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ABSTRACT Based on the excellent and broad prospect of the vortex beams in military application,
it is necessary to evaluate the scattering characteristics of classical Bessel beam upon a perfect electrical
conductor (PEC) blunt cone model of aircraft structure. First, a Bessel beam is expanded by a series of
plane wave spectra. Then, combining the physical optics (PO) method, the scattered field of the object fitted
by facet elements can be calculated. The amplitude, phase, and orbital angular momentum (OAM) spectra
of scattered field for different object attitudes are discussed in detail. The results show that the backward
scattering still retains good OAM characteristics, and which are distorted with the increase of oblique angle.
Besides, the backscattering radar cross section (BRCS) of aircraft are also calculated and analyzed, and
the scattered results of degenerated zero-order Bessel beam and plane wave are compared to verify the
correctness of the proposed theory. Compared with plane waves, object scattering of vortex beams provides
a new degree of freedom, providing more information for object detection.

INDEX TERMS Orbital angular momentum (OAM), physical optics (PO), plane wave spectra, aircraft,
backscattering radar cross section (BRCS).

I. INTRODUCTION

In recent years, vortex wave [1] has attracted more and more
attentions because of its huge information carrying capacity
and potential advantage in wireless communication system
[2], [3]. In addition, vortex waves are also applied in radar
imaging [4], [5], [6] and rotational Doppler detection [7].
At the same time, there are many reported approaches to
generate vortex waves [8], [9], [10]. For circularly polarized
(CP) incidence, the co- and cross-polarized output fields
can be implemented functionalities separately to construct
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phase-modulated metasurfaces[11] for generating the vortex
wave. By introducing detour phase[12], the design of the
dual-polarized vortex beam generators in metasurface and
metagrating form was proposed. In order to realize the appli-
cation of vortex wave in object recognition and radar detec-
tion as soon as possible, the interaction mechanism between
vortex wave and object is urgently needed.

According to our investigation, most of the object scat-
tering characteristics of vortex waves are concentrated in
the optical band. In particular, some results are obtained by
using the wave function expansion method for microparticle
spherical objects [13], [14], [15], [16], [17]. In [13], the
scattering of light beam with OAM is studied by the Mie
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FIGURE 1. Geometric diagram of blunt cone aircraft.
hy =4.965m,h, =4.5m, h; =0.6875m,r; =0.375m,r, =1m,
r3 =0.175m.

scattering theory. In [14], By utilizing the spherical harmonics
partial wave series, the off-axial scattering of a Bessel beam
by arigid fixed sphere is presented. Besides, a FDTD solution
[18] was used to realize the scattering characteristics of laser
vortex beam by dielectric particles.

However, there are few studies on the interaction between
vortex waves and electrically-large objects in microwave
band. The high order Bessel vortex wave is scattered by
several typical targets has been investigated by using the
surface integral equation method [19]. The RCS and 3D
directivity plots of the far-field scattering for a typical aircraft
model were presented. A modified multilevel fast multipole
algorithm (MLFMA) is presented [20] to analyze the OAM
scattering from the electrically large object illuminated by a
spiral parabolic antenna.

In [21], The backscattering of single and double spheri-
cal objects is obtained by experimental RCS measurement
method. Following, the reflection and refraction of vortex
waves on a flat plate are analyzed [22], whose result is not
only from experiments but also from the spectral domain
expansion theory. In [23], the vortex wave generated by the
uniform circular array (UCA) irradiates the PEC sphere and
PEC cone, and the backscattering is calculated by combining
the Stratton-Chu equation. Regrettably, the above reports are
limited to solving the simple object scattering. For arbitrary
convex objects, there is a lack of a comprehensive and sys-
tematic scattering calculation method.

In this paper, we calculate the vortex scattering of a scale
model for aircraft structure named ‘raging fire’. In order to
calculate scattering by PO algorithm, the object is divided
into a series of fitting triangular facet elements. For each
element, the amplitude, phase, and polarization of incident
Bessel beam is different. Therefore, Bessel beam should not
be directly brought into PO integral for calculation. Conse-
quently, the Bessel beam is expanded into a superposition of
a series of plane waves, and PO is performed to each sub-
plane-wave. Finally, the scattering of all decomposed sub-
plane-wave on all facet elements are summed vectorially to
obtain the final result.

Il. CALCULATION METHOD
As illustrated in Fig. 1, a Bessel beam propagating along
the +z axis illuminates an aircraft structure. The coordinate
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FIGURE 2. General convex object scatterers and parameter relations.

system of incident Bessel beam is represented by the o-xyz,
and the o in the global coordinate system O-XYZ are
(x0, Y0, z0)- The time harmonic factor exp(—iwt) is assumed
for convenience.

A. INCIDENT BESSEL BEAM

Based on the vector angular spectrum decomposition
(VASD), the incident electric field of Bessel beam at
(x0, Y0, z0) can be expressed as [16]

E™(x,y,2)
2 w/2
= k? / / A(Ol, B) exp(ikr sin @ sin 6 cos(B — ¢))
=0 0
x exp(ikr cos a cos 0) exp(—kzp cos o) sin & cos adad

(1)
where A(e, B) = Aa, B)f (. B), Ala, B) and f(c, B) are

the scalar amplitude and polarization state respectively. The
angles o and  are defined as the elevation and azimuth angles
in the beam coordination system.

sin & cos B sinasing _
a+ bye; (2)

coso cos o
In this paper, the Bessel beam is selected as examples
to conduct the analysis. The scalar amplitude function of a

Bessel beam with arbitrary integer order is

fla, B) = aé, + bé, —(

(a — O(O)eillg

8
Ala, p) = Sine 3)

where the parameter § represents the Dirac function, / denotes
the integer order topological charge, and o is the half-cone
angle.

B. PO METHOD
Fig. 2 shows the model diagram of the general convex object
fitted by a series of facet elements under the irradiation of
the decomposed sub-plane-wave. According to the Stratton-
Chu equation, the scattered field at an external position of any
triangular facet element j-th on the PEC scatters can be given
Bo_ i / 3 — k’R? — i3kR
I we-dm R3
s

MR x (R x Ty(r'))

- 1 —ikR .
+2Js<r’>R—§e'kR]ds/ )
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FIGURE 3. Intensity and phase distributions of the backward scattered
electric field (x component). (a) Intensity (I=1); (b) Phase (I=1);
(c) Intensity (1=2); (d) Phase (1=2).
where
> 20 x H ! illuminated regions
Ty =47 ¢
0, others (5)

TR I B o
nj x HJ’ = - [Ei cos ;¢! + Eli(n X e/l)]

n
A~ _'/ _'/ ~
ez; X ki R ki x n;
Q=T = (6)
‘ezj X ki ki X nj‘

i N y N
and E/(r) = & - E;(r) and E/'(r) = & - Ej(r) denote the
incident electric field components on triangular facet element
J-th in the directions of perpendicular polarization ¢ " and

parallel polarization é’”. E;(r) is the any exploded sub-plane-
wave of incident electric field in (1). 7; is the normal unit
vector of the facet element j-th on object. 6; is the incident
direction of each decomposed plane wave angular spectrum.
Taking into account the transformation relationship of coor-
dinate systems, substituting (1) and (5) into (4) and switching
the order of integral operation can obtain the scattered field.

Ne
Ep =K [/ ZEJ-S sina cos adad 7
Jj=1

where N, is the number of partitioned surface elements.
Finally, the far-field RCS of the Bessel beam can be defined

as

2

; @®)

-

s
E total

RCS = lim 47 R?

R— o0

= .
ElnC

lIll. RESULTS AND ANALYSIS
In this section, numeric calculations are conducted to ana-
lyze and evaluate the backward scattered field and BRCS
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FIGURE 4. Normalized OAM spectra of the backward scattered field with
different topological charge.

for aircraft object that is divided into 20002 triangular facet
elements with side length of 0.34 (A is 300mm). Assuming
that the x-polarized Bessel beam (a = 1, b = 0) is incident
in the head of the aircraft, the observation cross section is
401 x 40, and the tail of the aircraft coincides with z = 0
plane.

A. BACKWARD SCATTERING RESULT

Fig. 3 depicts the amplitude and phase cross section distribu-
tions of the backward scattering varying with the scattering
distance. This clearly shows that the backward scattered field
still maintains good OAM characteristic maybe due to the
symmetrical object. In the cases of both topological charge
| = 1 and [ = 2, amplitude hollow and helical phase wave-
front characteristics are presented, and the Bessel wave can
generate diffusion and attenuation as the scattering distance
increases. In addition, compared with / = 1, the amplitude
hollow becomes larger and the magnitude decreases in the
case of I = 2, which is consistent with the characteristics of
incident Bessel beam.

In order to further analyze the OAM modal purity of the
back echo, Fig. 4 presents the normalized scattered OAM
spectra distributions under the incident Bessel beam with
different topological charge. It can be seen that all scattering
OAM spectra obtain a high modal distribution under the
different topological charges, and the maximum percentage
of hybrid modes is less than 15% (I = 1). This shows that
for a blunt cone aircraft object with symmetric prototype,
the backward scattered field has a good OAM characteris-
tics similar to the incident field when the normal incidence
occurs. Besides, the topological charge of the Bessel echo is
the negative value of the topological charge of incident Bessel
beam.

Further, the backward scattered amplitude and phase dis-
tributions under different degrees of deviation from the ver-
tical incident direction are illustrated in Fig. 5. The relative
position relationships are indicated in the diagram. With the
increase of oblique incidence angle, the backward scattered
Bessel wave will produce some distortion, which is man-
ifested in the gradual loss of hollow amplitude and spiral
phase wavefront respectively. When the oblique angle is
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FIGURE 6. Normalized OAM spectra of scattered field with different tilted
angle. (a), (I = —1); (b), (| = -2).

less than 1°, the phase distribution is still helical while the
amplitude has lost the circular distribution. When the oblique
angle exceeds 2°, the Bessel wave loses the helical phase
wavefront and the amplitude distribution becomes conical
shape gradually.

Finally, Fig. 6 shows the normalized OAM spectra distri-
butions at different tilt angles . The proportion of the hybrid
modes is enhanced with the increase of the tilt angle, which
corresponds to the distortion of the backward Bessel scattered
waves. Regardless of [ = 1 or 2, the highest proportion
of the hybrid mode reaches about 60% when the oblique
incidence angle is 2°, which is mutually confirmed with the
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FIGURE 7. Schematic diagram of the backscattering case of Bessel beam
radar.

loss of OAM characteristics of the scattered field under the
corresponding case in Fig. 5.

B. BRCS OF THE AIRCRAFT

In this section, the backscattering characteristics of aircraft
are mainly discussed. Fig. 7 is a schematic diagram of the
aircraft’s backscattering of Bessel radar. The Bessel radar
scans clockwise from the head (6 = 0°) to the tail (¢ = 180°)
of the aircraft. Similarly, the far-region scattered field of a
PEC object can be obtained by PO integral as follows

B = — % PR [ h R x Gox Y]
2 wp r
sl

x exp(—ikR - r')ds’  (9)

where the incident field is in the opposite direction to that of
the scattered field.

To verify the correctness of aircraft scattering calculated
by the proposed method for Bessel wave, the object is illu-
minated by the degraded Bessel beam (I = 0°, 9 = 0°)
and plane wave, respectively. As shown in Fig. 8, the peak
value of BRCS of both the plane wave and the zero-order
Bessel beam appear at the tail (& = 180°) direction, which
can be interpreted as a circular planar structure with a high
RCS at the tail. When 6 = 90°, The zero depth of BRCS
occurs maybe due to the discontinuities between the cone
and cylinder in this aircraft structure. The BRCS curves from
the illumination of the above two types of incident wave
coincide well, which effectively verifies the proposed theoret-
ical method and program code. Some subtle differences may
be due to the numerical algorithm errors and facet element
precision.

Fig. 9 shows the BRCS curves of aircraft under Bessel
beam irradiation with different topological charges and differ-
ent half-cone angles. Fig. 9.(a) shows that the backscattering
curves of Bessel beam with different topological charges have
few differences. Compared with plane wave’s irradiation,
zero depth appear at both 6 = 0° and 6 = 180°, which is

VOLUME 10, 2022
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FIGURE 9. The BRCS results of Bessel beams with different topological
charge (a) and different half-cone angle (b).

the most significant target characteristic difference between
plane wave and Bessel wave. As can be seen from Fig. 9. (b),
with the increase of the half-cone angle, the BRCS level of
Bessel wave decreases, while the central deviation occurs at
all the three strong scattering positions of 6 = 0°, 8 = 90°,
and & = 180°. The BRCS variation of Bessel beam with
different half-cone angle also provides an additional recog-
nition information for the object, which further enhances the
accuracy and reliability of object recognition.

Although the BRCS curves with different topological
charges have few differences as shown in Fig. 9. (a), the
fast Fourier transform (FFT) corresponding to different OAM
states can obtain more abundant information in azimuth
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angle. Therefore, by using Bessel wave to replace plane wave
in synthetic aperture radar (SAR) imaging algorithm, a good
transverse resolution can be obtained [24]:

Pa = )»/ZQBW (10)

where p, is the azimuth resolution, A is the wavelength,
and Ogw is the effective azimuth beam width. For circular
array with the same antenna aperture size, vortex wave and
ordinary electromagnetic wave can be generated respectively
with or without phase delay. The azimuth beamwidth of the
far field pattern of vortex wave is larger than that of traditional
electromagnetic wave evidently. Therefore, higher azimuth
resolution of OAM imaging can be obtained according to (9).

Fig. 10 presents the BRCS of Bessel beams with dif-
ferent incident wavelengths, and the result shows that the
curve fluctuation becomes more obvious with the decrease
of wavelength. Importantly, this numerical method has a
strong universality and can be applied to the acquisition
of electrically-large object characteristics in the terahertz or
even optical frequency band.

IV. CONCLUSION

This paper investigates the interaction mechanism between
Bessel beam and a blunt cone aircraft object. The combi-
nation of angular spectra expansion and facet segmentation
method makes the object scattering characteristic of Bessel
waves not limited to simple structures. The distribution of
backward scattered fields and OAM spectra obtained from
different object attitudes reveal that the OAM characteristics
of Bessel vortex wave echo from symmetric object are bet-
ter than those from asymmetric object. The backscattering
results show that the strong scattering points of the aircraft
object include head, side and tail. There is no significant dif-
ference in the BRCS of Bessel beam with different topologi-
cal charges. However, the BRCS phenomenon under different
half-cone angle at the main scattering positions is similar to
the characteristics of incident Bessel wave: with the increase
of the half-cone angle, the amplitude decreases and the main
lobe shifts away from the zero depth. This study has great
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potential significance for future military radar and Bessel
vortex object recognition.
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