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ABSTRACT Shield thrust is a critical operational parameter during shield driving, which is of vital signif-
icance for adjusting operational parameters and ensuring efficient and safe propulsion of shield tunneling
machine. In this paper, a novel hybrid prediction model (CLM) combining attention mechanism, convolu-
tional neural networks (CNN) and Bi-directional long short-term memory (BiLSTM) network is proposed
for shield thrust prediction. Correlation analysis based on Maximal Information Coefficient (MIC) between
the thrust and other parameters is first conducted to select optimal parameters and reduce input dimension.
An attention mechanism is introduced into CNN to distinguish the importance of different features, with
the convolution layer and pooling layer further extracting dimension features of the data. Then, a BiLSTM
neural network integrating first attention layer is employed to extract time-varying characteristics of the data,
with a second attention layer added to capture important time information. Field data during shield cutting
bridge piles are investigated to support and validate the effectiveness and superiority of the proposed method.
Results show that the proposed CLMmodel are general enough to avoid overfitting problems and have good
performance at prediction. The predicted value match reasonably well the monitoring data, with coefficient
of determination (R2) equaling to 0.85, root mean square error (RMSE) equaling to 0.05, mean absolute
error (MAE) equaling to 0.02. The CLM model in this paper can accurately predict the thrust even under
complicated construction conditions, which provides reference for similar industrial application.

INDEX TERMS Shield machine, deep learning, thrust prediction, high-dimension, time series.

I. INTRODUCTION
With advancing tunnelling technique and booming demands
for underground transportation, the subway mileage has
increased dramatically worldwide in recent decades, and is
expected to keep increasing in the future. Dense subway
network and limited construction sites frequently have had
subway tunnels cross existing underground structures, such
as steel reinforced concrete piles supporting bridges or build-
ings [1], [2]. The concrete piles, if encountered, used to be
pulled out from ground surface or cut manually through ver-
tical shaft or from machine face. The manual pile removal is
costly, risky and time consuming [3]. More and more projects
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start to cut through piles directly using shield machines
equipped with strong disc or shell cutters.

During the cutting process, the change of the shield thrust
is a result of complicated machine-ground–structure interac-
tion which is a function of a variety of parameters, including
machine parameters (e.g., torque, thrust, chamber pressure,
cutter wear, and cutterhead temperature), ground properties
(e.g., soil type, strength, and stiffness), structure properties
(e.g., diameter, concrete strength, and steel arrangement) and
so on [4], [5]. Shield thrust is important since its value
directly affects the safety of superstructure and shield cut-
ting efficiency. Therefore, precisely predicting the shield
load can help engineers adjust operational parameters before
shield cutting, which ensures the safety of superstructure and
shield machine. The prediction method of the shield thrust
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mainly includes theoretical analysis, numerical simulation,
and machine learning. Previous prediction methods for shield
load are composed of two types: theoretical analysis meth-
ods and numerical simulation methods. For theoretical anal-
ysis methods, the Colorado School of Mines (CSM) was
first proposed and widely used in the calculation of shield
loads [6]. In order to study the impact of geological con-
dition, Wang et al. [7] proposed a new thrust force model
under the single geological condition based on an assumption
that the shield excavation is very close to equilibrium. Con-
sidering the limitations of the single geological conditions,
Zhang et al. [8] established a theoretical prediction model
for shield loads based on the impact of soil-rock interbedded
ground on shield loads, and the proposed model had been
proved to be effective. Zhou et al. [9] established a theoretical
torque prediction model under mixed geological conditions.
In addition, the operational and structural parameters are also
important factors that affect shield loads, Yagiz et al. [10]
established theoretical prediction model to predict shield
loads using polynomial regression under geological condi-
tions and operational parameters. Zhang et al. [11] proposed
a prediction model for shield loads through combined analy-
sis of geological, operational and structural parameters. For
numerical simulation methods, Han et al. [12] simulated the
shield driving using three-dimensional finite elementmethod,
which can obtain cutterhead torque variation curve under
different geological conditions. Wu and co-workers [13]
established a three-dimensional model estimating the aver-
age value of cutterhead torque in a certain distance or time.
Faramarzi et al. [14] used the discrete element method to
estimate the TBM torque and thrust, and achieved higher pre-
diction accuracy than theoretical analysis. These theoretical
analysis and numerical simulation methods provide certain
guidance for the shield driving. However, the prediction accu-
racy is affected by various factors, such as complex geologi-
cal conditions and cutter wear, which are not considered in
theoretical and numerical methods. Besides, the change of
the thrust is a complex dynamic process, thus it can hardly
be clearly figure out simply through theoretical and numeri-
cal analysis. Over the years, since the monitoring method of
shield construction is becoming more and more diversified,
such as automation equipment, fiber, and so on, there are
more available data with large scales and high dimensions for
shield load analysis. Hence, one burning issue is to choose
appropriate method to analyze shield loads and extract data
features.

In order to effectively explore the variation of shield load
and precisely predict the value of shield thrust, this paper
proposes a CNN-BiLSTM-Multiattention (CLM) method for
shield thrust prediction. Due to convolutional neural networks
(CNNs) perform well at capturing the dimension features
of the data, bi-directional long short-term memory network
(BiLSTM) can extract the time-varying characteristics of
time series and attention mechanism can focus on impor-
tant information to increase fitting abilities of the prediction
models, CLM model in this paper can not only captures the

FIGURE 1. CNN structure diagram.

time-varying characteristics of data, but also extracts the data
dimensions features, and highlights the important dimension
and key time information to improve the prediction accuracy.

The study is organized as follows: section 2 presents the
related work about shield thrust prediction. Section 3 intro-
duces the materials. Section 4 explains the proposed algo-
rithm. Section 5 presents the preparing work, including data
preprocessing, experimental environment, model establish-
ment and metrics. Section 6 discusses the results. The con-
clusion is drawn in Section 7.

II. RELATED WORK
A. DEEP LEARNING
1) CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNNs are similar to ordinary neural networks in that neu-
rons are composed of learnable weights and bias constants.
As shown in Figure 1, CNN is mainly composed of convolu-
tional layers, pooling layers and fully connected layers. The
input can be regarded as a grayscale image. Each convolu-
tional layer is consisted of several convolutional units, and
the parameters of each convolutional unit are optimized by
the back-propagation algorithm. The purpose of the convolu-
tional operation is to extract different features of input param-
eters. The first convolutional layer containing several filters
is to obtain feature maps. Every filter is a weight matrix with
local connections and shared weights, which can convolve
an original image to a corresponding feature map that can
be considered an image representation extracted by the filter.
The first convolutional layer may only extract some low-
level features such as edges, lines, and corners. More network
layers can iteratively extract more complex features from the
low-level features. A nonlinear layer (or activation layer) is
usually applied immediately after each convolutional layer.
The purpose is to introduce nonlinear features. Moreover,
a pooling layer is inserted periodically between successive
convolutional layers. It aims to gradually reduce the spatial
size of the data volume, thus reducing the number of param-
eters in the network and avoiding over-fitting problem. The
fully connected (dense) layer can be used to map the final
output to linearly separable space. The input can be regarded
as a grayscale image. The convolution formula is expressed
as [15]:

ai,j = f

(
k∑

m=0

k∑
n=0

wm,nxi+m,j+n + wb

)
(1)
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where xi,j represents the i row and j column of the input
image, wm,n is the m row and n column of k × k weights
matrix, wb is the filter bias, f is an activation function, and
ai,j is the value of the i row and j column of the feature map.

2) LONG SHORT-TERM MEMORY NETWORK (LSTM)
The LSTM algorithm [16], [17], [18] is a variant structure
of RNN, which can avoid the problem of gradient disap-
pearance and explosion caused by long sequence training of
RNN. LSTM is mainly composed of three parts: forget gate,
input gate and output gate. The forget gate is mainly used
to determine the retention and discarding of information in
the cell, the input gate mainly determines the partial input
and shielding of the information, and the output gate mainly
determines the output information. The cell type is shown in
Fig. 2.

FIGURE 2. LSTM structure diagram.

The candidate state is expressed as

c∗t = tanh(Wxcxt +Whcht−1 + bc) (2)

where xt is the input at the current moment; ht−1 is the output
of the previous neural unit; Wxc is the weighting of the input
parameter xt and the memory unit; Whc is the weighting of
the ht−1 and the memory unit; bc is bias vector.
The input gate, forget gate and output gate are calculated

as

It = σ (Wxixt +Whiht−1 + bi) (3)

Ft = σ
(
Wxf xt +Whf ht−1 + bf

)
(4)

Ot = σ (Wxoxt +Whoht−1 + bo) (5)

whereWxi,Wxf andWxo are the weighting of the input param-
eter xt and gate units, respectively; Whi, Whf and Who is
the weighting of the input parameter ht−1 and gate units;
bi, bf and bo are bias vectors of three gate units; and σ is
sigmoid function with value ranging from 0 to1.

The update status in the neural unit cell is:

ct = Ftct−1 + c∗t It (6)

where ct−1 is the stored value at the previous moment.
The output value of the LSTM unit is:

ht = Ot tanh (ct) (7)

where ht is the output value of the neural unit at the current
moment.

3) ATTENTION MECHANISM
Attention mechanism is firstly applied in the human visual
system [19], it can capture the important and ignore the
unimportant from enormous information. Currently, atten-
tion mechanism is an important component of the neural
network, which is widely used in areas of natural lan-
guage processing, statistical learning and so on. Moreover,
it has been widely used in the RNN and LSTM algo-
rithms to solve time series tasks. Attention mechanism can
extract important time information, then assign different
weights to information at different moments. The calcula-
tion process of the Attention mechanism can be summarized
into three stages: (1) calculating the similarity or correla-
tion between Query and Key; (2) normalizing the original
scores in the first stage; (3) weighting the summation of
Value according to the weight coefficients. As shown in
Figure 3.

FIGURE 3. Attention structure diagram.

The calculation formula is expressed as:

Attention (Query, Source)

=

∑Lx

i=1
Similarty (Query,Keyi) · Valuei (8)

where Source is input parameters, {x1, x2, x3 . . . xn}; Valuei
is the value of each element in Source; Lx is the length of the
input parameter;Query is an element of the output parameter;
Keyi can be regarded as the address of each element in Source.

B. INTELLIGENT PREDICTION FOR SHIELD LOAD
In addition to the theoretical analysis methods and numerical
simulation methods, with the rapid development of machine
learning techniques, the internal characteristics of a vast
amount of monitoring data can be explored and fed back
to engineering constructions. Deep learning as an impor-
tant branch of machine learning, deep learning has been
widely used in engineering to predict the shield load over
the past years due to the ability to extract the law of data.
Gao et al. [20] adopted three different recurrent neural net-
work (RNN) models to predict TBM thrust and thrust in
real-time based on in-situ operating data. Zhang et al. [21]
found that LSTM model is better suitable for predicting the
shield load than random forest (RF) model. Chen et al. [22]

123860 VOLUME 10, 2022



C. Chen et al.: Novel Hybrid Deep Neural Network Prediction Model for Shield Tunneling Machine Thrust

predicted torque and thrust based on an improved LSTM
algorithm, and making it possible to adjust the TBM tun-
neling parameters in real time. Qin et al. [23] combined
convolutional neural network (CNN) and long short-term
memory (LSTM) to extract implicit features and sequential
features for cutterhead torque prediction. Zhou et al. [24]
proposed a multi-step shield load and attitude prediction
method of shield tunneling machine based onWCNN-LSTM
neural network. Shi et al. [25] proposed a novel hybrid
multi-step prediction model for shield machine cutterhead
torque. The model, combining variational mode decomposi-
tion (VMD), empirical wavelet transform (EWT) and long
short-term memory (LSTM) network, can accurately predict
cutterhead torque of shield tunneling machine in multiple
time steps. Xu et al. [26] successfully predicted the shield
thrust using five different statistical and ensemble machine
learning methods.

It can be seen that the deep learning methods have
had many achievements on load prediction. However,
their accuracy and practicability still need improvement.
On the one hand, prediction methods above mainly study
the time-varying characteristics of the data, and ignore the
dimension features of the data. On the other hand, these
existing predicting methods don’t take it into account the
influence of the different features and time information on
the predicting results.

C. CONTRIBUTIONS
The contributions and innovations of this paper are concluded
as follows:

(1) In this work, we propose a novel hybrid model for
precise shield thrust prediction. The proposed CLM model
combines CNN algorithm, BiLSTM algorithm and attention
mechanism. The operational, geological, structure and tunnel
parameters are selected as input, and the output is the thrust
at the next time.

(2) The CLMmodel integrates advantages of various algo-
rithms. It not only captures dimensions features and the time-
varying characteristics of time series, but also highlights
important dimensions and key time information. The CLM
model can avoid the overfitting problems on the training data
set and has stronger generalization ability.

(3) Compared with existing prediction models, the pro-
posed CLM prediction model has higher prediction accuracy
and overcomes the shortcomings of traditional methods that
cannot effectively learn the important dimension feature and
key time information of shield thrust data.

III. MATERIALS
Using the Suzhou metro line No. 2 project as a testbed,
this paper investigates shield machine cutting steel reinforced
concrete piles. The diameter of the piles ranges from 1 m
to 1.2 m, as shown in Fig.4 and 5. The subsurface strata
consist of a layer of Miscellaneous Fill (Stratum ¬) underlain
by natural soils which consist of Clay (Stratum 1), Silty

FIGURE 4. Profile view (units: m).

FIGURE 5. Plane view.

Clay (Stratum 2), Silt (Stratum 3), Silty Clay (Stratum
®1), Sandy Silt (Stratum ®2) and Silty Clay (Stratum ®3).
The natural soils are generally in the state of medium stiff
or medium dense. The shield machine is expected to pass
through the piles in Silty Clay (Stratum ®1) and Sandy Silt
(Stratum ®2).

According to the previous studies [23], [25]. the data
types usually include geological parameters, shield operating
parameters and tunnel parameters during the shield driving.
The structure parameters should also be taken into account
because the structure parameters have directly impact on
the shield load when shield machine needs to cut the struc-
ture. Therefore, the data types include geological parame-
ters, shield operating parameters, structure parameters and
tunnel parameters in Suzhou metro line No. 2 project.
Operational parameters can be obtained from the moni-
toring center of the shield machine. Geological parame-
ters, structure parameters and tunnel parameters can be
obtained from engineering investigation report. The moni-
toring period was 10 s. 19000 datasets in total was sam-
pled during shield machine cutting the first pile on the right
line.
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FIGURE 6. CLM model architecture.

IV. THE PROPOSED MULTIATTENTION-CNN-BILSTM
PREDICTION MODEL
A. FRAMEWORK OVERVIEW
This paper proposed a hybrid model (CLM), combining CNN
algorithm, BiLSTM algorithm and multi-attention mecha-
nism to predict the thrust. Figure 6 shows that the CLMmodel
consists of two modules, with the mixed domain attention
introduced into the CNN algorithm and the attention mecha-
nism integrated into BiLSTM algorithm.

B. MIXED DOMAIN ATTENTION-CNN COMPONENT
CNN algorithm can extract the dimension features of the data
but fails to highlight important features while attention mech-
anism can capture important information. Therefore, CNN
algorithm combined with attention mechanism can not only
extract the dimension feature of the data, but also highlight
important features.

As shown in the CNN module of the Fig. 6, mixed domain
attention network is introduced into the CNN structure. Con-
sidering that the attention mechanism can distinguish the
importance of data in different directions, it can assign
weights to the channel domain and the spatial domain, then
further extract data features to improve prediction accuracy.
Detailed steps of the channel domain attention are as follows:
first, matrix U is obtained after a convolution (Ftr ) of the
original matrix X’. then subjected to the maximum pooling
operation (Fsq(·)) to obtain compressed unit-length matrix
(1 ×1×C), as shown in Eqn. 9.

Zc = Fsq (Uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc (i, j) (9)

where uc is the feature map of the cth channel, uc(i, j) refers to
ith row unit of jth column of the feature map of the cth chan-
nel; H andW is the feature map height and width respectively.
Zc is the scalar that is the output of the cth element.

Second, the matrix is followed by two fully connected
layers (Fex(·,W )) to obtain an updated matrix, as shown in
Eqn. 10.

Sc = Fex (z,W ) = σ (g (z,W )) = σ (W2σ (W1z)) (10)

where σ is the tanh activation function, W1 ∈ RC/r×C , W2 ∈

RC×C/r represents weights in two fully connected layers. Z
is the scalar that is obtained by the squeeze operator. σ (W1z)
represents a fully connected layer is activated by an activa-
tion function. Sc is the weight matrix. Similarly, Sw and Sh
of the spatial attention domain also can be obtained. Then,
two updated matrices in the spatial domain are fused by the
tanh activation function, finally the above obtained matrix are
fusedwith an updatedmatrix in the channel domain, as shown
in Eqn. 11.

M (U) = σ (Sc + σ (Sh + Sw)) (11)

where Sc, Sw and Sh are the weight matrices.
Then updated matrices in the mixed domain are combined

with the original matrix to obtain a new matrix X , as shown
in Eqn. 12. Followed by convolution and pooling layers to
extract the data feature. The fully connected layer converts
data from graphs into vectors, serving as input of BiLSTM
algorithm.

X = Fscale (U ,M (U)) = U ·M (U) (12)

C. ATTENTION-BILSTM COMPONENT
The Bi-directional LSTM (BiLSTM) is a variant structure of
LSTM, which can better capture the forward and backward
changes in the time dimension by combining forward LSTM
and backward LSTM. The output value of the BiLSTM unit
is:

yt =
−→
ht +
←−
ht (13)

where
−→
hi is the value of the forward LSTM,

←−
hi is the value

of the backward LSTM.
Some studies have shown that the prediction accuracy of

themulti-layer LSTM structures is better than the single-layer
structure [27], so the multi-layer BiLSTM structures are used
in this algorithm to extract the time series characteristics of
the data. Since

−→
hi and

←−
hi contains different information of

previous moments in the BiLSTM network, they have dif-
ferent effects on the yi. Weighting assignation in attention
mechanism allows those important information presenting
larger influence, Therefore, they are assigned with different
weights. The yi is expressed as:

yi = α
−→
hi + β

←−
hi (14)

where α, β are the weights of the forward and backward,
respectively.
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TABLE 1. Experiment configuration.

Considering the influence of output yi at different times
on final output, the attention layer is introduced to learn the
weight of yi at the i moment automatically. Outputs of the
algorithm are finally obtained. The Yi is expressed as:

Yi =
n∑
i=1

αiyi (15)

where αi is the weight at the i moment.

D. FLOWCHART OF THE PROPOSED MODEL
To study the prediction performance of the proposed model,
this study mainly analyzes shield machine cutting the first
reinforced concrete pile on the upper tunnel. The flow chart
of the proposed model is depicted in Fig.7. First, different
parameters are collected, and then input parameters dimen-
sions will be selected using correlation analysis. Next, the
optimal hyperparameters of the five prediction models can
be obtained by training. Finally, the proposed model can be
evaluated and verified through comparison with other four
models and testing thrusts can be obtained.

V. EXPERIMENTS
A. DATASET AND DATA PREPROCESSING
In order to facilitate the training of neural networks, we use
the Max-min method to scale the data into the range [−1,1],
as shown in Eqn. 16

x ′ =
x − xmin

xmax − xmin
(16)

where x is the raw data; xmax and xmin are the maximum and
minimum of the raw data, respectively; and x ′ is the value
after normalization.

Through trial-and-error [28], the mean square error (MSE)
of the model is set as evaluation criteria, 80% (15200 sets) of
the data are used as training subsets, the 15% (2850 sets) are
used as validation subsets and the rest 5% (950sets) are used
as testing data set, as shown in Fig. 8.

B. EXPERIMENTAL ENVIRONMENT
The hardware and software on the computer used in the exper-
iment are listed on the Table 1.

C. MODEL ESTABLISHMENT AND HYPERPARAMETER
Shield thrust is affected by time and space [29], so the spatial-
temporal matrix can be set as the input of the CNN neural
network, as shown in Fig. 9. tn is the time of shield tunneling
and Sm is the shield driving distance, represented as H and
W in Fig. 6, building up the spatial domain of the CNN
structure.Ck is the feature dimension of shield driving, which
constitutes the channel domain of the CNN structure. The
spatial-temporal matrix of the shield thrust can be expressed
by Eqn. 17. The spatial-temporal matrix is the input layer
of the CNN structure, with the dimensional features of the
data extracted by convolution layer and pooling layer and
the importance of the dimensional features extracted by the
mixed domain attention mechanism. After a series of pro-
cessing, such as convolution, pooling, and flattening, a one-
dimensional array is obtained. It is the input layer of LSTM
model. The time series characteristics of the data can be
extracted by BiLSTM model, and key time node information
are extracted by the attention mechanism. Finally, the predic-
tion results are obtained through the fully connected layer and
the output layer. Table 2 presents the framework of the CLM
model for thrust prediction:

A =


α11 α12 . . . α1n
α21 α22 . . . α2n
...

... . . .
...

αm1 αm2 . . . αmn

 (17)

where aij is the element of the matrix in i row and j column,
it represents the shield thrust value when the shield driving at
the i s and the distance is j mm.

The prediction performance of the neural network is
affected by many factors and hyperparameters of the neural
network is an important factor. However, there is no mature
theory for effectively selection of these hyperparameters [30].
The proposed algorithm is established by repeated experi-
ments to determine the optimal hyperparameters, the param-
eters as shown in Table 3.

D. BASELINE MODEL
In order to verify the prediction accuracy of the proposed
model, four widely used prediction models, namely, Random
Forest (RF), Support Vector Machine (SVR), Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory (LSTM)
algorithms are introduced for comparisonwith the CLMalgo-
rithm. In each experiment, the model is trained on training
subsets. The model performance is analyzed on the valida-
tion subsets to adjust the hyperparameters, and the predictive
accuracy are finally verified on the test dataset.

E. METRICS
The prediction accuracy is measured by the error between
predicted value ŷ and instrumented value yi. The RMSE
(root mean square error), MAE (mean absolute error) and R2

(determination coefficient) are used to evaluate the accuracy
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FIGURE 7. Flowchart of the proposed model.

FIGURE 8. Thrust data set.

TABLE 2. Framework of the CLM model for thrust prediction.
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TABLE 3. Optimal hyperparameters.

FIGURE 9. Space-time matrix of shield thrust.

of regressions [31]. The evaluation indicators are as follows:

αMAE =
1
n

n∑
i=1

|yi−̂y∧i| (18)

αRMSE =

[
1
n

n∑
i=1

(yi−̂y
∧

i )
2

]1/2
(19)

R2 = 1−
n∑
i=1

(yi − −̂y
∧

i )
2

/
n∑
i=1

(yi − yi)
2 (20)

VI. RESULTS AND DISCUSSIONS
A. PARAMETER SELECTION AND CORRELATION ANALYSIS
Many parameters can affect the shield thrust during the
shield machine cutting through bridge piles. They are
mainly divided into four kinds: geological parameters, shield
operational parameters, tunnel parameters and structural
parameters. Each kind of parameter also includes many sub-
parameters. Therefore, the number of parameters is very large
and it is unrealistic to choose all parameters as the input. This
section will choose key parameters that can reflect thrust.
Previous studies [32] indicated that the shield thrust is mainly
affected by some operational parameters during the shield
driving, such as cutter temperature, driving speed, shield atti-
tude, penetration depth, grouting amount, grouting pressure
and chamber earth pressure. In addition, some geological and
tunnel parameters also can affect the shield thrust, such as
buried depth ratio, friction angle and cohesion [33]. Accord-
ing to project characteristics, pile diameter, tensile strength
of reinforcing bar and concrete strength selected as influ-
encing factor. Based on the above analysis, 13 parameters

TABLE 4. Statistical description of 13 key parameters related to shield
thrust.

are selected to predict thrust, Table 4 shows the statistical
analyses on 13 parameters.

Previous studies [34] have shown that the high dimension
of the input parameters can cause overfitting in models and
reduce computational efficiency. Therefore, this section will
study the correlation between the input and output parame-
ters using Maximal Information Coefficient (MIC) [35] to
remove redundant input parameters. Figure 10 shows that
the correlation coefficient (C) between cutter temperature,
driving speed, shield attitude, penetration depth, grouting
amount, grouting pressure, chamber earth pressure, buried
depth ratio, friction angle, cohesion, pile diameter, tensile
strength of reinforcing bar, concrete strength and thrust is
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FIGURE 10. Correlation coefficient between the input features and thrust.

FIGURE 11. Correlation coefficient between the input features.

0.59, 0.86, 0.89, 0.93, 0.46, 0.31, 0.76, 0.21, 0.32, 0.29, 0.61,
0.68, 0.66, respectively. Previous studies [36] have shown that
if C >0.9, it indicates that input and output parameters are
perfect correlation; if 0.7<C<0.9, it indicates that input and
output parameters are high correlation;if 0.4<C<0.7, it indi-
cates that input and output parameters are low correlation;
if C<0.4, it indicates that input and output parameters are
approximate non-correlation. Therefore, grouting pressure,
buried depth ratio, friction angle and cohesion are excluded,
the remainder parameters were selected for thrust prediction.

The remainder parameters can be further reduced due
to the redundancy between the selected input parameters
that also can cause the overfitting in the machine learning.
Fig.11 presents the correlation coefficient between the input
features, it can be seen that the correlation coefficient (C)
between cutter temperature and chamber earth pressure is
0.94, between shield attitude and chamber earth pressure is
0.98, between tensile strength of reinforcing bar and cham-
ber earth pressure is 0.82, it indicating that there is perfect
correlation between cutter temperature, shield attitude and
chamber earth pressure, respectively. There is high correla-
tion between tensile strength of reinforcing bar and chamber
earth pressure. In order to ensure the independence of the

FIGURE 12. Optimal number of features selected by RF-RFE.

FIGURE 13. Training and validation loss during training process.

input parameters, we can abandon some parameters using the
random forest-recursive feature elimination (RF-RFE) [37].
The raw data are randomly divided into a training set (80%)
and a test set (20%), and then the RF-RFE was used for fea-
ture optimization. The RF-RFE selects different feature sets
according to the importance of each feature, then calculates
the accuracy of each feature set. Finally, the feature set with
less features and high classification accuracy is regarded as
the optimal feature set. As shown in Fig.12, cutter temper-
ature, shield attitude and tensile strength of reinforcing bar
can be excluded, the remainder 6 parameters were selected
for thrust prediction.

where P1 to P13 represent buried depth ratio, friction angle,
cohesion, grouting pressure, grouting amount, cutter temper-
ature, pile diameter, tensile strength of reinforcing bar, con-
crete strength, chamber earth pressure, driving speed, shield
attitude, penetration depth, respectively.

B. PERFORMANCE OF THE CLM MODEL
Figure 13 presents loss values of the thrust on training subsets
and validation subsets respectively. The results show that with
the increase of epochs, the loss values rapidly decreased and
tend to be stable, with the last loss values on training subsets
and validation subsets almost the same (0.005). This indicates
that the CLM model has a good prediction performance on
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FIGURE 14. Prediction curve of the different models.
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TABLE 5. Optimal hyperparameters of different algorithms.

training dataset and can avoid the overfitting problems on
the training data set. In addition, there is a few fluctuations
on the loss curve on the validation subsets, which indicates
that the CLM model has good generalization ability. Some
fluctuations were observed in the loss curves on the training
subsets due to the existence of noise in the raw data. The loss
curves rapidly appeared to be stable after certain number of
iterations, which demonstrates the reliability of the model.

C. COMPARISON WITH EXISTING METHODS
In this section, we compare the CLM algorithm with Random
Forest (RF), Support Vector Machine (SVR), Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory (LSTM)
algorithms using the thrust data to demonstrate effectiveness
of the CLM model. In order to ensure the rationality of the
results, the optimal hyperparameters of the other algorithms
are selected by training, and then the prediction results are
compared with the LSTM algorithm. The optimal parameters
of the other algorithms are shown in the Table 5.

As shown in Table 6, the MAE, RMSE and R2 in the
datasets are 0.02, 0.05 and 0.85 for the CLM algorithm, 7.53,
6.62 and 0.61 for LSTM, 9.98, 11.63 and 0.50 for RNN,
9.21, 10.68 and 0.52 for SVR, 10.21, 13.44 and 0.49 for
RF, respectively. Hence, the MAE and RMSE of the CLM
algorithm are lower than other algorithms, the R2 of the CLM
algorithm are higher than other algorithms. The results show
that the prediction accuracy of the CLM, RNN and LSTM
algorithms are higher than that of the other two machine
learning algorithms. The reason is that the CLM, RNN and
LSTM algorithms can effectively extract the time series fea-
tures from the data, and can effectively learn the changing
law of the time-varying bridge structure sequence. Prediction
accuracy of the CLM, LSTM algorithm is higher than that of
the RNN algorithm, this is because the RNN algorithm cannot
learn the long-term dependencies for time series data due to
the gradient disappearance and gradient explosion. Prediction
accuracy of the CLM algorithm is higher than that of the
LSTM algorithm, this is because the LSTM algorithm cannot
learn the important time node information for time series data.

In addition, the prediction accuracy of SVR is higher than RF,
the reason is that SVR is suitable for processing continuous
data, while RF are suitable for processing discrete data. The
same conclusions also can be drawn from Fig.14, it presents
the prediction and measurement curves of the five prediction
models in the testing data set. Compared with the RF, SVR,
RNN and LSTM, the coincidence degree of the proposed
CLM model is higher than other models.

As shown in Table 7, the time of the training subsets,
validation subsets and testing dataset are 365.62, 276.31 and
89.64s for the CLM algorithm; 225.54, 106.43 and 33.37s for
LSTM; 107.64, 49.76 and 28.21s for RNN; 88.76, 40.25 and
17.12s for SVR; 67.32, 25.33 and 9.43s for RF, respectively.
We all known that deep learning algorithms require more time
for training than non-deep learning algorithms. Hence, it can
be seen that the time of the CLM, LSTM and RNN algo-
rithms are longer than RF and SVR algorithms. The running
time of the CLM algorithm are longer than LSTM and RNN
algorithms, the reason is that the proposed algorithm needs
the addition of CNN structure to extract the data character-
istic. Despite the longest running time, the CLM algorithm
gives the best prediction results. In fact, the testing time is
more important than training time, because the model can be
trained in advance and the testing time directly reflect how
long the prediction results can be applied to the actual predic-
tion. The testing time of the CLM algorithm is 89.64s, which
is acceptable. Moreover, the running time of the proposed
model will be further reduced with the development of the
computer hardware performance in the future.

D. ABLATION EXPERIMENT
The CLM model is mainly composed of two components:
CNN algorithm fused with attention mechanism and BLSTM
algorithm fused with attention mechanism. In order to further
analyze the validation of each module, ablation experiments
are carried out. The algorithms are CNN, BiLSTM, CNN +
attention, BiLSTM + attention and CLM.
The testing results are shown in Table 8, the MAE and

RMSE of the CLM algorithm are lower than other algorithms,
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TABLE 6. Model evaluation of thrust.

TABLE 7. Training and testing time for each model in thrust prediction.

TABLE 8. Model evaluation of thrust.

FIGURE 15. Comparison of the different models.

the R2 of the CLM algorithm is higher than other algorithms.
The results show that the prediction accuracy of the CLM
algorithm is higher than that of the other four machine learn-
ing algorithms. In order to intuitively analyze the prediction
accuracy of the proposedmodel, a comparison chart is drawn,

as shown in Figure 15. MAE and RMSE through CLMmodel
are smaller than that through CNN-Attentionmodel by 99.3%
and 99.4%, respectively. R2 through CLM model is larger
than that through CNN-Attention model by 26.9%. The rea-
son is that the BiLSTM model can recognize the long-short
term dependency for time series data and attention mecha-
nism in BiLSTM model can catch the key time node infor-
mation. MAE and RMSE through CLM model are smaller
than that through BiLSTM-Attention model by 33.3% and
58.3%, respectively. R2 through CLM model is larger than
that through BiLSTM-Attention model by 10.4%. The rea-
son is that the CNN model can deal with multi-dimensional
problem with better accuracy and efficiency, and the atten-
tion mechanism in CNN model can catch important features.
MAE andRMSE of the BiLSTM-Attentionmodel are smaller
than BiLSTM model. R2 of the BiLSTM-Attention model
is larger than BiLSTM model. The same conclusion can be
drawn from CNN-Attention and CNN models. It indicates
that attention mechanism is beneficial to improve the predic-
tion accuracy.

The prediction effect of the model is intuitively evaluated
by comparing prediction data and monitoring data, as shown
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FIGURE 16. Thrust prediction results of the different models.
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FIGURE 17. Evaluation on multi-step prediction.

in Fig. 16. It can be found that the predicted value of pro-
posed model is more consistent with the monitoring data,
while the prediction values of CNN model is quite different
from the monitoring data. The prediction performance of the
BiLSTM model is better than CNN model, which indicates
that BiLSTM model can better deal with a large volume of
multi-dimensional and multivariate time series data.

Where CN: CNN; BIL: BiLSTM; CA: CNN-Attention;
BA: BiLSTM-Attention; CLM: CNN-BiLSTM-Multia-
ttention.

E. MULTI-STEP PREDICTION
Currently, the multi-step prediction of time series is more
valuable than the single-step prediction in some engi-
neering fields. Engineering construction is urgent and

single-step prediction cannot meet warning requirements.
Therefore, multi-step prediction is more valuable for better
construction measures. In this section, the multi-step predic-
tion performance of the proposed model is evaluated. The
thrust of next five time-steps were predicted and the CLM
model compared with RF, SVR, RNN and LSTM models.
MAE and RMSE are used as evaluation index.

Figure 17 shows that the MAE and RMSE of all models
are larger with bigger time steps, which indicates that the
prediction performance of the models is getting worse and
worse with bigger time steps. The reason is that the predic-
tion results depend on the prediction of the last step and the
prediction errors will be accumulated. However, compared
with the SVR, RF, RNN and LSTM, the MAE and RMSE of
CLMmodel are minimal. The results show that the prediction
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performance of CLM model is the best among all models.
Moreover, it can be observed that the curve of the MAE and
RMSE in CLM model begin to increase after the two time-
steps, it indicates that the prediction performance of the CLM
model rapidly drops after two time-steps. Therefore, how to
improve the prediction performance of the CLM model after
two time-steps is what to study in following study.

VII. CONCLUSION
In this paper, we propose a novel hybrid deep neural network
for precise thrust prediction of shield tunnelingmachine. Cor-
relation analysis based on Maximal Information Coefficient
(MIC) between parameters and the thrust are conducted for
parameter selection and input dimension reduction, then the
dimensions features of shield thrust are extracted by CNN
layer and important features are captured by mix domain
attention mechanism. The time-varying characteristics are
extracted by BiLSTM layer, and the attention mechanism
can capture the important time node information. In order to
validate the effectiveness, generalization and superiority of
the proposedmethod, some experiments have been conducted
based on real project data, and comparisons are made with
existing machine learning models.

The results show that parameter selection is important in
thrust prediction with construction data since each feature
contributes differently and the dimensions of the input
parameters can cause overfitting in models and reduce
computational efficiency. The proposed model has a good
performance, which can avoid overfitting problems and has
good generalization ability. Compared with four existing pre-
diction models, the proposed method shows higher prediction
performance in terms of determination coefficient (R2), root
mean square error (RMSE) and mean absolute error (MAE).
Moreover, the validation of each component of the proposed
model were analyzed using ablation experiment. The results
demonstrate that the proposed CLM model integrates the
advantages of CNN, BiLSTM and attention mechanism, it
indicates that the proposed CLM model can accurately pre-
dict shield thrust during shield driving.

It can be found that although the multi-step prediction per-
formance of the proposed CLM model is better than exist-
ing four models, prediction performance of the CLM model
rapidly drops after two time-steps. Therefore, in the future,
efforts will be made to on improving the multi-step prediction
performance of the CLM model. Meanwhile, the proposed
model also can be applied in other fields.
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