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ABSTRACT Gliomas are the most common and aggressive form of all brain tumors, with medial survival
rates of less than two years for the highest grade. While accurate and reproducible segmentation of brain
tumors is paramount for an effective treatment plan and diagnosis, automatic brain tumor segmentation is
challenging because the lesion can appear anywhere in the brain with varying shapes and sizes from one
patient to another. Moreover, segmentation is only done by analyzing pixel intensity values of surrounding
tissues, and the diffusing nature of aggressive brain tumors makes it even more challenging to delineate
tumor boundaries. Nevertheless, deep learning methods have superior performance in automatic brain tumor
segmentation. However, their boost in performance comes at the cost of high computational complexity. This
paper proposes efficient network architecture for 3D brain tumor segmentation, partially utilizing depthwise
separable convolutions to reduce computational costs. The experimental results on the BraTS 2020 dataset
show that our methods could achieve comparable results with the state-of-the-art methods with minimum
computational complexity. Furthermore, we provide a critical analysis of the current efficient model designs.
The code for this project is available at https://github.com/tmagadza/partialDepthwiseNet.

INDEX TERMS Brain tumor segmentation, deep learning, depth-wise separable convolution, magnetic

resonance imaging, 3D U-Net.

I. INTRODUCTION
Gliomas are adults” most common primary tumors. Although
their exact causes are still a mystery [1], risk factors include
exposure to ionizing radiation and a family history of tumors.
These tumors can appear anywhere in the brain with varying
shapes and sizes, making them difficult to segment. The
World Health Organization (WHO) has classified the tumors
into four grades, from grade I to grade IV, depending
on growth and aggressiveness. Low-grade gliomas (LGG),
which constitute grades I and II, are less aggressive and have
survival rates of several years. While high-grade gliomas
(HGG) (grade IIT and IV) are much more aggressive and
have median survival rates of less than two years even after
treatment.

Magnetic Resonance Imaging (MRI) has emerged as the
imaging technology of choice for brain tumor diagnosis,
and treatment planning [2]. Non-invasive MRI scans produce
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high-resolution and soft tissue 3D volumes. As depicted in
Fig. 1, more than one MRI slices are used to view different
tumor regions.

In clinical practice, highly trained radiologists do brain
tumor segmentation manually. Although manual segmen-
tation arguably produces the most accurate segmentation
results, it suffers from intra, and inter-rater variability [2],
[3]. Moreover, it is tedious and time-consuming, and results
depend on the radiologist’s experience and knowledge.
To this end, manual segmentation is mainly used for visual
inspection and is a gold standard for semi-automatic and fully
automatic segmentation.

Meanwhile, automatic segmentation methods require little
to no human involvement. They have the benefits of being
objective, reproducible, and well-suited for quantitative
assessment of brain tumors. They have shown great potential
in improving diagnosis and treatment planning.

Recently deep learning methods, particularly the Con-
volutional Neural Networks (CNNs) [4], [5], [6], [7], are
being used to automatically analyze brain scans (usually
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FIGURE 1. Examples of different MRI imaging modalities.

MRI scans) due to their record-shattering performance. They
require no feature engineering: they automatically learn
features directly from data. However, these methods have
high memory and computation complexity. Furthermore, they
require a huge amount of training data for better performance,
which is a challenge in medical imaging.

Currently, research efforts in fully automatic brain tumor
segmentation are limited to the available computation
budget [8]. Batch sizes and model complexities are now being
limited to what can fit into the available GPU memory. The
use of 3D MRI volumes with large patch sizes in CNN
models, which were empirically shown to outperform 2D
counterparts, makes it even more difficult, if not impossible,
to train these models.

Therefore, to improve the adoption rate of computer-
assisted diagnosis in clinical setups, especially in developing
countries, there is a need for more computational and
memory-efficient models. Luckily, there has been an increase
of research efforts to optimize the current state-of-the-art
deep learning models in computer vision task [9], [10], [11],
[12], [13], [14].

The contributions of this research work are:

1) We proposed efficient network architecture for 3D
brain tumor segmentation, partially utilizing depthwise
separable convolutions to reduce computational costs.

2) We quantitatively analyze the computational com-
plexity of the proposed method and compare the
segmentation performance with the state-of-the-art.

3) We provide critical analysis of the latest methods that
employ efficient model design.

The rest of the paper is organized as follows: Section II
reviews related work in efficient networks. Section III
describes the proposed architecture for an optimized 3D brain
tumor segmentation. Section IV presents the experimental
results discussed in Section V. Lastly; Section VI provides
concluding remarks.

II. LITERATURE REVIEW AND RELATED WORKS
Brain tumor segmentation is the process of classifying
every pixel in a medical image as a normal or tumorous
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pixel. The process is done before and after treatment
to determine the disease’s progression and evaluate the
effectiveness of the chosen treatment strategy [2]. It is very
challenging to accurately segment brain tumor for several
reasons: (1) segmentation is only achieved by the analysis
of intensity variations between surrounding tissues [2],
(2) brain tumors comes in various shapes and sizes from
one patient to another, (2) aggressive brain tumors often
diffuse into surrounding normal tissues making it even
more difficult to delineate tumor boundaries. Fig 1 clearly
shows that a single imaging modality is insufficient to
delineate tumor boundaries accurately. When done manually,
brain tumor segmentation is tedious and suffers from intra,
and inter-rater variability [3]. Accurate and reproducible
segmentation of brain tumors is critical for effective treatment
planning, diagnosis, and monitoring of disease progression.
In recent years, computer-assisted diagnosis has become
mainstream in assisting medical practitioners in interpreting
medical images [8], [15], [16]. While there are several
methods for the automatic segmentation of brain tumors,
deep learning methods are becoming widespread in the
medical imaging domain [17] due to their resounding
performance. However, the boost in performance comes at
the cost of high computational complexity, as we shall see
later.

Among the deep learning family, U-Net architecture [18]
has emerged as the architecture of choice, primarily for the
semantic segmentation of medical images. The architecture
is composed of downsampling and upsampling paths. The
downsampling path, which resembles a typical convolutional
network, is used for feature extraction. At the same time,
the upsampling path is used to recover the spatial resolution
lost during feature extraction. The network heavily depends
on data augmentation for better generalization. Since its
inception in 2015, the architecture has inspired many
research efforts in medical imaging. In [19], the U-Net
network was improved to take 3D volumes as input to
fully exploit the volumetric data inherent in medical images.
However, volumetric segmentation substantially increases
the computation requirements. Kamnistas et al. [20] proposed
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TABLE 1. A summary of recent works for automatic brain tumor segmentation with computational analysis.

Reference Year Type Batch Epochs Params FLOPS GPU  Input Techniques
size ™M) G) (G)
Chen et al. [29] 2019 3D 12 500 388 27 44 12821282128 Channel grouping, Multi-fiber, Dilated Convolution
Cheng et al. [33] 2020 3D 1 227 12 14421602128 Multitask learning (Multi-branch Decoder)
Peng et al. [30] 2020 3D 1 100 124 121 11 12821282128 Depthwise separable convolution
Nguyen et al. [34] 2020 3D 4 500 1.38 15 16 12821282128 Dilated multi-fiber
Wang et al. [35] 2021 3D 16 8000 15.14 208 192 12821282128 Transformer, self-attention mechanism
Zhou et al. [36] 2021 3D 2 500 17.3 371 8 12821282128 ShuffleNetV2
Luo et al. [37] 2021 3D 10 800 0.29 24 24 12821282128 Hierarchical decoupled convolutions
Jia et al. [38] 2021 3D 4 450 26.07 621 44 12821282128 Combination of single cascaded models
Liu et al. [39] 2021 3D 500 523 36 11 12821282128 Learnable Group convolution and deep supervision
Li et al. [40] 2021 3D 8 500 0.71 10 44 12821282128 Multi-branch sharing network
Xiao et al. [41] 2021 3D 9 900 0.35 31 33 12821282128 Multi-view fusion convolution
Fang et al. [42] 2021 2D 16 50 72.8 38 16 1602160 Self-supervised
Tong [43] 2022 2D 75 0.62 146 16 2002168 Multipath feature extraction
Sun and Wang [44] 2022 2D 50 0.2 29 12 1682200 depthwise convolution
Li et al. [40] 2022 3D 8 500 4.77 151 96 12821282128 Supervised Attention Module
Yang et al. [45] 2022 3D 2 400 5 5 16 12821282128 modality disentanglement
Raza et al. [46] 2022 3D 4 100 3047 374 16 12821282128 Modified UNet
Jia et al. [47] 2022 3D 1 250 1791 450 96 12821282128 Cascaded multi-scale fusion, attention mechanism
Cai et al. [48] 2022 3D 2 277 902 40 12821282128 hierarchical fully connected module
Zhang et al. [49] 2022 3D 1 1000 106 748 64 12821282128 incomplete multimodal learning, Intra-modal Trans-
former
Hu et al. [50] 2022 3D 6 1000 2835 76 22 64264264 Ensemble learning
Subhan Akbar et al. [51] 2022 25D 8 900 0.168 5 11 1621962196  Attention mechanisms, dilated convolution
Liang et al. [52] 2022 3D 4 400 66.7 9 22 12821282128 U-Shaped Transformer network

an ensemble of multiple heterogeneous models (including
the U-Net-based models) for robust semantic segmentation.
Despite winning the BraTS 2017 challenge, their model
is highly inefficient as each model has to be trained
separately. In [21], Wang et al. exploited the hierarchical
nature of brain tumor structures by proposing a cascade of
U-Net models. Isensee et al. [22] incorporated context and
localization modules for better segmentation performance.
Myronenko [23], the winner of the BraTS 2018 challenge,
used an autoencoder to regularize a shared decoder in the
U-Net variant. His model suffered from high computational
complexity due to the large patch size (160x192x128),
standard convolutional operations, and additional overhead
due to the use of an autoencoder. Isensee et al. [7] clearly
showed that a U-Net architecture with minor alterations
can achieve superior performance. However, large patch
sizes (128x128x128) and standard convolutional operations
will result in high computational and memory requirements.
Jiang et al. [6] proposed a cascaded U-Net that took advantage
of the hierarchical nature of brain tumor substructure.
Despite winning the BraTS 2019 Challenge, their model is
still computationally expensive. Zhao et al. [4] exploited
various heuristics in data processing, model designing,
and optimization to improve segmentation performance.
Their work came second in the BraTS 2019 Challenge.
Isensee et al. [24], the winner of BraTS 2020 challenge,
used the nnU-Net framework [25] with BraTS specific
modifications in post-processing, region-based training, and
data argumentation demonstrating the competitiveness of the
U-Net model. The models that follow the encoder-decoder-
like structure, as in the U-Net have achieved state-of-the-art
performance. However, most of the works focused mainly on
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improving the segmentation performance and the expense of
the computational complexity. In this work, we introduced
yet another U-Net model that follows on the works by
Myronenko [23] and Ellis and Aizenberg [26] for a more
efficient volumetric segmentation.

To learn recent trends in efficient model design for brain
tumor segmentation, we performed a Google Scholar search
for recent works with efficient in their title or mentioned
FLOP in their body for a period from 2018 to 2022.
Fig 2. depicts the results of the search. The figure clearly
shows that of 1630 works for brain tumor segmentation,
only 39 (2%) reported on the computational complexity of
their methods. Surprisingly, of 44 works with efficient in
their title report, only 8 ( 18%) reported on the compu-
tational efficiency of their models. These results indicate
that the majority of works emphasize more on improving
segmentation performance while sacrificing computational
costs.

In Table 1, we summarized the works that provided an
analysis of the computational complexity of their methods
which is measured by the number of parameters, floating-
point operations per second (FLOPS), and the GPU memory
requirements for a given model. From the table, most works
for the period use 3D patches with input size cropped from
240x240x155 to 128x128x128 pixels to fit on the GPU
memory. The batch size depends on the available GPU
memory. Since a large patch size consumes much of the
memory, the researcher has to make the trade-off between
increasing the batch size and reducing the input patch size,
which in turn hurts the segmentation performance [23].
Another way is to maintain the large patch size and increase
the number of GPUs. In reality, most researchers have a very
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FIGURE 2. Results of Google Scholar searches for a period from 2018 to
2022 for articles with the following search queries: brain tumor
segmentation [in title], brain tumor segmentation [in title] & flop [in all
fields), brain tumor segmentation efficient [in title] and brain tumor
segmentation efficient [in title] & flop.

tight computational budget. We have observed that several
works [27], [28], [29], [30] exploited channel grouping to
minimize the interaction between the feature maps when
performing convolutional operations, thereby the reducing
the number of parameters and FLOPs.

Our work is inspired by depthwise separable convolutions
introduced by Sifre and Mallat in [31] and subsequently
used to improve the efficiency and reduce the model size
of 2D convolutional networks in [10] and [9]. Furthermore,
we extensively use residual connections introduced by
He et al. [32] to improve the flow of gradients in deep
networks.

lll. METHODS AND TECHNIQUES

A. STANDARD CONVOLUTION

Consider the input feature maps I € R™>W*4X¢ where
h, w, d, and ¢ are the height, width, depth and number
of channels of the input feature maps respectively, and the
convolutional kernel K € RK*kxkxexn where k is the size
of the convolutional kernel and # is the number of output
channels. The operation of a standard convolutional layer
0 € R>wxdxn — K 4T s given by:

c k
o0, x,z. )= Y Kv,wij.
1

i=1 u,y,w=

Iy+u—1,x+v—-1,z+w—1,0). €))]

where |l <y <h 1l <x<w1<z<d,1 <j<nThe
computational complexity of a convolutional layer in terms
of the number of multiplications is

nek>hwd. 2)

The complexity of the standard convolution is cubic, with
the kernel size limiting the kernel size of most CNN in
medical image analysis to 3 x 3 x 3.
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B. DEPTHWISE SEPARABLE CONVOLUTION
The depthwise separable convolution splits the standard
convolutional operation into depthwise and pointwise convo-
lutions. First, it independently applies a spatial convolution
to each input channel. It then performs a 1 x 1 convolution to
combine the results. A standard convolution performs these
operations in a single pass. Factorization of the convolutional
operation has the benefit of improving efficiency and
reducing the model size.

Depthwise convolution with one filter per input channel
can be expressed as

k
Op(y,x,z0= Y Kpu,v,w,0).

u,v,w=1

Iy+u—1,x+v—-1,z4w—1,¢). 3)

where Kp € R¥*kxkx¢ ig the depthwise convolutional kernel
where the ¢y, filter in Kp is applied to the ¢y, channel in I to
produce the ¢y, of the output feature map Op € R/*Wxdxc,
The computational cost of the depthwise convolution is:

ck3hwd. 4)

whereas a pointwise convolution can be expressed as:

O(.x,z.m) = Y _Kp(i,mOp(y. x, 2. ). Q)
i=1

where Kp e RIXIXIxexn g the pointwise convolutional
kernel. The computational complexity of this operation is,
therefore:

nchwd. (6)

The combination of depthwise convolution and pointwise
(1 x 1) convolution is called the depthwise separable
convolution. The computational complexity of the depthwise
separable convolution is

ck*hwd + nchwd. @)

C. MODEL ARCHITECTURE

Our work follows a 3D U-Net [19] structure as shown
in Fig. 3. The network is made up of five layers, with
two ResNet-like [32] style convolutional blocks in both the
encoding and decoding path. The encoding path takes in a
random four-channel 3D MRI patch with a receptive field
of 128 x 128 x 128. Each layer along the encoding path
reduces the spatial resolution by half using stride convolution
and doubles the number of the channels starting with a base
width of 32 channels. As in [26], each residual block consists
of two consecutive convolutional blocks performing group
normalization, followed by rectified linear unit activation,
and a 3 x 3 x 3 convolution (see fig 5a).

Along the decoding path, each layer reduces the number of
feature maps by half before upscaling the spacial resolution
using trilinear interpolation and concatenates the result with
gated high-resolution feature maps from the encoding path.
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FIGURE 3. Schematic visualization of the network architecture. Input is a four-channel 3D MRI crop, followed by double residual modules with a base of
32 filters. The bottom three layers replaced all the convolutional blocks in residual modules with depthwise separable convolutions. Skip connections are
rescaled by learned weights from the attention module. The network’s output has three channel segmentation maps (with the same spatial resolution as

the input) followed by the sigmoid activation function. (adapted from [18]).

In the last layer, the network uses a 1 x 1 x 1 convolution
to reduce the number of feature maps to three, followed by a
sigmoid activation function.

To improve the computational efficiency of the network,
one can replace all the standard 3 x 3 x 3 convolutions
in residual modules with depthwise separable convolutions.
However, empirical studies reviewed that the group convo-
lutions in PyTorch! deep learning framework, which models
3D depthwise separable convolutions, tend to use more GPU
memory than standard convolutions. Therefore, to allow our
network to fit available GPU memory, we only replaced the
bottom three layers of the network with depthwise separable
convolutions. Fig 5b depicts the structure of the depthwise
separable module.

D. ATTENTION MECHANISM

In deep learning, the attention mechanism forces the network
to focus more on certain input parts while suppressing the
rest. We adopted the spatial attention [53] on skip connections
to enhance salient feature responses and suppress noisy
ones before concatenating with feature response from the
decoding path. The module combines feature responses from
the skip connections and the decoding path to learning
gating weights and then applies them to the skip connections
feature responses. See Fig. 4 for the structure and operations
performed by the spatial attention module.

1 https://pytorch.org/
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FIGURE 4. Illustration of the spatial attention module with two inputs X
(skip connection) and G (gating signal from coarse scale). The module
outputs weighted feature responses from the skip connections.

E. LOSS
‘We use the multi-class soft dice loss:
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FIGURE 5. Comparison of different convolutional blocks incorporated in the network.

where Ly, € R is the mean loss across c classes, yyye €
chnxhxwxd is the ground truth, Virue € chnxhxwxd is the
predicted segmentation maps, and € is a small value to prevent
division by zero.

F. DATA AUGMENTATION

Data augmentation is an effective technique to increase
the training dataset, thereby improving model generaliza-
tion ability. In this paper, we apply data augmentations
techniques that are relatively easy to implement and have
low computational complexity. Specifically, we adopted the
data augmentation scheme of Ellis and Aizenberg [26].
Random Gaussian noise and blurring were applied to input
images with a 50% probability per training iteration. Input
images were independently randomly scaled on each axis,
with a standard deviation of 0.1 and a 50% probability per
training iteration. Moreover, images were randomly flipped
and translated independently of each direction.

IV. EXPERIMENTS AND RESULTS

A. DATA AND IMPLEMENTATION DETAILS

We used BraTS 2020 [2], [54], [55] dataset with 369 train-
ing and 125 validation subjects. Each training subject
contains native (T1), post-contrast T1-weighted (T1Gd),
T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR) volumes, along with manually labeled
tumor segmentation maps. The validation set contains all the
multimodal scans except the ground truth annotations, as in
the training set. We evaluated the performance of our model
on the validation set through submissions of segmentation
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TABLE 2. Comparative performance of the baseline and proposed model.
Average computational requirements for each model trained for
100 epochs.

Model Size  Training Pred Params FLOPs
(MB) Time  Time M) (G)
() ©)

3DU-Net [26] 268 8.6 14 23 828
Proposed (with att.) 26 6.8 1.3 6.9 617
Proposed (without att.) 25 6.8 1.3 6.7 616

Best values are shown in bold. att. - attention mechanism.

maps to the BraTS challenge online portal.” All the scans in
both the training and validation sets were co-registered to the
same anatomical template, interpolated to the same resolution
(1mm?), and skull-stripped.

Our network was implemented in Pytorch? using an open
source deep learning framework* [26]. We used the Adam
optimizer with an initial learning rate of « = le — 4, which
was decreased by a factor of 0.5 every time the validation
loss plateaued for 20 epochs and a weight decay of le — 3.
The batch size was 2. We trained our network on an NVIDIA
Tesla V100 16GB GPU. The code for this project is available
at https://github.com/tmagadza/partialDepthwiseNet.

B. SIZE AND SPEED

In Table 2, we compare the size and speed of the baseline
model and the proposed method. We used the network

2https :/fipp.cbica.upenn.edu/
3 www.pytorch.com
4https:// github.com/ellisdg/3DUnetCNN
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TABLE 3. Ablation analysis of our proposed network on the

BraTS 2020 Validation set in terms of Dice Similarity Coefficient. All
models were trained for 100 epochs. ET - Enhancing tumor, WT - Whole
tumor, TC - Tumor core. BL - baseline model, DS - Depthwise separable
module, AT - attention module, WD - Weight decay, Ensemble10 - An
ensemble of 10 models. {: 5 fold cross-validation. *: Input size of

96 x 128 x 80.

Dice Similarity Coefficient

Model ET WT TC Mean
BL 0.7492  0.8934  0.8190  0.8205
BL+DS 0.7589  0.8958  0.8160  0.8236
BL{+DS 0.7692  0.9020 0.8190  0.8301
BL+DS+AT 0.7486  0.8975 0.8084  0.8181
BL*+DS+AT 0.7622  0.8958  0.8199  0.8260
BL+DS+AT+WD 0.7744 0.8976  0.8238  0.8319
Ensemble10 0.7745  0.9042  0.8286  0.8357

Best values are shown in bold, and underlined are second best.

architecture proposed by Ellis and Aizenberg [26] as the
baseline model. All the models were trained for 100 epochs.
Our model outperforms the baseline model in all metrics.
The proposed model substantially decreases the model size
and parameter count by roughly 90% and 70%, respectively.
Moreover, it needed lesser time to complete 100 epochs of
training. Removal of the attention mechanism barely reduces
the computational complexity of the proposed method.

C. ABLATION STUDY

We performed an ablation analysis to determine the per-
formance contribution of each component of the proposed
network. We trained each model for 100 epochs on the BraTS
2020 validation set while maintaining all other network
parameters constant. To improve segmentation performance
on the enhancing tumor, we replaced all enhancing tumor
voxels with necrosis if the total number of predicted voxels
were less than a threshold of 300 voxels. We refer to the
stripped-down version of our proposed model as a baseline.
To maintain consistency with other previous works, we only
report on metrics computed by the online evaluation platform
(https://ipp.cbica.upenn.edu/).

Table 3 shows the Dice Similarity Coefficient results on
the BraTS 2020 validation set. The performance of the
baseline in all regions was quite strong. Adding depthwise
separable modules improved the dice scores marginally for
the enhancing and whole tumor regions. We observed more
gain when we trained the model with 5-fold cross-validation.
Adding the attention mechanism decreased dice scores for
the enhancing tumor and tumor core regions. However,
by reducing the receptive field to 96 x 128 x 80, we observed
an interesting boost in dice scores for the enhancing tumor.
Applying L2 weight regularization to the proposed model
resulted in good segmentation performance in all tumor
regions. Moreover, there was an increase in performance
by creating an ensemble of 10 models ( 5 single models +
5 models resulting from 5-fold cross-validation) aggregated
by hierarchical majority vote.

Table 4 reports the performance of the proposed network
as measured by the Hausdorff distance (95%) metric.
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TABLE 4. Ablation analysis of our proposed network on the

BraT$S 2020 Validation set measured by Hausdorff distance (95%). All
models were trained for 100 epochs. BL - baseline model, DS - Depthwise
separable module, AT - attention module, WD - weight Decay,
Ensemble10 - Ensemble of 10 models. : 5-fold cross-validation. *: Input
size of 96 x 128 x 80.

Hausdorff distance (95%)

Model ET WT TC Mean
BL 2249  6.22 13,55 14.09
BL+DS 2795 6.09 10.78 14.94
BL{+DS 2779 590 9.95 14.55
BL+DS+AT 3332 644 7.54 15.76
BL*+DS+AT 2233 551 7.19 11.68
BL+DS+AT+WD 29.82  6.78 7.36 14.65
Ensemblel0 25.07 5.61 7.10 12.60

Best values are shown in bold.

TABLE 5. Mean performance metrics on BraTS 2020 Validation dataset of
our proposed method as compared to the state-of-the-art methods in
terms of dice similarity score. We trained our model for 400 epochs. ET -
Enhancing tumor, WT - Whole tumor, TC - Tumor core. Ensemble of

10 models.

Dice
Method ET WT TC Mean
Isensee et al. [S56] 0.7989 09124 0.8506 0.8540
Jia et al. [38] 0.7875 09129 0.8546 0.8517
Y. Yuan [57] 0.7927 09108 0.8529 0.8521
Wang et al. [58] 0.7873  0.9009 0.8173  0.8352
Ensemble10 (ours) 0.7745 0.9042 0.8286 0.8357

Best values are shown in bold

Interestingly, our proposed model trained with small input
patches outperformed all models, including the ensemble
of 10 models in all tumor regions. We observed a reduced
Hausdorff distance in tumor core regions due to attention
mechanism and weight regularization. The ensemble of the
model did not yield many expected benefits save for the tumor
core regions only.

Fig. 6a and 6b show the box plots results of the proposed
methods on BraTS 2020 validation dataset. It can be seen in
Fig. 6a that the predictions of our method in all metrics are
left-skewed, indicating that the predictions are concentrated
in higher areas. The model shows a very high ability to
predict background voxel very well. The plots also show very
low fluctuations in the whole tumor predictions, indicating
segmentation of whole tumor regions is fairly easy. On the
other hand, our model exhibit comparatively high variability
in the sensitivity of the enhancing tumor. Fig 6b shows that
our model has very low variability in terms of the Hausdorff
distance (95%) metric.

D. COMPARISON WITH THE STATE-OF-THE-ART

Table 5 reports on the dice similarity score performance of
our models trained for 100 epochs against previous methods
using the BraTS 2020 dataset. The online evaluation platform
computed all metrics. No single model outperformed all
methods in all metrics. Our model ensemble performed better
than the method proposed by Wang et al. [5] overall and in
both the whole tumor and the tumor core regions.
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FIGURE 6. Box plots for the BraTS 2020 Validation results of our proposed method.

TABLE 6. Mean performance metrics on BraTS 2020 Validation dataset of
our proposed method as compared to the state-of-the-art methods in
terms of Hausdorff distance (95%). We trained our model for 400 epochs.
ET - Enhancing tumor, WT - Whole tumor, TC - Tumor core. BL - baseline
model, DS - Depthwise separable module, AT - attention module,
Ensemble10 - Ensemble of 10 models. *: Input size of 96 x 128 x 80.

Hausdorff95
Method ET WT TC Mean
Isensee et al. [56] 2350 3.69 7.82 11.67
Jia et al. [38] 26.58 4.18 497 1191

Y. Yuan [57] 1820 4.10 599 943
Wang et al. [58] 1795 496 9.77 10.89
BL*+DS+AT (ours) 2233 551 719 11.68
Ensemble10 (ours) 25.07 561 7.10 12.60

Best values are shown in bold.

Table 6 gives an aggregate summary of the performance
of our methods in terms of 95% Hausdorff distance (mm)
against previous methods. Again, no single method outper-
formed all methods in all regions. An ensemble of 11 models
by Yuan [57] achieved the best performance overall. Our
single model trained with small input patches performed
well on this metric again. Specifically, It outperformed the
ensemble of 25 models by Isensee et al. [56] in both the
enhancing tumor and tumor core regions. It also performed
well in the tumor core region as compared to the method by
Wang et al. [58].

V. DISCUSSIONS

Accurate and reproducible segmentation of brain tumors is
paramount for an effective treatment plan and diagnosis.
Deep learning methods have shown promising results as
compared to the inter-rater agreement. While several state-
of-the-art automatic brain tumor segmentation exists in the
literature, most focus on improving segmentation results at
the cost of high computational complexity. Some works tried
to incorporate techniques known to enhance network effi-
ciency, like residual learning [32] in their design. We believe
more emphasis should place on efficient model design as
well. A competitive and lightweight model will result in

VOLUME 10, 2022

cost savings in the long run. For example, the HPC Cluster’
we use to train the model poses a 12h limit for each job.
Moreover, every user falls under a Principal Investigator
who applies for CPU-h resource allocation for their research
programme. Thus, one would prefer the best accuracy under
a limited computational budget. Table 2 clearly shows that
our method needs less time to train and requires just 260MB
of disk space. Often the best-performing models are an
ensemble of multiple models, which will result in more
bandwidth utilization if the trained weights are to be moved
to another location. For example, the nnU-Net model® used
by Isensee et al. [56] to win the BraTS 2020 Challenge,
comprises 25 models, which amount to 2 Gig in compressed
form. In real-life situations where the model is trained is
not usually where it will be deployed. For these reasons,
we have proposed an efficient network incorporating the
depthwise separable modules to reduce the model size and
the parameter number while improving training and inference
speed. Specifically, we replaced the convolution blocks of the
bottom three layers of the U-Net structure with depthwise
separable convolutions. We evaluated the performance of our
network on the BraTS 2020 dataset. Results show that our
model significantly reduced the model size and the number
of parameters by more significant margins than the baseline
model (as shown in Table 1).

As for the segmentation results, our model performed
poorly in dice scores for the enhancing tumor. This is a
common problem [30] that may be caused by an intratumoral
class imbalance since LGG images do not have an enhancing
region. One way of addressing the issue is to replace the
enhancing tumor with necrosis if the prediction of enhancing
tumor class is less than a certain threshold [6]. In Table 4,
we observed substantial improvement in the Hausdorff
distance (95%) score in all tumor regions when we trained our
proposed model with small patch sizes. Moreover, qualitative
inspection of randomly selected predictions on the training

5 https://www.chpc.ac.za/
6https ://zenodo.org/record/4003545#.Y lemJHZBzcc
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FIGURE 7. Qualitative inspections of two randomly selected predictions on the training set. Edema is shown in yellow, necrosis in green, and enhancing
tumor in blue.

set (see Fig. 7) reviews that our model sometimes gives highly The use of model ensemble [2] is known to mitigate the
accurate segmentation and, on the other, performs poorly. problem.
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VI.

CONCLUSION

This paper proposes an efficient model for brain tumor seg-
mentation using partial Depthwise Separable Convolutions.
Our proposed network partially replaced some convolutional
blocks in a standard U-Net structure with depthwise separable
blocks. The experimental results on the BraTS 2020 dataset
show that our methods could achieve comparable results with

the

state-of-the-art methods with minimum computational

complexity. Additionally, we have provided an extensive
computational analysis of current methods. In the future,

we

will explore the fusing of multiple resolutions to

capture long-range dependencies to improve segmentation
performance.
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