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ABSTRACT Accurate detection of oscillatory electrical signals emitted from remote sources is necessary
in many applications but poses several challenges. The major challenge is attributed to the source voltage
and conductivity of the medium through which signals must transmit before they can be sensed by the
receiving electrodes/sensors. This study introduces a novel algorithm to optimize source identification where
low-voltage (mV range) signals transmit through a conductive medium. The proposed algorithm uses the
measured data from different oscillatory signal sources and solves an inverse problem by minimizing a cost
function to estimate all the signal properties, including the locations, frequencies, and phases. To increase
the overall signal accuracy for a wide range of initial guess frequencies, we have utilized the Lomb-Scargle
spectral analysis along with the Least Squares error optimization method. The data utilized in this study
comes from an experimental setup that includes a bucket filled with salt-water as the conductive medium,
multiple low-voltage signal sources and 32 remotely located sensors. The sources generate sine waves with
amplitude of 10 mV and frequencies between 10 – 40 Hz. The average signal-to-noise ratio is approximately
10 dB. The algorithm has been validated using a single-source and multi-source setup. We observed that our
algorithm can identify the source location within 10mm from the actual source immersed inside the bucket of
radius=∼ 90 mm. Moreover, the frequency estimation error is nearly zero, which justifies the effectiveness
of our proposed method.

INDEX TERMS Source localization, least squared error, multi-sources, inverse problem.

I. INTRODUCTION
Detecting the specific location of an electrical signal source
immersed in a conductive medium is one of the crit-
ical problems in signal identification applications. Most
prominent applications include underwater source local-
ization [1], [2] and the Electroencephalography(EEG)/
Magnetoencephalography(MEG) signal source localization
[3]. The underwater source localization application can vary
from underwater vehicle tracking to a vital task like an under-
water rescue mission. The EEG/MEG source localization
is also important since it is directly related to neurological
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disorders and can affect human health. It is certain that the
application of optimized source localization algorithm is ver-
satile and can be used to solve many critical problems includ-
ing the ones mentioned. In the mentioned cases, the process
starts with an electrical signal source that generates an elec-
trical signal. Then signal transmits through a medium from
the source to the sensors. Next, the signal is analyzed. These
steps collectively provide the spatial location of the electrical
source. Since each application involves different environmen-
tal conditions, the source identification algorithm must be
adapted to ensure accuracy.

The EEG/MEG source localization process is essential
in detecting different neurological diseases. In principle,
an EEG is used to detect brain signals [4] and an MEG is
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used to detect the magnetic fields produced by the electrical
current inside the brain [5]. In both detection processes, the
human head acts as a conductive medium where its outer
surface is used for sensors (i.e. electrodes) to sense sig-
nals that are generated somewhere beneath the inner sur-
face (i.e. specific brain signals) [6], [7]. In other words, the
human head transmits the source generated inside the brain
to the electrodes attached to the head. Then recorded data is
used for source localization of that electrical signal source.
A healthy human brain generates brain waves with a spe-
cific range of frequencies and amplitudes [8], [9]. Following
some specific motor or sensory activities, the frequencies
and amplitudes of the brain waves change. By comparing
and analyzing the recorded EEG data, before and after the
specific activities, any sign of abnormalities at a particular
region of the brain can be predicted [10]. Over the past several
years, various methods have been used to solve the localiza-
tion problem [11]. Note that, there are different applications
such as image processing [12], [13], [14], fault location in
grounded/ungrounded and high-resistance systems [15], and
sound source localization [16], [17]. Depending on the appli-
cation, the solution methodologies are different. In principle,
all these methods solve an inverse problem. Nevertheless, all
methods have their own advantages and limitations.

TheMinimumNorm (MN)method for this application was
first introduced in 1994 [18] to solve the specific inverse prob-
lem and source localization fromEEG signals. This method is
proper for noise-free signal analysis, but it does not provide a
good result for the deep source localization cases where noise
can be inherently present in the signal source. In the same
year, a new algorithm called LowResolution Electromagnetic
Tomography (LORETA) was introduced [19]. The LORETA
can be considered as an integrated method that combines the
weighted minimum norm (WMN) technique [20] with the
Laplacian operation. It resolves the deep source localization
problem of the MN method. However, the low spatial resolu-
tion can be the main disadvantage of this algorithm.

Implementing the recursive steps in solving the inverse
source localization problem has significantly improved the
results. FOCal Underdetermined System Solution (FOCUSS)
is one of these methods which utilizes the WMN to
solve the recursive process. FOCUSS could solve the prob-
lem of low-resolution result with the LORETA algorithm
properly [21].

The other popular EEG source localization method is the
Recursive multiple signal classification (MUSIC) [22]. This
method defines the source (dipole) in a 3D grid head model.
The algorithm is based on the idea of finding a signal sub-
space and addressing if it works the best for the forward
model.

Often the existing EEG source localization methods
are modified or combined to generate new algorithms.
Examples include methods such as Exact low resolution
brain electromagnetic tomography (eLORETA), standard-
ized low-resolution electromagnetic tomographic analysis
(sLORETA), RAP MUSIC, LORETA FOCUSS, etc [11].

The new methods offer applications beyond the traditional
EEG source localization algorithms. For instance, theMUSIC
method can also be used in the sound source localiza-
tion, as illustrated in [23].Another application is the acous-
tic source localization problem. This usually addresses the
source localization for the 2D case (both isotropic and
anisotropic plates) and the 3D structures. One of the most
famous methods is Beamforming which is also utilized in
the EEG source localization problems [24]. The advantage
of using such methods over traditional EEG source localiza-
tion methods is the robust behavior of the noisy data with
the White Gaussian noise. Also, a few source localization
methods depend on knowing the Time of Arrival (TOA) infor-
mation [25]. In other words, the time a specific signal needs
to travel from the source until it reaches the sensor should be
available. However, the Beamforming method works appro-
priately regardless of having the precise Time of Arrival
(TOA). Thus, depending on the situation, these methods can
not only be for source localization inside human brain but also
used for similar kind of application.

The Least-squares method uses the real collected signal
and the signal generated by the hypothetical electrical source
to identify the electrical source. Finding the global minimum
of these two signal differences provides the final answer to
the source estimation [26].

As mentioned earlier, MUSIC [27] is one of the common
methods in different application areas and is not only limited
to the EEG source localization problems. It should be noted
that most of the algorithms mentioned earlier can only detect
the location of the sources but not the other features such as
the simultaneous detection of frequencies, phases, and ampli-
tudes of the multiple active electrical signal sources. More
information about the electrical source can be important for
many reasons. For instance, in the case of a rescue mission,
there might be other active electrical sources in the water.
The specific amplitude and phase information can help distin-
guish the emergency pulse-generating device from the other
electrical sources.

In this study, we have proposed an optimized constrained
Least Squares based method to detect the location of multi-
ple signal sources immersed in a conductive medium. This
algorithm not only locates the source but can also estimate
other oscillatory signal features, such as frequency and phase.
Without losing any generality, we applied our algorithm for
low-voltage source localization. For experimental verifica-
tion, we have used a low-voltage signal source and evalu-
ated the effectiveness of our algorithm. The signal sources
used were in the mV range. A small lab-scale experimen-
tal setup has been developed for validation that includes a
system for generating electrical signals, a conductive liquid
medium for signal transmission and EEG-based electrodes
for detecting signals. To verify the algorithm, input data has
been collected from the experiment. The remainder of the
manuscript is outlined as follows. First, amathematicalmodel
is defined to simulate the signal measurement process in the
Method section. Afterward, an algorithm based on the Least
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FIGURE 1. Illustration to the general form of the source localization problem.

FIGURE 2. Definition of the forward and Inverse problem.

Squares error is introduced to solve the feature identification
problem. The Experiment section describes the experimental
setup used to generate the data in detail. Finally, the data from
the experimental setup is passed to the introduced algorithm
to assess its accuracy.

II. METHOD
In a source localization algorithm, it is desired to find a pre-
cise estimation of the actual source location. Fig.1 schemati-
cally defines the problem. It can be inferred from Fig. 1 that
while the exact location of the electrical source is fixed at a
point (identified as a red dot), the typical source identification
algorithms can only estimate the source location within an
area (the green circle). The ideal goal is to reduce the radius
of the estimation result (i.e. radius of the green circle) until it
gets as small as the red dot. When this happens, it means the
source localization method works accurately.

This study aims to introduce an algorithm that not only can
precisely detect the source location of an oscillatory signal but
also estimate all other characteristic signal features such as
the frequency, phase, and amplitude. In general, any source
identification problem is solved in two steps. The first step
is called the Forward Problem, where the measured signal
is simulated mathematically. According to Fig.2, a Forward

Problem starts with all the known experimental parame-
ters, such as the location of the sensors, the properties of
the electronic signal source (location, frequency, phase, and
amplitude), and the medium conductivity. All the mentioned
properties are passed to a proper mathematical model that
can simulate the signal measured by each sensor. In other
words, a forward problem describes the known experimental
procedure using mathematical equations.

The second step is the Inverse Problem, which aims to pre-
dict the source location. As indicated in Fig.2, this problem
starts in the opposite direction to the Forward Problem. In this
case, it is assumed that the collected signals from the sen-
sors are available, and by utilizing the present mathematical
model, one should be able to find the source location and
other features.

A. FORWARD PROBLEM: SOURCE AND SENSORS
MATHEMATICAL MODELING
As described earlier, the forward problem begins with deter-
mining the source and the sensors model. In our case,
we adopted a 2D circular area model with a radius, R =
88.9 mm. It will be discussed later that the radius R in our
model reflects the radius of the experimental bucket we used
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FIGURE 3. 2D model of the sensor and source locations.

for validation. For precise comparison, the exact dimension of
the radius is maintained in our model. Figure 3 is a schematic
representation of the source and sensors in our 2D space.
According to Fig. 3, the locations of the sources and sensors
are described by the polar coordinates system. As an example,
the location of the ith sensor and jth source are shown as
(rsi , θsi ) and (rcj , θcj ) respectively.
As described later in the experimental setup section,

the sensors are located on the circumference of a circle
(i.e, the experimental bucket) where the first one is at (R, π2 ).
The other sensors are labeled in the CCW direction, as it is
shown in Fig. 3. It should be noted that a total number of
32 sensors are considered in our study.

To quantitatively describe the signal generations and
detections, one needs to use Maxwell’s equations and the
Biot-Savart law [28], [29]. In our case, we have combined the
two equations, and after some simplification, the expression
for describing the measured signal in a 3D half-sphere model
is defined as

fi,j =
gj
4πζ

(
rcj − rsi

)∥∥rcj − rsi∥∥3µj + ni (1)

where fi,j ∈ Rn represent the collected signal from the jth

source to the ith sensor. Also, in this model, it is assumed that
the jth source signal has a specific directionwhich is identified
by a unit vector µj ∈ R3 and a magnitude gj ∈ R. In order to
make the model more realistic, a white Gaussian noise ni ∈
Rn generated from each sensor is added to the model.

This mathematical model however needs to be updated
based on the experimental setup and assumptions considered
in the present study. Since the source is assumed to generate
sinusoidal signals in all directions in the 2D plane while the
data samples are recorded. Two significant changes are made
to the forward model: 1) The unit vector µ is eliminated and
re- placed with a sine wave signal to eliminate the effect of
the direction. 2) the vectors (rcj − rsi ) are used to calculate

the distance between different sources and sensors using the
2-norm as

di,j =
∥∥rcj − rsi∥∥ (2)

where di,j ∈ R indicates the distance between jth source to
the ith sensor.
The above-mentioned changes state that the new mathe-

matical model of the collected signal can be described as
shown in Eqn. 3. This model is generated by considering all
present parameters in the experiment. The parameters gj, ζ ,
ωj, and φj are the jth gain, conductivity, jth frequency, and jth

phase of the source signal, respectively. Note that these values
can be different from each source. Moreover, this model is
written in the discrete form to show the collected signals for
the k th measured data.

fi(k) =
1
ζ

P∑
j=1

gj
d2i,j

sin
(
ωjk + φj

)
+ ni, i = 1, · · · , 32 (3)

This equation is the general form for the present study in
the presence ofP different sources. Eventually, one can put all
the collected signals from sensors together to form the general
matrix of the measured data for all available N data samples.

F = [f1f2 · · · fM ] (4)

where F ∈ RN×M . Also, in this studyM = 32.
Now, one can solve the forward problem by knowing the

location of the sources and sensors, the magnitude and fre-
quency of the sources, and the conductivity. This is helpful
since a well calibrated forward model can be used to predict
the expected output.

B. INVERSE PROBLEM: SOURCE LOCALIZATION
ALGORITHM
The objective here is to utilize the proposed mathematical
model (assumed to be calibrated) to find the location of the
source. For this, one should solve an inverse problem where
the measured signal Matrix F as in Eqn. 4, the location
of the sensors, and the conductivity are available. As men-
tioned in the introduction section, several different algorithms
are available to quantify the source location by solving the
inverse problem. This study introduces a new approach based
on the Least Squares error. Ultimately, the results from the
experimental data illustrate the efficiency of this proposed
algorithm.

III. SOLUTION METHODOLOGY: A LEAST SQUARES
ERROR BASED SOURCE LOCALIZATION ALGORITHM
This section illustrates the details of the Least Squares error
source localization algorithm (LSSL). The idea of imple-
menting this algorithm comes from the EEG source local-
ization problem, which is addressed in [30]. All steps of the
LSSL algorithm are briefly shown in a flowchart form in the
Fig.4.

In this study, there are a total of five unknowns
(r, θ, ω, φ, g) for each source. We estimate these unknown
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FIGURE 4. Inverse problem solution using LSSL algorithm illustrated by a
flowchart.

parameters while the estimation problem is optimized and
leads to the least estimation error possible.

As it is illustrated in Fig. 4, the estimation process is started
with the data from the experiment. The experiment setup is
described thoroughly in the following sections. After reading
the experimental data, one of themost crucial steps is to deter-
mine an initial guess for the frequency of the generated signal
from the sources. As outlined in Eqn. 3, the frequency appears
in the nonlinear term that makes the estimation process very
sensitive to its initial value. Moreover, missing data points
while recording the experimental data samples sometimes can
occur. Thus, the initial guess process should be robust to an
uneven sampling rate. Considering all the mentioned factors
to estimate the source frequencies, the Lomb-Scargle Spectral
Analysis is the proper method in this study. This method is
described by details in [31], where the periodogram for N
number of samples is presented in Eqn. 5. In this equation,
µ, σ , and τ represent the mean, standard deviation, and time
shift, respectively.

P(ω) =
1

2σ 2

{
(
∑

n(xn − µ)cos(ω(tn − τ )))
2∑

n cos
2(ω(tn − τ ))

+
(
∑

n(xn − µ)sin(ω(tn − τ )))
2∑

n sin
2(ω(tn − τ ))

}
Following the Lomb Scargle Spectral Analysis, a guessed

value of ω̂0 for each source is obtained. It is assumed that each

source generates a sine-wave with one particular frequency.
However, this method can identify multiple frequency com-
ponents in a signal, which helps identify multiple frequency
components in signal. The next step of estimation is using
all five initial guesses (r̂0, θ̂0, ω̂0, φ̂0, ĝ0) to substitute them
in the forward model (Eqn. 3 ) and generate the first esti-
mated signal matrix F̂ . This synthetic signal is based on
the assumed features, and it does not necessarily contain the
features present in collected signals. To quantify the differ-
ence of the estimated signal and the actual data from the
experiment, a cost function is defined. The cost function J
is based on the measurement residuals of all 32 available
sensors in this study. Now, denoting the decision vector x̂ =[
r̂1 θ̂1 ω̂1 φ̂1 ĝ1 · · · r̂P θ̂P ω̂P φ̂P ĝP

]T
, the goal is to mini-

mize the L2 norm of the cost function, which is defined as

J (x̂) =
∥∥∥F − F̂(x̂)∥∥∥ (5)

Note that the estimation result for the radius of the sources
cannot be any number larger than the bucket’s radius R =
88.9 mm. Thus the optimization of the cost J is subject to
the M inequality constraints,

∥∥r̂j∥∥−R < 0, for j = 1, . . . ,P.
The constrained optimization then proceeds along the typical
steps outlined in [32] (Chapter 1, section 1.7) by formulating
the constraints augmented cost, and deriving the necessary
conditions (Kuhn Tucker conditions).

The constrained optimization problem is solved using
MATLAB’s FMINCON function, with a function tolerance
value set to ε = 1e − 6. The update to the decision vector
between iterations uses the Gauss-Newton method (selected
in the FMINCON options). The update steps repeat until the
cost function reaches its minimum (set to the function toler-
ance). Eventually, the converged parameters are taken as the
final estimation result for all five unknowns for each of the
sources.

IV. EXPERIMENTAL SETUP
The experimental setup includes a plastic bucket, 32 sets of
scalp electrodes as sensors, and artificially produced electri-
cal signal sources as shown in Fig. 5a. Figure 5 shows the
overall set up of the experiment. In this study, wet electrodes
have been used [33]. As a conductive medium between the
sensors and the source, we use saline water. It should be noted
that the experimental technique is applicable to a broad range
of conductive mediums. Without losing generality, we have
maintained the conductivity of our saline water based on the
data presented in [34] and [35]. Accordingly, appropriate salt
concentration [36] was used to prepare the desired conduc-
tive medium between the sensor and the source. For record
keeping purposes, the 32 electrodes are indexed as A1 − A32.
Considering the equidistance method used in positioning the
electrodes in the electrode-cap, the 32 electrodes were placed
radially equidistant from each other. Note that the bucket
radius is 88.9 mm. The angle between the two consecutive
electrodes was kept at 11.25 degrees. The position of the
electrodes inside the bucket was measured using a protractor
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and marked for future analysis. A signal generator is used
to produce some analog signals inside the conductive saline
water. The analog signals were entitled as the source. The
distance from the center of the bucket to the point where the
source/signal generator is generating the signal is considered
as distance ‘r’. We have arbitrarily selected the sensor A25 as
the reference source, and all other subsequent measurements
were based on the position and angle of this sensor. As shown
in Fig. 5, A25 position coincides with the reference axis ‘x’
and the sensor A1 is aligned with the reference axis ‘y’.
As such, the angle for sensor A25 is measured as zero degrees.
Essentially, A1 and A25 are orthogonal to each other. The
angle between sensor A25 and An in the counterclockwise
direction is described by positive angle θ . Here n is the num-
ber of any sensors between A1−A32.
The rounded part of the electrode was considered as the

head of the electrode, and the side that connects with the
analog-to-digital (AD) converter was considered as the tail of
the electrode (Fig. 5b). The positioning of the electrodes was
such that the head of the electrodes would be touching the
bottom of the bucket. The tip of the electrode will be aligned
with the angular marked-up lines. Each of the electrodes was
attached to the bucket using insulation tape. All the output
from these receiving sensors was connected to the AD con-
verter of a complete EEG system. A silver chloride stick was
used as a signal generator. Silver chloride (AgCl) stick was
connected with the data acquisition system (DAQ) through a
wire as shown in Figs. 5c and 6a. To make it function like a
conductive wire, the AgCl stick was covered everywhere with
insulation tape except at the tip. The stick was also inserted
inside a plastic straw for added rigidity and ease in handling
as shown in Fig. 5c.

Using PATRIOT RS- 232 digitizer which is a serial port
connector with a 38400 baud rate, a stylus, and Locator
software, we scanned the positioning of each electrode. The
scanned data was recorded and applied for the source local-
ization method we used. The electrodes/ sensors keep sens-
ing the data inside the experimental bucket while turned on.
Using Biosemi ActiView810-Beta1 software, those sensed
data can be observed and recorded. As needed, the EMSE
Data Editor Software was used for converting the col-
lected data into suitable file formats for subsequent analy-
sis. It should be noted that the entire experimental setup,
as shown in Fig. 5 and 6, is utilized for both single source
and multisource experiment. In other words, the positions
of the 32 sensors, the bucket and its medium, tools for
sensor scanning as well as software for experimental data
collection – all were identical throughout the single source
and multisource experiments.

The whole experimental setup was covered with RF block-
ing cloth to minimize any interruption while recording. The
sensors are sensitive to electromagnetic fields, strong jerking,
vibration, etc. In particular, the sensors that are located in
closer proximity with the AD converted appear to be heavily
impacted by the undesirable disturbances. As shown in Fig. 6,
the experimental setup placed sensor A16 − A19 closer to the

AD converter. All the wiring from 32 sensors was also passed
through the side of sensors A16 − A19. So keeping the signal
sources near that section of the bucket always cause some
extra cautions and human errors in recorded data. Consider-
ing all factors, benchmark trial experiments were conducted
to identify the suitable source position that ensures repro-
ducible experiment. It was observed that source located as
far as far possible from the AD converter is most suitable for
the experiment. For this study, it means the source positioned
between A9 to A15 and A20 to A23 is the best position to use.

A. SOURCE GENERATION
For the experiments, a simple sine wave was used as oscilla-
tory signal source. The 781442-01 | NI USB-6361, X series
multifunctional I/O DAQ module (16 AI, 24 DIO, 2 AO)
from National Instrument was used for signal generation.
Using LabView the system allows pulse width modulation,
encoding and frequency measurements and many other func-
tions. The amplitude and frequency were chosen randomly
but kept constant for a similar category of experiments. For
the single source experiments, a sine wave of frequency 10Hz
and amplitude 10 mV was generated. We used two signal
sources for multi-source experiments, and two different con-
figurations were also used. Specifically, in the first set of
experiments (referred as category ‘a’), same amplitude and
frequency for both sources are used. For second set (category
‘b’) different frequencies but same amplitude for each source
is used. For category ‘a’, a set of 10Hz-10Hz frequencies
was used. Category ‘b’ frequency pairs were 31 Hz-10 Hz,
10Hz-31Hz, 40-10Hz, and 10-40Hz. The selection of fre-
quency pairs was random. The tips of the electrodes used
as receiving sensors are also made of silver chloride. Using
any other material as a source generator creates a change
of conductivity in the medium. This affects the homoge-
nous nature of the medium. So the source/ signal generator
we used was also made of AgCl. Each source is controlled
independently. Table 1 shows the summary of experimental
variables.

1) SINGLE SOURCE
For four sensors, A9 − A12, a total of 220 experiments
have been conducted. Our experiments have been done for
four different conductive mediums. The conductivities of the
medium chosen were 2 mS/cm, 4.35 mS/cm, 15 mS/cm, and
20 mS/cm. The values are selected based on [34] and [35].
The single source/signal generator’s distances were chosen
randomly. The distance was marked and measured before
the bucket was filled with the saline water. For convenience,
the signal generator was always placed along the radial path
of each sensor, as shown in Fig. 5a. For each source posi-
tion shown in table 2, experiments were done in four of the
different conductive mediums. Following each experiment,
the source position coordinates, source amplitude and fre-
quency, the conductivity of the medium, and sensor data were
recorded. These recorded data are used for validation of our
mathematical model.
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FIGURE 5. (a) Top view of the experimental bucket of radius R = 88.9 mm showing the 32 sensors, saline water as
conductive medium and the artificially generated signal source. (b) Detail view of each electrode/sensor. The electrodes/
sensors are divided into two parts. The Head part of all the sensors makes contact with the bucket. The tail of the electrode
is used to attach the electrodes to the surface of the bucket. This tail part also contains wires that connect the electrodes
with the AD converter. (c) Detail view of the signal generator.

2) MULTIPLE SOURCES
As outlined in Table 2, seven pairs of electrode positions were
selected – three of which are for category ‘a’ and the rest
are for category ‘b’. For this, a total of 30 experiments for
category ‘a’ and 40 experiments for category ‘b’ were con-
ducted. The conductivity for the mediumwas kept constant at
4.35 mS/cm for category ‘a’ and 15.2 mS/cm for category ‘b’.
The distance and the angular position of the sources for both
of the categories are shown in table 2.

V. RESULTS AND DISCUSSION
The validation experiments for source identification simu-
lation includes three steps – signal source generation, pro-
cessing and analysis. Parallelly, the simulation steps are
divided into two parts. The first part is called coarse local-
ization. This is also known as visual analysis. The second
part is point localization. This step quantitatively deter-
mines the near exact location of the source(s) with minimum
error.
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FIGURE 6. (a)Experimental setup. The experimental bucket is connected with an AD converter through 32 sensors. The AD converter
helps to record real-time data on the computer. The computer is also the controller for the source supply. The amplitude and
frequency details are maintained as shown in Table 1. The amplitude and frequencies are controlled through DAQ. For a single
source experiment, only one signal generator remains active. For the multi-source experiment, both sources are active.
(b) Experimental bucket with two signal generators for multisource experiments.

A. COARSE LOCALIZATION
We considered the A25 position as 0 degrees or the reference.
The angle was measured in the counter-clockwise direction.
So, the angular position of the ‘An’ sensor will be

[(n− 1)× 11.25]+ 90 (6)

Here n is the number of the sensor that shows the high-
est signal strength in visual analysis. The simulation result
for a single source is shown in Fig. 7a and 7b. It should

be mentioned that, the source was kept at r = 73mm and
θ = 213.75 degree near sensor A12 and the conductivity of
the medium was 4.35 mS/cm. It is evident from Fig. 7b that
the amplitudes of the signals picked up by the sensors are
greatly dependent on the distance between the sensor and the
source. It can be observed from Fig. 7b that the signal strength
of sensor A11 or A12 is the highest as it is located closest
from the signal source. The signal intensities gradually reduce
on the adjacent sensors as the distances between the source
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TABLE 1. Summary of Sensors, signal amplitude, and frequencies used in the experiment.

TABLE 2. Source positioning.

and the sensors increase. Using Eqn. 6, it can be found that the
source must be located between θ = [202.5, 213.75] degrees
near sensor A11orA12. However, this technique is unable to
specify the radial position of the source. As such, the esti-
mation of source location is not a point but a covered area,
as shown in Fig. 7a and 7b. The ‘‘out-of-range’’ area shown
in the Figs. 7a and 7b refers to the region where a presence of
source within the area is not reliably detectable by the sensor.
For our case, the radius of this ‘‘out-of-range’’ circle is about
50 mm.

For multiple source cases, two different source locations
are considered. In the first case, as shown in Figs. 7d, the
coarse identification process locates the positions of the
sources near sensors A9 − A13 and A12 − A21, respectively.
Similarly, for the second case, as shown in Fig. 7f, the posi-
tions of the two sources are within the areas covered near
A9 − A13 and A9 − A23, respectively. It can be inferred from
Figs. 7d, and 7f that, like the single source case, the highest
amplitudes recorded by the sensors are near the position of
the source. As the distance between the sensor and the source
increases, the amplitude of the signal drops. Such trend in sig-
nal amplitude variation is also clearly visible when multiple
sources are present. As such, the coarse localization method
provides a clear indication that the source is located some-
where within the localized region. However, there is a limita-
tion in the coarse localization method. The method is suitable
for sources that are located relatively far from each other.

TABLE 3. Simulation result for Single-Source case.

In such cases, the two sources only weakly interact with other.
As a result, the signal strengths in the adjacent sensors are
only affected by the nearest source. This is evident in Fig. 7f.
When sources are close to each other, then the sources interact
strongly with each other. Therefore, the signal strengths in
the adjacent sensors are affected by the signals from both
sensors. As a result, the coarse method fails to identify the
approximate areas of any of the sources, as evident from
Fig. 7d. To determine the specific location of the source or
sources, regardless the sources are strongly or weakly inter-
acting, a finer identification technique is required. This is the
basis for our mathematical model based on the LSSLmethod.
The results are discussed in the following section.

B. IDENTIFICATION USING LSSL METHOD
Now that the experimental data is available, the accuracy of
the proposed algorithm can be determined. As mentioned
in the previous section, three general cases are considered
in these experiments, including 1) single source, 2) strongly
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FIGURE 7. Effectiveness of the source identification model for (a), (b) single source near sensor
A12. (c), (d) multi-sources near the sensor A9 and sensor A13 and (e), (f) multi-sources near the
sensor A9 and sensor A3. Note that the actual data point is marked by open circles and estimation
is marked by the symbol ‘*’. Also note the sources in (d) represent strongly interacting sources
whereas the sources in (f) represent weakly interacting sources.

interacting multiple sources and 3) weakly interacting multi-
ple sources. Fig.7 represent the source localization results for
these three cases.

While Fig.7 is only a representation of the source local-
ization, Tables 3, and 4 provide more details regarding the
estimation result of unknown parameters for Single-source
andMulti-Sources case, respectively. This table illustrates the

details in Figs.7a1, 7b1 and 7c1. In this table, it is important
to note that the initial guess for the frequency is significantly
close to the real value. This confirms the effectiveness of the
Lomb-Scargle method in frequency estimation. To demon-
strate the implementation of the Lomb-Scargle algorithm,
Fig.8 is also provided. Moreover, to clarify the accuracy of
the phase and gain estimation, Fig.9 is provided. This figure
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FIGURE 8. Lomb-Scargle Power Spectral Density for two sources with different frequencies.

FIGURE 9. Comparing the measured signal (Fmeas) and the estimated signal result (Fhat).

TABLE 4. Simulation result for multi-source case.

shows the estimated signal in blue and the measured signal in
red. Note that these two signals completely cover each other,
and the only difference is the noise in the measured data.

Comparing the provided results in the mentioned figures
and table illustrate that by increasing the number of sources,
the error of the estimation result increases as well. Two main
reasons describe this observation. First, by increasing the

number of sources, the number of electronic parts increases,
leading tomore significant noise. Secondly, havingmore than
one source means the unknown variables increase while the
amount of the collected signals and the number of sensors
remain the same. This means the measured data might not be
enough to estimate all the unknowns for a large number of
sources.

VI. SUMMARY AND CONCLUSION
In this paper, the problem of source localization is addressed
in detail. The solution is solving the inverse problem where
the data is available, and the source is unknown. We choose
the Least Square Error-based algorithm among all the pro-
posed methods to solve this problem and locate the source of
signals. This algorithm is unique as it is not limited to only
estimating the location of the source. It is shown that other
parameters of the source, such as the frequency and the phase,
can be determined using the present algorithm.
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As described in this paper, a bucket filled with salt and
water is used as an experimental setup. To collect the gen-
erated signals, 32 sensors are located inside the bucket. The
signal is generated in the sinusoidal form with a specific
frequency and location. After collecting the signals, they are
used in the LSSL algorithm to solve the inverse problem and
find the source properties. All the provided figures and the
table in this paper state the presented algorithm’s accuracy.
In terms of the source localization error, the distance between
the source and the estimation results is not greater than 1cm.
Comparing this promising result with similar studies like [27]
implies the added advantage of the LSSL algorithm.

In Conclusion, the Least Square error-based algorithm can
be introduced as an efficient way to solve the inverse problem.
Not only the estimation error is significantly lower than the
other common methods, but other features like frequency
can also be estimated along with the source localization.
This study paves the way for further study in signal source
localization where significantly large number of sources are
present and a non-invasive method is essential for source
detection. In other words, in applications where only a for-
ward problem is not practical, this inverse problem method
can provide a reliable solution.
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