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ABSTRACT Knee osteoarthritis (Knee OA) is a degenerative disease that often perplexes the elderly and
the whole society, and its timely recognition receives interest worldwide. However, traditional imaging
examinations cannot reflect dynamic function nor implement long-term monitoring. To address this issue,
this article suggests a piezoresistive-based gait monitoring method to recognize patients with Knee OA by
assessing the plantar pressure signals during the subjects’ walking, which is mobile, wearable, low-cost, and
convenient. Eighteen subjects diagnosed with Knee OA and twenty-two control subjects participated in the
experiment. Considering the asymmetric pressure distribution in feet and the landing habits of Knee OA
patients, the plantar surface was split into eight areas, calculating the contact time and maximum force of
each area in a gait cycle. Using these characteristics to train, the support vector machine (SVM) reached an
accuracy of 93.15%, a precision of 92.39%, and a recall of 92.79%. Furthermore, a prediction model was
proposed for the application that aggregates all the results in one test and gives a more accurate result, and
the classification accuracy for individuals in the ensemble model is 90.90%. Our technique fills the vacancy
of the recognition of patients with Knee OA based on wearable instruments. It provides ideas for intelligent
healthcare, which benefits potential Knee OA patients’ early diagnosis and treatment.

INDEX TERMS Intelligent sensors, machine learning, piezoresistive devices, pressure sensors, support
vector machines.

I. INTRODUCTION conduct treatments early and evaluate the rehabilitation of

Knee osteoarthritis (Knee OA) is a degenerative disease com-
mon in the elderly [1]. As people age, the possibility of
getting a Knee OA increases. People with Knee OA suffer
from pain and dysfunction. Some even need to undergo total
knee replacement surgery, which increases the physical and
economic burden of patients. Knee OA causes a great burden
to the public health care system, especially in aging societies
[2], [3]. The accurate recognition of Knee OA can help
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Knee OA patients. Traditional diagnostic techniques for Knee
OA include X-ray and Magnetic Resonance Imaging (MRI).
However, the imaging examinations are usually static, which
cannot show the patients’ dynamic function, nor can they
be applied in long-term health monitoring. Previous studies
have shown no strong correlation between pain severity and
imaging findings [4], [5]. Several researchers support that the
dynamic assessment of knee function is necessary [6], [7].
Meanwhile, the fast development of electrical computer
engines allows people to use intelligent algorithms as aux-
iliary tools to process and assess the data generated from
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FIGURE 1. The user walks on the flat with the insoles while data are obtained and transformed into a computer in time, and the model will predict
whether he or she is a patient with Knee OA or not after the data has been processed.

the dynamic examinations. Machine learning algorithms have
been used to predict diseases, and researchers have proposed
methods to recognize patients with Knee OA based on dif-
ferent physiological signals, including surface electromyo-
graphy (sEMG) [8], [9], [10], knee joint vibration signal
(VAG signal) [11], [12], [13], [14], gait data obtained from
a camera [15], and plantar pressure signals [16], [17], [18].

Among the signals above, plantar pressure measurement
has shown application prospects in the diagnosis and treat-
ment of Knee OA. It has been proved that the differences
between patients with Knee OA and normal people can be
shown by their plantar pressure. In [6], Saito et al. found
that the partial foot pressures as a percentage of body weight
are lower in patients with Knee OA than in healthy people.
In [7], Zhang et al. found that females with Knee OA had
higher peak pressure in midfoot and first to second metatarsal
head during walking compared with healthy females. In [19],
Anzai et al. demonstrated that the Knee OA group had
a smaller single support phase, greater stance phase time,
smaller great toe peak pressure and greater medical midfoot
peak pressure than controls. Also in [20], Munoz-Organero
found the weight dynamic reallocation at the midfoot and
the major asymmetries between pressure patterns in both
feet of Knee OA patients. In [21], Liikavainio et al. found
that even in asymptomatic patients with early-stage Knee
OA, alterations in plantar loading could be observed dur-
ing walking. Some poor posture may contribute to disease
progression, which can be shown early in plantar pressure
measurement [22].

Thus, plantar pressure analysis is of great application
value, especially in the early diagnosis and intervention
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of Knee OA. The first step is the recognition of patients
with Knee OA based on plantar pressure signals. Previous
researchers have worked on predicting Knee OA by measur-
ing plantar pressure by the force plate. In [16], Mezghani
et al. used 3-D ground reaction force (GRF) measurements
integrated by force platforms to obtain the gait data of
patients with Knee OA and apply discrete wavelet transform
on the GRF signals, attaining the classification accuracy of
91.00%. In [17], Kirkwood et al. used a camera and force
plate to record the gait data of older women with Knee OA
and implemented principal component analysis to assess the
gait data, reaching an accuracy of 71.8% for classification.
In [18], Kotti et al. used a force plate embedded with piezo-
electric 3-component force sensors to measure the plantar
pressure and calculated parameters of GRF, achieving detec-
tion accuracy for Knee OA of 72.61%.

An alternate way to obtain plantar pressure signals is using
wearable instruments [23], [24]. Compared with force plates,
the wearable instrument is convenient enough to obtain more
data, can avoid nervousness and alteration in the walking
habits of patients in a specific laboratory and is more appro-
priate for remote monitoring [25]. In [20], Munoz-Organero
et al. used commercial insoles with eight force sensors to
obtain data from patients with Knee OA and healthy subjects
and compared the classification efficiency of characteristics
extracted, achieving an accuracy of 92.86% using a Decision
Tree. In [26], Yamada and Nagamune. developed a foot pres-
sure measurement system using force and inertial sensors for
Knee OA patients. Still, the system was tested only on healthy
subjects, and no diagnoses were made by it. However, the
small number of sensing points and interspaces between the
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FIGURE 2. (a) The calibration process of one channel of the piezoresistive array. (b) The result of bending-releasing repeatedly several
times. (c) Structure and electrodes’ distribution of one insole. (d) The photos of the insoles.

insoles and the sole of the foot limited the data quality and
further applications.

Generally, the application of plantar pressure measurement
in sports medicine is still minimal. A possible explanation
is that the complicated experimental equipment in previous
studies made it challenging to be popularized. How to balance
the number of sensors, circuit complexity, and the overall
cost is a disturbing problem. Additionally, there is a lack of
algorithms to organize and assess the large amount of data
generated from plantar pressure measurement, which benefits
from simplicity [27].

To overcome these weaknesses, a device with more sensors
was applied, and a robust algorithm was implemented to pro-
cess the signal. In this study, a pair of insoles embedded with a
48-channel piezoresistive array was developed, and a method
was presented to recognize patients with Knee OA based on
the plantar pressure signal obtained by our instrument. The
features extracted from the processed data are contact time
and maximum force of the gait circle. After applying Random
Forest, AdaBoost, and support vector machine (SVM) to
classify Knee OA patients and control subjects without Knee
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OA, we suggest choosing SVM as the base prediction model,
which attains the highest accuracy of 93.15%.

For the actual application, the user walks for some time
with the insoles placed inside the shoes in the flat. Mean-
while, data are obtained from the circuit, and transferred to
the computer. Data of steps are extracted to fit the SVM
model pre-trained, and the prediction class will be given with
the possibility (Figure 1). This model can help to assess the
situation of patients as an auxiliary diagnostic tool.

Il. MATERIALS

A. PRESSURE SENSING ARRAY FABRICATION
Piezoresistive sensors were applied to obtain the plantar
pressure signals. Piezoresistive materials’ advantage of being
printable makes the sensors convenient for batch production.
And its flexibility allows the insoles to fit the sole of feet
well. Moreover, compared with capacitive- and piezoelectric-
based procedure, the piezoresistive-based procedures
experience less environmental interference for insole gait
analysis, providing a more accurate result [28], [29], [30].
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FIGURE 3. (a) Circuit structure used to scan the pressure distribution of the piezoresistive array. (b) The process of how the signal obtained by the insole
is transformed into the host computer. (c) Schematic of the read-out circuit to obtain plantar pressure data.

The instrument, the insole, can measure the plantar pres-
sure during walking by embedding a flexible piezoresis-
tive array. The piezoresistive array contains two layers of
polyethylene terephthalate substrate outsides, top, and bot-
tom electrodes with a piezoresistive ink film in the middle.
Each insole with a piezoresistive array has 48 electrodes, and
the obtained data 96 channels.

Considering the sole’s irregular shape, the electrodes’
size includes three kinds (10-mm x 12.2-mm, 10.9-mm Xx
10.9-mm, and 13.2-mm x 9.2-mm) so that the insole can
cover more area as possible. Roughly, the insole is 100-mm in
width and 250-mm in length, which fits most soles of people.

The sensors have been calibrated before the measurement,
and the increase in the force applied obviously decreases the
sensor resistance (Figure 2(a)). A force of 26 N was also
applied to finish the bending-releasing processes, and one
example is shown in Figure 2(b). The change in resistance
is —5.8% after 400 bending cycles. Our previous researches
have also demonstrated that this technology has relatively
high sensitivity and accuracy in gait signal detection and
has been applied to accurate locomotion mode recognition in
healthy subjects [28], [29], [30], [31], [32]. Therefore, our
instrument meets the requirements of medical application.
Figure 2(c) shows the structure and electrodes’ distribution
of the insole. Figure 2(d) shows the illustration of the insoles.

B. STRUCTURE OF CIRCUIT

The same row (column) of electrodes of the top (bottom) layer
are connected, and 12 x 4 wires are led out. As indicated
in Figure 3(a), sensors range from DO~D11 in a row, while
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TABLE 1. The read-out circuit parameters.

Symbol Quantity
Input Dynamic Range 0~5V
ADC Resolution 12 bit
Wireless Transmission Rate 230,400 bps
Scanning Rate 50 Hz
Battery Capability 800 mAh
Working Current 50 mA
Working Hour >16 hours

those in a column range from SO~S3. Therefore, a certain set
of ‘D’ and ‘S’ wires can uniquely indicate one certain sensor.

The read-out circuit can be divided into conversion, read-
ing, and transmission parts. As shown in Figure 3(b), The
force signal obtained will be transformed into the electrical
form by the analog switch, and an Operational Amplifier
(OP) amplifies the signal from Analog to Digital Converter
(ADC) circuit, Micro Control Unit (MCU), and wireless
forwarding circuit, the signal will be sent to the host computer
for further processing. The schematic of the read-out circuit
(Figure 3(c)) includes Analog Front End (AFE), ADC cir-
cuit, MCU, and Bluetooth Module. For MCU, the controller
decides whether the AFE obtains data or not, and the collected
data are cached into its RAM. And the Bluetooth Module
transmits the data to the host computer wireless at a baud
rate of 230, 400. The read-out circuit parameters are indicated
in Table 1.
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TABLE 2. Information of all subjects enrolled.

Characteristics Patients with knee OA (n=18) Control subjects (n=22) P!
Age (year) 61.1£7.3 54.448.8 0.014%
Gender (male/female) 8/10 12/10 0.751
Body mass index (kg/m?) 28.1£5.9 25.843.1 0.138
Visual analogue score (%) S51.1£11.5
Duration of symptoms (months) 52.7466.2
Grade of radiographic knee OA (n)
2 5
3 11
4 2

Abbreviation: knee OA, knee osteoarthritis.

! Continuous variables were compared using independent sample t-tests, while classified variables were compared using

Fisher’s exact tests.
2 Statistically significant at p<0.05.

C. PARTICIPANTS AND EXPERIMENTAL APPROACH

After the instruments are well prepared, patients with symp-
tomatic Knee OA scheduled for surgery between June and
July 2021 at our institution were recruited. The inclusion
criteria were age >40 years, unilateral symptoms, unsuc-
cessful conservative treatment, and radiological findings con-
sistent with clinical symptoms. The exclusion criteria were
the inability to finish the gait test, the recent use of oral or
intravenous analgesics, and other neurological and metabolic
diseases that affected gaits, such as cerebral infarction, lum-
bar stenosis, and arteriosclerosis obliterans. Control subjects
were recruited from our institution. The inclusion criteria
were age >40 years, no history of back or lower limb dis-
orders, and no functional limitations.

Therefore, 18 subjects diagnosed with Knee OA and
22 control subjects took the walking tests on the indoor
ground. The control group included nine patients with cer-
vical spondylotic radiculopathy, one patient with a benign
neoplasm in the upper limb, and 12 healthy staff members
at our institution. The control group members were consid-
ered healthy subjects in this experiment on Knee OA. The
demographic and clinical data, including age, gender, body
mass index (BMI), visual analog score, symptom duration,
and Kellgren-Lawrence grade of radiographic knee OA [33],
of all subjects enrolled are indicated in Table 2. Patients
with knee OA are significantly older than healthy controls.
However, research has revealed that age has little influence
on the plantar pressure distribution for people over 40 years
old [34]. There was no difference in gender and BMI between
subjects with and without Knee OA.

The plantar pressure signals were obtained: Preoperatively,
participants were asked to walk at their self-selected speed on
a20-m trail in a hallway marked in the hospital, wearing a pair
of shoes embedded with the abovementioned insoles. Then,
they were asked to stop for a few seconds, turn around, and
walk back along the trail. The research conducted was per-
formed according to Helsinki’s Declaration. Approval for the
study was obtained from the institutional ethics committee.
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Informed consent was collected from all subjects involved in
the study.

lll. METHODS

A. DENOISING AND BASELINE CORRECTION

The data obtained by the above methods require preprocess-
ing. High-frequency disturbances accompanied the collected
pressure signal, and it was first smoothed using a Savitzky-
Golay filter. The pressure signals have obvious offset, even
at the minimum. Therefore, the pressure measured is higher
than the actual value. The baseline drift of the pressure sig-
nals from various channels was corrected separately using
the method of adaptive iteratively reweighted penalized least
squares (airPLS) [35]. The target of airPLS is to reduce the
cost function:

O=F+AR=(x—bW(x—b+r|IDb|®> (1)

where x denotes the pressure signal, b denotes the baseline
drift, Db represents the second-order difference sequence
of b, and W is a diagonal matrix with weight w_i on its
diagonal.

During the iteration process, w; can be obtained adaptively
by the following expression:

0, X; = b§_1

W=t r(w-p . @)
exp( ] ), X <b;

where ¢ denotes the iterative step and d’ represents the sum
of the negative elements of the difference values between x;
and b§_1 in the t iteration. Figure 4(a) shows an example
of our data processed using airPLS. And Figure 4(b) shows
the actual gait data of different parts of the feet after data
preprocessing.

B. FEATURE EXTRACTION

The preprocessed data can be used for feature extraction. The
sensor array can be simplified to a 4 x 12 matrix, and the
distribution is indicated in Figure 5(a). Take the right foot
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FIGURE 4. (a) Comparison of the signal from the 13th channel of the right
foot before the baseline correction (purple line) and after that (red line).
The Savitzky-Golay filter processes the signal. (b) The actual gait data of
different parts of the feet after data preprocessing.

as an example; the pressure matrix shows typical situations
during walking, which also proves that our insoles measure
the plantar pressure distribution effectively (Figure 5(b)).

Each time-pressure sequence is segmented into steps
before the feature extraction. The plantar surface was split
into eight areas of interest (Figure 6(a)): medial toes, lateral
toes, first to second metatarsal head, third to fifth metatarsal
head, medial arch, lateral arch, medial heel, and lateral
heel. Each area reaches its maximum at a different time
(Figure 6(b)). Time characteristics include contact time
(CT, the period when the pressure is higher than 10% of the
maximum force) of each area per step (vectors of 2 x 8).
Considering the velocity difference among subjects, all the
time features were scaled to the percentage of a gait circle.
Pressure characteristics include the maximum force (MF) of
each area per step (vectors of 2 x 8), which are normalized
to body weight. The definition of the characteristics is shown
in Figure 6(c). The features extracted have 32 dimensions in
summary, and the initial and terminal steps were eliminated
from the data. Therefore, the number of valid steps varies
from one to another.

C. SPLIT THE TRAIN/TEST DATA

After completing the feature extraction using the described
technique, the data were further split into the train and test
datasets. Considering that the gait data from the same subjects
are intrinsically similar, the data of one subject is included
only in the train dataset or test dataset. 12 Knee OA and
17 control subjects were chosen randomly to train the model
(29/40), while six Knee OA and five control subjects were
included in the test dataset (11/40). The ratio of the train/test
dataset is roughly 7:3. And the ratios of Knee OA/control in
the train and test datasets are roughly at 1:2. The gait test
ultimately produced 3285 valid steps. After the data were
split, 2300 and 985 steps were included in the train and test
datasets, respectively.

D. TRAIN AND FIT THE MODEL

1) RANDOM FOREST

Random Forest is an effective ensemble learning tech-
nique for classification, especially for imbalanced datasets.
Random Forest uses Bootstrap to sample the dataset. The
Decision Tree is the base estimator for Random Forest, and
all base estimators vote for the classification.
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TABLE 3. The results of different ML models and features selected.

Features Selected Accuracy (%)
Random Forest AdaBoost SVM
Time Features 80.30 83.15 83.55
Pressure Features 88.82 91.84 92.15
Both Features 90.94 92.95 93.15

TABLE 4. The performances of five models on the test dataset.

Model Accuracy (%)  Precision (%) Recall (%) AUC
AdaBoost' 91.84 94.04 89.25 0.97
SVM?2 92.15 92.92 91.23 0.97
Random Forest® 90.84 93.60 86.24 0.97
AdaBoost* 92.95 95.03 89.08 0.98
SVM ? 93.15 92.39 92.79 0.98

! Features: Pressure Features, number of weak learners:
400, Maximal number of decision splits: 10, weak learner:
DT.

2 Features: Pressure Features, Kernel: Gaussian, C=6,
gamma=4.

3 Features: Both Features, number of weak learners: 200,
Maximal number of decision splits: 25, weak learner: DT.

4Features: Both Features, number of weak learners: 100,
Maximal number of decision splits: 18, weak learner: DT.

5 Features: Both Features, Kernel: Gaussian, C=8,
gamma=>6.
TABLE 5. The performances of five models on the test dataset.
Measurement .
Method Algorithm Accuracy
Instrument
Deep Neural Network,
[10] SEMG Sensors . 91.3%
K-Nearest Neighbor
Miniature Maximum Posterior
[11] B L 91.76%
Accelerometer Probability Criterion
Eight Cameras, Two Principal Component
[17] ‘ 71.8%
Force Plates Analysis
Commercial Insoles
[20] with 8 Force Decision Tree 92.86%
Sensors
3-D Ground
[20] Reaction Force Nearest Neighbor 91.00%
Measurements

2) ADABOOST

AdaBoost is also an ensemble learning algorithm based on the
Decision Tree. The weights of base estimators were learned,
and the model gives the results by weighted majority voting.
AdaBoost performs outstandingly in dealing with the over-
fitting problem. Random Forest samples from the dataset
without weighing while AdaBoost does.

3) SVM
SVM is an effective algorithm for classification in high-

dimensional spaces. The SVM maps data to points in space
and tries to find a hyperplane to classify various types of
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5- medial arch, 6- lateral arch, 7- medial heel, 8- lateral heel. (b) The time-pressure sequence of each area. (c) Definition of the features extracted.

points. Kernel functions include the polynomial, the Gaus-
sian, and the sigmoid kernels.

IV. RESULTS

A. COMPARISON OF ALGORITHMS AND FEATURES

To analyze the classification efficiency of the extracted char-
acteristics, we made three selections on the parameters: only
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time feature, only pressure feature, and time and pressure
feature. Parameters are selected to train the Random For-
est, AdaBoost, and SVM models separately. The accuracy
results of various models are shown in Table 3 in detail.
The Receiver Operating Characteristic Curve (ROC) with
Area Under Curve (AUC) is an effective indicator to assess

VOLUME 10, 2022
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the classification model. Figure 7 compares Random Forest,
AdaBoost, and SVM based on various parameters.

Five of the nine models above perform better, with accu-
racy higher than 90% and AUC higher than 0.97. Further
comparison of classification accuracy is shown in Figure 8§;
and detailed results is shown in Table 4.

Reaching the best accuracy, the SVM model also per-
forms well in the balance of the classification. Although the
AdaBoost classifier achieves the highest precision, we hope
for a higher recall rate regarding disease recognition. There-
fore, we choose the SVM model with the Gaussian kernel as
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the base classifier, reaching an accuracy of 93.15%, a preci-
sion of 92.39%, and a recall of 92.79%.

B. PREDICTION MODEL

For this application, a prediction model is proposed. When
a patient walks on the floor with our insoles, the signals
can be obtained and transferred into the computer for further
processing. The data experience the same process as the train
and test datasets do, then the features are inputted into the
SVM classifier loaded previously. The predictions for every
step are integrated to give the final output, which includes the
predicted class and its possibility. The class that is predicted
the more will be considered the final class, and the potential
can be expressed:

3

where S represents the number of steps in one test and W
denotes the number of predicted results that vary from the
final class. This possibility can be considered the degree of
confidence in the result. The prediction model can fully use
the information obtained to give an accurate estimation. The
whole process for the actual application is shown in Figure 9.

- w
possibility = 1 — 5

V. DISCUSSION

In summary, this study introduced an accurate and reliable
method that can be easily applied in the home or clinical
settings in the diagnosis of Knee OA. A pair of insoles
embedded with a 48-channel piezoresistive array for each can
obtain the time-pressure sequences as the subject walks. The
SVM model exhibits an accuracy of 93.15%, a precision of
92.39%, and a recall of 92.79% based on the data obtained
from one step. Automatic diagnosis has essential implications
in the medical field. Although imaging examination is still the
gold standard for diagnosis, the insole gait analysis exhibits
the advantages of mobility and convenience, making it more
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feasible in screening and long-term monitoring of Knee OA.
With deep research, an insole gait analysis will play an
essential role in assessment, classification, and clinical out-
come prediction.

Our work was compared with the previous research on
Knee OA detection based on the dynamic gait analysis,
shown in Table 5. Our work was based on a piezoresistive
measurement instrument we developed ourselves, which has
the advantages of being accurate, low-cost, wearable, and
portable. Our insoles can cover more area of the foot and
easily obtain the number of step data in a single walking
test. And parameters for the recognition model are based on
foot biomechanics, with contact time and maximum force
extracted from the processed data. We got a promotion for
the classification and efficiency compared to previous work.
Taking all steps into account, our ensemble model can
decrease accidental errors during the measuring process. The
prediction result with the possibility also gives auxiliary
diagnostic information for doctors to estimate the subject’s
situation.

For subjects in the test dataset, the error rate for individuals
(the rate of predicted results different from the final class) is
4.81% on average, which means that around one-twentieth
steps in all subject steps in a single test are classified in
the wrong class. After the results integrating, only one con-
trol subject (1/11) was wrongly classified as a patient with
Knee OA, so the classification accuracy for individuals was
90.90%. It has been reported that over one-third of people
over 50 years are diagnosed with radiographic knee OA,
many of which were asymptomatic [36]. In this study, all
control subjects were over 40 years old. The altered gait
owing to the early stage of Knee OA might be found in
control subjects. Further radiological examination is required
to validate the hypothesis that this control subject is actually
a patient with Knee OA.

Regarding gender, female subjects have a higher error rate
of 7.39%, compared with that of male subjects of 5.54%. The
reason can be explained using the same size of the insoles,
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which might be oversized for female subjects so that some
sensors were not fully pressed. For our future work, we will
change our sensor distribution and the size of the sensors to
overcome such weaknesses.

In addition to gender, there are still many other possible
factors affecting the accuracy of the gait analysis. First, the
symptoms of Knee OA fluctuate. The pain may worsen with
increased activity or alterations in the weather [37]. There-
fore, a single randomized test may be insufficient for diag-
nosis. In this study, our countermeasure was that all subjects
were tested in a defined time (2:00-3:00 p.m.), which made
the activity situation and the testing environment similar for
each subject. Second, shoe type and ground conditions may
also affect the analysis results [38]. Although these conditions
are uniform in this study, more data are needed for further
practical application. Third, to the best of our knowledge,
since gait analysis technology has not been applied on a large
scale, there are insufficient data to show that age, body height,
and comorbidities significantly affect gait features in middle-
aged and elderly people. However, these confounders remain
of interest [27]. Fourth, some particular cases, such as an
accidental unbalance stride, may cause unusual signals during
the gait test [32]. We attempted to exclude the abnormal data
by setting thresholds and manually selecting them. However,
this cannot wholly prevent misinformation. The relatively
small sample size in this study limits further examination on
the above-mentioned factors. The factors were controlled as
consistently as possible between subjects with and without
Knee OA to ensure the credibility of the results. We plan to
conduct further designed studies to validate and improve this
technique’s generalizability.

Despite the limitations, we believe that this gait monitoring
method is of great application value. It exhibits satisfactory
accuracy in diagnosing Knee OA. It is an important addi-
tion to clinical diagnosis and teaching as a dynamic auxil-
iary test. Through further data analysis, differences between
subjects with and without Knee OA can be found, which
is meaningful for understanding disease progression and
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biomechanical mechanisms. Previous studies have discov-
ered that even in the early KOA stages, patients show some
abnormal gait characteristics, which may be a risk factor for
disease progression [21], [39]. Therefore, abnormal gait can
be diagnosed and corrected early by gait monitoring, decreas-
ing the cost of treating Knee OA. Furthermore, plantar pres-
sure measurement can be added to developing multi-sensor
information fusion method. Visual, audio, and EMG signals
have been combined effectively recently [27], [40], [41].
We also tried applying plantar pressure measurement together
with EMG signals [32]. With further research, long-term
health monitoring and home rehabilitation based on these
methods will be well developed in the future.

VI. CONCLUSION

In this article, a piezoresistive-based gait monitoring method
for the recognition of Knee OA was presented. A pair of
insoles embedded with a 48-channel piezoresistive array for
each was developed and was applied to conduct walking
experiments for patients with Knee OA and control sub-
jects. The time-pressure sequences obtained by the insoles
are transformed from the electrical signal, and features are
extracted to train the models. On the test dataset, the SVM
model attains an accuracy of 93.15%, a precision of 92.39%,
and a recall of 92.79% on the steps. We also proposed a
prediction model for the application that aggregates all the
results in one test and provides a more accurate result, with
90.90% accuracy for individuals in the test dataset. This
recognition technique is mobile, wearable, low-cost, and con-
venient, which can help find possible patients with Knee OA
and benefit their early diagnosis and treatment. Our work
fills the vacancy of wearable instruments for the recognition
of patients with Knee OA and provides ideas for intelligent
healthcare. In our future work, we will try finding more
characteristics to classify and try new piezoresistive materials
to obtain better accuracy while applying our instrument and
prediction model in the actual scene.
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