minism in its dynamic evolution—via an SNA stems from
quasi-periodic driving.

This work advocates a DNN-based system as an alternative
with unprecedented potential for the real-time analysis of the
dynamic evolution of signals. For biological signals, such
as PPG signals, the early identification of certain dynamic
trends would facilitate the early diagnosis of cardiorespi-
ratory abnormalities or stress episodes, to mention a few
physiological disorders. Therefore, it is crucial to further
refine the classification system with more reference cues that
introduce new dynamic phenomenological variants. More-
over, new neural network layers more subtly characterize
dynamic transitions between steady states, which are barely
perceptible in signal morphology.

INFORMED CONSENT STATEMENT
The study included 40 students from Universidad Politécnica
de Madrid (UPM) between ages 18 and 30. All signals were
captured from the middle finger of the left hand and sampled
at a frequency of 250 Hz; that is, the sampling time 1t =
4 ms. The UPM Ethics Committee approved the study proto-
col, and participants providedwritten informed consent. They
were instructed to avoid using any psychotropic substance,
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alcohol, or tobacco, to avoid physical exercise 24 h before
each session, to get up two hours before starting the sessions,
and consume a light breakfast without coffee or tea.
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