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ABSTRACT This paper introduces a novel circuit identification method based on ‘‘fingerprints’’ of
periodic circuit activity that does not rely on any circuit-specific reference measurements. We capture these
‘‘fingerprints’’, consisting of fifty harmonics of the circuit activity, using digital circuit simulations and
near-field measurements of the EM backscattering side-channel. Utilizing a novel technique and algorithm,
we augment our measurements, removing sources of noise and other irregularities not present in the
simulation, in order to relate an unknown circuit measurement with a known circuit simulation. A matching
threshold of less than 1 dB difference between the simulated and measured fingerprints is set, and the
matching performance is evaluated across multiple hardware instances exhibiting a strong resistance to false
positives. Using various match statistics, decisions on the circuit identity can be made based on the simulated
and measured fingerprint pair with the best matching performance. The results show that we can identify
fingerprints of digital circuits with up to 95% accuracy using the proposed method.

INDEX TERMS Electromagnetic transients simulation, experimental measurement, fingerprinting analysis,
hardware security, harmonic analysis, integrated circuits, remote sensing, software modeling.

I. INTRODUCTION
Identification of circuits through digital fingerprinting has
been demonstrated with a variety of techniques in litera-
ture including the fingerprinting of path-delays within an
integrated circuit (IC) [1], IC magnetic fields [2], [3], [4],
[5], and electromagnetic (EM) side-channels [6], [7], [8],
[9], [10], [11]. These identification techniques can provide
device authentication [12], [13], [14], [15], [16], device
tracking [17], [18], [19], and counterfeit detection [4], [7],
[11], [20], [21]. Traditionally, authenticating an IC’s identity
required invasive techniques to verify the physical circuitry,
either leaving the device in an inoperable state [22], or ‘‘semi-
destroyed’’ but still operational [9]. In contrast, side-channel
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research has provided non-invasive and non-destructive
techniques for authenticating an IC that do not adversely
affect the operation of the device [10], [23]. Utilizing the EM
side-channel requires no physical contact with, or invasive
modifications to, a Device-under-Test (DuT), however it
is not without its limitations. Measurements of unintended
EM emanations are, by their nature of being unintended,
extremely weak and susceptible to noise. By applying a
strong source frequency to the surface of a DuT and receiving
the reflections, a method known as backscattering, the
signal to noise ratio (SNR) of the EM side-channel can be
improved [10], [24], [25], [26]. An additional benefit of
backscattering for circuit fingerprinting is that the reflected
power contains not only modulated circuit activity, but
also reflections of characteristic impedances from dormant
portions of the DuT. The EM backscattering side-channel
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exploits the switching impedance states of transistors within a
circuit to mix and up-shift the circuit activity to the frequency
of an incident carrier.

Another limitation of the EM-side channel is its sensi-
tivity to change in the measurement environment, meaning
capturing consistent results is a challenge. Historically, mea-
surement of these side-channels required ‘‘Golden Circuit’’
or ‘‘Golden Chip’’ reference measurements in order to
differentiate between experimental measurements of circuit
designs [4], [7], [11]. A ‘‘Golden Chip’’ is any integrated
circuit that is guaranteed to have been manufactured without
any tampering or deviation from the original design. For
many of the largest semiconductor manufacturers however,
creating a ‘‘Golden Chip’’ is not possible, as the industry
practice is to design integrated circuits ‘‘in-house’’ with
domestic labor, but use foreign labor and equipment in
order to fabricate those circuits. There are examples in
literature of ‘‘Golden Chip’’-free circuit identification using
measurements of trusted on-board components [27], [28],
routing or timing statistics [23], [29], [30], thermal imaging
[31], machine learning [32], and even brain-inspired detec-
tion architectures [33], but these techniques have their own
limitations. Most of them require some measurement control
training period on what is essentially a ‘‘Golden Chip’’, and
those that do not, only demonstrate a method of cluster-
ing, lacking decisions on circuit identity. Unlike ‘‘Golden
Chip’’ based methods, where changes in the measurement
environment mean needing to re-establish the control by
re-measuring the ‘‘Golden Chip’’, a simulation is constant
and only needs to be performed once for a specific circuit
design.

In this paper, we propose a novel method allowing for
comparing and relating simulated and measured circuit
activity that can be applied to a number of applications.
For instance, using simulations as a reference, identifying
circuits would require only one measurement of the unknown
device, which could then be compared analytically to any
number of simulated fingerprints. While each simulated
circuit in this study was designed identically to the measured
hardware implementation, to account for the multitude of
environmental factors and losses present only in the measure-
ments, we propose a novel, circuit-independent, calibration
technique and measurement variation algorithm enabling the
matching ofmeasured and simulated fingerprints within 1 dB.
In fact, we show not only the ability to match measured
and simulated fingerprints from the same circuit with up to
95% accuracy, but also a strong resistance to false-positives
involving similar circuit designs through multiple match
statistics verified across multiple hardware instances. With
this in mind, the main contributions of this work are the
following:
• A non-invasive frequency-independent profiling and
IC activity fingerprinting method, based on sensing
electromagnetic side-channels.

• A highly efficient and simple methodology to match
backscattered electromagnetic side-channel emanations

of circuit activity both measured experimentally and
verified through RF circuit simulation.

• Adevice-agnosticmethod for achieving highermeasure-
ment accuracy by accounting for experimental variation
and noise.

The rest of this paper is organized as follows. Section II dis-
cusses the circuit activity captured, details information about
themeasurement environment, and provides specifications on
the measurement setup and data collection processes used.
Section III discusses the proposed matching technique by
detailing the steps taken to develop the procedure and major
algorithm. Section IV shows results for both the simulated
andmeasured circuits, and the matchingmethod performance
on those circuits is discussed. Finally, conclusions are
presented in Section V.

II. SIDE-CHANNEL SENSING
A. BACKSCATTERED HARMONIC MEASUREMENTS
While small changes to a circuit design are not usually
detectable, they do affect the operation of the circuit.
Specifically, additional circuit paths manifest as very short
changes to the overall time domain switching behavior of the
transistors used. The net result of a single inverter switching
states produces a minute change, but in a chip with millions
of transistors switching states during operation, the effect
becomes measurable [34], [35]. Unlike the change in current
that occurs during transistor switching, these changes in
impedance remain for the entire clock period. Since any
on-board clocks have to be generated through an oscillator
of some kind, no matter what digital logic is happening
within the circuit, it is tied to an analog source. When
analog frequencies are generated, harmonic multiples are
produced. These harmonics represent small time changes in
the generation of a frequency, proportional to the reciprocal
of the harmonic number. For example, the first harmonic
represents activity over an entire period, the second harmonic
represents only activity over the first half of the period, the
tenth harmonic represents one-tenth of the period, and so on.
We use higher order harmonics because most circuit activity
occurs immediately after the clock edge, allowing us to have
a finer temporal resolution and detect changes resulting from
only hundreds out of the total millions of transistors within
the Field Programmable Gate Array (FPGA) used for the
hardware implementation of our circuits.

In past work [10], only the first 35 harmonics were used.
Here, we extend our measurements out to 50 harmonics of
the master clock frequency, 50 MHz for the Altera Cyclone
V DE0-Nano FPGA, to reduce our temporal resolution to
0.4 ns. While the backscattering process creates harmonics
both above and below the carrier frequency, we choose to only
measure the upper sideband mixing products because of the
impact of interference on the lower sideband mixing products
from common low frequency bands such as the 2.4 GHz
Wi-Fi band. Since the magnitude of the experimentally
received power of a harmonic will be different compared
to a simulation, we compensate by calculating the harmonic
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FIGURE 1. Measured power of clean plates.

ratio for the received power and use those values to compare
the experimental results to the simulated results. The term
harmonic ratio in this paper refers to the difference between
the received power for harmonic hn and that of harmonic
hn+1. This does mean that our 50 data points is reduced
to 49 data points but it also allows us to characterize a
circuit’s activity based more on the relative envelope of the
harmonics rather than their magnitude. However, these ratios
are calculated using the assumption that each measurement
point is relative to the same fixed reference. In the simulation
this is true, and in experimental measurements, this fixed
reference is the noise floor.

B. CLEAN PLATE CHARACTERIZATION
Several measurements were taken in order to remove environ-
mental noise from our measurements, bringing them closer
to our ideal simulations. This was accomplished by means
of ‘‘Clean Plate’’ measurements, where ‘‘Clean Plate’’ refers
to the idea of a calibration measurement meant to establish
a baseline of the measurement environment absent a DuT.
The first ‘‘Clean Plate’’ measurement was taken to calibrate
the noise floor of our Keysight N9030B spectrum analyzer.
As one can see in Fig. 1, the 50 Ohm Termination plot of
our instrument’s noise floor is not flat, and in fact exhibits a
large increase in received power from harmonic 11 to 12 near
3.6 GHz. Accounting for these errors is important because if
the measured circuit activity at harmonic 11 has a slightly
greater received power than that at harmonic 12, then the
ratio of the two harmonics should be positive. However, since
the instrument has a large jump in its reference at harmonic
12, the result could be that harmonic 11 is measured to have
less power than harmonic 12, leading to an incorrect negative
harmonic ratio. In addition to measuring the noise floor of
our instrument, we also took ‘‘Clean Plate’’ measurements
to see the effect of our probe [24] on our measurement
setup, the first being the probe’s response with no DuT
present. Bymeasuring the received backscattered power from
the probe positioned above an electromagnetically reflective

surface, in this case a block of aluminum, we were able to
approximate the frequency response of our probe. For this
measurement, seen in Fig. 1 as PEC, the amplifier, cables,
and position of the probe used in all other measurements was
kept constant. The final clean plate measurement was taken to
identify the backscattering loss of a dormant DuT. While the
other two measurements are dependent on our measurement
setup only, this final ‘‘Clean Plate’’ will change depending on
the DuT measured. We measured the received backscattered
power when the FPGA was disconnected from power in
order to determine how much power was absorbed into the
chip package, versus the power reflected by the physical
structure of the chip without any circuit activity. The results
of that measurement when averaged across the chip surface
can be seen in Fig. 1 as FPGA Off. When compared with
actual measured circuit activity, there is an approximately
20 dB increase in the received backscattered power from
the FPGA off to the FPGA on. While the results of each
clean plate measurement deserve further research, in this
study we utilized only the PEC and 50 Ohm measurements
to calibrate our circuit measurements. As discussed in
Section III, we first correct the PEC measurement using the
difference from the 50 Ohm measurement, then augment
our measured circuit activity with this ‘‘corrected’’ PEC
measurement. Since we are interested in harmonic ratios,
harmonic differences from the measured circuit activity and
the corrected PEC measurement are performed resulting in
‘‘augmented’’ experimental harmonics. In the next section,
we will detail the measurement setup and procedure used to
capture the backscattered harmonics of circuit activity.

C. MEASUREMENT SETUP
The experimental setup has been illustrated in Fig. 2(a),
along with a labeled top-down image in Fig. 2(b) of our
custom EM probe [24] with separate E-Field and H-Field
sensors. To perform backscattered measurements, we first
apply a+15 dBm E-field at 3.031 GHz created by a Keysight
N5183A Signal Generator to an Altera Cyclone V FPGA.
The backscattered H-field is received by the probe, developed
in [24], and amplified by a Pasternack PE15A1010 40 dB
LNAbefore beingmeasured by aKeysight N9030BSpectrum
Analyzer (SA). The Altera Cyclone V SoC, Fig. 3(a),
is packaged on a Terrasic evaluation board mounted onto
two perpendicular Zaber Technologies X-LSQ150B linear
motion stages. The EM probe’s position is fixed 1 mm
above the top left-hand corner of the FPGA die where its
near-field resolution is only 1 mm. This distance was chosen
in order to maximize the received power while remaining out
of contact with the DuT. During testing the motion stages
move the board 1mm at a time traversing each column in the
+X direction for every row in the −Y direction through a
225 mm2 area shown in Fig. 3(b). At each position, the board
is programmed using Intel Quartus Prime and Verilog files
developed by the authors for each circuit being measured.
Since programming occurs at each position, the impact on the
results of the order in which the measurements were captured
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FIGURE 2. Backscatter measurement setup (a) diagram and (b) picture.

FIGURE 3. (a) Cyclone V FPGA, and (b) FPGA measurement area.

is minimized. After being programmed, the SA, using a 1 Hz
resolution bandwidth, returns the frequency and power of the
highest peak within a 4 kHz range centered on each harmonic.

To account for environmental variations, we measure
50 harmonics ten consecutive times at each position.
Additionally, to ensure that measurements are independent
of circuit run-time, the FPGA is re-programmed after each
round of 50 harmonic measurements. This process is con-
trolled entirely via aMATLAB script that stores data from the
SA within 5-dimensional matrices (scan number, harmonic,
program, x position, y position) for later analysis. Results
of the measurements will be discussed in Section IV. Each
circuit design was chosen for its ability to be implemented
not only on an FPGA, but also in circuit simulation software,

TABLE 1. Measured variation for harmonics of circuit activity.

specifically Ansys Electronics Desktop (EDT). We propose
that corporate IC designers with questionable fabrication
facilities would have no problem performing accurate circuit
simulations of their designs before sending them to be
manufactured, and that any design would utilize> 50% of the
resources available. As discussed in [36], when using the EM
backscattering side-channel, the greater number of transistors
utilized in a design, the greater the backscattered power
from circuit switching activity. However, it was difficult
identifying circuit designs that could be simulated in a
reasonable time frame while also utilizing enough FPGA
resources to be detectable. Simulating a functional circuit
large enough to utilize > 50% of the resources of our FGPA
was not feasible, and simple circuit designs utilized <1% of
the resources of our FPGA, making the activity undetectable.
Without access to simulations of complex circuits, we instead
chose several simple circuits to simulate and artificially
increased the FPGA utilization in order to detect the activity.
This was accomplished by adding large registers to the FPGA
implementations in order for the utilization of the FPGA, and
therefore the backscattered circuit activity, to be large enough
to be measurable above the −140 dBm noise floor of our
spectrum analyzer.

III. A NOVEL METHOD FOR COMPARING AND
IDENTIFYING CIRCUITS USING REFERENCE SIMULATIONS
Three hardware implementations of circuit designs were
measured in this work using the setup shown in Fig. 2:
a chain of twenty cascaded inverters, a four bit counter,
and an abstraction of the Advanced Encryption Standard
(AES), an extremely common cypher used for cybersecurity.
One difficulty with using near-field sensing of the EM
backscattering side-channel is that the received power at
each harmonic is not constant over time. Some harmonics
have stable behavior over time with different power levels
depending on the location of the 1 mm2 area measured,
while others display oscillating power measurements even at
a fixed location, suggesting that such behavior is inherent
to the harmonic generation and not a result of instrument
noise. Fig. 4 below, in addition to showing the per-harmonic
average, also shows the range of measured values received
per harmonic across the chip area from the four bit counter
circuit design. It is clear that the harmonic values are not
consistent, with some harmonics varying up to 50 dB over
the chip area. Hence, the measured minimum, maximum, and
mean variation for each circuit is shown in Table 1.

It is known that higher harmonics trend toward lower
received power, where both influence from noise as well
as their smaller temporal resolution mean more variation
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FIGURE 4. Measured harmonic power variation using setup shown in
Fig. 2 for four bit counter circuit.

is expected. This means that the minimum variation is
expected to be measured close to the fundamental frequency,
and the maximum variation occurring close to the highest
harmonic measured. Initially this appears to hold true for
the three circuits measured, where the minimum variation
occurred at harmonic 6 for all three. However, while the
four bit counter and AES abstraction circuit both had their
measured maximum in the last few harmonics, harmonic
49 and 48 respectively, the maximum variation for the twenty
cascaded inverter circuit was measured at only harmonic 20,
invalidating any expectation of a linear relationship between
harmonic number and variation for a measured circuit.
Furthermore, the amount of variation observed at a given
harmonic was circuit dependent. For example, the variation
at harmonic 29 was measured to be 15.3 dB, 42.1 dB, and
29.3 dB for the twenty cascaded inverter, four bit counter,
and AES abstraction circuits, respectively. That being said,
the average variation, again shown in Table 1, was relatively
similar for all measured circuits, with only a 1.5 dB spread
across all measured circuits. The source of these variations
and their dependence on the circuit design are a result of the
FPGA implementation of the measured circuits.

Many factors can change the switching characteristics
of the FPGA and therefore the harmonic power received
by the spectrum analyzer. These can include experimental
factors such as the routing of circuit elements within the
DuT or programmed timing constraints, as well as other
environmental factors such as the temperature of the device,
duration of operation, and other unforeseen sources of noise.
Unfortunately, our simulations do not take these transient
effects in the frequency domain, nor measurement variation
due to spatial positions into account. The challenge then, was
how to determine which set of measurement points out of
thousands would be evaluated against a single simulation.

To address this, we make two reasonable assumptions.
First, the main contribution to variations in our measurement
is not noise. Figs. 1 and 4 show that our noise floor is
20 dB below our lowest variation and 45 dB below our
lowest average measurement. Second, the circuit simulation

assumes fixed environmental and temporal properties that
also exist on our DuT. Depending on component utilization
and other factors, circuits have different temperature profiles
in different locations. Knowing this, we can assume that
given an infinite number of measurements, a location
matching the environmental profile of the simulation can
be captured experimentally, with enough samples to also
capture transient activity matching the simulation. In other
words, given measurement conditions identical to those
assumed by the simulation, a set of measured harmonics
can be found that are identical to the spectrum of simulated
harmonics. By determining how close our experimentally
measured harmonicsmatched the simulated harmonics across
all of our data we evaluate how a realistic number of
measurements would compare with our lossless, noise-
less, simulation. The procedure, using measurements of a
perfect electric conductor (PEC) that reflects all incident
energy, and a ‘‘Clean Plate’’, described in Section II-B is
as follows:

• Take N simulation harmonics, hs1, . . . , h
s
n, . . . , h

s
N and

computeN−1 simulated harmonic ratios by performing
hs
′

n = hsn − h
s
n+1.

• Measure N experimental harmonics, S times, at X x-
positions, and Y y-positions, creating a 4-D matrix:
he1,1,1,1, . . . , h

e
n,s,x,y, . . . , h

e
N ,S,X ,Y .

• Calculate corrected ‘‘PEC’’ measurements by determin-
ing difference between ‘‘Clean Plate - PEC’’ and ‘‘Clean
Plate - 50 Ohm termination’’ measurements, discussed
in Section II-B: {hPEC1 , . . . , hPECN } = {hpec1 , . . . , hpecN } −

{h50�1 , . . . , h50�N }

• Augment experimental harmonics with corrected
‘‘PEC’’ measurements: he = {he1, . . . , h

e
N }1,1,1→S,X ,Y −

{hPEC1 , . . . , hPECN }.
• Compute mean and standard deviation, [µe, σ e], for
each ‘‘cleaned’’ experimental harmonic by averaging
across S scans: [{µen,x,y, .., µ

e
N ,X ,Y }, {σ

e
n,x,y, .., σ

e
N ,X ,Y }],

then X × Y positions: [{µen, .., µ
e
N }, {σ

e
n , .., σ

e
N }].

• Determine the best match for N − 1 harmonic ratios
between hs

′

and he using Algorithm 1.

For each harmonic, from 1 to N , we cycle through all
locations and times that harmonic was measured. During
this process we calculate a ratio, he

′

n,s,x,y, of the current and
subsequent measured harmonic. We next find the absolute
difference between that measured harmonic ratio and the
simulated ratio, hs

′

n . For reference, we keep track of the ratio
that produced the smallest difference found for harmonic n in
the ‘‘matched’’ ratio array, hm

′

. In addition, any data points
that are farther than two standard deviations from the mean
are ignored in order to account for any statistical outliers.
If the difference from the simulated ratio, hs

′

n , found for the
current harmonic ratio, he

′

n,s,x,y, is smaller than the hs
′

n , h
m′
n

difference, then the current ratio, he
′

n,s,x,y, becomes the new
value of hm

′

n .
This process continues until all data for the harmonic has

been evaluated, and occurs for every harmonic from the first
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Algorithm 1 Harmonic Matching Method
Input:
he of size [N × S × X × Y ] {measured harmonics}
µe of size [N ] {mean of he}
σ e of size [N ] {standard deviation of he}
hs
′

of size [N − 1] {simulated harmonic ratios}
hm
′

of size [N − 1] {empty matched array}
Procedure:
1: for n from 1 to N − 1 do {harmonic}
2: count = 0
3: for x from 1 to X do {x position}
4: for y from 1 to Y do {y position}
5: for s from 1 to S do {scan}
6: outlier = checkDev(he, n, s, x, y, µe, σ e)
7: he

′

n,s,x,y = hen,s,x,y − h
e
n+1,s,x,y

8: compare_ratios =
∣∣∣hs′n − he′n,s,x,y∣∣∣

9: curr_best =
∣∣∣hs′n − hm′n ∣∣∣

10: if count == 0 & outlier == False then
11: hm

′

n = he
′

n,s,x,y
12: else if compare_ratios< curr_best then
13: if outlier == False then
14: hm

′

n = he
′

n,s,x,y

15: end if
16: count = count+1;
17: end for
18: end for
19: end for
20: end for
21: function outlier = checkDev(he, n, s, x, y, µe, σ e)
22: if

∣∣∣hen,s,x,y − µen∣∣∣ > 2σ e then
23: outlier = true

24: else if
∣∣∣hen+1,s,x,y − µen+1∣∣∣ > 2σ e then

25: outlier = true
26: else
27: outlier = false
28: end if
Output:
hm
′

{filled matched array}

to the penultimate. It is important to note that Algorithm 1
only considers ratios of the form hen,s,x,y − hen+1,s,x,y and
not hen,s,x,y − h

e
n+1,s′,x ′,y′ . For example, while a better match

to the 5th simulated ratio, hs
′

5 = hs5 − hs6, might be found
by taking the ratio of he5,4,5,7 and he6,2,8,3, those harmonics
were measured at different positions and times so that is not
an admissible ratio. In the next section, we will discuss the
three circuits used in this study. Specifically, we will show
the results of simulations and measurements of the activity
for each circuit as well as the performance of the matching
method.

FIGURE 5. Diagram of CMOS cascaded inverters circuit.

FIGURE 6. Four bit counter JK flip-flop circuit diagram.

IV. RESULTS
The first circuit that was created, shown in Fig. 5, consisted
of twenty standard CMOS inverters, each containing a single
pMOS and nMOS transistor, connected together in a chain.
The second, more complicated, circuit that was evaluated
required the creation of several basic logic gates using pMOS
and nMOS transistors. AND gates, 2 and 3 gate NAND
gates, and inverters were used to create four JK flip-flops that
were connected to form a four bit counter. Fig. 6 contains
an illustration of the simple block diagram used to create
the four bit counter circuit. Lastly, in order to evaluate the
performance of our method on a circuit design not only
more complicated, but also more well known, we chose to
implement a round of AES experimentally and in simulation.
This circuit was a derivative of a single round of AES only
4 bits wide. The circuit activity starts with the output from the
S-boxes, which for each bit is a different static 4 bit value. The
key input is changed at half the clock speed and is stored in
a flip-flop before being evaluated by a system of XOR gates
which represent the ‘‘Mix Columns’’ step in AES.

A. CREATING REFERENCE SIMULATIONS
To create a true simulation of an experimental backscattering
system would require a full electromagnetically accurate
recreation of the DuT’s circuitry, packaging, and performance
characteristics within a noisy environment. This would
not only be complicated and computationally challenging,
but would also require exact knowledge of the internal
layout and circuit interconnects of the DuT. For proof-of-
concept purposes, our circuit simulations were simplistic,
with ideal properties, no interconnects, and no noise sources.
Despite those limitations, efforts were made to ensure that
our ‘‘Reference Simulations’’ were as close as possible
to the experimental measurements. The Cyclone V FPGA
has a 50 MHz master clock so all simulations used a
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FIGURE 7. Simulated backscattered harmonics of circuit activity for (a) twenty cascaded inverters, (b) four bit counter, and (c) AES
abstraction (left). Measured backscattered harmonics without clean plate augmentation of circuit activity for (d) twenty cascaded inverters,
(e) four bit counter, and (f) AES abstraction (right).

clock frequency of 50 MHz. To emulate the effect of EM
backscattering, we use coupled 1 mH inductors to introduce
a continuous wave (CW) 3.031 GHz source to the power
delivery net (VDD) of the circuits. Tomake the simulations as
accurate as possible, the 50 MHz clock timing characteristics

(a rise time of 0.469 ns and a fall time of 0.463 ns) of the
FPGA design were implemented into the simulated clock
[37]. Verilog circuit designs were written to ensure that
the circuit designs would be implemented properly and not
abstracted away, as for instance, twenty cascaded inverters is
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logically identical to zero inverters. Unfortunately not every
difference could be accounted for.

The Cyclone V FPGA has an SoC that uses a 28 nm
low-power process node manufactured by TSMC that was
originally developed by Altera and then acquired by Intel
[38], [39]. The exact properties of this 28 nm node are
proprietary information and as such, creating an accurate
simulation that represented the behavior of the FPGA
presented a challenge. The transistors used for the simulation
were instead 22 nm low powermodels with nMOS and pMOS
parameters from PTM [40]. The circuits were all powered
using a constant 0.95 V voltage source and the current
through VDD was measured and plotted over time. Transient
analysis of the circuits was performed in Ansys EDT using
a time step of 10 fs and a window of 10 µs. In MATLAB,
a discrete Fourier transform (DFT) was performed on the
time-series data and a plot of the frequency components was
produced. These plots can be seen for each circuit in Fig. 7(a)-
(c). Markers at each harmonic frequency have been added for
convenience.

B. MATCHING RESULTS
In all of the simulations, shown in Fig. 7(a)-(c), the even and
odd harmonics display distinct curves with the first harmonic
having the strongest relative power and the rest having an
average power of around −120 dB. These distinct curves
are due to the lower power, but more consistent, nature of
second order (even) harmonic generation compared to the
higher power, but less consistent, third order (odd) harmonic
generation. These results clearly illustrate that changing a
circuit’s design, and therefore its activity, has an effect on
the simulated backscattered harmonics. Of particular interest
are the similarities between the simulations of the four bit
counter and AES abstraction circuits. The simulation of the
AES abstraction circuit exhibits an envelope that, while being
on average 10 dB down, closely matches that of the four bit
counter circuit’s up to 4.6 GHz. This similar, yet distinct,
behavior could be a result of both circuits containing flip-flop
designs, with the AES circuit using parallel D flip-flops and
the four bit counter circuit using JK flip-flops in series. For
comparison, the harmonic activity of all three circuits were
measured using the set up shown in Fig. 2. The average of
the harmonic measurements from all positions are plotted for
each circuit and shown in Fig. 7(d)-(f).
With measured and simulated results gathered, we are

able to evaluate the performance of our matching technique
and algorithm. In addition to the three circuits described in
this text, several variations of cascaded inverters including
ten cascaded, five cascaded, and one single inverter were
also simulated. By applying our matching method, a proper
comparison between simulated and measured harmonics can
be achieved and a decision on a circuit’s identity can be
made. While the overall number of harmonic ratios matched
within 1dB is a good initial metric, we endeavor to obtain
a greater understanding of the statistical properties of the
match characteristics. To that end, we utilize four additional

TABLE 2. Matching method performance with identical circuit designs.

match metrics, in order to provide more confidence in a
circuit identity. The first two metrics are the mean, µ, and
variance, σ 2, of all 49 differences between the ‘‘matched’’
ratios and the simulated ratios. The third metric, maximum
match error, represents the absolute value of the largest of
the 49 differences. Finally, the fourth metric, skew, represents
the contribution of the maximum match error compared to
the sum of the error for all harmonics. A value close to
1 would indicate that the maximum value is an outlier,
skewing the mean and variance to be significantly larger than
they would be in the absence of that value.

In Fig. 8, we are displaying three sets of harmonic ratios, all
of them subtracted by the ratio of the circuit’s simulation. For
consistency, shapes and colors from Fig. 7 are maintained,
with blue circles representing the matched harmonic ratios
and the measured harmonic ratios changed to an outline.
One can observe that across all circuits, the first several
harmonic ratios have the worst matching performance, with
other matching errors being circuit dependent, appearing
sporadically throughout the range. The performance of the
first few harmonics is not a huge concern to this method
because, as mentioned in Section II-A, the higher harmonics
offer more temporal resolution of the circuit activity.

Overall, Algorithm 1 demonstrates an impressive ability
to match measured harmonics to simulated harmonics across
all three circuit designs, achieving a match accuracy of
< 1 dB with more than 50 % of harmonic ratios. Addressing
the performance of the matching method with the AES
Abstraction, the worsened match statistics are mostly a result
of the extreme separation in the simulated even and odd
harmonics at certain frequencies. In those situations, the
harmonic ratio must exceed 20 dB at some points, which is
unlikely to occur. The full statistics for the circuits tested can
be seen in Table 2.

C. CIRCUIT FINGERPRINT IDENTIFICATION
So far we have shown the ability to compare and match
experimentally measured harmonic activity to simulated
harmonic activity of the same circuit with as high as 85% of
harmonics within the match threshold. The assumption with
these results is that match performance is greatest only with
identical circuit designs. To this end, we test our method’s
matching accuracy when the simulated circuit is not the
same as the experimentally measured circuit. Experimental
measurements were shown in Section III to be inconsistent
and because of this inconsistency, comparing an unknown
circuit against other known references is much more efficient
and accurate when comparing against simulations. Since
we saw consistent match errors in the lower harmonics for
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FIGURE 8. Original (he′
) and method-adjusted measured harmonic ratios

(hm′
) compared with and normalized to simulated harmonic ratios (hs′ )

for (a) twenty cascaded inverters, (b) four bit counter, and (c) AES
abstraction circuits.

all three circuits, and in Section II-A, described our desire
for higher-order harmonics, we elect to test our method
using only the last 40 harmonics. The results, including the
percentage of harmonic ratios matched within the threshold,

TABLE 3. Match statistics for measured twenty cascaded inverters circuit
harmonics and harmonics of dissimilar circuit simulations.

TABLE 4. Match statistics for measured four bit counter circuit harmonics
and harmonics of dissimilar circuit simulations.

TABLE 5. Match statistics for measured AES abstraction circuit harmonics
and harmonics of dissimilar circuit simulations.

the mean error, variance, maximum error, and skew across all
harmonic ratios, can be seen, along with the measured circuit
and best value for each column in bold, in Tables 3-5.
We first examine the method’s resistance to false positives

with measured results from the twenty cascaded inverter
circuit in Table 3. It is shown that by removing the first
ten harmonics our match accuracy for the twenty cascaded
inverter circuit is increased to 95%. In addition, while all
other circuit simulations had > 50% of matches within the
threshold, the twenty cascaded inverter circuit simulation had
the highest overall match percentage while also maintaining
the lowest variance, mean error, and max error. The closest
circuit design to the twenty cascaded inverter circuit was the
ten cascaded inverter circuit, with match accuracy decreasing
as the number of cascaded inverters is reduced. These results
suggest that to prevent false positives, a decision scheme
would need to apply independent weights to each match
statistic.

Table 4 shows the matching statistics for the measured four
bit counter circuit, and despite the four bit counter circuit
simulation matching with 10% more harmonic ratios than
the twenty cascaded inverter simulation, the other match
error statistics are all relatively close. The reason for this
is illustrated by the final column labeled ‘‘Skew’’ where
the maximum harmonic error has been divided by the total
harmonic error. In this case, harmonic error from 38 ratios
(excluding the maximum) only makes up about 60% of the
total error. Using this measure is a helpful way of determining
whether a match percentage is due to amajority of harmonics,
or the influence of only a few.
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FIGURE 9. Mean threshold error for twenty cascaded inverter circuit
matching results versus number of harmonics compared.

This becomes particularly relevant in the case of the
AES abstraction circuit, where the least maximum error
was actually found when attempting to match the twenty
cascaded inverter simulation. In this case, shown in Table 5,
all other match statistics are again in favor of the identical
circuit designs. The maximum error measured for the AES
abstraction circuit, while being 2.1 dB above that of the
twenty cascaded inverter circuit, contributes almost double
to the overall error. With all other statistics conclusively
pointing to the simulated AES abstraction circuit, a decision
on the measured circuit’s identity can be made with
confidence.

Fig. 9 shows that there is an inverse relationship between
the number of harmonics compared and the mean error,
suggesting that improving sensing techniques to capture even
more harmonics would provide for even better matching
performance. In addition, distinct separation between each
circuit is shown, suggesting that these false positive relation-
ships are not a property of the exact number of measurements
taken, and are in fact inherent to the properties of the
circuit activity itself. Additional measurements serve only to
increase the resolution and allow for more accurate decisions
on circuit identity. For instance, using less than 35 harmonics
could produce a false positive, with the ten cascaded inverter
circuit exhibiting less mean error than the twenty cascaded
inverter circuit.

D. MULTI-BOARD VERIFICATION
To further show the robustness of the matching method,
the final measurements performed in this study involved
measuring each circuit design on multiple FPGA boards
to demonstrate the method’s resistance to errors from
manufacturing defects. Using the exact same procedure
as outlined in Section II-C, we measured four additional
boards, all identical to the Cyclone V FPGA used in
this study. The boards were programmed with the same
circuit designs and measured with the same equipment.
Using Algorithm 1, the measured results were matched to

TABLE 6. Match percentage for measured four bit counter circuit and
harmonics of dissimilar circuit simulations.

simulation, again using only the last 40 harmonics. While the
results showed measurable differences between boards, there
was no difference in the matching method’s effectiveness and
resistance to false positives. Table 6, shows the matching
percentage for the measured four bit counter circuit with
various simulations. The measured four bit counter circuit
had the highest match percentage with the simulated four
bit counter circuit on every board tested. The lowest match
percentage was 82.1% for Board 4, where the simulated
twenty cascaded inverter circuit had an identical match
percentage as the simulated four bit counter circuit. However,
by analyzing additional statistical properties, such as the
fact that the twenty cascaded inverter simulation exhibited
a median match error 1.5× that of the four bit counter
simulation, it is clear that this result is not indicative of
a false positive. Additional results comparing the match
percentage for the measured twenty cascaded inverters and
AES abstraction circuits show similar success in matching
well to their respective simulated circuits and resisting false
positives across multiple FPGAs.

V. CONCLUSION
Circuit identification has typically relied on a ‘‘Golden Chip’’
control that is difficult to obtain practically and increases the
capture duration and amount of data required for a decision.
In this work, we have shown that circuit activity from a
measured circuit can be compared to simulated activity of
that circuit with up to 95% accuracy and no false positives.
Our circuit simulations allow our method to have the
property of being ‘‘Golden Chip Free’’, while using near-field
EM backscattering additionally allows our sensing method
the benefit of non-destructive measurements. We proposed
a novel calibration technique and variation compensation
algorithm that allows for comparison between the unknown
measured fingerprints and corresponding known simulated
fingerprints suitable for a variety of applications. Future
work improving the accuracy and reliability could be utilized
for security applications such as counterfeit or hardware
Trojan detection. In addition, demonstrations using different
hardware devices and more complex simulations are needed
to better determine real-world effectiveness. Finally, machine
learning techniques can be applied to improve the variation
compensation algorithm, or better instruments could be
used to remove the need for the algorithm entirely. Further
development of this sensing method will lead to greater
matching accuracy and reliability enabling a broad set of
applications.
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