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ABSTRACT In this study, the robust H∞ fuzzy observer-based fault-tolerant tracking control strategy
is proposed for the stochastic polynomial fuzzy system (SPFS) under the effect of external disturbance,
measurement noise, system/sensor fault signals and continuous/discontinuous internal random fluctuations.
At first, the smoothed models of fault signals are constructed to describe their dynamic behavior. Then,
by integrating the SPFS with the smoothed models of fault signals as one augmented system, the state/fault
signal estimation problem can be transformed to a state estimation problem of augmented system by the
proposed polynomial fuzzy observer. With the utilization of estimated state/fault signals and reference
trajectory, a fuzzy polynomial fault-tolerant tracking controller can be implemented. To attenuate the effect
of undesired external disturbance and measurement noise on the state/fault signal estimation and tracking
control performance, the robustH∞ fuzzy observer-based fault-tolerant tracking control strategy is proposed
in this study. By utilizing the homogeneous Lyapunov function and Lipschiz condition, the Itô-Lévy formula
is reformulated to relax the compensation terms of stochastic processes during the design. Then, the design
conditions are derived in terms of interpolation function-dependent matrix inequality and consequently
transformed to a two-step sum of square (SOS) condition design problem for the robust H∞ fuzzy observer-
based fault-tolerant tracking control strategy. A simulation example of double lane maneuvering task
for autonomous ground vehicle (AGV) is provided to illustrate the effectiveness of proposed method.
Index terms: Observer-based tracking control, polynomial fuzzy system, stochastic control, fault-tolerant
control, sum of square (SOS).

INDEX TERMS Network control system, actuator/sensor attack signals, AGV, robust observer-based
tracking control, T-S fuzzy interpolation method, linear matrix inequalities.

I. INTRODUCTION
Due to the fact that most of physical plants are nonlin-
ear, the nonlinear system theory and the nonlinear control
strategies have been widely investigated in the past three
decades [1]. Among various kinds of nonlinear control tech-
niques, Takagi-Sugeno (T–S) fuzzy control approach is a
popular nonlinear control technique due to its simple design
procedure [2]. In the T-S fuzzy control scheme, the nonlinear
system is interpolated by a set of local linearized systemswith
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suitable interpolation functions. Then, based on the concept
of parallel distributed compensation (PDC) [3], a single linear
controller is constructed for each local linearized system and
the fuzzy controller can be implemented by the interpola-
tion of these local linear controllers with T-S fuzzy inter-
polation functions. In this situation, the design conditions
can be transformed to a set of Riccati-like inequalities or
linear matrix inequalities which can be easily solved via
current convex optimization techniques, e.g., interior point
method [4]. By applying T-S fuzzy control approach, there are
a lot of fruitful results for nonlinear control design with wide
applications such as the flight vehicles tracking problem [5],
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the stabilization problem of time-delay nonlinear systems [6],
the sample-data control for chaotic systems [7] and fuzzy
control with online membership function learning policy [8].

Recently, the polynomial fuzzy system for nonlinear sys-
tem modeling approach becomes a hot topic and it can
be regarded as an extension of the conventional T–S fuzzy
system approach [9]. Instead of using constant local matri-
ces in the T–S fuzzy model, the polynomial fuzzy sys-
tem enables the local systems to include polynomial terms
to significantly improve the accuracy of nonlinear system
modeling. Consequently, the polynomial fuzzy controller or
polynomial fuzzy observer can be applied for various control
issues (i.e., stabilization problem [10] and estimation prob-
lem [11]). Therein, the design conditions are derived in terms
of sum-of-square (SOS) conditions which could be solved
via SOSTOOLS [12]. Several control design problems of
fuzzy polynomial system have been investigated including
the sliding mode control design [13], the observer-based con-
trol design [14] and the output–feedback control design [15].
However, by applying the polynomial matrix P(x) in the
Lyapunov function during the design, the partial derivative
of P(x) (i.e., ∂P(x)

∂xk
with the kth component xk of x) induced

from the gradient function ∂xP(x)x
∂x in the derivation process

will increase the analysis difficulty. In this case, it leads to
the fact that the quadratic Lyapunov function is commonly
adopted in most of studies especially for complicated control
problems, e.g., the output–feedback control design in [15].
Recently, to relax the using of quadratic Lyapunov function
during the design, the homogeneous polynomial Lyapunov
function (HPLF) has been put forward as an alternative solu-
tion [16]. By using the Euler homogeneity of HPLF, the
gradient function of HPLF can be replaced by the multi-
plication of its Hessian matrix and state with some coeffi-
cient scaling. Consequently, the partial derivative w.r.t. the

polynomial Lyapunov matrix (i.e., ∂P(x)
∂xk

) will vanish and the
design variable becomes the corresponding Hessian matrix.
By usingHPLF, the separation principle is successfully devel-
oped to resolve the observer-based control of polynomial
fuzzy system in [17].

In general, even the polynomial fuzzy system is appli-
cable to describe the ideal nonlinear model, some external
disturbances from the environment andmodeling uncertainty,
which can not be well modeled, will deteriorate the control
performance and have to be considered during the design.
Conventionally, the robust control approach is a powerful tool
to passively attenuate the effect of external disturbance and
model uncertainty on the control performance [18]. However,
it is not easy to solve the robust control design problem for
polynomial system with the adoption of polynomial Lya-
punov function. For example, in [19], the design condition
is based on perturbation theory to iteratively find the polyno-
mial Lyapunov function for the robust control design and it is
hard to be implemented for practical applications. Recently,
by the well properties of HPLF, the problems of robust con-
trol design for the deterministic ordinary differential system

and deterministic partial differential system are investigated
and the design conditions are derived in terms of solvable
SOS conditions [20], [21].

Despite the effect of external disturbance on system, there
may exists fault signals on system/sensor because of system
component damage. Hence, the fault-tolerant control (FTC)
becomes a popular field and it aims to estimate these faults
for fault signal compensation [22], [24], [23], [25]. With
the utilization of conventional descriptor system for fault
estimation, there are some results of FTC on the polyno-
mial fuzzy system. The descriptor-based FTC design for the
polynomial fuzzy system is proposed in [26] to deal with the
stabilization problem and fault compensation. Beside, in [27],
the descriptor-based FTC design is proposed for the optimal
tracking control problem of wind energy conversion systems.
However, due to the characteristics of descriptor system and
polynomial fuzzy system, the design conditions involve the
polynomial equality constraints, which are not easy to be
solved.

Recently, the stochastic control design is a crucial field to
be addressed in modern control field. In fact, for the most of
physical systems in various fields, the system characteristic
randomly varies and this random fluctuation can be formu-
lated as the random process in system modeling [28], [29],
e.g., the Wiener process is used to describe the random price
fluctuation in financial system [30]. Compared with the large
amount of researches of T–S fuzzy stochastic control [31],
[32], [33], there have very few issues about the stochastic
polynomial fuzzy control [13], [34]. Therein, due to the com-
pensation terms of stochastic process during the derivation,
it makes the analysis become more difficult than the cases of
deterministic polynomial system and T–S fuzzy system.

To the best of authors’ knowledge, even the reference
tracking problem and robust control problem have been inves-
tigated [15], [20], [34], there is no research to address the
observer-based reference tracking control design for stochas-
tic polynomial fuzzy system (SPFS) with the influence of
external disturbance, measurement noise and system/sensor
fault signal. Hence, an observer-based fault-tolerant track-
ing control strategy should be further investigated for SPFS.
On the other hand, to estimate the fault signal for fault signal
compensation, the conventional descriptor estimation scheme
in SPFS will lead to complicated polynomial matrix equality
constraints which are hard to be solved [26], [27]. Thus, it is
more appealing to seek another fault estimation scheme to
avoid solving complicated design conditions. Furthermore,
due to the compensation terms in Itô-Lévy formula, it is
difficult to use polynomial Lyapunov matrix for the design
in SPFS and thus it will decrease the design flexibility for
practical applications [13], [34].

Motivated by the above discussion, the robust H∞ fuzzy
observer-based fault-tolerant tracking control strategy design
is addressed for the SPFS under the effect of external distur-
bance, measurement noise and system/sensor fault signals.
At first, by using the smoothed model in [36] to describe
the behavior of system/sensor fault signals, these smoothed
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models can be embedded in SPFS as one augmented sys-
tem for simultaneous estimation of state and system/sensor
fault signals by the polynomial fuzzy observer. Then, the
polynomial fuzzy tracking controller can be implemented
by using the information of estimated state/fault signals and
reference trajectory to achieve the desired reference trajectory
tracking control and fault signal compensation.Moreover, the
robust H∞ fuzzy observer-based fault-tolerant tracking con-
trol strategy is considered in the design of nonlinear stochastic
system to attenuate the effect of external disturbance and
measurement noise on the tracking/estimation performance.
With the utilization of HPLF and Lipchitz condition of non-
linear system matrices, the gradient of HPLF and the com-
pensation terms of stochastic processes can be bounded by
the Hessian matrix of HPLF with some scaling. Thus, the
Itô-Lévy formula can be further reformulated to a compact
form containing the system matrices and Hessian matrix
of HPLF. By using the reformulated Itô-Lévy formula and
HPLF, the design condition of the robustH∞ fuzzy observer-
based fault-tolerant tracking control strategy is derived as an
interpolation function-dependent matrix inequality problem.
To relieve the design difficulty, a two-step design procedure
is developed to transform the interpolation function-based
matrix inequality problem into a two-step SOS condition
problem, which can be solved via SOSTOOLS in [12] to
obtain the fuzzy polynomial observer gains and the fuzzy
polynomial tracking controller gains. A simulation example
of double-lane maneuvering task for autonomous ground
vehicle (AGV) is provided to illustrate the design procedure
and verify the tracking/estimation performance of proposed
robust H∞ fuzzy observer-based fault tolerant tracking con-
trol strategy.

This work is an extension of authors’ previous work in [34]
and the main contributions as well as the improvements
of this study are summarized as follows: (i) With the con-
sideration of robust H∞ polynomail fuzzy observer-based
fault-tolerant tracking control strategy, the designed fuzzy
polynomial observer and fuzzy polynomial tracking con-
troller are proposed for SPFS to simultaneously achieve the
robust state/fault signal estimation and reference tracking
control with a desired H∞ attenuation level of external dis-
turbance as well as the compensation of the effect of fault
signals during the reference tracking control process. The
proposed method provides an efficient way to estimate the
fault signal in nonlinear stochastic system for the fault signal
compensation purpose to achieve robust H∞ observer-based
fault-tolerant reference tracking control of nonlinear system.
In this case, it can ensure a system to maintain its normal
operation for the desired target tracking even the system
is influenced by system/sensor fault signals. On the other
hand, by utilizing the polynomial fuzzy control method, the
derived fault-tolerant control/estimation scheme of nonlinear
stochastic system can save more computational time for the
practical industrial applications; (ii) By using the smoothed
models to describe the fault signals, the design condition
can be formulated in terms of polynomial inequalities which

can be solved easier than the polynomial equality constraints
in the descriptor design method [26], [27]; (iii) By using
the HPLF and Lipchitz condition of nonlinear system matri-
ces, the compensation terms of stochastic processes in Itô-
Lévy formula are replaced by the Hessian matrix of HPLF
and then a reformulated Itô -Lévy formula can be derived.
In this case, the design condition can be transformed to
a set of solvable two-step SOS conditions. The reformu-
lated Itô-Lévy formula derived in this study can be regarded
as a powerful analysis tool to deal with various control
design issues and more relaxed design conditions for SPFS,
e.g., the reference tracking control in [34] can be extended
to the SOS design conditions with polynomial Lyapunov
matrix.

The organization of this study is given as follows:
In Section II, the preliminary of SPFS is given and the
smoothed models are introduced to describe the fault sig-
nals. Also, the robust H∞ fuzzy observer-based fault-
tolerant tracking control strategy is introduced. With the
help of HPLF, the design condition is derived as a inter-
polation function-based matrix inequality in Section III and
consequently a two-step design procedure is developed to
transform the polynomial matrix inequalities into a two-
step SOS condition problem. In Section IV, a simulation
example of the maneuvering task for AGV system is
given for the performance validation. Conclusion is made
in Section V.
Notation: P > 0 (P ≥ 0) : The positive definite (semi-

definite) matrix P; E{·} : The expectation operator;
(�, {Ft }t≥0,F ,P) : The complete probability space with
sample space �, non-decreasing set of σ−algebras {Ft }t≥0,

F = ∪t≥0Ft and probability measure P; ‖x(t)‖2,F =

E{[
∫
∞

0 xT (t)x(t))dt]
1
2 }; LF

2 (R+,Rn) = {x(t)| ‖x(t)‖2,F <

∞}; ‖x(t)‖D2 =
√
xT (t)x(t); Ck

n,m : The function space
which collects the differentiable functions f (x) : Rn

→ Rm

of order k; ∂V (x)
∂x :The gradient column vector of differen-

tiable function V (x) w.r.t. x; ∂
2V (x)
∂2x
: The Hessian matrix of

twice differentiable function V (x) w.r.t. x; In : n-dimension
identity matrix; 0a×b : a× b zero matrix; [ATB+ (∗)]+ C :
The abbreviation of matrix operation ATB + BTA + C; A
polynomial function f (x) is an SOS if there exist polynomials
{fi(x)}mi=1 such that f (x) =

∑m
i=1 f

2
i (x).

II. PRELIMINARY
In this section, the SPFS will be introduced to model
the nonlinear stochastic system under the effect of exter-
nal disturbance, measurement noise and system/sensor fault
signals. Then, for the state/fault estimation purpose and
the fault-tolerant tracking purposes, the polynomial fuzzy
observer, polynomial reference model and the polynomial
observer-based controller will be discussed. To attenuate the
effect of unavailable external disturbance and measurement
noise on the tracking/estimation performance, a robust H∞
fuzzy observer-based fault-tolerant tracking control strategy
of SPFS is introduced.
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A. STOCHASTIC POLYNOMIAL FUZZY SYSTEMS AND
SMOOTHED SIGNAL MODEL
Consider the following nonlinear stochastic system with
external disturbance, measurement noise and system/sensor
fault signals:

dx(t) = [f (x(t))+ g(x(t))u(t)+ da(x(t))fa(t)+ v(t)]dt

+ h(x(t))dw(t)+ o(x(t))dp(t)

x(0) = x0
y(t) = c(x(t))+ ds(x(t))fs(t)+ n(t) (1)

where x(t) ∈ Rn is the system state with initial state x0,
u(t) ∈ Rnu denotes the control input, v(t) ∈ LF

2 (R+,Rn)
represents the external disturbance, fa(t) ∈ C1

1,na
is the

system fault signal, c(x(t)) ∈ Rm is the nonlinear mea-
surement output, fs(t) ∈ C1

1,ms
is the sensor fault signal,

n(t) ∈ LF
2 (R+,Rm) represents the measurement noise,

w(t) is the 1-D Wiener process and p(t) is the Poisson
counting process with jump intensity λ > 0. These two
processes {w(t), p(t)} are defined on a complete probability
space (�, {Ft }t≥0,F ,P) in which σ−algebra Ft is gener-
ated by {w(s), p(s)}0≤s≤t with w(s) and p(s) being assumed to
be independent. The nonlinear functional matrices {f (x(t)),
g(x(t)), da(x(t)), h(x(t)), o(x(t)), c(x(t)), ds(x(t))} are satis-
fied with (i) Lipschitz condition and (ii) growth condition
(Section 6.2 in [28]). In (1), h(x(t))dw(t) is used to describe
the state-dependent continuous fluctuations (e.g., the thermal
noise of resistance unit in circuit system) and o(x(t))dp(t)
can be regarded as the state-dependent discontinuous jump
behavior (e.g., the short-circuit phenomenon).
Remark 1: [29] The stochastic processes in (1) satisfy with

the following properties: (i) E{w(t)} = E{dw(t)} = 0,
(ii) E{dw2(t)} = dt, (iii) E{dp(t)} = λdt with jump intensity
λ > 0.
Under the concept of sector nonlinearity [9], the following

plant rules of SPFS is presented to approximate the nonlinear
stochastic system in (1)

The ith Plant Ruleif ω1(t) is$i,1, · · · , ωg(t) is$i,g

dx(t) = [Ai(x(t))x(t)+ Bi(x(t))u(t)+ Gi(x(t))fa(t)

+ v(t)]dt + Hi(x(t))x(t)dw(t)

+Oi(x(t))x(t)dp(t)

y(t) = Ci(x(t))x(t)+ Si(x(t))fs(t)+ n(t),

∀i = 1, · · · , l (2)

where {ωi(t)}
g
i=1 are premise variables, g is the number of

premise variables, $i,j is the membership function of the ith
rule associated with the jth premise variables, l is the num-
ber of plant rules and {Ai(x(t)),Bi(x(t)),Gi(x(t)),Hi(x(t)),
Oi(x(t)),Ci(x(t)), Si(x(t))}li=1 are the polynomial matrices
with appropriate dimensions.

Then, the following SPFS can be inferred to represent the
nonlinear stochastic system in (1) [9]

dx(t) =
∑l

i=1
hi(ω(t)){[Ai(x(t))x(t)+ Bi(x(t))u(t)

+ Gi(x(t))fa(t)+ v(t)]dt

+ Hi(x(t))x(t)dw(t)+ Oi(x(t))x(t)dp(t)}

y(t) =
∑l

i=1
hi(ω(t))[Ci(x(t))x(t)

+ Si(x(t))fs(t)+ n(t)] (3)

with

hi(ω(t)) =
u
g
j=1$i,j(ωj(t))∑l

i=1 u
g
j=1$i,j(ωj(t))

where ω(t) = [ω1(t), · · · , ωg(t)], $i,j(ωj(t)) is the grade
of membership function of the ith plant rule w.r.t. the
jth premise variable and {hi(ω(t))}li=1 are the fuzzy interpo-
lation functions. To ensure the completeness of SPFS in (3),
the following assumption is provided
Assumption 1: [9] The fuzzy interpolation functions
{hi(ω(t))}li=1 satisfy with the following conditions:
(i) hi(ω(t)) ≥ 0, ∀i = 1, · · · , l and (ii)

∑l
i=1 hi(ω(t)) = 1.

In general, to estimate the fault signals {fa(t), fs(t)} for the
fault signal compensation, these fault signals should be mod-
eled and augmented with SPFS for the estimation purpose.
Without using the conventional descriptor model [35], the
following smoothed models in [36] are applied to describe
the dynamic behavior of fault signals {fa(t), fs(t)}. To begin
with, by the right derivative of system fault signal fa(t)
(i.e., ḟa(t) = limh→0

fa(t+h)−fa(t)
h ), we can construct the fol-

lowing relations of system fault signal

ḟa(t) =
fa(t + h)− fa(t)

h
+ δa,0(t)

...

ḟa(t − kh) =
fa(t − (k − 1)h)− fa(t − kh)

h
+ δa,k (t) (4)

where h > 0 denotes small time interval, k ∈ N is the
number of delay sample and {δa,i(t)}ki=0 are the derivative
approximation errors of {fa(t − ih)}ki=0. Moreover, based on
linear extrapolation method, the future system fault signal
fa(t + h) can be extrapolated as follows

fa(t + h) =
k∑
i=0

αifa(t − ih)+ γa(t) (5)

where {αi}ki=0 are the extrapolation coefficients of system
fault signal fa(t + h) and γa(t) is the extrapolation error of
system fault signal fa(t + h).
By combining (4) and (5), the smoothed model of system

fault signal fa(t) can be constructed as

dFa(t) = [AaFa(t)+ δ̄a(t)]dt (6)
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where Fa(t) = [f Ta (t) · · · f Ta (t − kh)]T , δ̄a(t) = [(γa(t)/h +
δa,0(t))T δTa,1(t) · · · δ

T
a,k (t)]

T and

Aa =



−1+α0
h I α1

h I · · · · · ·
αk
h I

1
h I −

1
h I · · · · · · 0

0 1
h I

. . . · · · 0
...

...
...
. . . 0

0 0 · · ·
1
h I −

1
h I


Remark 2: To construct the dynamic behavior of system

fault signal fa(t), the right derivative technique is adopted
in (4) with the consideration of derivative error {δa,i(t)}ki=0.
Even the dynamics of fa(t), · · · , fa(t − kh) are constructed,
the term fa(t + h) can not be regarded as state variable
in (4). To deal with this problem, the extrapolation method
(i.e., Richardson extrapolation [37]) is applied in (5) and
fa(t + h) can be represented as the combination of weighting
sum of fa(t), · · · , fa(t−kh) with an extrapolation error γa(t).
In general, it is impossible to select a set of fixed extrapo-
lation coefficients {αi}ki=0 to make γa(t) = 0 for arbitrary
fault signal fa(t). Thus, a possible selection of extrapolation
coefficients is given as (i) αi−1 ≥ αi,∀i = 1, · · · , k and
(ii)

∑k
i=0 αi = 1. For the first property, due to the conti-

nuity of fa(t), the future sample signal fa(t + kh) is more
related to the current sample signal fa(t). Also, to avoid
over-extrapolation, the sum of these coefficients should be
normalized with one [37].

Similar to the above procedure, the smoothed model of
sensor fault signal fs(t) can be constructed as

dFs(t) = [AsFs(t)+ δ̄s(t)]dt (7)

where Fs(t) = [f Ts (t) · · · f Ts (t − kh)]T , δ̄s(t) = [(γs(t)/h +
δs,0(t))T δTs,1(t) · · · δ

T
s,k (t)]

T with the derivative approxima-
tion errors {δs,i(t)}ki=0 and time-varying extrapolation error of
sensor fault signal γs(t). The system matrix in (7) is defined
as

As =



−1+β0
h I β1

h I · · · · · ·
βk
h I

1
h I −

1
h I · · · · · · 0

0 1
h I

. . . · · · 0
...

...
...
. . . 0

0 0 · · ·
1
h I −

1
h I


with the extrapolation coefficients of sensor fault signal
{βi}

k
i=0. In the following discussion, the notation t is dropped

and the membership function hi(ω) is abbreviated as hi to
lighten the notation, e.g., x(t)→ x and hi(ω(t))→ hi.
By augmenting the SPFS in (3), the smoothed model of

system fault in (6) and smoothed model of sensor fault in (7),
we have the following augmented stochastic system

dx̄ =
∑l

i=1
hi{[Āi(x̄)x̄ + B̄i(x̄)u+ D1v̄]dt

+ H̄i(x̄)x̄dw+ Ōi(x̄)x̄(t)dp}

y =
∑l

i=1
hi[C̄i(x̄)x̄ + D2v̄] (8)

where x̄ = [xT FTa FTs ]
T and v̄ = [vT δ̄Ta δ̄

T
s nT ]T . The

detailed polynomial system matrices in (8) are given as

Āi(x̄) =

Ai(x) Gi(x)Ta 0
0 Aa 0
0 0 As

 , B̄i(x̄) =
Bi(x)0

0


H̄i(x̄) = diag{Hi(x), 0, 0}, Ōi(x̄) = diag{Oi(x), 0, 0}

D1 =

 I 0 0 0
0 I 0 0
0 0 I 0

 ,D2 =
[
0 0 0 I

]
C̄i(x̄) = [Ci(x) 0 Si(x)Ts],

Ta = [I 0 · · · 0],Ts = [I 0 · · · 0]

Remark 3: In this study, the system/sensor fault signals
are modeled in (6), (7) based on extrapolation method and
smoothed delay methods for the convenience of their esti-
mations. Then, the system state is augmented with sys-
tem/sensor fault signal as one augmented system in (8) for
joint state/fault signal estimation, i.e., the estimation of aug-
mented system in (8) is equivalent to the estimation of system
state x and system/sensor fault signals {fa, fs} in Eq. (3).
This method is not only to estimate system state and fault
signal simultaneously, but also to avoid the corruption of
fault signals on the state estimation by direct estimation from
nonlinear stochastic system in (1). Besides, from the system
structure of augmented system in (8), the augmented external
disturbance v̄ involves external disturbance, measurement
noise and extrapolation errors of system/sensor fault signal.
This fact directly implies the estimation of augmented system
will be influenced by v̄ and thus the robust H∞ fuzzy observer-
based fault-tolerant tracking control strategy in (15) is con-
sidered to passively attenuate the effect of v̄ on the state/fault
signal estimation and reference tracking simultaneously.

By constructing the augmented stochastic system in (8),
the state/fault signal estimation is equivalent to the state esti-
mation of the augmented system in (8). In general, due to the
nonliearity of augmented polynomial system matrices Āi(x̄)
and C̄i(x̄), the observability of augmented system in (8) can
not be easily ensured by the conventional rank test condition.
To address this issue, the following assumption is made.
Assumption 2: The augmeneted system in (8) is

observable.
Then, the following observer rules of polynomial fuzzy

observer for the augmented system in (8) can be given as

The jth Observer Rule

if ω1(t) is$i,1, · · · , ωg(t) is$i,g

d ˆ̄x = [Āj( ˆ̄x) ˆ̄x + B̄j( ˆ̄x)u+ Lj( ˆ̄x)(y− ŷ)]dt

ŷ = C̄j( ˆ̄x) ˆ̄x, for j = 1, · · · , l (9)

where ˆ̄x is the estimation of x̄, ŷ is the estimatedmeasurement
output of y and {Lj( ˆ̄x)}lj=1 are the polynomial fuzzy observer
gains, and then the polynomial fuzzy observer can be inferred
as follows

d ˆ̄x =
∑l

i
hi[Āi( ˆ̄x) ˆ̄x + B̄i( ˆ̄x)u+ Li( ˆ̄x)(y− ŷ)]dt
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ˆ̄x(0) = ˆ̄x0

ŷ(t) =
∑l

i=1
hiC̄i( ˆ̄x) ˆ̄x (10)

where x̂0 is the initial condition of polynomial fuzzy observer
in (10).
Remark 4: Due to the sensor fault signal fs and measure-

ment noise n in measurement output y in (3), the exact state
variables are almost impossible to be obtained by the output
sensor. Thus, if the premise variables are associated with state
variable, the polynomial matrices of SPFS in (3) and fuzzy
polynomial observer in (10) are dependent of state x̄ and
estimation ˆ̄x, respectively.
Remark 5: Since the fault signals {fa, fs} are embedded

in the state x̄ of augmented system in (8), the corruption of
{fa, fs} on the state estimation in (1) or (3) can be avoided
in the augmented state estimation in (8). Moreover, the
state/fault signal estimation problem of nonlinear system (3)
can be transformed to the state estimation problem of the
augmented system in (8) by the polynomial fuzzy observer
in (10).
Remark 6: In (10), the polynomial observer estimates the

augmented state (i.e., system state, system fault signal and
sensor fault signal). Indeed, if the observer gains and other
system matrices are degenerated to constant matrices, the
observer in (10) becomes conventional fuzzy observer. Com-
pared with ordinary fuzzy observers, the H∞ polynomial
fuzzy observer including polynomial terms in observer gain
will providemore design flexibility and less conservative abil-
ity by conventional H∞ observer-based reference tracking
control design for practical industrial applications.

To generate the reference tracking trajectory of nonlinear
stochastic system in (1), the following reference model is
adopted

dxr = [Ar (xr )xr + Br (xr )r]dt

xr (0) = xr,0 (11)

where xr is the reference trajectory to be tracked by x with the
initial condition xr,0 in (1), r ∈ LF

2 (R+,Rnr ) is the reference
input, Ar (xr ) is the stable polynomial system matrix in (11)
and Br (xr ) denotes the polynomial input matrix.
Remark 7: For the reference model in (11), the desired

tracking trajectory xr is generated by the external refer-
ence input r, which is specified by the designer beforehand.
Especially, the matrices {Ar (xr ),Br (xr )} will influence on the
transient-response of (11) and it should be carefully chosen to
meet the design condition. In the steady state, the relationship
between reference tracking trajectory and reference input
can be derived as xr = −A−1r (xr )Br (xr )r . If the designer
wants the reference tracking trajectory xr to approach the
reference input r at steady state, one possible selection of
system matrices is Ar (xr ) = −Br (xr ).

For the design purpose of observer-based fault-tolerant
tracking control for the augmented stochastic system in (8),
the reference model in (11) is extended as follows

dx̄r = [Ār (x̄r )x̄r + B̄r (x̄r )r]dt (12)

where x̄r = [xTr xTr,v1 xTr,v2 ]
T with the virtual states

{xr,v1 ∈ Rna(k+1),xr,v2 ∈ Rms(k+1)}, Ār (x̄r ) = diag{Ar (xr ),
Ar,v1 ,Ar,v2} with two Hurwiz matrices {Ar,v1 ,Ar,v2} and
B̄r (x̄r ) = [BTr (xr ) 0 0]T .
Remark 8: By using the extended reference model in (12),

it can avoid the complicated coordinate transformation dur-
ing the control strategy design. Also, from the system structure
in (12), it can be noticed that the last two augmented states
xr,v1 and xr,v2 in x̄r are zero for anytime. To ensure the
stability property of Ār (x̄r ), the system matrices Ar,v1 and
Ar,v2 associated in xr,v1 and xr,v2 are selected as Hurwitz
matrices during the design, respectively.
By the estimated state/fault signal in (10) and reference

trajectory in (12), the following control rules of polynomial
observer-based fault-tolerant tracking controller are given

The jth Controller Rule

if ω1(t) is$i,1, · · · , ωg(t) is$i,g

u = Kj,1( ˆ̄x, x̄r )( ˆ̄x − x̄r )+ Kj,2( ˆ̄x, x̄r )x̄r ,

for j = 1, · · · , l (13)

with fuzzy polynomial controller gains {Kj,1( ˆ̄x, x̄r ),
Kj,2( ˆ̄x, x̄r )}lj=1, and then the overall polynomial fuzzy
observer-based fault-tolerant tracking controller can be
inferred as follows

u =
∑l

j=1
hj[Kj,1( ˆ̄x, x̄r )( ˆ̄x − x̄r )+ Kj,2( ˆ̄x, x̄r )x̄r ] (14)

B. ROBUST H∞ OBSERVER-BASED FAULT-TOLERANT
TRACKING CONTROL AND USEFUL LEMMAS
In general, due to the unavailable external disturbance v and
measurement noise n in (1) with the unpredictable approxi-
mation errors {δ̄a, δ̄s} in the smoothmodels in (6), (7), the esti-
mation/tracking performance for polynomial observer in (10)
and polynomial observer-based tracking controller in (14) of
SPFS in (3) will be deteriorated simultaneously. To have a
careful consideration of these undesirable effects, the follow-
ing robust H∞ fuzzy observer-based fault-tolerant tracking
control strategy is proposed with a prescirbed attenuation
level ρ > 0

J∞({Ki,1( ˆ̄x, x̄r ),Ki,2( ˆ̄x, x̄r ),Li( ˆ̄x)}li=1)

= sup
v̄∈LF

2 (R+,Rn)
r∈LF

2 (R+,Rnr )

E{
∫ tf
0 [(x̄ − ˆ̄x)TQE (x̄ − ˆ̄x)

+(x − xr )TQT (x − xr )+ uTRu]dt
−V1(x0, xr,0, ˆ̄x0)}

E{
∫ tf
0 v̄T v̄+ rT rdt}

≤ ρ

(15)

whereQE ≥ 0 andQT ≥ 0 are the weighting matrix w.r.t. the
estimation error x̄ − ˆ̄x and the tracking error x − xr , respec-
tively, R > 0 is the control weighing matrix, V1(x0, xr,0, x̂0)
is the effect of initial condition to be deducted and tf > 0
is the terminal time. For the robust H∞ fuzzy observer-
based fault-tolerant tracking control strategy in (15), if one
could specify a set of fuzzy polynomial control gains and
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polynomial observer gains {K∗i,1( ˆ̄x, x̄r ),K
∗

i,2( ˆ̄x, x̄r ),L
∗
i ( ˆ̄x)}

l
i=1

such that J∞({K∗i,1( ˆ̄x, x̄r ),K
∗

i,2( ˆ̄x, x̄r ), L
∗
i ( ˆ̄x)}

l
i=1) ≤ ρ, for

a prescribed atteuation level ρ > 0, then the effect of
augmented noise v̄ and arbitrary reference input r on the
estimation/tracking performance in (15) can be attenuated
under a prescribed disturbance attenuation level ρ from the
view point of energy.

The following lemmas are proposed for the derivation in
the sequel
Lemma 1: [4] Given two square matrices {X ,Y } and a

positive definite matrix P, the following inequality holds

XTY + Y TX ≤ XTPX + Y TP−1Y (16)
Lemma 2: [4] Given a set of matrices {Xi}li=1, a positive

definite matrix P and a non-negative series {αi}li=1 with∑l
i=1 αi = 1, the following matrix inequality holds∑l

i,j=1
αiαjXTi PXj ≤

∑l

i=1
αiXTi PXi (17)

III. ROBUST H∞ FUZZY OBSERVER-BASED FAULT-
TOLERANT TRACKING CONTROL DESIGN OF SPFS
In this section, the design of robust H∞ fuzzy observer-
based fault-tolerant tracking control strategy for SPFS will
be addressed. To simplify the design procedure, the estima-
tion/tracking problem for SPFS in (3) and fuzzy polynomial
observer in (10) can be transformed to simple equivalent
stabilization problem of an augmented system. Then, based
on the Itô-Lévy formula and polynomial Lyapunov function,
the design condition of robustH∞ fuzzy observer-based fault-
tolerant tracking control can be derived as a set of cou-
pled polynomial matrix inequalities. Further, by utilizing the
homogeneous polynomial Lyapunov function and two–step
design procedure, the design condition can be transformed to
solvable SOS conditions.

Define estimation vector as e = x̄− ˆ̄x then the correspond-
ing tracking error dynamic can be obtained by subtracting the
polynomial observer in (10) from the augmented SPFS in (8)

de =
∑l

j,i=1
hihj{[Āi(x̄)x̄ − Āj( ˆ̄x) ˆ̄x − Lj( ˆ̄x)(C̄i(x̄)x̄

+ D2v̄− C̄j( ˆ̄x) ˆ̄x)]+ (B̄i(x̄)− B̄j( ˆ̄x))u

+ D1v̄]dt + H̄i(x̄)x̄dw+ Ōi(x̄)x̄(t)dp} (18)

Then, by letting x̃ = [x̄Tr x̄T eT ]T , the augmented SPFS can
be inferred by (8), (12) and (18)

dx̃ =
∑l

j,i=1
hihj{[Ãij(x̃)x̃ + D̃i(x̃)ṽ]dt

+H̃i(x̃)x̃dw+ Õi(x̃)x̃dp} (19)

where ṽ = [v̄T rT ]T . The detailed system matrices in (19) are
given as

Ãij(x̃) =

 Ār (x̄r ) 0 0
Ã(1)ij (x̃) Ã

(2)
ij (x̃) Ã

(3)
ij (x̃)

Ã(4)ij (x̃) Ã
(5)
ij (x̃) Ã

(6)
ij (x̃)



D̃i(x̃) =

 0 B̄r (x̄r )
D1 0

D1 − Lj( ˆ̄x)D2 0


H̃i(x̃) =

 0 0 0
0 H̄i(x̄) 0
0 H̄i(x̄) 0

 , Õi(x̃) =
 0 0 0
0 Ōi(x̄) 0
0 Ōi(x̄) 0


where Ã(1)ij (x̃) = B̄i(x̄)(Kj,2( ˆ̄x, x̄r ) − Kj,1( ˆ̄x, x̄r )), Ã

(2)
ij (x̃) =

Āi(x̄)+B̄i(x̄)Kj,1( ˆ̄x, x̄r ), Ã
(3)
ij (x̃)=−B̄i(x̄)Kj,1( ˆ̄x, x̄r ), Ã

(4)
ij (x̃) =

(B̄i(x̄) − B̄j( ˆ̄x))(Kj,2( ˆ̄x, x̄r ) − Kj,1( ˆ̄x, x̄r )), Ã
(5)
ij (x̃) = Āi(x̄) −

Āj( ˆ̄x) − Lj( ˆ̄x)(C̄i(x̄) − C̄j( ˆ̄x)) + (B̄i(x̄) − B̄j( ˆ̄x))Kj,1( ˆ̄x, x̄r ),
Ã(6)ij (x̃) = Āj( ˆ̄x)− Lj( ˆ̄x)C̄j( ˆ̄x)− (B̄i(x̄)− B̄j( ˆ̄x))Kj,1( ˆ̄x, x̄r ).
With the augmented SPFS in (19), the robust H∞ fuzzy

observer-based fault-tolerant tracking control strategy in (15)
can be rewritten as

J∞({Ki,1( ˆ̄x, x̄r ),Ki,2( ˆ̄x, x̄r ),Li( ˆ̄x)}li=1)

= sup
ṽ∈LF

2 (R+,Rnṽ )

E{
∫ tf
0 [x̃T Q̃x̃ + uTRu]dt − V (x̃(0))}

E{
∫ tf
0 ṽT ṽdt}

≤ ρ

Q̄T = diag{In, 0na(k+1)×na(k+1), 0ms(k+1)×ms(k+1)}

Q̃ = diag{[I ,−I ]T Q̄T [I ,−I ],QE } (20)

where nṽ is the dimension of ṽ and V (x̃(0)) = V1(x0, xr,0, ˆ̄x0).
With the augmented SPFS in (19), the robust H∞ fuzzy
observer-based fault-tolerant tracking control strategy in (15)
can be transformed to the robust H∞ fuzzy stabilization
strategy in (20) of the augmented SPFS in (19).

In general, due to the stochastic processes (i.e., Wiener
process w and Poisson counting process p) of SPFS in (3),
the dynamic behavior analysis of augmented SPFS in (19) can
not be done by the conventional calculus technique. Thus, the
following Itô-Lévy formula is proposed
Lemma 3: (Theorem 1.16 in [29]) Given a Lyapunov

function V (x̃) ∈ C2
naug,1

of SPFS in (19), which satisfies
(i) V (x̃) ≥ 0, (ii) V (0) = 0, then the increment of V (x̃) w.r.t.
the augmented SPFS in (19) can be derived as follows:

dV (x̃) =
∑l

i,j=1
hihj{[(

∂V (x̃)
∂ x̃

)T (Ãij(x̃)x̃ + D̃i(x̃)ṽ)

+
1
2
(H̃j(x̃)x̃)T (

∂2V (x̃)
∂2x̃

)(H̃i(x̃)x̃)]dt + H̃i(x̃)x̃dw

+ (V (x̃ + γ (x̃))− V (x̄))dp} (21)

where naug is the dimension of x̃ and γ (x̃) =
∑l

a=1 haÕa(x̃)x̃
is the nonlinear system function w.r.t. the Poisson process of
augmented SPFS in (19).

Then, the main result is given as follows
Theorem 1: If there exists a polynomial positive-definite

matrix P(x̃) and a set of fuzzy polynomial controller gains
and fuzzy polynomial observer gains {Ki,1( ˆ̄x, x̄r ),Ki,2( ˆ̄x, x̄r ),
Li( ˆ̄x)}li=1 such that the following polynomial matrix inequal-
ities hold

8ii(x̃) < 0, i = 1, · · · , l

8ij(x̃)+8ji(x̃) < 0, 1 ≤ j < i ≤ l (22)
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where 8ij(x̃) = x̃T (Q̃ + MT
j (x̃)RMj(x̃) + P(x̃)Ãij(x̃) + ÃTij

(x̃)P(x̃) + 1
2 H̃

T
i (x̃)

∂2x̃TP(x̃)x̃
∂2x̃

H̃i(x̃) +
∑naug

k=1
∂P(x̃)
∂ x̃k
×Ãij,k (x̃)x̃ +

2
ρ
P(x̃)D̃iD̃Ti (x̃)P(x̃) + λ(P(x̃ + γ (x̃))Õj(x̃) +P(x̃ +
γ (x̃)) + ÕTi (x̃)P(x̃ + γ (x̃)) + ÕTi (x̃)P(x̃ + γ (x̃)) Õi(x̃) −
P(x̃))+

∑naug
k=1

naug
2ρ

∂P(x̃)
∂ x̃k

x̃D̃i,k (x̃)D̃Ti,k (x̃)x̃
T
×
∂P(x̃)
∂ x̃k

)x̃, Mj(x̃)=

[Kj,2( ˆ̄x, x̄r )− Kj,1 ( ˆ̄x, x̄r ), Kj,1( ˆ̄x, x̄r ), −Kj,1( ˆ̄x, x̄r )], x̃k is the
kth component of x̃, Ãij,k (x̃) is the kth row vector of Ãij(x̃)
and D̃i,k (x̃) is the kth row vector of D̃i(x̃), then the robust H∞
fuzzy observer-based fault-tolerant tracking control strategy
in (20) is achieved with a prescribed disturbance attenu-
ation level ρ. Also, due to the fact that ṽ is finite energy
(i.e., ṽ ∈ LF

2 (R+,Rnṽ ), the augmented SPFS in (19) is mean
square stable, i.e., E{x̃T x̃} → 0, as t →∞.

Proof: Please refer to Appendix A. �
By choosing the polynomial Lyapunov function x̃TP(x̃)x̃,

the design of robust H∞ fuzzy observer-based fault-tolerant
tracking control strategy is derived in terms of a set of polyno-
mial matrix inequalities in (22). Compared with the determin-

istic case, the terms H̃T
i (x̃)

∂2x̃TP(x̃)x̃
∂2x̃

H̃i(x̃) and ÕTi (x̃)P(x̃ +
γ (x̃))Õi(x̃) due to the compensation of Wiener process and
Poisson counting process in the It ô-Lévy formulat in (21)
make the design conditions in (22) become intractable. More
specifically, it is impossible to apply any matrix transforma-
tion technique to deal with these terms.

To relieve the design difficulty in Theorem 1, the follow-
ing homogeneous polynomial Lyapunov function (HPLF) is
introduced
Definition 1: [17] A function V (x̃) : Rnaug → R1 is called

HPLF with degree s ∈ N if (i) V (x̃) ∈ C2
naug,1

, (ii) V (x̃) ≥
0 with V (0) = 0 and (iii) V (ax̃) = asV (x̃), ∀a ≥ 0.

By the favorable functional characteristic of HPLF, the
following lemma is provided to address the relation between
HPLF and its gradient vector as well as the relation between
HPLF and its Hessian matrix, repectively
Lemma 4: [17] Given HPLF V (x̃) : Rnaug → R1 with

degree s ∈ N− {1}, then the following equations hold

sV (x̃) = x̃T
∂V (x̃)
∂ x̃
= (

∂V (x̃)
∂ x̃

)T x̃

V (x̃) =
1

s(s− 1)
x̃T
∂2V (x̃)
∂2x̃

x̃

∂V (x̃)
∂ x̃

=
1

(s− 1)
∂2V (x̃)
∂2x̃

x̃ (23)

Remark 9: Based on the above mentioned lemma, it is
obvious that the HPLF and the corresponding gradient func-
tion can be represented with its Hessian matrix via some coef-
ficient scaling. Thus, by adopting the corresponding Hessian
matrix as new design variables, it can relieve the compen-
sation terms caused by stochastic processes in the Itô-Lévy
formula.
Remark 10: If the HPLF with degree s ∈ N − {1} is

specified as V (x̃) = x̃TP(x̃)x̃ for some positive definite
homogeneous polynomial matrix P(x̃), it is clear that V (x̃) =
x̃TP(x̃)x̃ = 1

s(s−1) x̃
T ∂2V (x̃)

∂2x̃
x̃ from Lemma 4. However, in the

most of cases, the above relation does not imply P(x̃) =
1

s(s−1)
∂2V (x̃)
∂2x̃

. In fact, this relation holds if P(x̃) is reduced to
constant matrix, i.e., HPLF with degree 2.

With the merit of HPLF in the above discussion, the com-
pensation terms of the stochastic processes with the Itô-Lévy
formula in (21) can be reformulated in the following theorem
Theorem 2: Given a HPLF V (x̃) = x̃TP(x̃)x̃ ∈ C2

naug,1
of SPFS in (19) with a positive definite homogeneous polyno-
mial matrix P(x̃) and degree s ∈ N−{1}, the Itô-Lévy formula
in (21) can be bounded as follows

E{dV (x̃)}

≤ E{
∑l

i,j=1
hihj[

1
2(s− 1)

x̃T P̄(x̃)(Ãij(x̃)x̃ + D̃i(x̃)ṽ)

+
1

2(s− 1)
(Ãij(x̃)x̃ + D̃i(x̃)ṽ)T P̄(x̃)x̃T +

1
2
x̃T H̃T

j (x̃)

×P̄(x̃)H̃i(x̃)x̃ +
λ((1+ Lpoi)s − 1)

s(s− 1)
x̃T P̄(x̃)x̃]dt} (24)

where P̄(x̃) = ∂2V (x̃)
∂2x̃

and Lpoi is the Lipschiz constant asso-
ciated with system matrix o(x(t)) of Poisson counting process
in (1).

Proof: Please refer to Appendix B. �
By utilizing the relaxed Itô-Lévy formula in (24), the fol-

lowing theorem is proposed
Theorem 3: If there exists a positive definite polynomial

matrix P̄(x̃) and a set of fuzzy polynomial controller gains
and fuzzy polynomial observer gains {Ki,1( ˆ̄x, x̄r ),Ki,2( ˆ̄x, x̄r ),
Li( ˆ̄x)}li=1 such that the following interpolation function-
dependent matrix inequality holds∑l

j,i=1
hihjE{x̃T [(Q̃+MT (x̃)RMj(x̃)

+
1

2(s− 1)
P̄(x̃)Ãij(x̃)+

1
2(s− 1)

ÃTij (x̃)P̄

+
1
2
H̃T
i (x̃)P̄(x̃)H̃i(x̃)+

λ((1+ Lpoi)s − 1)
s(s− 1)

P̄(x̃)

+
1

4ρ(s− 1)2
P̄(x̃)D̃i(x̃)D̃Ti (x̃)P̄(x̃)]x̃} ≤ 0 (25)

where s ∈ N − {1} and Lpoi is Lipschiz constant associated
with system matrix of Poisson counting process o(x(t)) in (1),
then the robust H∞ fuzzy observer-based fault-tolerant track-
ing control strategy in (20) for SPFS in (19) is achieved with
a prescribed disturbance attenuation level ρ > 0. Also, due
the fact that ṽ is finite energy, the augmented SPFS in (19) is
mean square stable, i.e., E{x̃T x̃} → 0, as t →∞.

Proof: Please refer to Appendix C. �
In Theorem 3, by utilizing the property of HPFS and

the relaxation of Itô-Lévy formula in Theorem 2, the
design condition is successfully transformed to the matrix
inequality in (25), i.e., an interpolation function-dependent
matrix inequality. However, due to the complicated struc-
ture of system matrices {Ãij(x̃)}li,j=1, the design variables
of controller/observer gains and polynomial positive-definite
matrix {Ki,1( ˆ̄x, x̄r ),Ki,2( ˆ̄x, x̄r ),Li( ˆ̄x), P̄(x̃)}li=1 are coupled
with each others and it can not be directly solved. As a result,
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the following two-step design procedure is developed to solve
the matrix inequality in (25).

Before the discussion of two-step design procedure, some
relaxation techniques are utilized to reduce the coupling
in (25). To begin with, the HPLF with degree s of augmented
system in (19) is chosen as the sum of HPLFs associated
with three fuzzy subsystems of augmented system in (19) as
follows

V (x̃) = x̄Tr P1(x̄r )x̄r + x̄
TP2(x̄)x̄ + eTP3(e)e (26)

where P1(x̄r ),P2(x̄),P3(e) are of positive definite homoge-
neous polynomial matrix. Then, there exist positive definite
polynomial matrices {P̄1(x̄r ), P̄2(x̄), P̄3(e)} such that the fol-
lowing equation holds

V (x̃) = x̄Tr P1(x̄r )x̄r + x̄
TP2(x̄)x̄ + eTP3(e)e

=
1

s(s− 1)
x̃T
∂2V (x̃)
∂2x̃

x̃ =
1

s(s− 1)
x̃T P̄(x̃)x̃ (27)

where P̄(x̃) = diag{P̄1(x̄r ), det(P̄2(x̄))P̄
−1
2 (x̄), P̄3(e)}.

Remark 11: In the conventional T-S fuzzy observer-based
tracking control design with the quadratic Lyapunov func-
tion, the resulting Lyapunov matrix can be chosen as P =
diag{P1, P

−1
2 ,P3} with {Pi > 0}3i=1 in (26). To simplify the

design in the sequel, the second term of the Hessian matrix
P̄(x̃) in V (x̃) is chosen as specified structure det(P̄2(x̄))P̄

−1
2 (x̄)

instead of P̄−12 (x̄) and we have x̄TP2(x̄)x̄ = 1
s(s−1) x̄

T

det(P̄2(x̄))P̄
−1
2 (x̄)x̄. By the fact that det(P̄2(x̄))P̄

−1
2 (x̄) is equal

to the adjugate of P̄2(x̄), the increasing property of HPLF
V (x̃) in (26) is guaranteed [16], [17].

Besides, by using Lemma 1, the following inequalities can
be constructed to relax the term P̄3(e)(B̄i(x̄)−B̄j(x̂))Kj,2(x̂, x̄r )
in the non-diagonal position of P̄(x̃)Ãij(x̃) in (25)

[yT P̄3(e)(B̄i(x̄)− B̄j( ˆ̄x))Kj,2( ˆ̄x, x̄r )x + (∗)]
≤ xTKT

j,2( ˆ̄x, x̄r )Kj,2( ˆ̄x, x̄r )x

+yT P̄3(e)(B̄i(x̄)− B̄j( ˆ̄x))(B̄i(x̄)− B̄j( ˆ̄x))T P̄3(e)y
∀i, j = 1, · · · , l (28)

where x, y are arbitrary vectors with appropriate dimension.
With the relation of (28), the left hand side (LHS) in (25)

can be further relaxed as:∑l

j,i=1
hihjE{x̃T [(Q̃+MT (x̃)RMj(x̃)

+
1

2(s− 1)
P̄(x̃)Ãij(x̃)+

1
2(s− 1)

ÃTij (x̃)P̄

+
1
2
H̃T
i (x̃)P̄(x̃)H̃i(x̃)+

λ((1+ Lpoi)s − 1)
s(s− 1)

P̄(x̃)

+
1

4ρ(s− 1)2
P̄(x̃)D̃i(x̃)D̃Ti (x̃)P̄(x̃)]x̃}

≤

∑l

j,i=1
hihjE{[x̃T [Q̃

+MT (x̃)RMj(x̃)+2ij(x̃)

+
1
2
H̃T
i (x̃)P̄(x̃)H̃i(x̃)+

1
4ρ(s− 1)2

P̄(x̃)D̃i(x̃)

×D̃Ti (x̃)P̄(x̃)]x̃} (29)

where

2ij(x̃) =

2
1
ij(x̃) 2

4
ij(x̃) 2

6
ij(x̃)

∗ 22
ij(x̃) 2

5
ij(x̃)

∗ ∗ 23
ij(x̃)


with 21

ij(x̃) =
1

2(s−1) ([P̄1(x̄r )Ār (x̄r ) + (∗)] + KT
j,2( ˆ̄x, x̄r )

Kj,2( ˆ̄x, x̄r ))+
λ((1+Lpoi)s−1)

s(s−1) P̄1(x̄r ), 22
ij(x̃) =

1
2(s−1) ([det(P̄2

(x̄))P̄−12 (x̄)(Āi(x̄) + B̄i(x̄)Kj,1( ˆ̄x, x̄r )) + (∗)]) + λ((1+Lpoi)s−1)
s(s−1)

det(P̄2(x̄))P̄
−1
2 (x̄), 23

ij(x̃) =
1

2(s−1) ([P̄3(e)(Āj( ˆ̄x) − Lj( ˆ̄x)

C̄j( ˆ̄x) − (B̄i(x̄) − B̄j( ˆ̄x))Kj,1( ˆ̄x, x̄r )) + (∗)] + P̄3(e)(B̄i(x̄) −
B̄j(x̂))(B̄i(x̄) − B̄j( ˆ̄x))T P̄3) +

λ((1+Lpoi)s−1)
s(s−1) P̄3(e), 24

ij(x̃) =
1

2(s−1) (Kj,2( ˆ̄x, x̄r ) − Kj,1( ˆ̄x, x̄r ))T B̄Ti (x̄) det(P̄2(x̄))P̄
−1
2 (x̄),

25
ij(x̃) =

1
2(s−1) (− det(P̄2(x̄))P̄

−1
2 (x̄)B̄i(x̄)Kj,1( ˆ̄x, x̄r ) + (Āi(x̄)

−Āj( ˆ̄x) −Lj( ˆ̄x) (C̄i(x̄)−C̄j( ˆ̄x))+ (B̄i(x̄)− B̄j( ˆ̄x))Kj,1 ( ˆ̄x, x̄r ))T

P̄3(e)), 26
ij(x̃) = −

1
2(s−1)K

T
j,1( ˆ̄x, x̄r )(B̄i(x̄)− B̄j( ˆ̄x))

T P̄3(e).
Clearly, the polynomial constraint in (25) holds if the right

hand side (RHS) in (29) is negative semi-definite. Moreover,
by utilizing Schur complement, the RHS in (29) is negative
semi-definite if the following polynomial inequalities hold:∑l

j,i=1
hihj

[
2ij(x̃) 5i(x̃)
∗ −9i(x̃)

]
≤ 0

5i(x̃) = [MT (x̃) H̃T
i (x̃)P̄(x̃) P̄(x̃)D̃i(x̃), Q̃

1
2 ]

9i(x̃) = diag{R−1, 2P̄(x̃), 4(s− 1)2ρI , I }, (30)

i.e., the H∞ polynomial fuzzy controller gains in (14) and
polynomial fuzzy observer gains in (10) (i.e., {Ki,1( ˆ̄x, x̄r ),
Ki,2( ˆ̄x, x̄r ),Li( ˆ̄x)}li=1) need to solve the above interpolation
function dependent polynomial inequality.

Based on the above discussion, the following two-step
design procedure is developed to solve {Ki,1( ˆ̄x, x̄r ),
Ki,2( ˆ̄x, x̄r ), Li( ˆ̄x)}li=1 from the polynomial inequality in (30).
(STEP I) At first, if the polynomial constraint in (30)

holds, then the diagonal terms in the LHS of (30) must be
negative-semi-definite. As a result, the term 22

ij(x̃) in 2ij(x̃)
in (30) is solved in the following at first to obtain the design
parameters Kj,1( ˆ̄x, x̄r ) and P̄2(x̄). By pre-multiplying P̄2(x̄)
and post-multiplying P̄2(x̄) to 22

ij(x̃) ≤ 0 with {Nj,1(x̃) =
Kj,1( ˆ̄x, x̄r )P̄2(x̄)}lj=1, we have∑l

j,i=1
hihj{(det(P̄2(x̄))(

1
2(s− 1)

[(Āi(x̄)P̄2(x̄)

+B̄i

(x̄)Nj,1(x̃)+ (∗)])+
λ((1+ Lpoi)s − 1)

s(s− 1)
P̄2(x̄))} ≤ 0

(31)

and it can be further transformed to the following solvable
SOS conditions [17]

ϕT1 (P̄2(x̄)− ε1(x̃)I )ϕ1 is SOS

−ϕT2 (ϒkk (x̃)− ε2(x̃)I )ϕ2 is SOS

−ϕT3 (ϒij(x̃)+ ϒji(x̃)− ε3(x̃)I )ϕ3 is SOS

for k = 1, · · · , l, 1 ≤ i < j ≤ l (32)
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where ϒij(x̃) = 1
(s−1) [(Āi(x̄)P̄2(x̄) + B̄i(x̄)Nj,1(x̃) + (∗)] +

λ((1+Lpoi)s−1)
s(s−1) P̄2(x̄)), {εi(x̃)}3i=1 are non-negative polynomials

of x̃ and {ϕi}3i=1 are vectors independent of x̃. Due to the
fact that det(P̄2(x̄)) > 0, this term can be dropped in SOS
conditions in (32).

By solving SOS conditions in (32) via SOSTOOLS
in [12] and semi-definite programming, we can obtain the
design variables {P̄2(x̄),Nj,1(x̃)}lj=1 and the polynomial fuzzy
controller gains can be implemented as {Kj,1( ˆ̄x, x̄r ) =
Nj,1(x̃)P̄

−1
2 (x̄)}lj=1. Also, by the fact that det(P̄2(x̄))P̄

−1
2 (x̄) =

adj(P̄2(x̄)), where adj(P̄2(x̄)) is the adjugate of P̄2(x̄),
det(P̄2(x̄))P̄

−1
2 (x̄) is of polynomial matrix at the next step.

(STEP II) To decouple the bilinear terms KT
j,2( ˆ̄x, x̄r )

Kj,2( ˆ̄x, x̄r ) and P̄3(e)(B̄i(x̄) − B̄j( ˆ̄x)) (B̄i(x̄) −B̄j( ˆ̄x))T P̄3 in
21
ij(x̃) and 2

3
ij(x̃) in (30), respectively, the following slack

variables are introduced

KT
j,2(x̂, x̄r )Kj,2(x̂, x̄r ) ≤ Nj,2(x̃)

P̄3(e)(B̄i(x̄)− B̄j(x̂))(B̄i(x̄)− B̄j(x̂))T P̄3(e)
≤ Ni,j,3(x̃)
for i, j = 1, · · · ,L

(33)

where {Nj,2(x̃),Ni,j,3(x̃)}li,j=1 are positive-definite homoge-
neous polynomial matrices to be designed. Then, by letting
{Nj,4(x̃) = P̄3(e)Lj(x̂)}lj=1, the polynomial constraints in (30)
can be relaxed as∑l

j,i=1 hihj

[
2̄ij(x̃) 5̄i(x̃)
∗ −9i(x̃)

]
≤ 0 (34)

where

2̄ij(x̃) =

 2̄
1
ij(x̃) 2

4
ij(x̃) 2

6
ij(x̃)

∗ 22
ij(x̃) 2̄

5
ij(x̃)

∗ ∗ 2̄3
ij(x̃)


5̄i(x̃) = [MT (x̃) H̃T

i (x̃)P̄(x̃) D̆j(x̃) Q̃
1
2 ]

D̆j(x̃) =

 0 P̄1(x̄r )B̄r (x̄r )
det(P̄2(x̄))P̄

−1
2 (x̄)D1 0

P̄3(e)D1 − Nj,4(x̃)D2 0


with 2̄1

ij(x̃) =
1

2(s−1) ([P̄1(x̄r )Ār (x̄r ) + (∗)] + Nj,2(x̃) +
λ((1+Lpoi)s−1)

s(s−1) P̄1(x̄r ) 2̄3
ij(x̃) =

1
2(s−1) ([P̄3(e) Āj(x̂) + Nj,4(x̃)

C̄j(x̂)+ P̄3(e)(B̄i(x̄)− B̄j( ˆ̄x))Kj,1( ˆ̄x, x̄r ))+ (∗)]+Ni,j,3(x̃))+
λ((1+Lpoi)s−1)

s(s−1) P̄3(e), , 2̄5
ij(x̃) =

1
2(s−1) (det(P̄2(x̄))P̄

−1
2 (x̄)B̄i(x̄)

Km,1( ˆ̄x, x̄r )+(Āi(x̄)−Āj( ˆ̄x))T P̄3(e)−(C̄i(x̄)−C̄j( ˆ̄x))T Nj,4(x̃)+
((B̄i(x̄)− B̄j( ˆ̄x)) Kj,1( ˆ̄x, x̄r ))T P̄3(e)).

By applying Schur complement to (33) with the fixed
design variables {P̄2(x̄),Kj,1( ˆ̄x, x̄r )}lj=1 being obtained from
STEP 1, the polynomial constraint problem in (34) can be
transformed to the following SOS conditions [17]

ϕT4 (P̄1(x̄r )− ε4(x̄r )I )ϕ4 is SOS

ϕT5 (P̄3(e)− ε5(e)I )ϕ5 is SOS

−ϕT6 (0
1
i1i1 (x̃)− ε6(x̃))ϕ6 is SOS

−ϕT7 (0
1
ij(x̃)+ 0

1
ji(x̃)− ε7(x̃))ϕ7 is SOS

−ϕT8 (0
2
i1j1 (x̃)− ε8(x̃))ϕ8 is SOS

−ϕT9 (0
3
i1j1 (x̃)− ε9(x̃))ϕ9 is SOS

for 1 ≤ i < j ≤ l, i1, j1 = 1, · · · , l (35)

where {εi(x̃)}9i=4 are non-negative polynomials of x̃ and
{ϕi}

9
i=4 are vectors independent of x̃ and

01
ij(x̃) =

[
2̄ij(x̃) 5̄i(x̃)
∗ −9i(x̃)

]
02
ij(x̃) =

[
−Nj,2(x̃) KT

j,2(x̂, x̄r )
∗ − I

]
03
ij(x̃) =

[
−Ni,j,3(x̃) P̄3(e)(B̄i(x̄)− B̄j(x̂))

∗ − I

]
By solving SOS conditions in (35), we can get the design

variables {P̄1(x̄r ), P̄3(e),Kj,2( ˆ̄x, x̄r ), Nj,2(x̃),Ni,j,3(x̃)}li,j=1
and the polynomial fuzzy polynomial observer gains {Lj(x̂) =
P̄−13 (e)Nj,4(x̃)}lj=1. As a result, the design of robust H∞
fuzzy observer-based fault-tolerant tracking control strategy
can be efficiently solved by the developed two-step design
procedure.
Remark 12: In Theorem 3, the sufficient condition can be

reformulated as interpolation function-independent matrix
inequalities. Based on the developed two-step design pro-
cedure, Nh × l2 polynomial constraints have to be solved
to get the polynomial fuzzy observer/controller gains where
Nh denotes the polynomial constraints w.r.t. one fuzzy rule.
On the other hand, even the matrix inequality in (25) is
depending on the interpolation functions and it can be further
transformed to polynomial matrix inequalities with number
Nh × l2/2 to save the computational time.
Remark 13: Conventionally, due to the coupling of design

variables, it is not easy to simultaneously solve the controller
gains and observer gains in (25). More specifically, there
exists no efficient way to decouple controller/observer gains
in (25), especially in the case of polynomial fuzzy system. As a
result, the two-step design procedure is developed. Therein,
the controller gains can be obtained by solving (32) at the first
step, then the observer gains can be obtained by solving (32),
too.
Remark 14: Once the effect of stochastic fluctuations,

fault signal and external disturbance are simultaneously con-
sidered, it will make the derived design conditions become
more conservative. For example, to eliminate the effect of
system fault signals on observer-based reference tracking
control design of the system, the dimension of polynomial
controller gains includes the total dimensions of system state,
augmented system fault signal and augmented sensor fault
signal. Consequently, it will directly enlarge the dimension of
derived SOS conditions and thus make the derived conditions
more conservative (e.g., {Kj,1( ˆ̄x, x̄r )}lj=1 in (35)). Similarly,
while considering the stochastic effects on the observer-based
reference tracking control of nonlinear stochastic system, the
derived condition also involve system matrices w.r.t. stochas-
tic effect, which makes the design conditions more difficult to
be solved (e.g., {H̃i(x̃)}li=1 and λ

((1+Lpoi)s−1)
s(s−1) I in (35)).
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IV. SIMULATION EXAMPLE
A. MODIFIED AGV SYSTEM WITH GPS SENSOR NETWORK
In this simulation, a maneuvering task for AGV system is
provided as an example to validate the effectiveness of the
proposed strategy. Generally speaking, during the maneuver-
ing process, there may exist system fault signals caused by
the system component damage and the sensor fault signals on
the GPS sensor network of AGV system due to the uncertain
communication channel or malicious attack signals. On the
other hand, caused by the internal system fluctuation and
unpredictable environment condition, the AGV system will
be influenced by intrinsic continuous/discontinuous fluctu-
ation. As a result, the following modified AGV system is
given [38]

dX = (Vx cos θ − Vy sin θ )dt

dY = (Vx sin θ + Vy cos θ )dt

dθ = Vθdt

dVx = (VyVθ +
2Caf (lf Vθ + Vy)

mVx(t)
(δf + fa)−

2(Caf + Car )
m

× δb(t)+ v1)dt + 0.01VXdw+ 0.1VXdp

dVy = (−VxVθ +
2
m
(−Caf

lf Vθ + Vy
Vx

+ Car
lrVθ − Vy

Vx
)

+
2Caf
m

(δf + fa)+ v2)dt + 0.01VY dw+ 0.01Vydp

dVθ = (−
2
Iz
(lf Caf

lf Vθ + Vy
Vx

+ lrCar
lrVθ − Vy

Vx
)

+
2lf Caf
Iz

(δf + fa)+ v3)dt + 0.01Vθdw+ 0.01Vθdp

y =

XY
θ

+
 1
0.05
0.05

 fs +
 n1n2
n3

 (36)

where X is the longitudinal displacement with longitudinal
velocity Vx , Y denotes the lateral displacement with lateral
velocity Vy, θ represents the yaw angle with yaw rate Vθ ,
δf denotes the front wheels’ steering angle, δb denotes the
brake/accelerator, {vi}3i=1 are the external disturbance and are
set as the Gaussian distribution with zero mean and 0.1 vari-
ance, {ni}3i=1are the measurement noise and are set as the
Gaussian distribution with zero mean and 0.1 variance, fs
is the sensor fault signal, fa is the system fault signal, w is
the 1-D Wiener process, p is the Poisson counting process
with jump intensity λ = 0.1, m = 1280(kg) is the mass,
Iz = 2500(kg/m2) denotes the moment of inertia, Caf =
3× 104(N/rad) and Car = 3× 104(N/rad) are the stiffness
coefficients w.r.t. the front wheel and the rear wheel, respec-
tively, lf = 1.22m is the distance between the front tire and
center of gravity (CG) and lr = 1.2m is the distance between
the rear tire and CG.

Conventionally, for the maneuvering task of AGV system,
the first control input δf is used to generate suitable control
command on longitudinal velocity Vx , lateral velocity Vy and
yaw rate Vθ to make AGV turn around based on the reference
path trajectory. On the other hand, the second control input
δb is applied for the control of longitudinal velocity Vx .

For the modified AGV system in (36), the Wiener process
w can be regarded as the continuous fluctuations of three
velocities induced by modeling uncertainties. On the other
hand, the Poisson counting process is used to describe the
discontinuous reaction forces on the three velocities which
is caused by the unknown road conditions. Despite these
intrinsic random fluctuations, due to the system component
damage with uncertain communication channel of GPS sen-
sor network or malicious attack signals, the following system
fault signal and sensor fault signal are given as

fs = sin 0.2π t

fa =
{
0.15, 0s ≤ t ≤ 24s
0.1, 26s ≤ t ≤ 50s

(37)

For the system fault signal fa in (37), it will cause a bias
to the front wheels’ steering angle δf . In this case, if this
effect is not well eliminated, the AGV system will have a
constant deviation between the real trajectory and desired
trajectory. To ensure that the system fault signal fa is differ-
entiable functions, fa is fitted by a smooth function within
24s < t < 26s. On the other hand, for the sensor fault
signal in (37), a single-tone signal is applied to describe the
interference from the GPS sensor network.

B. POLYNOMIAL FUZZY MODELING APPROACH AND
PARAMETER SETTING
With the merit of polynomial fuzzy modeling approach, the
premise variables are chosen as Vx and θ with the following
operation points

Vx,1 = 10,Vx,2 = 20

θ1 = −
1
4
π, θ2 =

1
4
π

By adopting the above operation points with trapezoidal inter-
polation functions {hi(ω)}4i=1 and ω = [Vx θ ], the following
polynomial fuzzy system can be infered to approximate the
nonlinear AGV system in (36)

dx =
∑4

i=1
hi(ω){[Ai(x)x + Bi(x)u+ Gi(x)fa
+ v(t)]dt + Hxdw+ Oxdp}

y =
∑4

i=1
hi(ω)[Cx + Sfs + n(t)] (38)

where x = [X Y θ Vx Vy Vθ ]T , u = [δf δb]T , v = [0 0 0
v1 v2 v3]T , n = [n1 n2 0]T and {Ai(x),Bi(x),Gi(x)}4i=1 and
{H ,O,C, S} are local linearized polynomial matrices and
linear matrices obtained from (36), respectively.

To construct the 2nd order smoothed models in (6) and
(7) for the estimation of fault signals {fa, fs}, the following
extrapolation parameters are selected

α0 = 0.8, α1 = 0.16, α2 = 0.04

β0 = 0.7, β1 = 0.2, β2 = 0.1 (39)

For the construction of the augmented reference model
in (12), the following system matrices and input matrix
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FIGURE 1. The 2–D reference tracking trajectory and the 2–D graph of
AGV system controlled by the proposed method and the method in [39].

are specified

Ar (xr ) = −2I6,Br (xr ) = 2I6
Ar,v1 = Ar,v2 = −I3 (40)

Also, for the robustH∞ fuzzy observer-based fault-tolerant
tracking control strategy in (15) the following weighting
matrices are chosen

QE = 2I12,QT = diag{2I3, I3}

R = 0.01I2 (41)

For the choice of weighting matrix QT in (41), the designer
considers the tracking of position/angle is more important
than the tracking of three velocities. Besides, for the choice
of QE , the estimation of state and the estimation of fault
signal are equivalently important. On the other hand, with a
small weighting matrix on control input, it enables the control
input to use a large control effort during the observer-based
tracking control process. Then, with the developed two-step
design procedure with disturbance attneuation level ρ = 1.2,
the SOS conditions in (32) and (35) are efficiently solved
to obtain the design variables {P̄1(x̄r ), P̄3(e),Kj,2( ˆ̄x, x̄r ),
Nj,2(x̃),Ni,j,3(x̃), P̄2(x̄),Nj,1(x̃)}2i,j=1. Then the fuzzy polyno-
mial controller gains and fuzzy polynomial observer gains
can be obtained as {Kj,1( ˆ̄x, x̄r ) = Nj,1(x̃)P̄

−1
2 (x̄),Kj,2( ˆ̄x,

x̄r )}4j=1 and {Lj( ˆ̄x) = P̄−13 (e) Nj,4(x̃)}4j=1, respectively. The
detailed fuzzy polynomial controller gains and fuzzy polyno-
mial observer gains can be refered to Appendix D.

C. PERFORMANCE EVALUATION
In this section, the AGV system is asked to achieve a
double lane maneuvering task as shown in Fig. 1 and the
desired tracking trajectory is generated by the reference
model in (11). To illustrate the effectiveness of proposed
method, the sample-data output reference tracking control
scheme for deterministic polynomial fuzzy system in [39] is
also carried out. For equality, the sample interval in [39] is
chosen as same as the step size for the calculation of state
response in the simulation. In the scenario of output feedback

FIGURE 2. The controlled longitudinal displacement X in (a) and
controlled longitudinal velocity Vx in (b) of AGV system by the
proposed method and the method in [39].

FIGURE 3. The controlled lateral displacement Y in (a) and controlled
longitudinal velocity VY in (b) of AGV system by the proposed method
and the method in [39].

control, themeasurement output is directly used for controller
synthesis without signal data processing, e.g., noise reduction
or compensation of sensor fault signal.

The six state variables by the proposed method and the
method in [39] are presented in Figs. 2–4. At first, due
to the state dependent continuous/discontinuous stochastic
processes, the fluctuation of the longitudinal velocity Vx in
Fig. 2 is much higher than the lateral velocity Vy and yaw
rate Vθ in Figs. 3–4. However, since the effect of these
intrinsic fluctuations is considered during the design, it can
be efficiently attenuated during the maneuvering process and
the AGV system can be controlled to the desired reference
path. For example, once the jump phenomenon occurs on
longitudinal velocity Vx in Fig. 2, the longitudinal velocity
Vx can be efficiently controlled to the desired trajectory with
a less control period than the control scheme in [39]. For the
lateral velocity Vy and yaw rate Vθ , there exist small tracking
errors due to the estimation errors of AGV state and fault
signal at the initial, which cause the AGV system to slightly
turn around within X=0m–100m in Fig. 1. On the other hand,
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FIGURE 4. The controlled yaw angle θ in (a) and controlled yaw rate Vθ in
(b) of AGV system by the proposed method and the method in [39].

due to the amplitude change of system fault signal fa within
24s–26s, the lateral velocity Vy and yaw rate Vθ are slightly
influenced, which cause a slight turn around behavior within
X=380m–400m in Fig. 1. Because of the efficient estimation
of fault signals, both the lateral velocity Vy and yaw rate Vθ
are very close to the reference signal. Thus, from the 2–D
trajectory in Fig. 1, the maximum offset is 2 at the initial
by the proposed method and the remaining tracking error is
relatively minor.

For the tracking scheme in [39], the high frequency oscil-
lation over the entire tracking process is caused by the fault
signals and high gain controller property. Further, without
the consideration of fault signals, the lateral velocity Vy and
yaw rate Vθ are more hard to be regulated. For example,
even the reference signal of yaw rate is 0 within 13s–35s,
the yaw rate Vθ by the tracking method in [39] approaches
to zero at 20s while the yaw rate Vθ by the proposed method
approaches to zero at 15s. Also, due to the effect of constant
system fault signal fa, the 2–D trajectory shows the AGV
system controlled by the tracking scheme in [39] has constant
deviations over the entire tracking process.

The system fault signal fa and sensor fault signal fs with
the corresponding estimations are shown in Fig. 5. These
two fault signals can be almost estimated only with some
small fluctuations. In fact, due to the structure of Luen-
berger observer in (10), one estimation of state x, system
fault signal fa or sensor fault signal fs will be influenced
by the variations of other estimations. For example, once
the magnitude of system fault signal fa change from 0.15 to
0.1 within 24s–26s, the estimation of sensor fault signal f̂s
slightly deviates from the sensor fault signal fs. On the other
hand, the small osciallation in the estimation of system fault
signal f̂a is caused by the sinusoidal sensor fault signal fs.
However, it can be seen from Fig. 5 that these interactions for
fault signal estimation are greatly reduced. Even there exist
some fluctuations on the estimation of these fault signals,
the estimated faults signals can be utilized by the robust
proposed H∞ observer-based fault-tolerant tracking control

FIGURE 5. The system fault signal fa with it’s esitmaion in (a) and the
sensor fault signal fs with its estimation in (b).

FIGURE 6. The control input u = [δf δb]T . Once the system fault signal fa
changes it’s magnitude at 25s, the estimated f̂a is utilized to compensate
its effect and δf is shifted.

strategy to compensate the effect of real fault signals during
the maneuvering process of AGV system as shown in Fig. 1.

The control input is shown in Fig. 6. Due to the influence
of stochastic process, there exist some random fluctuations
and jump on brake/acceleration δb. Since the magnitudes
of lateral velocity Vy, lateral distance Y , yaw rate Vθ and
yaw angle θ of AGV system are relatively small during the
entire tracking process, the fluctuation on the synthesis of
steering angle is relatively minor. Besides, with the utiliza-
tion of system fault estimation, the steering angle δf will
automatically change it’s amplitude to achieve active fault
compensation during the entire tracking control process of
AGV system.

The estimation errors of six AGV states are shown in
Figs. 7–9. Different than the small values of lateral velocityVy
and yaw rate Vθ over the entire tracking control process, the
longitudinal velocity Vx is always large and the correspond-
ing stochastic effect on Vx is large too. As a result, for the
estimation of longitudinal velocity in Fig. 7, the estimation
error is fluctuated due to Wiener process and it has sud-
denly jump due to Poisson counting process. However, from
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FIGURE 7. The estimation errors of longitudinal displacement X and
longitudinal velocity Vx of AGV system by the proposed method.

FIGURE 8. The estimation errors of lateral displacement Y and lateral
velocity Vy of AGV system by the proposed method.

Fig. 7, it can be seen the stochastic effect of Wiener process
on the estimation is efficiently reduced with an acceptable
estimation error. Also, once a jump phenomenon occurs,
the proposed fuzzy polynomial observer can quickly estimate
the real state with a short response time. For example, for the
jump phenomenon at 14s, the estimation error converges to
zero in probability at 18s. On the other hand, for the efficient
estimation of sensor fault signal in Fig. 5, the effect of sensor
fault signal is effectively reduced and thus the estimation of
longitudinal distance X is very small. For the estimations
of lateral velocity Vy and yaw rate Vθ in Figs. 8–9, the
fluctuations of estimation errors are mainly caused by the
additional reference control command in control input δf . For
example, once the turn around command is imposed in δf at 5s
in Fig. 6, there exists a small fluctuation within a very short
period. After that, the estimation error quickly approaches to
zero. Similar to the estimation of longitudinal distance X , the
estimation errors of lateral distance Y and yaw angle θ are
very minor due to the efficient compensation of sensor fault
signal fs.

FIGURE 9. The estimation errors of yaw angle θ and yaw rate Vθ of AGV
system by the proposed method.

V. CONCLUSION
In this study, a robustH∞ observer-based fault-tolerant track-
ing strategy is proposed for SPFS with the consideration of
external disturbance, measurement noise and system/sensor
fault signals. By using two smoothed models to describe
the behaviors of system/sensor fault signals and to embed
two fault signals in the nonlinear stochastic system to avoid
their corruption on state estimation and control, a polyno-
mial fuzzy observer can be simply constructed for state/fault
estimation. With the utilization of estimated information and
reference trajectory, a polynomial fuzzy reference tracking
controller is implemented to achieve the desired tracking
performance and active fault signal compensation. Further,
to attenuate the undesired effect of external disturbance and
measurement noise during the tracking process, the robust
H∞ fuzzy observer-based fault-tolerant reference tracking
control strategy is considered during the design procedure.
By using the merit of HPLF, the Itó-Lévy formula can be
reformulated and the compensation terms of stochastic pro-
cesses can be replaced by the Hessian matrix of HPLF with
some scaling. Then, the design condition can be formulated
in terms of a two–step SOS condition problem which can
be easily solved via SOSTOOLs. A simulation example of
maneuvering task for AGV system is given to validate the
effectiveness of proposedmethod in comparisonwith conven-
tional polynomail fuzzy output feedback reference tracking
control scheme. In future, the relaxed Itô-Lévy formula can
be applied to various control issueswith practical applications
(e.g., unmanned aerial vehicle tracking design) on SPFS since
it provides more design flexibility than the conventional con-
trol method for SPFS which has the limitation on the use of
quadratic Lyapunov function.

APPENDIX A: PROOF OF THEOREM 1
At first, choose the polynomial Lyapunov function as

V (x̃) = x̃TP(x̃)x̃ (42)
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where P(x̃) is polynomial matrix with P(x̃) > 0. Then, based
on the Itô-Lévy formula in (21), the numerator of robust H∞
fuzzy observer-based fault-tolerant tracking control strategy
in (20) can be written as

E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt}

= E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt +

∫
∞

0
dV (x̃)+ V (x̃(0))

−V (x̃(tf ))}

≤ E{
∫ tf

0

∑l

j,i=1
hihj[x̃T Q̃x̃ + x̃TMT

j (x̃)RMj(x̃)x̃

+x̃TP(x̃)(Ãij(x̃)x̃ + D̃i(x̃)ṽ)+ (Ãij(x̃)x̃ + D̃i(x̃)ṽ)T

×P(x̃)x̃ +
∑naug

k=1
x̃T
∂P(x̃)
∂ x̃k

(Ãij,k (x̃)x̃ + D̃i,k (x̃)ṽ))x̃

+
1
2
x̃T H̃T

i (x̃)
∂2x̃TP(x̃)x̃

∂2x̃
H̃i(x̃)x̃ + λ((x̃ + γ (x̃))T

×P(x̃ + γ (x̃))(x̃ + γ (x̃))− x̃TP(x̃)x̃)]dt + V (x̃(0))}

(43)

where x̃k is the kth component of x̃, Ãij,k (x̃) is the
kth row vector of Ãij(x̃), D̃i,k (x̃) is the kth row vec-
tor of D̃i(x̃) and Mj(x̃) = [Km,2(x̂, x̄r ) − Km,1(x̂, x̄r ),
Km,1(x̂, x̄r ),−Km,1(x̂, x̄r )].

By using Lemma 2, the terms associated with disturbance
can be relaxed as

x̃T
∂P(x̃)
∂ x̃k

x̃D̃i,k (x̃)ṽ

=
1
2
x̃T
∂P(x̃)
∂ x̃k

x̃D̃i,k (x̃)ṽ+
1
2
ṽT D̃Ti,k (x̃)x̃

T ∂P(x̃)
∂ x̃k

x̃

≤
ρ

2naug
ṽT ṽ+

naug
2ρ

x̃T
∂P(x̃)
∂ x̃k

x̃D̃i,k (x̃)D̃Ti,k (x̃)x̃
T ∂P(x̃)
∂ x̃k

x̃

x̃TP(x̃)D̃i(x̃)ṽ+ ṽT D̃Ti (x̃)P(x̃)x̃

≤
2
ρ
x̃TP(x̃)D̃iD̃Ti (x̃)P(x̃)x̃ +

ρ

2
ṽT ṽ

for k = 1, · · · , naug (44)

with some ρ > 0. By substituting (44) into (43), we have

E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt}

≤ E{
∫ tf

0

∑l

j,i=1
hihj[x̃T (Q̃+MT

j (x̃)RMj + P(x̃)

×Ãij(x̃)+ ÃTij (x̃)P(x̃)+
1
2
H̃T
i (x̃)

∂2x̃TP(x̃)x̃
∂2x̃

H̃i(x̃)

+

∑naug

k=1

∂P(x̃)
∂ x̃k

Ãij,k (x̃)x̃ +
2
ρ
P(x̃)D̃iD̃Ti (x̃)P(x̃)

+λ(P(x̃ + γ (x̃))+ ÕTi (x̃)P(x̃ + γ (x̃))

+P(x̃ + γ (x̃))Õj(x̃)+ ÕTi (x̃)P(x̃ + γ (x̃))Õi(x̃)

−P(x̃)))x̃ +
∑naug

k=1

naug
2ρ

x̃T
∂P(x̃)
∂ x̃k

x̃D̃i,k (x̃)

×D̃Ti,k (x̃)x̃
T (
∂P(x̃)
∂ x̃k

)T x̃ + ρṽT ṽ]dt + V (x̃(0))} (45)

If the following polynomial constraints are satisfied

8ii(x̃) < 0, i = 1, · · · , l

8ij(x̃)+8ji(x̃) < 0, 1 ≤ j < i ≤ l (46)

with

8ij(x̃) = x̃T (Q̃+MT
j (x̃)RMj(x̃)+ P(x̃)Ãij(x̃)

+ÃTij (x̃)P(x̃)+
1
2
H̃T
i (x̃)

∂2x̃TP(x̃)x̃
∂2x̃

H̃i(x̃)

+

∑naug

k=1

∂P(x̃)
∂ x̃k

Ãij,k (x̃)x̃

+
2
ρ
P(x̃)D̃iD̃Ti (x̃)P(x̃)+ λ(P(x̃ + γ (x̃))Õj(x̃)

+P(x̃ + γ (x̃))+ ÕTi (x̃)P(x̃ + γ (x̃))

+ÕTi (x̃)P(x̃ + γ (x̃))Õi(x̃)− P(x̃))+
∑naug

k=1

naug
2ρ

×
∂P(x̃)
∂ x̃k

x̃D̃i,k (x̃)D̃Ti,k (x̃)x̃
T ∂P(x̃)
∂ x̃k

)x̃

, then (45) can be written as

E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt}

≤ E{
∫ tf

0
ρ[ṽT ṽ]dt + V (x̃(0))}

ṽ ∈ LF
2 (R+,Rnṽ ), (47)

where nṽ is dimension of ṽ, and it shows that the robust H∞
fuzzy observer-based fault-tolerant tracking control strategy
in (20) is achieved with a prescibed disturbance attenuation
level ρ > 0. Moreover, since the augmented noise ṽ is
finite energy, the RHS in (47) is finite for any tf ∈ R+,
we immediately have

E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt}

≤ E{
∫ tf

0
ρ[ṽT ṽ]dt + V (x̃(0))} <∞

∀tf ∈ R+, ṽ ∈ LF
2 (R+,Rnṽ ) (48)

,i.e., the augmented system in (19) is mean square stable, i.e.,
E{x̃T x̃} → 0, as t →∞.

APPENDIX B: PROOF OF THEOREM 2
Consider a HPLF V (x̃) = x̃TP(x̃)x̃ of SPFS in (19) with a
positive definite homogeneous polynomial matrix P(x̃) and
degree s ∈ N − {1} , then there exists a positive definite
homogeneous polynomial matrix P̄(x̃) such that

V (x̃) = x̃TP(x̃)x̃

=
1

s(s− 1)
x̃T
∂2V (x̃)
∂2x̃

(x̃)x̃

=
1

s(s− 1)
x̃T P̄(x̃)x̃ (49)

where P̄(x̃) = ∂2V (x̃)
∂2x̃

.
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By selecting the HPFS V (x̃) in (49) with Lemma 4, the Itô-
Lévy formula of V (x̃) w.r.t. the augmented system in (19) can
be written as

E{dV (x̃)}

= E{
∑l

i,j=1
hihj(

∂V (x̃)
∂ x̃

)T [Ãij(x̃)x̃ + D̃i(x̃)ṽ

+
1
2
(H̃j(x̃)x̃)T (

∂2V (x̃)
∂ x̃2

)(H̃i(x̃)x̃)dt

+λ(V (x̃ + γ (x̃))− V (x̄))]dt}

= E{
∑l

j,i=1
hihj[

1
2(s− 1)

x̃T P̄(x̃)(Ãij(x̃)x̃ + D̃i(x̃)ṽ)

+
1

2(s− 1)
(Ãij(x̃)x̃ + D̃i(x̃)ṽ)T P̄(x̃)x̃T +

1
2
(H̃j(x̃)x̃)T

×P̄(x̃)(H̃i(x̃)x̃)+ λ(V (x̃ + γ (x̃))− V (x̃))]dt} (50)

Furthermore, based on Lipschiz condition of systemmatrix
w.r.t. the Poisson counting process o(x) in (1), we have

‖o(x)‖D2 ≤ Lpoi ‖x‖
D
2 (51)

where Lpoi is the Lipschiz constant associated with o(x).
Then, to relax the compensation term of Poisson process,
we notice that

‖γ (x̃)‖D2

=

∥∥∥∥∑l

a=1
haÕa(x̃)x̃

∥∥∥∥D
2

=

∥∥∥[01×naug , oT (x), 01×(naug−n), oT (x), 01×(naug−n)]T∥∥∥D2
≤ Lpoi ‖x̃‖

D
2 (52)

By the triangular inequality with (52), the following relation
holds

‖x̃ + γ (x̃)‖D2 ≤ ‖x̃‖
D
2 + ‖γ (x̃)‖

D
2

≤ (1+ Lpoi) ‖x̃‖
D
2 (53)

By (53) with the increasing property of V (x̃), the following
inequality holds

V (x̃ + γ (x̃)) ≤ V ((1+ Lpoi)x̃) (54)

Furthermore, by the definition of HPFS, we have

E{(V (x̃ + γ (x̃))− V (x̃))dp}

≤ λE{V ((1+ Lpoi)x̃)− V (x̃)}

≤ λE{((1+ Lpoi)s − 1)V (x̃)} (55)

Then, by using (55) and Lemma 4, the Itô-Lévy formula of
V (x̃) in (50) can be bounded as

E{dV (x̃)} ≤ E{
∑l

i,j=1
hihj[

1
2(s− 1)

x̃T P̄(x̃)(Ãij(x̃)x̃

+ D̃i(x̃)ṽ)+
1

2(s− 1)
(Ãij(x̃)x̃ + D̃i(x̃)ṽ)T P̄(x̃)x̃

+
1
2
(H̃j(x̃)x̃)T P̄(x̃)(H̃i(x̃)x̃)dt

+
λ((1+ Lpoi)s − 1)

s(s− 1)
x̃T P̄(x̃)x̃]dt} (56)

APPENDIX C: PROOF OF THEOREM 3
To begin with, consider an HPLS V (x̃) = x̃TP(x̃)x̃ with the
positive definite homogeneous polynomial matrix P(x̃) and
degree s ∈ N − {1}. Then, with the utilization of the refor-
mulated Itô-Lévy formula in (24) and the similar derivation
in (43), the numerator of robust H∞ observer-based fault-
tolerant tracking control strategy in (20) can be written as

E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt}

≤ E{
∫ tf

0

∑l

j,i=1
hihj[x̃T Q̃x̃ + x̃TMT

i (x̃)RMj(x̃)x̃

+
1

2(s− 1)
x̃T P̄(x̃)(Ãij(x̃)x̃ + D̃i(x̃)ṽ)

+
1

2(s− 1)
(Ãij(x̃)x̃ + D̃i(x̃)ṽ)T P̄(x̃)x̃

+
1
2
()x̃T H̃T

j (x̃)P̄(x̃)H̃i(x̃)x̃

+
λ((1+ Lpoi)s − 1)

s(s− 1)
x̃T P̄(x̃)x̃]dt + V (x̃(0))} (57)

where P̄(x̃) = ∂2V (x̃)
∂2x̃

. By using Lemma 2, the terms associ-
ated with disturbance can be relaxed as

1
2(s− 1)

(x̃T P̄(x̃)D̃i(x̃)ṽ+ ṽT D̃Ti (x̃)P̄(x̃)x̃)

≤
1

4ρ(s− 1)2
x̃T P̄(x̃)D̃i(x̃)D̃Ti (x̃)P̄(x̃)x̃

T
+ ρṽT ṽ,

for i = 1, · · · ,L (58)

with some ρ > 0. By substituting (58) into (57), we have

E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt}

≤ E{
∫ tf

0

∑l

j,i=1
hihj[x̃T (Q̃+MT

j (x̃)RMj(x̃)

+
1

2(s− 1)
P̄(x̃)Ãij(x̃)+

1
2(s− 1)

ÃTij (x̃)P̄

+
1
2
H̃T
j (x̃)P̄(x̃)H̃i(x̃)+

λ((1+ Lpoi)s − 1)
s(s− 1)

P̄(x̃)+
1

4ρ(s−1)2

×P̄(x̃)D̃i(x̃)D̃Ti (x̃)P̄(x̃))x̃+ρṽ
T ṽ]dt+ V (x̃(0))} (59)

Clearly, if following matrix constraint is satisfied∑l

j,i=1
hihjE{[x̃T (Q̃+MT

j (x̃)RMj(x̃)

+
1

2(s− 1)
P̄(x̃)Ãij(x̃)+

1
2(s− 1)

ÃTij (x̃)P̄

+
1
2
H̃T
j (x̃)P̄(x̃)H̃i(x̃)+

λ((1+ Lpoi)s − 1)
s(s− 1)

P̄(x̃)

+
1

4ρ(s− 1)2
P̄(x̃)D̃i(x̃)D̃Ti (x̃)P̄(x̃))x̃} ≤ 0 (60)

then (59) can be relaxed as

E{
∫ tf

0
[x̃T Q̃x̃ + uTRu]dt} ≤ E{ρ

∫ tf

0
[ṽT ṽ]dt + V (x̃(0))}

(61)
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which immediately shows the robust H∞ fuzzy observer-
based fault-tolerant tracking control strategy in (20) is
achieved with a prescribed disturbance attenuation level
ρ > 0. Besides, similar to the derivation of Theorem 1, the
mean square stability of the augmented system in (19) can be
infered from (61).

APPENDIX D: SIMULATION PARAMETERS
The polynomial fuzzy observer gains and polynomial fuzzy
controller gains for simulation are given as

K1,1( ˆ̄x, x̄r ) =
[
0.1 −0.2 −1.3 0.1
2.1 0.2 0.1 3.9

· · ·

· · ·
0.5 −1 −1 01×5
0.1 0.1 0 01×5

]
K2,1( ˆ̄x, x̄r ) =

[
−0.1 −0.1 −1.3 0.1
1.7 0.2 −0.3 0.4

· · ·

· · ·
0.6 −1.1 −1 01×5
0.1 0.1 0 01×5

]
K3,1( ˆ̄x, x̄r ) =

[
−0.1 −0.1 −0.7 0
1.9 0.1 0.2 0.1

· · ·

· · ·
0.1 0.4 −1 01×5
0.1 0.1 0 01×5

]
K4,1( ˆ̄x, x̄r ) =

[
−0.1 −0.1 −0.7 0
1.9 0.1 0.1 −0.3

· · ·

· · ·
0.1 0.4 −1 01×5
0.2 0.1 0 01×5

]
K1,2( ˆ̄x, x̄r ) =

[
0.1( ˆ̄x1 − x̄r,1) 0.5( ˆ̄x2 − x̄r,2)
1.1( ˆ̄x1 − x̄r,1) −0.1( ˆ̄x2 − x̄r,2)

· · ·

· · ·
0.3( ˆ̄x3 − x̄r,3) 0.1( ˆ̄x4 − x̄r,4)
0.1( ˆ̄x3 − x̄r,3) 1.3( ˆ̄x4 − x̄r,4)

· · ·

· · ·
( ˆ̄x5 − x̄r,5) 2.1( ˆ̄x6 − x̄r,6) 01×6

0.1( ˆ̄x5 − x̄r,5) ( ˆ̄x6 − x̄r,6) 01×6

]
K2,2( ˆ̄x, x̄r ) =

[
0.1( ˆ̄x1 − x̄r,1) 0.2( ˆ̄x2 − x̄r,2)
1.5( ˆ̄x1 − x̄r,1) 0.1( ˆ̄x2 − x̄r,2)

· · ·

· · ·
0.7( ˆ̄x3 − x̄r,3) 0.1( ˆ̄x4 − x̄r,4)
0.2( ˆ̄x3 − x̄r,3) 1.3( ˆ̄x4 − x̄r,4)

· · ·

· · ·
1( ˆ̄x5 − x̄r,5) 2.1( ˆ̄x6 − x̄r,6) 01×6
−0.1( ˆ̄x5 − x̄r,5) −0.1( ˆ̄x6 − x̄r,6) 01×6

]
· · ·

1( ˆ̄x5 − x̄r,5) 2.1( ˆ̄x6 − x̄r,6) 01×6
−0.1( ˆ̄x5 − x̄r,5) −0.1( ˆ̄x6 − x̄r,6) 01×6

]
K3,2( ˆ̄x, x̄r ) =

[
0.1( ˆ̄x1 − x̄r,1) −1.6( ˆ̄x2 − x̄r,2)
0.8( ˆ̄x1 − x̄r,1) 0.1( ˆ̄x2 − x̄r,2)

· · ·

· · ·
−1.1( ˆ̄x3 − x̄r,3) 0.1( ˆ̄x4 − x̄r,4)
0.1( ˆ̄x3 − x̄r,3) 1.3( ˆ̄x4 − x̄r,4)

· · ·

· · ·
1( ˆ̄x5 − x̄r,5) 2.1( ˆ̄x6 − x̄r,6) 01×6
−0.1( ˆ̄x5 − x̄r,5) −0.1( ˆ̄x6 − x̄r,6) 01×6

]
K4,2( ˆ̄x, x̄r ) =

[
0.1( ˆ̄x1 − x̄r,1) 1.6( ˆ̄x2 − x̄r,2)
−1.2( ˆ̄x1 − x̄r,1) 0.1( ˆ̄x2 − x̄r,2)

· · ·

· · ·
1.3( ˆ̄x3 − x̄r,3) 0.2( ˆ̄x4 − x̄r,4)
0.1( ˆ̄x3 − x̄r,3) 1.4( ˆ̄x4 − x̄r,4)

· · ·

· · ·
−1.5( ˆ̄x5 − x̄r,5) −2.1( ˆ̄x6 − x̄r,6) 01×6
−0.1( ˆ̄x5 − x̄r,5) −0.1( ˆ̄x6 − x̄r,6) 01×6

]

L1(x̂) =

 59.2 14 11 30.6
0 51.1 0 −9.3
5 0 56 −1

· · ·

· · ·

−35 −20 14 24
23.5 9 31 −70
5 12 32 31

· · ·

· · ·

23 16 24 1.1
−27 −5 −90 −1
21 16 18 −50

T

L2(x̂) =

 51.2 6 6 19.6
9 51.1 0.2 −0.6
8 −0.3 65 −1

· · ·

· · ·

−87 −20 −35 14
26.5 7 8 −75
5 6 32 7

· · ·

· · ·

−16 16 −31 −9
−35 2 −8 3
31 2 −3 −13

T

L3(x̂) =

 53 0.7 −3.8 31
11 51.1 0 8
20 0 53 15

· · ·

· · ·

24 30 −11 −13
26.5 13 5 −82
24 30 4 −6

· · ·

· · ·

−2 16 −24 −15
−3 2 −9 −5
−3 2 −18 −7

T

L4(x̂) =

 51 3 9 59
9 51.9 0.2 1
9 −0.4 53 1

· · ·

· · ·

27 −95 −4 5
27 8 9 −17
8 8 3 8

· · ·

· · ·

−7 16 −3 −9
−37 2 −9 2
−35 2 −2 −20

T
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