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ABSTRACT This paper proposes a novel state estimation algorithm, called the distributed Frobenius-norm
finite memory interacting multiple model (DFFM-IMM) estimation algorithm, for mobile robot localization
in wireless sensor networks (WSNs). The proposed algorithm involves finite memory estimation based on
recent finite measurements; such estimation facilitates robust localization in cases of missing measurements
and robot kidnapping. Furthermore, the proposed algorithm employs IMM, which facilitates accurate
localization if a mobile robot abruptly changes its speed and course. Notably, average-consensus-based
distributed processing renders the proposed DFFM-IMM algorithm computationally efficient, and hence,
real-time processing for very short sampling times of the WSN is possible. The proposed algorithm’s
performance is demonstrated by comparing it with a centralized Frobenius-norm finite memory IMM
(CFFM-IMM) estimation algorithm and a localization algorithm on the basis of simulations and experiments.

INDEX TERMS Distributed localization, finite memory estimation, interacting multiple-model, mobile
robot, wireless sensor networks.

I. INTRODUCTION
In recent years, mobile robots have been widely used for a
variety of applications, such as house cleaning, food deliv-
ery, and museum guidance [1], [2], [3]. Mobile robots are
equipped with autonomous navigation systems that provide
information on their current position in their workspace. If the
position information is not accurate, the autonomous navi-
gation system cannot operate properly. Hence, their accurate
localization is essential, and algorithms for their accurate
localization have been extensively studied over the past few
decades [4], [5], [6].

Localization algorithms can be classified into two cate-
gories: outdoor and indoor localization algorithms. Outdoor
localization is usually based on the Global Positioning Sys-
tem (GPS) [7], [8], which does not operate in GPS shadow
areas such as tunnels and indoor spaces. To overcome this

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

limitation, researchers have studied algorithms based on a
combination of the GPS and an inertial navigation system
(INS) [9], [10], [11], [12], [13], [14], [15]. For indoor local-
ization, wireless sensor networks (WSNs) based on radio
frequency (RF) and ultra-wide band (UWB) signals have
been used. In indoor environments, there are generally many
obstacles that interrupt the transmission of wireless signals,
and localization algorithms that can help overcome the inter-
ruption have been studied [16], [17], [18].

Localization algorithms are actually state estimation algo-
rithms (also referred to as stochastic filters), and they esti-
mate the position of targets (e.g., a mobile robot) by using
noisy measurements. The Kalman filter (KF) is one of the
most well-known state estimation algorithms, and various
modifications of this filter have been used for a variety of
localization systems. However, KFs may exhibit poor esti-
mation performance owing to modeling or computational
errors. This is because KFs have an infinite impulse response
(IIR) structure that uses all past measurements to estimate the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 124193

https://orcid.org/0000-0002-5576-3019
https://orcid.org/0000-0002-4219-219X
https://orcid.org/0000-0003-0993-9658
https://orcid.org/0000-0002-5048-4141


D. Suh et al.: DFFM-IMM Estimation for Mobile Robot Localization

current state. In the IIR filter structure, errors accumulate over
time, resulting in poor estimation or even filter divergence.
To overcome this problem, researchers have studied finite
memory estimation (FME) algorithms in which only recent
finite measurements are used [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31]. These algorithms
are also referred to as finite impulse response (FIR) filters
since they have FIR structures. Various versions of FME
algorithms have been developed and applied to applications
of localization systems [28], [29], [30], [31].

Localization (i.e., state estimation) algorithms require
motion and measurement models. If changes in the target’s
motion are not significant, localization algorithms based
on a single motion model can achieve sufficiently accurate
localization. However, if the course and speed of the target
change significantly or abruptly, multiple motion models are
required. Interacting multiple model (IMM) estimation is a
representative estimation algorithm that employs multiple
models, and it has been successfully used for solving the
problem of tracking maneuvering targets [32], [33], [34],
[35]. However, existing IMM-based localization algorithms
are centralized estimation algorithms, which implies that
all measurement information is centralized in a compu-
tation center (algorithm). By contrast, distributed estima-
tion algorithms, have multiple computation centers, each of
which processes part of the measurements. Consequently,
distributed estimation algorithms are advantageous in terms
of computational efficiency [36], [37], [38].

In this paper, we propose a novel state estimation algo-
rithm for mobile robot localization usingWSN. The proposed
algorithm is based on FME, which renders the localiza-
tion robust against temporarymodeling/computational errors.
Two versions of FME algorithms, namely batch and itera-
tive types, are derived using the Frobenius-norm. To deal
with significant motion changes of a mobile robot, we use
a combination of FME and an IMM in the proposed algo-
rithm. In particular, the proposed algorithm uses a distributed
processing method, called average consensus, for achiev-
ing high computational efficiency, and hence, the proposed
algorithm is referred to as distributed Frobenius-norm finite
memory IMM (DFFM-IMM) estimation. To evaluate the
localization performance of DFFM-IMM estimation, simu-
lations and experiments were performed for mobile robot
localization in two scenarios: missing measurement case
and kidnapped robot case. The proposed algorithm was
compared with three algorithms including the centralized
Frobenius-norm finite memory IMM (CFFM-IMM), dis-
tributed KF-based IMM (DKF-IMM), and multiple model
particle filter (MMPF) [39], and it was more robust than
the three algorithms. Moreover, compared with CFFM-IMM
estimation, DFFM-IMM estimation required a shorter com-
putation time, which was sufficiently short to facilitate real-
time processing.

The remainder of this paper is organized as follows.
Section II describes motion and measurement models used
for mobile robot localization using a WSN, and Section III

presents DFFM-IMM estimation. Sections IV and V present
the simulation and experimental results, respectively, and
Section VI summarizes the conclusions.

II. MULTIPLE MODEL-BASED INDOOR LOCALIZATION
This section describes a multiple model-based mobile robot
localization scheme involving a WSN. The multiple motion
model for mobile robot localization can be represented as

xn = Aj
nxn−1 + Bnwn, (1)

Bn =


T 2/2 0
0 T 2/2
T 0
0 T

, (2)

where xn is the state vector at discrete time n, and it is defined
as

xn = [xn yn ẋn ẏn]T , (3)

where (xn, yn) and (ẋn, ẏn) are the two-dimensional (2D)
positions and velocities, respectively, wn is the process noise
vector, which is assumed to be zero-mean white Gaussian
noise with covariance Qn, and Aj

n is the system matrix for
j-th mode (model). The transition probability from mode i to
mode j is defined as

πij , P{γn = j|γn−1 = i} (i, j ∈ D), (4)

where γn is the mode variable at time n; D is defined as D =
{1, 2, . . . ,D}, and D is the total number of models (modes).

Generally, a mobile robot can have three motions: straight
motion and clockwise and anticlockwise rotation. For straight
motion, the constant velocity (CV) motion model is suitable,
and for rotation motion, the coordinated turn (CT) model
is suitable. Multiple-model algorithms combining CV and
CT models have widely been used for maneuvering target
tracking [40], [41], [42]. The system matrices for the three
types of motion are as follows:

Aj
n =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (j = 1), (5)

Aj
n =



1 0
sin(ωjnT )

ω
j
n

−
1− cos(ωjnT )

ω
j
n

0 1 −
1− cos(ωjnT )

ω
j
n

sin(ωjnT )

ω
j
n

0 0 cos(ωjnT ) −sin(ωjnT )
0 0 sin(ωjnT ) cos(ωjnT )


(j = 2, 3), (6)

where j = 1 corresponds to the CV model, j = 2, 3 cor-
responds to CT models with clockwise and anticlockwise
rotation, respectively, ωjn is the mode-dependent turning rate,
and T is the sampling interval.

In WSN-based indoor localization, anchor nodes are
installed at fixed locations, and a mobile tag is attached to the
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mobile robot. Through wireless communications, distances
between the mobile tag and anchor nodes are measured. The
measurement vector is defined as:

yn =


√
(xn − xa,1)2 + (yn − ya,1)2

...√
(xn − xa,l)2 + (yn − ya,l)2

, (7)

where (xn, yn) is the position of the mobile robot (mobile tag)
at time n, and (xa,l, ya,l) is the fixed position of the l-th anchor
node.

The measurement model that relates the measurement vec-
tor yn to the state vector xn is given by

yn = hn(xn)+ vn, vn v N (0,Rn), (8)

where hn(·) is the vector representation of the nonlinear func-
tion in (7) and vn is the measurement noise vector, which is
zero-mean white Gaussian noise, with covariance Rn.
The measurement model is nonlinear, and the proposed

FME algorithm requires linear models. Hence, we linearize
the nonlinear measurement model. Linearization of the mea-
surement model around the estimated state x̂n by using Taylor
series expansion gives

yn ≈ hn(x̂n)+Hn(xn − x̂n)+ vn
= Hnxn + (hn(x̂n)−Hnx̂n)+ vn
= Hnxn + zn + vn, (9)

where Hn and zn are defined as

Hn =
∂hn
∂xn
|x̂n , (10)

zn = hn(x̂n)−Hnx̂n. (11)

By defining the auxiliary measurement signal to be ỹn =
yn − zn, we obtain the new measurement model

ỹn = Hnxn + vn, (12)

which reduces linearization errors [27], [28].

III. DISTRIBUTED FROBENIUS-NORM FINITE MEMORY
INTERACTING MULTIPLE MODEL ESTIMATION
This section describes a novel Frobenius-norm based FME
algorithmwith an IMM. To obtain the state estimate at current
time n, the FME uses recent finite measurements in the
interval [n−N + 1, n], where N is the horizon size. Let m ,
n− N + 1; then, the time horizon interval can be denoted by
[m, n]. The augmented state/measurement vectors containing
a finite number of states/measurements on the horizon [m, n]
can be expressed in terms of xm as follows:

Xn,m = Aj
n,mxm + Bjn,mWn,m, (13)

Yn,m = Hj
n,mxm + Ejn,mWn,m + Vn,m, (14)

where

Xn,m= [xTn xTn−1 · · · x
T
m+1 x

T
m]

T , (15)

Yn,m= [ỹTn ỹTn−1 · · · ỹ
T
m+1 ỹ

T
m]

T , (16)

Wn,m= [wT
n wT

n−1 · · · w
T
m+1 w

T
m]

T , (17)

Vn,m= [vTn vTn−1 · · · v
T
m+1 v

T
m]

T , (18)

Aj
n,m=

[
(Fjm+1jn )T (Fjm+1jn−1

)T · · · (Fjm+1jm+1
)T I4×4

]T
, (19)

Bjn,m=



Bn FjnjnBn−1 · · · Fjm+2jn Bm+1 Fjm+1jn Bm
0 Bn−1 · · · Fjm+2jn−1

Bm+1 Fjm+1jn−1
Bm

...
... · · ·

...
...

0 0 · · · Bm+1 Fjm+1jm+1
Bm

0 0 · · · 0 Bm


,

(20)

Hj
n,m= H̄n,mAj

n,m, (21)

Ejn,m= H̄n,mBjn,m, (22)

Fjmjn =


Aj
n × Aj

n−1 × · · · × Aj
m, n+ 1 > m,

I4×4, n+ 1 = m,
0, otherwise,

(23)

H̄n,m= diag(Hn, Hn−1, · · · ,Hm). (24)

A. CENTRALIZED FROBENIUS-NORM FINITE MEMORY
IMM ESTIMATION
First, we derive the CFFM-IMM. Figure 1 shows the structure
of CFFM-IMM estimation; α is the horizon size of the batch
form of the CFFM-IMM. The algorithm is performed through
five processes: 1) initialization, 2) mixing, 3) prediction,
4) updating, and 5) output [35].

1) INITIALIZATION
As shown in Fig. 1, CFFM-IMM estimation should initialize
the mode probabilities µjt . We assume that the initial mode
probabilities are given equally by the total number of models
D in the initialization process as follows:

µ
j
t = 1/D, (25)

where t = m+ α − 1.
Since we use the equation of multiple models (5) and (6),

the multiple batch form of the CFFM-IMM, which can
initialize multiple states, is considered. Therefore, the state
estimation x̂n can be redefined as the state estimation of the j
th system mode x̂jn. Moreover, equations (10) and (12) can be
rewritten as H j

n and ỹ
j
n. Therefore, equations (13) ∼ (24) can

be re-defined as follows:

Xn,m , Xj
n,m, Yn,m , Yj

n,m, H̄n,m , H̄j
n,m.

Before mixing the initial multiple state estimations,
we should choose the horizon size of the batch form of
the CFFM-IMM α to be between [n,m] to calculate the
batch form of the CFFM-IMM and the iterative form of
the CFFM-IMM N − α. The state of the batch form of the
CFFM-IMM is given by

x̂jt = Kj
t,mY

j
t,m, (26)

where Kj
t,m is the estimation gain of the j th system mode.
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FIGURE 1. CFFM-IMM estimation structure.

By assuming the unbiased condition E[x̂jt ] = E[xjt ]
and substituting the first rows of (13) and (26) into (14),
we obtain:

E[x̂jt − xjt ] = (Kj
t,mH

j
t,m − Fjm+1jt )E[x̂jm]. (27)

Here, E[x̂jt − xjt ] is the zero vector under the unbiased
condtition. Therefore, in order to satisfy the unbiased con-
dition, we modify the condition as

Fjm+1jt = Kj
t,mH

j
t,m. (28)

Next, we define an objective function �Kj
t,m

based on the
weighted Frobenius-norm ‖ · ‖F to obtain the estimation gain
[24], [25], [26]:

�Kj
t,m
= ‖Kj

t,mW
j
α‖

2
F ,

= tr{Kj
t,mW

j
α(W

j
α)
T (Kj

t,m)
T
}, (29)

where

Wj
α = diag(IL×L ,$ jIL×L , · · · , ($ j)α−2IL×L ,

($ j)α−1IL×L)

is the diagonal weight matrix of the j th system mode and$ j

is the weight parameter of the j th systemmode (0 < $ j
≤ 1)

that provides more weight to the latest data and less weight
to past data to improve the robustness, and IL×L is the L × L
identity matrix.

To obtain a solution for Kj
t,m that satisfies condition (28)

and to minimize the objective function (29), the Lagrange
function LKj

t,m
can be defined as

LKj
t,m
= tr{Kj

t,mW
j
α(W

j
α)
T (Kj

t,m)
T
}

+φ(Kj
t,mH

j
t,m − Fjm+1jt ), (30)

where φ is the Lagrange multiplier. The partial derivative
of (30) with respect to Kj

t,m is

δLKj
t,m

δKj
t,m

= Kj
t,m(W

j
α)

2
+ φ(Hj

t,m)
T
= 0. (31)

The estimation gain Kj
t,m can be found using (28) and (31):

Kj
t,m = Fjm+1jt {(H

j
t,m)

T (Wj
α)
−2Hj

t,m}
−1(Hj

t,m)
T (Wj

α)
−2.

(32)

2) MIXING
Multiple state estimations x̂ jk−1 are combined to obtain the j
th model estimation x̂0jk−1 as follows [34]:

x̂0jk−1 =
D∑
i=1

µ
ij
k−1x̂

i
k−1, (33)

where t + 1 ≤ k ≤ n and µijk−1 is the mixing probability
that the i th system mode was valid at time step k − 1 given
that j th system model is valid at time step k conditioned on
measurements Y jn,m can be defined using the model transition
probability πij as follows:

µ
ij
k−1 =

πijµ
i
k−1

c
, (34)

where c is the normalization constant that is used to normalize
all the system modes of πijµik−1 in order to obtain the mode
probability, which is as follows:

c =
D∑
i=1

πijµ
i
k−1. (35)

3) PREDICTION
By mixed states (33), the j th prior model estimation can be
obtained using the j th system model equation (5) and (6).

x̂jk|k−1 = Aj
k x̂

0j
k−1. (36)

4) UPDATING
Since the batch form of the CFFM-IMM estimation structure
is a matrix of stacked data at each time step by horizon size α,
the batch form cannot easily interact with the multiple models
at each time step in the updating phase. Hence, the iterative
form of CFFM-IMM estimation should be used. To derive the
iterative form, we rewrite (26) as

x̂jk = Kj
k,t+1Y

j
k,t+1

= Fjt+2jk {(H
j
k,t+1)

T (Wj
k−t−1)

−2Hj
k,t+1}

−1

× (Hj
k,t+1)

T (Wj
k−t−1)

−2Yj
k,t+1

= {(Cj
k,t+1)

T (Wj
k−t−1)

−2Cj
k,t+1}

−1(Cj
k,t+1)

T

× (Wj
k−t−1)

−2Yj
k,t+1, (37)
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whereCj
k,t+1 can be derived from properties of inverse matri-

ces by using Fjt+1jk and Hj
k,t+1 as follows [37]:

Cj
k,t+1 =



Hj
k

Hj
k−1(A

j
k )
−1

...

Hj
t+2(F

jt+3
jk )−1

Hj
t+1(F

jt+2
jk )−1


. (38)

Next, {(Cj
k,t+1)

T (Wj
k−t−1)

−2Cj
k,t+1}

−1 can be defined as

K̄j
k = {(C

j
k,t+1)

T (Wj
k−t−1)

−2Cj
k,t+1}

−1 (39)

which yields the following summation notation
∑b

s=0:

K̄j−1

k = (Cj
k,t+1)

T (Wj
k−t−1)

−2Cj
k,t+1

=

b∑
s=0

(Fjt+2+sjk )−T (Hj
t+1+s)

T ($ j)−2(b−s)IL×L

×Hj
t+1+s(F

jt+2+s
jk )−1, (40)

where b = N − α − 1.
(40) can be derived as follows:

K̄j−1

k =

b∑
s=0

(Fjt+2+sjk )−T (Hj
t+1+s)

T ($ j)−2(b−s)

×Hj
t+1+s(F

jt+2+s
jk )−1

= (Hj
k )
THj

k + ($ j)−23k

= (Hj
k )
THj

k + ($ j)−2(Aj
k )
−T3k−1(A

j
k )
−1

= (Hj
k )
THj

k + ($ j)−2(Aj
k )
−T (Cj

k−1,t+1)
T

× (Wj
k−t−2)

−2Cj
k−1,t+1(A

j
k )
−1

= (Hj
k )
THj

k + ($ j)−2{Aj
kK̄

j
k−1(A

j
k )
T
}
−1, (41)

where 3k can be derived by introducing a weight param-
eter ($ j)−2 before the sigma

∑b
s=0. The parameter 3k−1

is easily derived by changing the horizon size N − α to
N − α − 1 as follows:

3k =

b∑
s=0

(Fjt+2+sjk )−T (Hj
t+1+s)

T ($ j)−2(b−1−s)

×Hj
t+1+s(F

jt+2+s
jk )−1,

3k−1 =

b−1∑
s=0

(Fjt+2+sjk−1
)−T (Hj

t+1+s)
T ($ j)−2(b−1−s)

×Hj
t+1+s(F

jt+2+s
jk−1

)−1.

Let us define (Cj
k,t+1)

T (Wj
k−t−1)

−2Yj
k,t+1 as

Ỹj
k = (Cj

k,t+1)
T (Wj

k−t−1)
−2Yj

k,t+1. (42)

Then, (42) can be rewritten to be similar to (41) as follows:

Ỹj
k = (Cj

k,t+1)
T (Wj

k−t−1)
−2Yj

k,t+1

=

b∑
s=0

(Hj
t+1+s)

T (Fjt+2+sjk )−1($ j)−2(b−s)ỹjt+1+s

= (Hj
k )
T ỹjk + ($ j)−2(Aj

k )
−T 3̃k−1

= (Hj
k )
T ỹjk + ($ j)−2(Aj

k )
−T Ỹj

k−1, (43)

where 3̃k−1 can be derived in a manner similar to the equa-
tion for 3k−1; Ỹ

j
k−1 is the previous step of (43) and can be

expressed as follows:

3̃k−1 =

b−1∑
s=0

(Hj
t+1+s)

T (Fjt+2+sjk−1
)−1($ j)−2(b−1−s)ỹjt+1+s,

Ỹj
k−1 = (Cj

k−1,t+1)
T (Wj

k−t−2)
−2Yj

k−1,t+1.

Using (26) and (43), we can rewrite (37) as

x̂jk = {(C
j
k,t+1)

T (Wj
k−t−1)

−2Cj
k,t+1}

−1

× (Cj
k,t+1)

T (Wj
k−t−1)

−2Yj
k,t+1

= K̄j
k [(H

j
k )
T ỹjk + ($ j)−2(Aj

k )
−T (Cj

k−1,t+1)
T

× (Wj
k−t−2)

−2Yj
k−1,t+1]

= K̄j
k{(H

j
k )
T ỹjk + ($ j)−2(A

j

k )
−T (K̄j

k−1)
−1x̂jk−1}.

(44)

From (41), (K̄j
k−1)

−1 can be defined as

(K̄j
k−1)

−1
= ($ j)2(Aj

k )
T
{K̄j−1

k − (Hj
k )
THj

k}A
j
k . (45)

Finally, the iterative form of the CFFM-IMM equation
can be obtained by substituting (K̄j

k−1)
−1 in (44) to (45) as

follows:

x̂jk = Aj
k x̂

j
k−1 + K̄j

k (H
j
k )
T (ỹjk −Hj

kA
j
k x̂

j
k−1)

= x̂jk|k−1 + K̄j
k (H

j
k )
T (ỹjk −Hj

k x̂
j
k|k−1). (46)

The iterative form of CFFM-IMM estimation begins with
k = t + 1 and ends with k = n. Then, we should update
the previous mode probabilities µik−1 to obtain the update
mode probabilities µjk for combining the iterative form of the
CFFM-IMM estimation.
Using Bayes’ rule [31], we obtain the update mode proba-

bilities as

µ
j
k =

Ljk
∑D

i=1 πijµ
i
k−1

c̄
, (47)

where Ljk is the likelihood function of ỹk , given by

Ljk , N (ỹjk ;H
j
k x̂

j
k|k−1,Rk ), (48)

and c̄ is the normalization constant whose expression can be
derived in a manner similar to (35) as follows:

c̄ =
D∑
j=1

Ljk
D∑
i=1

πijµ
i
k−1. (49)
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5) OUTPUT
Finally, the combination of multiple state estimations can be
obtained by combining (46) with (47):

x̂k =
D∑
j=1

µ
j
k x̂

j
k . (50)

Note that if the time step k is such thatm < k < n, then the
algorithm returns to the second phase (mixing) and repeats it
up to the time step k = n. Therefore, while the CFFM-IMM
sends x̂jk and µjk to the second phase, it does not send the
combined state estimation x̂k .

B. DISTRIBUTED FROBENIUS-NORM FINITE MEMORY
IMM ESTIMATION
In the CFFM-IMM, the computation time increases depend-
ing on the number of anchors. If the number of anchors
increases, the size of matrices associated with the mea-
surement data increases, and this places a burden on the
computation time. These matrices are not only used in the
CFFM-IMM equations but also in the likelihood function to
calculate the system mode probabilities to combine multiple
states with the mode probabilities as shown in (50).

In this section, we propose DFFM-IMM estimation. The
DFFM-IMM is derived on the basis of the CFFM-IMM esti-
mation structure, as shown in Fig. 1. We use a distributed
algorithm, called the average consensus approach [37], in the
equation related to the measurement data to reduce the com-
putation time.

1) INITIALIZATION
In the initialization process, the initial mode probabilities are
the same as those in (25). The estimation gain K j

t,m in (37)
can be derived as follows:

(Kj
t,m)
−1
= (Wj

α)
2(Cj

t,m)
−T
{(Cj

t,m)
T (Wj

α)
−2Cj

t,m}

= (Wj
α)

2(Cj
t,m)
−T [

α−1∑
s=0

(Fjm+1+sjt )−T (Hj
m+s)

T

× ($ j)−2(α−1−s)Hj
m+s(F

jm+1+s
jt )−1]

= (Wj
α)

2(Cj
t,m)
−TL

α−1∑
s=0

(Fjm+1+sjt )−T Ḡj
m+s

× (Fjm+1+sjt )−1

= (Wj
α)

2(Cj
t,m)
−T κ̄

j
t,m, (51)

where Ḡj
m+s is a fused matrix related to the linearization

measurement matrix of each anchor based on the average
consensus. The parameter Ḡj

m+s is given by

Ḡj
m+s =

1
L

L∑
l=1

(Hj(l)
m+s)

T
{($ j(l) )−2(α−1−s)}Hj(l)

m+s. (52)

The superscript (l) indicates that the matrix element is
related to the l th anchor. To explain more in detail, if we

use the first anchor, then the first rows of (11) and (12) are
used.

We define κ̄
j
t as

κ̄
j
t,m = L

α−1∑
s=0

(Fjm+1+sjt )−T Ḡj
m+s(F

jm+1+s
jt )−1. (53)

We divide (53) by the number of anchors L, and use (51)
to derive the following expression for the DFFM-IMM esti-
mation gain K j

µ(t,m) based on the average consensus:

Kj
µ(t,m) = (

1
L

κ̄
j
t,m)
−1(Cj

t,m)
T (Wj

α)
−2

= K̄j
µ(t,m)(C

j
t,m)

T (Wj
α)
−2, (54)

where K̄j
µ(t,m) = ( 1L κ̄

j
t,m)
−1.

Using (54), we can transform the initial state x̂jt as follows:

x̂jt = Kj
µ(t,m)Y

j
t,m

= K̄j
µ(t,m)(C

j
t,m)

T (Wj
α)
−2Yj

t,m

= K̄j
µ(t,m)

α−1∑
s=0

(Fjm+1+sjt )−T z̄jm+s, (55)

where z̄jm+s is the fused measurement data of each anchor
based on the average consensus. The parameter z̄jm+s can be
expressed as follows:

z̄jm+s =
1
L

L∑
l=1

(Hj(l)
m+s)

T
{($ j)−2(α−1−s)}ỹj

(l)

m+s. (56)

2) MIXING AND PREDICTION
For these phases, the DFFM-IMM estimation equations are
equal to (33), (34), and (36).

3) UPDATING
To derive the iterative form of DFFM-IMM estimation,
we rewrite the iterative form of the CFFM-IMM estimation
equation (46) as follows:

x̂jk = x̂jk|k−1 + K̄j
k (H

j
k )
T (ỹjk −Hj

k x̂
j
k|k−1)

= x̂jk|k−1 + K̄j
k{(H

j
k )
T ỹjk − (Hj

k )
THj

k x̂
j
k|k−1}. (57)

Then, the iterative form of the DFFM-IMM estimation equa-
tion can be derived from (57) as

x̂jk = x̂jk|k−1 + K̄j
µk (z̃

j
k −Gj

k x̂
j
k|k−1), (58)

where Gj
k , and z̃jk are the fused linearization measurement

equation, and the fused measurement data of each anchor at
the k th time step based on the average consensus; they can
be derived similar to (52) and (56). The parameter K̄j

µk is the
estimation gain of the DFFM-IMM at the k th time step, and
it can be derived using (41) and substituting (Hj

k )
THj

k intoG
j
k

as follows:

Gj
k =

1
L

L∑
l=1

(Hj(l)

k )THj(l)

k , (59)
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z̃jk =
1
L

L∑
l=1

(Hj(l)

k )T ỹj
(l)

k , (60)

K̄j
µk = [Gj

k + ($ j)−2{Aj
kK̄

j
µ(k−1)(A

j
k )
T
}
−1]−1. (61)

Next, in this paper, we apply the average consensus
approach to the likelihood function to decrease its compu-
tation time. Equation (48) can be the multivariate Gaussian
normal as follows:

Ljk , N (ỹjk ;H
j
k x̂

j
k|k−1,Rk)

=
1

(2π )L/2|Rk |
1/2 exp(−

1
2
(0jk )

TR−1k 0
j
k ), (62)

where 0jk is the error between the measurement data ỹjk and
Hj
k x̂

j
k|k−1, and it is given by

0
j
k = ỹjk −Hj

k x̂
j
k|k−1. (63)

Using the average consensus approach in (62), we can
transform Ljk as

Ljk =
1

(2π)L/2|9k |1/2
exp(− 1

2J
j
k ), (64)

where Jjk and 9k are the fused Mahalanobis distance and the
fused measurement noise covariance matrix of each anchor
based on the average consensus at the k th time step. The
parameter ξ jk is H

j
k x̂

j
k|k−1 at the k th time step. These param-

eters can be expressed as follows:

Jjk =
1
L

L∑
l=1

(ỹj
(l)

k − ξ
j(l)

k )T (R(l)
k )−1(ỹj

(l)

k − ξ
j(l)

k ), (65)

9k =
1
L

L∑
l=1

R(l)
k , (66)

ξ
j
k = Hj

k x̂
j
k|k−1. (67)

Note that R(l)
k denotes the (l, l) diagonal matrix element,

which is a scalar value. Consequently, the centralized like-
lihood function in (48) should perform a matrix operation
that places a burden on the computation time. Notably, the
distributed likelihood function in (64) performs a scalar oper-
ation that can reduce the computation time.

4) OUTPUT
Finally, the mode probabilities in (47) can be obtained by
substituting (48) into (64) and then combining the multiple
state estimation x̂jk with the mode probabilities to obtain the
output state estimation of the DFFM-IMM estimation, which
is identical to (50). The DFFM-IMM performs again if the
time step k is such that m < k < n up to the time step k = n,
similar to the CFFM-IMM. The process of DFFM-IMM to
obtain the final output is described in Algorithm 1.
Remark 1: In the FM-IMM estimation algorithms, includ-

ing the CFFM-IMM and the DFFM-IMM, the horizon size
of the batch form of the FM-IMM (α) should be equal to
the number of states to make the generalized noise power

gain (GNPG) unity [21] and to reach the next step as fast
as possible for interacting with the multiple models. This is
because the batch form cannot make the j th model interact
with the i th model.
Remark 2: The horizon size of the iterative form of the

FM-IMM should be chosen with consideration. It should be
greater than or equal to the number of states for interacting
sufficiently with the multiple estimations and for the GNPG
to be unity. In other words, the total horizon size N is the sum
of the horizon size of the batch form (α) and the iterative form
of the FM-IMM (N − α).

IV. SIMULATION
The section presents the results of a mobile robot localization
simulation involving a WSN. We simulated the proposed
algorithm using the Gazebo robot simulator. Figure 2 shows
the simulation environment. Four (virtual) anchor nodes were
located at the fixed 2D positions, (0, 0), (10, 0), (10, 10),
and (0, 10), where all values are in meters. A mobile robot,
Turtlebot3 Burger, equipped with a (virtual) mobile tag trav-
eled in a 2D space with dimensions 10m × 10m. Figure 3
shows information flows in the robot localization system.
The virtual tag received a signal from the anchor nodes and
provided distance measurements. The remote PC received
the measurement data yn from the Gazebo simulator via the
robot operation system (ROS). In the computer, localization
algorithms were run in MATLAB by using the measurement
data. The sampling interval T was 35ms, the weight gain
$ was set to 0.9, and the turn rate for the clockwise and
anticlockwise CT models were set as ωj=2n = 0.05 and
ω
j=3
n = −0.05 (rad/s). The transition probabilities between

the models can be set by considering the mean sojourn time
of each mode [43], [44]. We measured the sojourn time of
the mobile robot for three modes (i.e., straight movement
and left/right turns) in the experiments. Based on the mean
sojourn time, the transition probabilities were set as follows:

πij =

0.6 0.2 0.2
0.4 0.5 0.1
0.4 0.1 0.5

. (68)

The process and measurement noise covariances were con-
sidered to be

Qn = 0.1 I2×2,

Rn = 0.1 I4×4. (69)

Furthermore, the horizon size was N = 10, and the horizon
size of the batch-form FME was set as α = 4.

In wireless communications, transmission delays or packet
dropout sometimes occurs, and it leads to missing measure-
ments. To deal with amissingmeasurements situation, we can
rewrite the measurement equation (12) as

ȳjn = βn(H
j
nx
j
n)+ (1− βn)ỹjn, (70)

where βn is a binary variable that indicates whether data are
missing (βn = 0 for missing; otherwise βn = 1). Using this
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Algorithm 1 DFM-IMM

1: Input: ỹjk ,L,D, πij,Ns×s
2: Output: x̂k
3: for n = N : ∞ do
4: m = n− N + 1, t = m+ α − 1
5: for j = 1, 2, · · · ,D do
6: κ̄

j
t,m = L

∑α−1
s=0 (F

jm+1+s
jt )−T Ḡj

m+s(F
jm+1+s
jt )−1

7: Kj
µ(t,m) = ( 1L κ̄

j
t,m)
−1(Cj

t,m)
T (Wj

α)−2

8: z̄jm+s =
1
L

∑L
l=1(H

j(l)
m+s)

T
{($ j)−2(α−1−s)}ỹj

(l)

m+s

9: x̂jt = K̄j
µ(t,m)

∑α−1
s=0 (F

jm+1+s
jt )−T z̄jm+s

10: end for
11: for k = m+ α,m+ α + 1, · · · , n do
12: for j = 1, 2, · · · ,D do
13: for i = 1, 2, · · · ,D do
14: µ

ij
k−1 =

πijµ
i
k−1∑D

i=1 πijµ
i
k−1

15: x̂0jk−1 =
∑D

i=1 µ
ij
k−1x̂

i
k−1

16: end for
17: x̂jk|k−1 = Aj

k x̂
0j
k−1

18: Gj
k =

1
L

∑L
l=1(H

j(l)

k )THj(l)

k

19: z̃jk =
1
L

∑L
l=1(H

j(l)

k )T ỹj
(l)

k

20: K̄j
µk = [Gj

k

+($ j)−2{Aj
kK̄

j
µ(k−1)(A

j
k )
T
}
−1]−1

21: x̂jk = x̂jk|k−1 + K̄j
µk (z̃

j
k −Gj

k x̂
j
k|k−1)

22: Jjk =
1
L

∑L
l=1(ỹ

j(l)

k − ξ
j(l)

k )T (R(l)
k )−1 × (ỹj

(l)

k − ξ
j(l)

k )

23: 9k =
1
L

∑L
l=1R

(l)
k

24: ξ
j
k = Hj

k x̂
j
k|k−1

25: Ljk =
1

(2π)L/2|9k |1/2
exp(− 1

2J
j
k )

26: µ
j
k =

Lj
k
∑D

i=1 πijµ
i
k−1∑D

j=1 L
j
k
∑D

i=1 πijµ
i
k−1

27: end for
28: x̂k =

∑D
j=1 µ

j
k x̂

j
k

29: end for
30: end for

equation, we can write (16) as

Yj
n,m = [(ȳjn)

T (ȳjn−1)
T
· · · (ȳjm+1)

T (ȳjm)
T ]T . (71)

Figure 4 shows real and estimated trajectories of themobile
robot. Four localization algorithms (DKF-IMM, MMPF,
CFFM-IMM, and DFFM-IMM) were used to estimate the
positions of the mobile robot. Figure 5 shows the positioning
errors of the four localization algorithms, which were com-
puted by using the formula

En =
√
(xn − x̂n)2 + (yn − ŷn)2, (72)

where (xn, yn) and (x̂n, ŷn) are the true and estimated posi-
tions, respectively. Missing measurement situations occurred
for 700 ≤ n ≤ 1000 and 3000 ≤ n ≤ 3300, where

FIGURE 2. Simulation environment.

FIGURE 3. Simulation setup.

one of the anchor nodes did not transmit signals. In these
situations, the positioning error of both DKF-IMM and
MMPF rapidly increased, as shown in Fig. 5. However, two
FME-based algorithms (i.e., CFFM-IMM and DFFM-IMM)
exhibited significantly smaller errors than the IIR-type algo-
rithms (i.e., DKF-IMM andMMPF). The IIR-type algorithms
accumulate the errors caused by missing measurements but
the FME-based algorithms do not. In this simulation, the
MMPF used 2,000 particles, which was selected based on
the simulation results shown in Fig. 6. It is well-known that
estimation accuracy of the PF improves as the number of
particles increases. Figure 6 shows that positioning errors of
the MMPF decreased as the number of particles increased.
When the number of particles was larger than 2,000, real-time
processing was not feasible. Thus, we used 2,000 particles for
the MMPF.

As the sampling time, T was 35 ms, which included the
measurement update rate of the simulation (approximately
30 Hz) and the computation time of the algorithm, a local-
ization algorithm had to operate properly within a maximum
time of 2 ms. Our proposed algorithm, the DFFM-IMM, was
sufficiently fast to estimate the position within the given time.
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FIGURE 4. Real and estimated trajectories of the mobile robot in the
simulation.

FIGURE 5. Positioning errors in the simulation.

On the other hand, the computation time of the CFFM-IMM
was 2 ms or more which resulted in the algorithm skipping
the estimation as shown in Fig. 5. Thus, if the computation
time of an algorithm exceeds the time which excludes the
measurement update rate from the sampling time, it can skip
the estimation process, which would increase the position
error.

We computed the averaged positioning error (APE) for the
four algorithms, and they are presented in Table 1. The APE
is defined as

APE =
1
tf

tf∑
n=1

√
(xn − x̂n)2 + (yn − ŷn)2, (73)

where tf is the final time step of the simulation. The APE
of the DFFM-IMM was significantly smaller than those
of the other three algorithms. Table 2 shows the compu-
tation time required for a single estimation. FME-based
algorithms generally require more computation time com-
pared with IIR-type algorithms. Thus, both the CFFM-IMM
and DFFM-IMM required more computation time than the
DKF-IMM, as shown in Table 2. However, compared with the
CFFM-IMM, the DFFM-IMM showed a shorter computation
time since it employed a distributed algorithm (i.e., average
consensus).

FIGURE 6. Positioning errors in the simulation for increasing number of
particle.

TABLE 1. Averaged positioning errors in the simulation.

TABLE 2. Computation time for a single estimation in the simulation.

V. EXPERIMENT
This section presents experimental results to demonstrate the
high performance of the proposed DFFM-IMM algorithm.
The video of the experiments is available in [45]. Figure 7
shows the experimental set up and indoor localization envi-
ronment. The mobile robot used in the experiments was
Turtlebot3 Burger, made by ROBOTIS. We used a wireless-
sensor-based positioning system made by Pozyx, and it con-
sisted of anchor nodes and a mobile tag. The system is
based on ultra-wideband (UWB) technology; its minimum
and maximum pulse repetition frequencies (PRFs) are 9 and
138 Hz, repectively. In the experiments, we set the PRF
to 125 Hz; it took 8 ms for the USB sensor to transmit
the distance information to MATLAB via ROS communi-
cation. Four anchor nodes (i.e., UWB sensors) were used;
it took 32 ms to transmit the four distance measurements.
The four anchor nodes were installed at the fixed posi-
tions (0, 0), (6, 0), (6, 6), and (0, 6), where all values are in
meters.

Figure 8 depicts the experimental set up, and it also shows
information flows. Each anchor node transmitted distance
data to the mobile tag, and the update rate was 125 Hz.
The tag was connected to a single board computer, a Rasp-
berry Pi 3B that could obtain the distance data from the
tag via serial communication. Wireless connection between
Turtlebot3 and a remote PC was established through a Wi-Fi
router. A ROS was used to set up the wireless network. The
remote PC received the measurement data from the ROS, and
the proposed algorithms were run in real-time in MATLAB.
The initial position of the robot was (2.4, 0.6). The design
parameters for the localization algorithms were set to be the
same as those used for the simulation.
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FIGURE 7. Experimental environment.

A. MISSING MEASUREMENT CASE
First, we conducted experiments for the missing measure-
ment scenario. Missing measurements occurred during the
time intervals, 1200 ≤ n ≤ 1700 and 2800 ≤ n ≤
3100. Figures 9 and 10 show the experimental results for
this scenario. Similar to the simulation results, the IIR-type
algorithms (i.e., DKF-IMM and MMPF) exhibited a sharp
increase in errors. However, the FME-based algorithms (i.e.,
the CFFM-IMM and DFFM-IMM) exhibited much smaller
errors. Fig. 11 shows the localization results of the MMPF
using various values of the number of particles in the
same experimental situation. Localization accuracy of the
MMPF was the best when 2,000 particles were used. How-
ever, the use of particles more than 2,000 resulted in too
much computation time, and real-time processing was not
feasible.

Four UWB sensors measured four distance data at rate
of approximately 30 Hz. Therefore, the algorithm should
be performed within a maximum of 2 ms, similar to the
simulation. Since the CFFM-IMM showed the estimation
skipping problem because of the high computation time,
it showed poor performance. On the other hand, our proposed
DFFM-IMMperformedmore accurately owing to its superior
computational efficiency.

B. KIDNAPPED ROBOT CASE
Small mobile robots may suddenly be moved to a faraway
location by humans; this is called robot kidnapping. In this
case, the real position is significantly different from the
estimated position, which may cause the failure of estima-
tion algorithms. To test the robustness of the proposed algo-
rithm, we conducted localization experiments in a kidnapped
robot situation. At time n = 2350, we moved the robot
from the position (5.39, 0.77) to the position (3.25, 2.5),
as shown in Fig. 12. After the kidnapping, the IIR-type
algorithms (i.e., DKF-IMM and MMPF) showed a sharp
increase in positioning errors, but the FME-based algorithms
(i.e., CFFM-IMM and DFFM-IMM) did not, as shown in
Fig. 13. Figure 14 shows the positioning errors of the MMPF
for different numbers of particles. Such as in the missing
measurement case, more particles resulted in better accuracy.
However, an excessive number of particles renders real-time

FIGURE 8. Experimental setup.

FIGURE 9. Real and estimated trajectories of the mobile robot in the
experiments of the missing measurement case.

processing difficult. The experimental results shown in
Figs. 12 and 13 demonstrate the robustness of the FME-based
localization algorithms against robot kidnapping. Because the
CFFM-IMM has the computational time problem, it some-
times showed sharp increases in the error when the robot
was not kidnapped. The DFFM-IMM exhibited robust and
reliable localization performance without any drastic increase
in errors.

Table 3 compares the APEs of the four localization algo-
rithms in the experiments. Case A represents the missing
measurement case, and Case B refers to the kidnapped robot
case. In both cases, the proposed DFFM-IMM produced
much smaller APEs than the other algorithms.

Table 4 compares the computation times for a single esti-
mation in the experiments. It is known that KF-based algo-
rithms are faster than FME-based algorithms. Accordingly,
the computation time of the DKF-IMMwas shorter than both
the CFFM-IMM and DFFM-IMM. The DFFM-IMM showed
a much shorter computation time than the CFFM-IMM
since it used the average consensus algorithm. Although the
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FIGURE 10. Positioning errors in the experiments of the missing
measurement case.

FIGURE 11. Positioning errors for increasing number of particles in the
experiments of the missing measurement case.

FIGURE 12. Real and estimated trajectories of the mobile robot in the
experiments of the kidnapped robot case.

TABLE 3. Averaged positioning errors in experiments.

DKF-IMM was faster than the DFFM-IMM, it could not
provide reliable localization under harsh conditions, such as
missingmeasurements and robot kidnapping. By contrast, the
proposed DFFM-IMM could reliably perform localization
under harsh conditions.

FIGURE 13. Positioning errors in the experiments of the kidnapped robot
case.

FIGURE 14. Positioning errors for increasing number of particles in the
experiments of the kidnapped robot case.

TABLE 4. Computation time.

VI. CONCLUSION
In this paper, we proposed the DFFM-IMM estimation
algorithm for WSN-based mobile robot localization. The
algorithm was developed using the IMM, FME, Frobenius-
norm, and average consensus algorithms. Compared with
the existing algorithms, the proposed DFFM-IMM showed
superior localization accuracy (i.e., a smaller APE) under
harsh conditions. In the missing measurement case, the APE
of the DFFM-IMM was only 61% and 71% of those of the
DKF-IMM and MMPF, respectively. In the kidnapped-robot
case, the APE of the DFFM-IMM was only 63% and 55%
of those of the DKF-IMM and MMPF, respectively. Further-
more, the proposed algorithm showed higher computational
efficiency than the CFFM-IMM since it employed an average
consensus algorithm. We intend to apply the DFFM-IMM to
drone-based three-dimensional localization and GPS-based
outdoor localization systems in future works.
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