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ABSTRACT An automatic skin lesion segmentation algorithm not only facilitates the dermatologist’s
workload on skin cancer analysis but also provides a platform for early cancer prediction. Over the years,
several deep learning methods have been proposed to addDepartment of Information Technology, Faculty
of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabiaress the skin
lesion segmentation problem.However, training deepmodels usually requires a large-scale annotated dataset,
which is not feasible in the medical domain due to the annotation burden. In addition, the low data regime
highly increases the overfitting potential for the neural network. To address these limitations in an end-to-end
manner, we propose to incorporate unlabelled samples during the training process. Our network offers a semi-
supervised training schema, wherein the first stage performs a supervised training strategy to learn semantic
segmentationmapwhile the second step focuses on the unsupervised technique to enrich the encodermodule.
Specifically, unlike the literature work on skin lesion segmentation, we design a surrogate task on top of the
convolutional and Transformer representations to learn data-driven features from the image itself to alleviate
the requirement of the large annotated dataset. The effectiveness of the proposed method is demonstrated
using three different skin lesion segmentation datasets, namely ISIC 2018 (dice score 0.905), ISIC 2017 (dice
score 0.898) and PH2 (dice score 0.940). Particularly we observed that including the unsupervised samples
can increase the dice score by 2%.

INDEX TERMS Skin lesion, CNN, transformer, semi-supervised, segmentation.

I. INTRODUCTION
Computer-Aided Diagnosis (CAD) is a severe counterpart
for medical experts to assist them in their daily treatment
diagnosis by interpreting medical images [1]. Deep Learning
(DL) brought a solid foundation for computer vision tasks,
and CAD systems are no exception [2], [3]. Among many
medical image analysis tasks, image segmentation is a de
facto step in which its presence is not negligible. Medical
image segmentation is embedded in various medical applica-
tions, including skin lesion segmentation. Human skin tissue
consists of three types, i.e., dermis, epidermis, and hypoder-
mis. The epidermis is a susceptible tissue, which under severe
solar radiation, could trigger the embedded melanocytes to
produce melanin at a significant level. Fatal skin cancer is a
result of melanocyte growth, which is known as melanoma.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

The American Cancer Society anticipated the approximate
melanoma skin cancer cases around 99,780, with death cases
of 7,650, 7.66% of all cases [4] for 2022. Early disease
recognition plays a crucial role in medical diagnosis, as it
has been reported that detection of melanoma in early phases
could increase the relative survival rate to 90% [5]. Although
dermatologists could detect malignant melanoma in medical
images from dermoscopy, it could be a tiresome task and
needs the proficiency of a dermatologist [6]. To this end,
skin lesion segmentation is highly desired and could assist
the dermatologist with appropriate treatment.

Automatic segmentation plans to cut out desired regions
from irrelevant counterparts by pixel-wise classification.
Hence, for skin lesions, the segmentation task is a binarization
most of the time, separating the malignant region from its
neighbor. Explicitly, automated skin lesion segmentation is
interfered with by occasional intraclass factors, i.e., skin col-
ors, textures, tissue size, the geometrical shape of a lesion,
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illumination and contrast due to the various dermoscopic
imaging tools, and the interclass factors such as the pres-
ence of hair, blood vessels, ruler marks, and occlusion. Con-
ventional automatic skin lesion segmentation techniques are
typically based on classical computer vision and machine
learning approaches such as adaptive thresholding [7], active
contours [8], region growing [9], and unsupervised cluster-
ing [10], [11]. The methods, as mentioned earlier, heavily
depend on reliable engineered handcraft features to determine
lesion boundaries from the background. Therefore, DL meth-
ods revolutionized this domain through their end-to-end auto-
matic feature extraction and classification baseline.

In the last decade, Ciresun et al. [12] made the first attempt
to use the Convolutional layers in the medical image segmen-
tation task. Afterward, several architectures were proposed
to enhance the segmentation performance, not particularly
in the medical domain, such as Fully Convolutional Net-
work (FCN) [13], FC-DenseNet [14], and U-Net [15] for
medical image segmentation. These architectures advanced
the image segmentation such as the images obtained from
medical domain. U-Net, an encoder-decoder alongside skip
connections network, has demonstrated tremendous State of
the Arts (SOTA) performance in medical image segmen-
tation since 2015. To this end, various modifications have
been introduced for various medical applications with dif-
ferent image modalities, e.g., U-Net++ [16], U-Net3+ [17],
ResU-Net [18], DenseU-Net [19], 3DU-Net [20], V-Net [21],
S3D U-Net [22]. Ramani et al. [23] used seminal U-Net
for melanoma lesion segmentation in the skin lesion seg-
mentation task. Bi et al. [24] employed a cascade multi-
stage FCN ensemble model to produce a segmentation map.
MS-UNet [25] is a multi-stage U-Net-based model that uti-
lizes a deep supervision loss schema to learn intermediate
features better which in turns increases the segmentation
performance. These methods suffer from a common prob-
lem as they cannot capture long-range context information
for the accurate localization of semantic features to produce
monotonous segmentation results. This drawback is caused
by the Convolutional Neural Network (CNN) deficiency
due to the convolution layers’ limited receptive field. Loss
of abstract localization features through the layers is not
the desired result for semantic segmentation especially in
the medical domain that requires an accurate extraction of
boundary regions of organs and tissues. Thus, supplementing
long-range dependencies and learning conceptualized fea-
tures from the image is required.

The strength of U-Net is based on the symmetrical design
of the encoder-decoder and the intersection of the encoder
path to the decoder path with skip connections. Feature
representation in CNN layers loses its localization due to
the successive convolution and downsampling operations.
In addition, the successive upsampling operation makes the
model losemore detailed spatial features. Although theU-Net
structure tries to alter this loss of global and contextual
information with skip connections, these shortcuts are still
insufficient. As a result, this outline inspires that segmenta-

tion representation improves drastically if the model hinders
the loss of spatial information besides capturing long-range
dependencies and integrating them into the decoder path.
Moreover, a mechanism to include un-labeled dataset in the
training stage is not presented in the U-Net model to enrich
the feature representation capacity.

In this paper, we propose to couple CNN and Transformer
encoders to capture both local and global representation. Nev-
ertheless, training CNN/Transformer models usually require
a large labelled dataset, which is not always available
in the medical domain. Besides that, although integrating
large encoder modules (e.g., CNN/Transformer) increases
the model freedom (high number of parameters) to learn
underlying data distribution, a lack of labelled dataset results
in an unstable and overfitted model. To overcome this lim-
itation, we propose to incorporate the unlabelled samples
during the training process. Particularly, we offer a semi-
supervised training technique, where the first step takes the
advantage of the supervised training strategy to learn seman-
tic segmentation map whereas the second step focuses on
leveraging the unsupervised data during the training process.
Specifically, we design a surrogate task to learn data-driven
features from the image itself to alleviate the requirement of
the large annotated dataset.

Our contributions can be summarized as follows:
• Coupling CNN and Transformer modules to model local

and global representation
• Semi-supervised technique to utilize unlabelled samples

during the training process
• State-of-the-art resutls on three challenging skin lesion

segmentation benchmarks

II. RELATED WORKS
A. SKIN LESION SEGMENTATION
In contradiction with conventional feature engineering
methods, DL does not need further hand-crafted feature
extraction, and can be used effectively in skin lesion segmen-
tation [26], [27]. Broadly speaking, Yuan et al. [28] proposed
a CNN with deep layers with small convolutional kernels
to generalize their model with various image acquisition
qualities. Alahmadi et al. [29] proposed a network that cap-
tures both local and global representation of medical images
using a supervised learning technique. MSU-Net [25] has
been proposed as a multi-stage U-Net-based network that
simultaneously captured low-level features with fused con-
text information in two successive stages of U-Net with a
recursive perspective. Taghanaki et al. [30] proposed a mod-
ification for the U-Net skip connection to capture the most
informative channel in feature map channels in each stage
and transfer it to the corresponding stage in the decoder path.
This transformation minimized the parameters, which led to
light weighing of the network and better feature aggregation.
DSM [31] utilized a multi-scale connection block within skip
connection to handle the tissue variation size and aggregate
the multi-stage output in the decoder path in a deep supervi-
sion strategy. DPFCN [32] employed a dense pooling schema
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with overlapping windows to acquire densely feature maps.
Xie et al. [33] proposed the MB-DCNN model with two
segmentation networks, i.e., coarse-SN and enhanced-SN,
alongside a mask-CN classification network. The first local-
ization information extracted with coarse-SN was transfered
to the classification network, and the resultant class activation
map was fed into enhanced-SN to obtain accurate lesion seg-
mentation. Pourya et. al. [34] addressed the automatic skin
lesion segmentation challenge from a differnet perspective.
Their design offers a multi-scale representation with a scale-
wise fusion mechanism to alleviate the effect of overlapped
background with the object of interest (skin lesion). More
precisely, their approach utilizes the dilated pyramid con-
volution to capture multi-scale representation, by propos-
ing a scale-wise fusion module they model the interaction
among scales to enrich feature representation in the boundary
area.

All the reviewed methods have a mutual bottleneck of
ignoring global context information, which is a crucial factor
in the medical image segmentation task. Hence, a parallel
module to compensate for the loss of global contextual rep-
resentation seems necessary.

B. TRANSFORMER
Li et al. [35] employed dense deconvolutional layers with cas-
cade pooling to extract features hierarchically to capture long-
range dependencies. SSP [36] developed an FCNwith a shape
prior information to preserve the global context of the seg-
mentation region by penalizing non-star segmentation results.
SegAN [37] leaned the segmentation map by an adversar-
ial learning strategy with a multi-scale loss to enhance the
long-range spatial dependencies. Wang et al. [38] leveraged
simultaneously spatial and channel attention to recalibrate the
feature representation by updating each feature value by a
weighted sum of all other features. FCA-Net [39] proposed
a factorized channel attention block to determine relevant
channel patterns from feature maps. Abraham et al. [40]
inspired by Attention U-Net [41] integrated spatial attention
gate in skip shortcuts of encoder-decoder for the better inter-
weaving of localization feature maps and coarse feature maps
alongside focal tversky loss. CPFNet [42] applied a pyramid
module on feature maps to capture global context. Attention
Deeplabv3+ [43] applied a two-stage attention mechanism to
capture informative channels and scale relevant from atrous
convolution layers.

Unlike the mentioned attention mechanism, Transformer
emerged by Vaswani et al. [44] proposed self-attention mech-
anism in Natural Language Processing (NLP) domain for
machine translation tasks where it was a pure encoder-
decoder network. Its success over traditional recursive
leveraged modules and layers made it out to a vision
domain. The first pioneering Vision Transformer (ViT) by
Dosovitskiy et al. [45] was a simple stacked encoder built
by Transformer blocks. After the Vision Transformer (ViT)
success in major vision tasks and prior knowledge of the
importance of attention mechanism in segmentation, ViT is

broadly used either as a complement to CNNs or a standalone
backbone design in these tasks. TransU-Net [46] was one
of the earliest impressions of ViT in medical image seg-
mentation tasks, where it embraced the Transformer as a
complement to CNNs in the encoder path to capture long-
range dependencies. However, due to the quadratic computa-
tional complexity of Transformers, they were not offered as a
single standalone backbone until the Swin Transformers [47]
for their linear computational complexity versus being the
solitarily Transformer. Swin U-Net [48] is a solely Swin
Transformer network based on U-Net design. It captures
long-range dependencies for better medical segmentation
results due to the deformable nature of body organs and
tissues.

C. SEMI-SUPERVISED SEGMENTATION
The semi-supervised technique can be categorized into tra-
ditional hand-crafted features and novel deep learning-based
approaches. The former uses prior knowledge (e.g., cluster-
ing) to perform feature matching whereas the deep learning-
based methods utilize representational learning to learn
data-driven features. An iterative procedure developed by
Bai et al. [49], where pseudo labels for mask-free images
are predicted by the network and distilled by Conditional
Random Forest (CRF), and these labels are used to fed to
the network again. Zhang et al. [50] proposed a new Deep
Adversarial Network (DAN) to utilize unlabelled data in
a semi-supervised way for predicting unannotated images.
Yu et al. [51] developed the mean teacher model with
uncertainty map guidance for semi-supervised left atrium
segmentation. Zhang et al. [52] utilized shape-aware prior
information to leverage the unlabelled data and impose a
geometric shape constraint on the segmentation output. What
all these methods have in common, is their prior knowledge
assumption, which might not be feasible for any task. Dif-
ferently, our unsupervised technique learns a mapping func-
tion which is consistent over different augmentations. More
precisely, we create two augmented versions of the input
image and then fed each augmented image into the encoder
module then using an auxiliary decoder module, we mini-
mize the cross-entropy loss between the two generated fea-
ture maps. Hence, using cross-entropy loss, our encoder
architecture learns the mapping function which is robust
to slight variation (e.g., augmentation) and consequently
can learn more generic representation from unlabelled
samples.

III. PROPOSED METHOD
The overall structure of our proposed network is depicted in
Figure 1. To incorporate the unlabelled samples during the
training process, our method utilizes an auxiliary decoder
module to learn consistency over the augmentation map.
In addition, our design offers a combination of CNN and
Transformer encoder for robust local to global representation.
In the next subsections, each module will be presented com-
prehensively.
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FIGURE 1. The proposed semi-supervised skin lesion segmentation network. In our model, the top stream
applies a combination of CNN/Transformer model followed by the decoder module to learn supervised
segmentation while the bottom stream utilizes an unsupervised technique to enrich the encoder block by
learning an auxiliary task.

A. CNN REPRESENTATION
Figure 1 shows that our proposed method is built with two
encoder flow branches that complement each other. We use a
seminal U-Net [15] network in the first branch to model CNN
representation ECNN . This architecture ECNN parameterized
with θ1, applies successive convolutional layers on a given
image x ∈ RH×W×C (H , W , C are spatial height, width and
channels dimension, respectively.) to extract pixel-level con-
textual information. More precisely, in our design, we follow
the original structure of the U-Net model [15] and deploy a
four-block encoder architecture, wherein in each block we
use two convolutional layers followed by the Relu action
and max pooling operations to produce the feature map. The
resulting feature map contains local semantic information,
however, due to the locality nature of the convolutional
operation, it is ineffective in capturing object-level (e.g.,
global) representation. Therefore, to alleviate this limitation,
we utilize the Transformer module as a complementary fea-
ture extractor.

B. LONG-RANGE CONTEXTUAL REPRESENTATION
The second branch (ETF parameterized with θ2) objec-
tive is compensating convolutions deficiency in capturing
long-range dependencies by utilizing Transformer. Similarly
to [45], we feed the input image x ∈ RH×W×C with respect
to the first branch to the Transformer module by dividing it
into the N = [HW

p2
] non-overlapping patches where p × p is

the dimension of each patch. Later a patch encoder E(xp;ω)
applies on serialized patches to project from p2 · c space to
K embedding space. A 1-D learnable positional embedding
Ipos ∈ RN×K adds to the projected sequence of each patch to
preserve each patch’s spatial information:

t0 =
[
x1p I ; x

2
p I ; · · · ; x

N
p I
]
+ Ipos (1)

where I ∈ R(p2·C)×K denotes the projected patch embedding.
We then stack the multiple Transformer blocks to learn long-

range dependencies. Each Transfomer block composed with
Multi-head Self Attention (MSA) where consists of M par-
allel self-attention heads to scale different patch interaction
learning’s:

t ′i = MSA (Norm (ti−1))+ ti−1, i = 1, · · · ,L (2)

and Multi Layer Perceptron (MLP) modules to learn long-
range contextual dependencies by:

ti = MLP
(
Norm

(
t ′i
))
+ t ′i , i = 1, · · · ,L. (3)

Norm() depicts layer normalization [53] and ti ∈ R
HW
p2
×d

represents encoded semantic representation. In our design
we used the public implementation of the vision trans-
former [45] with three self attention head to encode the global
representation.

C. FEATURE FUSION
As presented in the previous two subsections, our encoder
module applies both CNN and Transformer encoders to
extract local and global representation. To combine these two
feature sets, we first reshape the Transformer representation
into the same spatial dimension as the CNN feature set, then
we simply concatenate these two feature sets to create the
final encoder representation.

D. SEGMENTATION DECODER
Our decoder module utilizes the same structure as seminal
U-Net model to produce the segmentation map. More pre-
cisely, in our supervised section we utilize four block CNN
decoder (similar to the CNN encoder but with replaced up-
sampling instead of pooling operation)DSUP with parameters
φ to progressively increase the spatial dimensionwhile reduc-
ing the feature map to predict the skin lesion area. We apply
dice loss L(θ, φ; �) between the predicted segmentation map
and the ground truth mask to learn the segmentation task in a
supervised manner, where θ = θ1 ∪ θ2 indicate the CNN and
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Transformer encoder’s parameters and φ represents network
parameters related to the segmentation task.

E. SURROGATE TASK
One of the challenges in medical image segmentation is to
provide large annotated dataset to train the segmentation net-
work. To tackle this issue, we propose integrating a supple-
mentary decoding head DUS to alleviate the lack of labelled
data during the training process. To this end, we propose to
include an auxiliary loss function to reduce the dissimilar-
ity between the representation of two augmented versions
(x1 and x2) of the same image, where xi = Aug(x) and Aug()
indicates a random augmentation function. We denote this
loss as L(θ, γ ; �), where γ represents network parameters
related to the surrogate task. To model a surrogate task, sev-
eral methods have been proposed in the literature, including
predicting rotation [54], solving jigsaw puzzles [55], and
filling removed parts of an image [56]. Note that skin tissue in
dermatology concept is direction variant. In contrast, consider
a rotated car image with wheels above the car roof; in this
example, it is obvious to predict the rotation [57]. Therefore,
it is evident that due to the nature of the application, we should
consider an appropriate surrogate task. To accomplish this,
we utilize an auxiliary dataset, Dunlabelled = {(XU

i )}Ni=1, with
N unlabelled samples.We apply data augmentation technique
two times to each images, resulting in a peer-to-peer mapping
of augmented images (YU

i,1,Y
U
i,2) for each image in the dataset

(XU
i ). Using MSE loss, we force the encoder module to learn

the feature representation space which is robust to slight
variation (e.g., reducing the feature dissimilarity for two aug-
mented version of the image). Choosing MSE loss over other
losses was empirical, and it is evidence of using MSE loss as
a reconstruction loss in the Auto encoder-decoder concept.
Equation 4 is formulated the used MSE loss as follows:

Lsur (θ, γ ;YU
i,1,Y

U
i,2) = −

1
N

NU∑
i

H×W∑
j

(YU
i,1 − Y

U
i,2)

2, (4)

F. JOINT OBJECTIVE
The final objective function during the training is a weighted
sum of two counterparts dedicated to the semantic segmen-
tation task and surrogate task, respectively. The first term,
L(θ, φ; �), is a function of the parameters θ and φ of seman-
tic segmentation encoder-decoder term. Also, L(θ, γ ; �) is
a function of encoder parameters θ and surrogate network
parameters of γ . Equation 5 represents the joint loss functions
of network as follows:

min
θ,φ,γ

Lsegmentation(θ, φ;Dtrain)+ λLsur (θ, γ ;YU ), (5)

where λ is a regularized term to control the weight of surro-
gate task.

IV. EXPERIMENTS
A. DATASETS
We applied our proposed method to three publicly avail-
able dermoscopic datasets to demonstrate the efficacy of our

module. The first two datasets belong to International Skin
Imaging Collaboration (ISIC), i.e., ISIC 2017 1 [58] and ISIC
2018 2 [59]. The last dataset is PH2 3 [60], published by the
dermatology service of Pedro Hispano Hospital, Matosinhos,
Portugal. Dataset specifications are as follows:
• ISIC 2017 - This dataset contains 2,750 RGB images,
where 2,000 images are for training, 150 images are
for validation, and 600 images belong to the test phase.
Melanoma-positive cases form 18.7%, 20%, and 19.5%
of each set portion, respectively. Samples resolution
varies from 540× 722 to 4, 499× 6, 748 pixels.

• ISIC 2018 - This dataset contains 3,694 RGB images,
where originally 2,594 images are for training,
100 images are for validation, and 1,000 images belong
to the test phase. Melanoma-positive cases form 20% of
the training set portion. As the available testing dataset
was unlabelled, we randomly split the training dataset to
1,815 images for training, 259 for validation and 520 for
testing. Samples resolution varies from 540 × 576 to
4, 499× 6, 748 pixels.

• PH2 - This dataset contains 200 RGB images, where we
randomly split it into 140 samples for training, 20 sam-
ples for validation, and 40 samples for the testing set.
Melanoma-positive cases form 20% of the dataset. Sam-
ples resolution varies from 553×763 to 577×769 pixels.

B. IMPLEMENTATION DETAILS
We implemented our proposed method using PyTorch frame-
work on a single NVIDIA RTX 3090 GPU. All the samples
from the datasets were resized to 224× 224 resolution. In all
of the settings of our experiment, the networksweights initial-
ized by ImageNet pre-trained weights. We used a polynomial
learning rate decay with initial learning rate of 1 × 10−3 for
better convergence, where i denotes the i-th epoch of training
as follows:

lri = lri−1 ×
(
1−

i
Total No. of Epochs

)0.9

(6)

We set the batch size and the total number of epochs to
4 and 100, respectively. SGD optimizer with momentum
0.9 and weight decay 0 is employed. To alleviate the low
samples of datasets and generalize our proposed network,
we utilized unlabelled samples during the training process
to benefit from unsupervised techniques to enrich encoder
representation. Note that during the training using the ISIC
2018 dataset, we used ISIC 2017 samples as an unsupervised
dataset. Similarly, unlabelled samples from ISIC 2018 are
utilized during the training of the model on the ISIC 2017 and
the PH2 datasets.

C. EVALUATION METRICS
For the performance evaluation and present comparison
results with other methods, we used four metrics, i.e., Sen-

1https://challenge.isic-archive.com/data
2https://challenge.isic-archive.com/data
3https://www.fc.up.pt/addi/ph2%20database.html
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FIGURE 2. Segmentation maps obtained by the suggested network on the
ISIC 2017 dataset. It is obvious that the method precisely produces a
smooth segmentation results on the object boundary.

FIGURE 3. Segmentation maps obtained by the suggested network on the
ISIC 2018 dataset. Our method precisely produces a smooth segmentation
results on the object boundary.

sitivity (SE), Specificity (SP), Accuracy (ACC), and Dice
coefficient (Dice) as follows:

SE =
TP

TP+ FN
(7)

SP =
TN

TN + FP
(8)

ACC =
TP+ FN

TP+ TN + FP+ FN
(9)

Dice =
2× TP

2× TP+ FP+ FN
(10)

where TP and TN represent the correct number of skin lesion
pixels and background pixels, respectively. FP is a number of
background pixels that are miss-labelled with the skin lesion

FIGURE 4. Segmentation maps obtained by the suggested network on the
PH2 dataset.

label, and FN denotes the number of skin lesion pixels that
are incorrectly predicted as background pixels.

D. RESULTS ON THE ISIC 2017 DATASET
We compared our method under the same circumstances with
the SOTA approaches. In Table 1, the comparison results of
the proposed network comparing to the seminal U-Net [15],
Att U-Net [61], DAGAN [62], TransUNet [46], MCGU-Net
[63], MedT [64], FAT-Net [65], and MSA-UNet [66] is
provided. Our network improved the DSC and accuracy
metrics of the seminal U-Net model by 8.99% and 4.27%,
respectively. Furthermore, comparing to the CNN based
approaches [15], [63] our network produces better results
in all metrics, which indicate the effectiveness of both
Transformer module incorporated in our structure and the
semi-supervised technique used in our strategy. Besides that,
comparing to the recently proposed MSA-UNet [66], our
method exhibits a better performance due to the strength of
the unsupervised technique utilized in our method. We also
displayed a visual comparison of the obtained results in
Figure 2. As can be seen from Figure 2, our proposed method
produces a soft and precise segmentation results on the object
boundary and effectively separates the skin lesion with irreg-
ular shapes and scales from the overlapped background.

E. RESULTS ON THE ISIC 2018 DATASET
We dissected our method with SOTA methods in the lit-
erature, including seminal U-Net [15], Att U-Net [61],
DAGAN [62], TransUNet [46], MCGU-Net [63], MedT [64],
FAT-Net [65], and MSA-UNet [66]. The evaluation settings
are the same for all methods for a fair comparison. The
statistical comparison is illustrated in the Table 2. As it is clear
from Table 2 the MCGU-Net [63] with an attention mecha-
nism and pretrained VGG backbone produces better perfor-
mance than other CNN based approaches. MSA-UNet [66]
outperformed both CNN and Transformer based approaches
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FIGURE 5. Visual comparisons of different setting of the proposed method on the ISIC2018 skin lesion segmentation dataset. The
green boundaries indicate the Ground truth while the blue color shows the predicted boundary.

TABLE 1. Experimental results of the proposed method against the SOTA
approach on the ISIC 2017 dataset for skin lesion segmentation task.

due to the usage of the combination of CNN and Trans-
former modules. More precisely, the MSA-UNet utilizes a
pyramidal feature representation underlying the network to
compensate for the loss of global context in challenging
samples, even though it can not achieve noticeable results
regarding our work. in addition, comparing to both CNN and
Transformer methods our semi-supervised training strategy
not only achieved the highest score for most of the metrics but
also outperformed all supervised learning strategies. More-
over, we depicted a visualization comparison in Figure 3.
In some challenging samples, like the more minor contrast
variance of lesion region with neighboring pixels, it is evident
that our method still performs well.

F. RESULTS ON THE PH2 DATASET
Finally, for further comparison studies, we investigated
our method alongside some SOTA, including semi-
nal U-Net [15], Att U-Net [61], DAGAN [62], Tran-
sUNet [46], MCGU-Net [63], MedT [64], FAT-Net [65],
and MSA-UNet [66] on the PH2 dataset. Like the previous
experiments, the settings are the same for a fair comparison.
The statistical comparison is depicted in the Table 3. Att
U-Net [61], using an attention mechanism, achieved a better
performance than U-Net. In addition, MSA-UNet [66] used
a combination of CNN and Transformer rather than a con-
ventional convolution, which became a facilitator to extract
more discriminant features in an encoder, resulting in a better
performance comparing to the other SOTA approaches. Our
method utilizes the semi-supervised segmentation method

TABLE 2. Experimental results of the proposed method against the SOTA
approach on the ISIC 2018 dataset for skin lesion segmentation task.

FIGURE 6. Some noisy annotation that exist in the ISIC 2018 dataset,
where the model works quite well to predict the segmentation mask. The
noisy annotations are a common scenario, so they can largely decrease
model preference.

and outperformed the other SOTA approaches. In addition,
we displayed a visual results in the Figure 4. It is evident that
ourmethod can easily handle complex brightness and contrast
distributions which show the cogency and generalization of
our network.

G. ABLATION STUDY
As part of this section, we conducted an ablation study to eval-
uate the impact of the proposed semi-supervised technique
utilized in our pipeline and the Transformer module coupled
with the CNN encoder to enrich the encoder representation.
Different settings were used to analyze the contributions
of each strategy. Our goal was to demonstrate how these
techniques can be effectively incorporated into a skin lesion
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FIGURE 7. Visual comparisons of segmentation prediction obtained by the proposed method against the SOTA approaches on the
ISIC2017 skin lesion segmentation dataset. The green boundaries indicate the Ground truth while the blue color shows the predicted
boundary.

TABLE 3. Performance comparison betwen the proposed method and the
SOTA approaches on the PH2 dataset.

segmentation model to increase the model generalization
performance by combining them. To demonstrate how the
Transformer model can be used to encode a more robust
representation and, thus, enhance the model performance,
in one experiment we replaced the Transformer module with
an Atrous convolution to increase the receptive field size
and consequently capture the global representation (indicated
with Atruous conv in table 4). In addition, we trained our
model without using an auxiliary task to demonstrate the
effect of the unsupervised technique incorporated in our
strategy (denoted as Baseline + Transformer). According
to our findings, each strategy contributes to the model per-
formance and they provide a strong representation of the
network features. Based on the experimental results shown
in Table 4, using the Transformer module along with the
hierarchical features of the seminal U-Net (baseline) helps
the model to learn a multi-scale representation with rich
and generic features, and significantly increases the model’s
performance. Moreover, the generalization performance is
further enhanced by incorporating the auxiliary task. Our
finding is in line with the semi-supervised literature [57]
that the auxiliary task can enrich the segmentation encoder
and consequently result in a better performance. Moreover,
in terms of model selection, one should be noted that our
method is not limited to a specific segmentation network,
such as U-Net, and can be incorporated into any segmentation
network for higher performance gain. To visually analyze
the effect of suggested modules on the segmentation results,

TABLE 4. Performance comparison of different settings in our proposed
method. Result reported using the ISIC 2017 dataset.

we provided sample comparison results in Figure 5. It is
obvious that by incorporating each module the segmentation
results become better. Specifically, comparing to the Atrous
based and Baseline + Transformer methods the final setting
(proposed method) works quite well on the boundary area
without over and under estimation.

It should also be noted that in some of our experiences as
can be seen in Figure 6, our method fails to segment the skin
lesion area similar to the ground truth mask due to the noisy
annotation provided by the dataset. In clinical applications,
noisy annotations are a common scenario, so they can largely
decrease model preference. This might explain why clean
annotation is important in the training process.

To visualize the effectiveness of our suggested network
compared to the SOTA approaches, we provided Figure 7.
In our comparison, we provided the segmentation result
achieved by the MCGU-Net [63] and MSA-UNet [66]
approaches comparing to our suggested network. It can be
observed that our method produces smooth segmentation
results with precise boundary separation.We can also observe
that comparing to the MCGU-Net [63], our method has better
estimation of the skin lesion boundary and it is in line with
MSA-UNet [66] approach. It is also worthwhile to mention
that for the second sample, the MCGU-Net underestimates
the segmentationmapwhile theMSA-UNet slightly produces
an overestimation. On the contrary, our method produces a
better segmentation map for the second sample with slight
FN predictions.

V. CONCLUSION
In this paper, we proposed a semi-supervised technique to
enhance the semantic segmentation task. In our strategy,
we proposed to incorporate the unlabelled samples during the
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training process to encourage the feature learning paradigm.
Our suggested network offers a semi-supervised training
schema, wherein the first stage performs a supervised training
strategy to learn semantic segmentationmapwhile the second
step focuses on the unsupervised technique to enrich the
encoder module. Several experimental results on three public
datasets demonstrated the effectiveness of our approach for
the semantic segmentation task.
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