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ABSTRACT One of the most common causes of mortality for women globally is breast cancer. Early breast
cancer identification could make it possible for people to receive the appropriate treatment to save their lives
and return to their routine lives. Breast cancer diagnosis by histopathology is referred to as the gold standard.
In recent years, convolutional neural network-based techniques are used for breast cancer classification.
However, they faced domain adaptation, small objects retention, and feature extraction issues of complex
microscopic images. In this study, we introducedmulti-scale feature fusion-based domain adaptive model for
breast cancer classification using histopathology images. It has two blocks and six lightweight sub-models
where each block contains three models. Dilated layers are used in sub-models to overcome the disappearing
of small objects in deep layers. Reducing the disappearing of small objects helped to extract better features for
higher performance. Multiple heterogeneous feature extractors are used in this study which helped to extract
various features. Extracted features are fused and reduced by retaining better features. Learning of model
from natural images to complex microscopic images has limitation of domain adaptation. Same domain
transfer learning is used in this study to overcome the limitations of different domain transfer learning.
Model is trained on patchcamelyon17 dataset and weights of this training are further used for same domain
transfer learning. Pre-trained weights are further used for the training of proposed model on BreaKHis
dataset. A number of conventional data augmentation techniques are used as complex models require higher
number of samples for the tuning of weights. Local window based CLAHE contrast enhancement technique
is used to increase foreground-background contrast and remove noise. The proposed model achieved 98.00%
precision, 98.15% recall, 98.08% f-measure, and 98.23% accuracy on test data. To best of our knowledge,
it surpassed state-of-the-art models.

INDEX TERMS Deep learning, convolutional neural networks, breast cancer classification, histopathology
images.

I. INTRODUCTION
According to GLOBOCAN 2020, female breast cancer is the
most common cancer type which surpassed the previous most
common lung cancer. It is 11.7% of all types of cancer cases
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in women with 2.3 million new cases. In terms of mortality
it is the fifth death causing disease in the world with 685,000
number of deaths [1].

Some well-known techniques: fine needle aspiration
cytology (FNAC) [2], magnetic resonance imaging (MRI),
mammography and histopathology are used for screening
and diagnosis of cancer. A pre-trained CNN models were
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used [3], [4] for cancer analysis on mammogram images.
Histopathological images are most widely used for clas-
sification [5]. Histopathology is considered as a challeng-
ing task [6] due to its complexity like cell overlapping,
unusual color distribution and high similarity in images [7].
In histopathology, tissues of patient are taken and then hema-
toxylin and eosin (H&E) stain is applied to highlight nuclei
and other structure of tissues, respectively. It is implemented
to examine tissues of histopathology images at various mag-
nification levels taken through microscopes.

Pathologists apply various manual, time consuming and
costly techniques to correctly diagnose the samples of can-
cerous regions [8]. To overcome these problems, whole slide
histopathology images having information of whole image
or photo-microscope images of small portion of a slide are
taken [9] and computer-aided diagnosis (CAD) systems are
applied. Deep learning models like convolutional neural net-
works (CNNs) which are most rapidly used deep learning
models for image feature extraction and classification [10]
are used. These models motivated the researchers to develop
fast and accurate computer-aided diagnosis (CAD) systems
for different machine learning and image processing applica-
tions. These models are mostly used in age assessment [11],
diabetic retinopathy screening [12], [13], lung cancer [14],
breast cancer [15], skin cancer [16], brain tumor [17], cervical
cancer [18], liver cancer [19], bone disease prediction [20].

Deep learning techniques are used to overcome man-
ual qualitative analysis issue. However, several deep learn-
ing models faced some challenges during classification of
breast cancer histopathology images. One of them is that
histology images have high resolution, so these are divided
into patches which reduces accuracy of classifier. A clas-
sifier may be good for one or more patches, but it is not
necessary for it to be best for whole slide histopathology
image. Another issue of histopathology images is that fea-
tures of one patch do not fully represent the whole image,
so image-wise fusion loses large amount of information.
Dataset is also a challenge for histopathology images. Med-
ical images datasets are not as publicly available as these
are required for deep learning models. Some datasets which
are publicly available have small amount of data [5]. So,
main challenge for researchers is to access database having
efficient and large data to increase validation accuracy [8].
Researchers apply different machine learning and deep
learning techniques for data augmentation. In histopathol-
ogy it is tedious and time consuming to identify images
due to their complexity. Computational techniques have
high false positive and false negative [21] due to low
foreground-background contrast and noise during staining
process. Some other factors are touching boundaries [22]
and mitotic and non-mitotic cells similarities [23] are the
reasons of low accuracy. Another factor of low accuracy is
disappearing of small objects in deep layers of histopathol-
ogy images due to image resizing. Models are unable to
extract features of disappeared objects which degrades their
performance.

In this study, our objective is to extract features of images
based on multi-scale inputs. We used heterogeneous models
to extract different features for better classification of com-
plex images. Mostly, models fail due to less amount of data.
Our objective in this study, is to train models on same domain
to get better weights. Computational cost of deep learning
models is observed as high however, we used lightweight
deep learning models. The contributions of the study are as
follows:

• Several studies identified that performance of multi-
ple models remains high as compared to stand-alone
models in complex microscopic images. Multi-scale
feature fusion of lightweight heterogeneous models is
introduced in the proposed MSF model to extract cell
and tissue level features. Strengths of six independent
lightweight models are fused in term of features to clas-
sify breast cancer histopathology images.

• Dataset is one of the key factors of the perfor-
mance of deep learning model. Data is augmented
twelve times to the original data by using conven-
tional data augmentation techniques. CLAHE is used
for foreground-background contrast enhancement of
complex histopathology images.

• Transfer learning techniques are used for fast and better
performance of deep learning models in image pro-
cessing. It is observed from the literature that transfer
learning from natural images to complex histopathology
images faces domain adaptation challenge. In this study,
same domain transfer learning is used to retrain the
model by using pre-trained weights of patchcamelyon17
dataset.

• Performance of deep learning models degrade in
complex histopathology images due to disappearance
of small microscopic objects in deep layers. It occurs
due to image dimensionality reduction in pooling layers
and convolutional layers having stride more than one.
Dilated layers in the six models are used to reduce the
disappearing chance of small objects in deep layers. The
proposed model outperformed the existing state-of-the-
art models.

Rest of the paper is organized in such a way that section II
is about related work, dataset is described in section III.
The proposed multi-scale feature fusion model is explained
in section IV. Section V is discussing results while ablation
study is discussed in section VI. Conclusion with future work
is enlightened in section VII.

II. RELATED WORK
VGG-16model [24] is used for deep feature extraction. These
features are fed to Support Vector Machine and Random For-
est as input. Different augmentation techniques like rotation,
mirror projection as left-right and top-bottom, gaussian blur
and positive scaling are used. Overall, these augmentations
techniques increased datasets up to 12 times to the origi-
nal datasets. In this study, 5-fold technique is applied for
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training and testing phase and model achieved 97% accuracy,
98.9% area under the curve (AUC). In another study [25],
Convolutional neural network is used to take RGB images
of dimension 32 × 32 or 64 × 64 pixels as input for binary
classification. Images are divided into patches using sliding
windowwith 50%overlapping and randompatches extraction
with no overlapping. To improve accuracy, sum, product
and max fusion rules are applied. Finally, model achieved
90% patient level, and 85.6% image level accuracy for 40×
magnified images of BreaKHis dataset using max fusion rule.

ResHist model [7], inspired by deep residual learning is
proposed for breast cancer histopathological images classifi-
cation. It has 152 layers including 13 residual blocks. This
is fully automatic model with no pre-processing. BreaKHis
dataset is used for validation of the model. To avoid over-
fitting, dataset is augmented using various data augmenta-
tion techniques like stain normalization, patches generation
and affine transformation. These augmentation techniques
increased the dataset eleven times to its standard size. Model
achieved f1-score to 93.45% and accuracy up to 92.52%.
In study [26], combination of transfer learning, deep learning
and GAN is introduced which gained accuracy up to 98.1%.

Several transfer learning techniques [9], [27], [28] are
used to get better results on smaller number of epochs.
In study [9], ten pre-trained CNNs models are utilized for
feature extraction of histopathology images. These different
pre-trained models are fed with input images of 224× 224×
3 to 299 × 299 × 3 pixels resolution where actual size
of 700 × 460 × 3. Six non-overlapping patches of size
224 × 224 × 3 are given as input to pre-trained models. Pre-
trained VGG16, VGG19, AlexNe, Inception-v3, GoogLeNet,
inception ResNetV2, ResNet18, ResNet50, and ResNet101
and SqueezeNet are used. These models are used for feature
extraction. After feature extraction through these models, six
different classifiers which are Linear SVM, fine KNN, cosine
KNN, fine tree, bagged tree, boosted tree are used. Model
achieved up to 89% patient recognition rate. Similarly in [28],
same and different domain datasets are used to pre-train
hybrid convolutional neural network model. As compared to
different domain transfer learning, in same domain transfer
learning model achieved higher accuracy as model learned
better features from similar types of images.

Parallel combination of DenseNet and a recurrent neural
network (RNN) is introduced [29] for RGB features extrac-
tion. In this study, switchable normalization (SN) technique
is used for image normalization which combined batch nor-
malization, layer normalization and instance normalization.
Proposed model gained an accuracy of 92%, 98.3% and
97.5% on BATCH2018, Bioimaging2015 and extended
Bioimaging2015 datasets, respectively. Similarly, convolu-
tional neural network (CNN) classificationmodel is proposed
[8] which has two branches; single-task classifier and multi-
task classifier. Single-task classifier is just used to classify
input images into cancerous and non-cancerous. On the other
hand multi-task classifier provides magnification level infor-
mation along with classification. Model has average accuracy

of 83.25% which is not as good as to use for clinical purpose.
FE-BkCapsNet [30] is introduced, which is the combination
of CNN and capsule network (CapsNet). Purpose of CNN is
to highlight semantic and purpose of capsule network is to
give information about position of objects.

In study [31], GoogLeNet, VGGNet and ResNet mod-
els are used for feature extraction. Extracted features are
provided to a fully connected layer for binary classifica-
tion of histopathology images using average pooling. The
proposed model gained an accuracy of 97.525% for two
classes: benign and malignant. In study [32], hybrid deep
learning model is used to solve class imbalance problem.
Patches of size 224 × 224 × 3 are provided to pre-trained
ResNet50 for feature extraction. Feature vector of each patch
of an image is inputted to kernelized weighted extreme
learning machine (KWELM) which provides weights to
each feature of all instances. Instances of minority class are
assigned high weights and and low weights are assigned
to majority class instances. This model achieved accuracy
up to 90.02%. Nucleus guided transfer learning framework
is proposed in study [33] where five different pre-trained
models: ResNet-18, ResNet-50, ResNet-101, GoogleNet, and
AlexNet are used for feature extraction. After feature extrac-
tion, svm classifier is used at the end of each feature extractor.
Output of all svmmodels is fused on belief based to get single
result. This framework achieved 96.91% accuracy, 96.18%
specificity, 97.28% sensitivity.

Several approaches including [34], [35], [36], [37],
and [38] are introduced for classification of histopathology
images based on feature fusion and decision fusion. Multi-
scale CNNs-based EMS-Net [34] is proposed for the clas-
sification of histopathology images. In this approach, input
images are divided into three scales; images of original
scale, resized images of 448 × 336 and 296 × 224 pixels
dimensions. After multi-scaling, patches of 224× 224 pixels
are extracted from all three scales, separately. Pre-trained
ResNet-152, DenseNet-161, and ResNet-101 are used to
extract features from the input patches. It used both feature
fusion and decisoin fusion based approaches. This model
obtained 91.75% offline images accuracy in the five-fold
cross validation and for online dataset it has 90.00% accuracy.
Performance of the model remained low on patches that were
extracted from large-scale images. In study [35], patches of
size (128 × 128) and (512 × 512) are generated for cell and
tissue level features extraction, respectively. ResNet50 mod-
els are trained on both types of patches in parallel. P-norm
pooling is used to collect extracted 2048-dimensional features
group. Extracted features from both types of patches are used
for the training of svm classifier. Thismodel achieved 88.89%
accuracy on the test dataset. In another study [36], pre-trained
VGG16 model is used to classify breast cancer histopathol-
ogy images. Part-level and whole-level input images are used
to extract foreground and background features. In part-level
block, patches of 224 × 224 are used while in whole-level
block, images are initially resized to 224 × 224 and then
used as input. Whole-level inputs are used to extract features
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FIGURE 1. (A, B, C, D) are benign class images having magnification levels
(40×, 100×, 200×, 400×) respectively and (E, F, G, H) are malignant class
images having magnification levels (40×, 100×, 200×, 400×) respectively.

missed by the part-level inputs. SVM classifier is used to
classify the input images into four classes. Model achieved
92.2% accuracy on BACH dataset. Gecer et al. [38] con-
cluded in their study that whole-level approaches are bet-
ter as compared to patch-level approaches. They identified
that patch-based biasness of model may affect its overall
performance on the whole image. In study [37], decision
fusion technique based on majority voting is used in pre-
trained multi-CNN models for image classification. Feature
fusion is considered a better approach as compared to other
fusion approaches. In feature fusion, decision is performed
by depending on the rich features of all models which are
involved in the decision of classification model. Interdepen-
dency of models during feature fusion make it superior over
other fusion approaches.

III. DATASET
BreaKHis dataset is used for the validation of the proposed
MSFmodel. BreaKHis dataset having histopathology images
is introduced by spanhol [6]. Histopathology images
regarding this dataset are collected between January and
December 2014 for breast cancer classification. It contains
7909 histopathology images of 82 patients. Out of 82 patients,
24 belongs to benign and 58 have malignant class. BreaKHis
dataset has two classes benign and malignant. Both classes
are further divided into four sub-classes. Sub-classes of
benign are adenosis, fibroadenoma, phyllodes tumor, and
tubular adenoma andmalignant has ductal carcinoma, lobular
carcinoma, mucinous carcinoma, and papillary carcinoma
sub-classes. These images are taken through Olympus BX-50
microscope with a 3.3× magnification relay lens with
SCC–131AN. Images of this dataset have four; 40×, 100×,
200× and 400× magnification levels. Images of this dataset
are RGB colored portable network graphics (PNG) images of
24-bit color depth and size 700 × 460 pixels. It is a publicly
available dataset [39]. Detailed overview of dataset is shown
in Table 1. In Figure 1 represents images of various types at
different magnification levels.

IV. PROPOSED MULTI-SCALE FEATURE
FUSION (MSF) MODEL
The multi-scale feature fusion (MSF) model is proposed in
this study. Histopathology images are complex in structure

TABLE 1. Images distribution by class and magnification level.

due to low difference between foreground and background.
Several other reasons of image complexity are blurry
boundaries of nuclei, and occluded nuclei. This complexity
increased due to poor staining process of histopathology
images. So, transfer learning from one domain to breast
histopathology causes domain adaptation issue. In this study,
MSF has applied same domain transfer learning to overcome
the domain adaptation issue. Contrast limited adaptive his-
togram equalization (CLAHE) which is a contrast enhance-
ment technique is used as pre-processing step to overcome
the complexity of histopathology images. Unavailability of
large dataset in breast histopathology is another issue. In the
proposedMSF, rotation, flipping, and scaling are used as data
augmentation techniques. Disappearing of small objects in
deep layers is an issue of deep learningmodels. Dilated layers
in six heterogeneous multi-models are used to retain small
objects in deep layers.

Performance of any model depends upon features extrac-
tion. A better features extractor helps the classifier to identify
true classes of inputs. The proposed MSF model has total
six feature extractors which are divided into two blocks.
It has utilized two scales 224 × 224 × 3 and 512 × 512 ×
3 as inputs. Feature extractors of the MSF model are divided
into two blocks. Block 1 has three feature extractors: modi-
fied ResNet101-1, modified EfficientNetB3-1, and modified
DenseNet121-1. Each feature extractor in block 1 takes input
of 224 × 224 × 3 dimensions. Whereas in block 2, modi-
fied ResNet101-2, modified EfficientNetB3-2, and modified
DenseNet121-2 take input of 512 × 512 × 3 dimensions for
features extraction. The purpose of using multi-scale inputs
is to extract those features which are not possible for a
stand-alone model to extract using single input scale. Size of
input images affects the performance of models. Similarly,
a lot of improvement is seen in hybrid and ensemble models
as compared to stand-alone feature extractor. The MSF is
capable enough to cope with the issue of image complexity.
Finally, extracted features are fused and reduced in feature
concatenation and convolution layers, respectively. Fused
features are further passed through three fully connected
layers for feature engineering and image patterns recognition.
Structure of the proposed MSF is given in Figure 2.

A. DOMAIN ADAPTATION
Transfer learning is used to overcome the unavailability of
large dataset. It is also useful for fast training of the model.
It is used to achieve better results with less epochs. Transfer
learning from other domain to histopathology images cause
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FIGURE 2. The proposed Multi-Scale Feature Fusion (MSF) model for breast cancer classification.

domain adaptation issue. This issue occurs due to differences
in between natural images of ImageNet dataset and micro-
scopic images. Natural images have various object types and
size while microscopic objects have small size and similar
shapes. Therefore, the MSF model has used same domain
transfer learning to overcome domain adaptation issue. The
proposed model is trained on Patchcamelyon17 dataset from
scratch. It is a time taken task however, it provided sig-
nificant improvement in performance. Model is trained on
Patchcamelyon17 dataset for 100 epochs to achieve weights
of same domain. Patchcamelyon17 is a binary class breast
cancer classification dataset. Pre-trained weights of same
domain are further used for the training of the MSF model.

B. PRE-PROCESSING AND DATA AUGMENTATION
Contrast enhancement is one of the important tasks for image
quality enhancement. Contrast in histopathology images is
mostly low between foreground and background. It could be
due to poor staining process or weak quality of microscope
for image acquisition. Histopathology images are complex,
blurry, and occluded. The proposed MSF model is experi-
mented over histogram equalization (HE), adaptive histogram
equalization (AHE) and clahe as image enhancement tech-
niques. HE and AHE works on global features by applying

changes in images using global window. Clahe is a small local
sliding window-based image enhancement technique. It pro-
vided satisfactory results as compared to other experimented
techniques. The principle focus of contrast enhancement is
to increase contrast between nuclei and background. There-
fore, clahe is adopted as pre-processing step for image qual-
ity enhancement. Clahe is the alternative of AHE. Contrast
in clahe is limited due to small size of window. In clahe,
threshold and tile/window size are two important parame-
ters. Threshold is used to limit the contrast. In the proposed
MSF model, threshold of three is used. Tile size is another
parameter of clahe which determines the size of patch which
is used for contrast enhancement in an operation. The MSF
model used (8, 8) sized window for contrast enhancement.
It use small window for contrast enhancement therefor it is
a limited contrast enhancement technique. It is useful for
images having small objects in them.

To overcome the unavailability of large dataset, two tech-
niques are used. In the first technique, weights of same
domain are achieved for same domain transfer learning, and
in second technique data is augmented. The proposed MSF
model has six sub-models therefore large data helped it for
better performance. So, in this study, conventional data aug-
mentation techniques are used. Rotation at 30, horizontal and
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vertical flips, and scaling from 1.1 to 1.2 are used. These data
augmented techniques increased the BreaKHis dataset up to
12 times of the standard dataset.

C. FEATURE EXTRACTION
In image classification, patch-based and whole-image based
inputs are mostly used. Resizing of whole image has advan-
tages over patch-based approach. In EMS-Net [34], patches
from the whole image as well as from resized image
are used. However, performance of EMS-Net remained
worst on patches extracted from the large-scale image.
Sitaula et al. [36] concluded that whole-image based inputs
are used to extract features that are missed by the patch-
based inputs. Gecer et al. [38] also considered whole-image
based approaches as better over patch-based approaches by
concluding that patch-based biasness of model may affect
its overall performance on the whole image. Therefore,
in the proposed MSF model resizing of whole images is
used instead of patch-based approach as input for feature
extraction.

Feature extraction is one of the factors that affects the
performance of models. Better feature extraction techniques
lead the models toward higher performance. The proposed
MSF model has two feature extraction blocks. Both blocks
have different input scales. There are three heterogeneous
feature extractors in each block. All three feature extractors
in block one take input scale 224 × 224 × 3 whereas 512 ×
512 × 3 is the input scale for block 2. Multi-scale and
multi-model feature fusion techniques are helpful to extract
variety of useful features. All feature extractors are modified
forms of ResNet101, EfficientNetB3, and DenseNet121.

1) MODIFIED ResNet101
Deep models are considered best models for deep feature
extraction, however, plain convolutional neural networks face
vanishing gradient which degrades performance of deep net-
works. Skip connections in ResNet architecture [40] are intro-
duced as shown in Figure 3 to overcome the issue of vanishing
gradient. Stacking feature maps of identity block ‘x’ through
skip connections in ResNet model makes it different from
other models. Layers of plain models are computed using
equation 1while ResNet model has different computation and
output as shown in equation 2. If any layer at any stage faces
performance issue than this skip connection is helpful to over-
come that performance degradation issue as it stacks feature
maps of previous layer. ResNet uses additive method (+) to
add previous layers with the subsequent layers. In equations 1
and 2, ‘w’ are weights, ‘x’ is input feature maps, and ‘b’ is a
bias. ResNet model is lightweight model.

H(x) = f(wx+ b) (1)

H(x) = f(wx+ b)+ x (2)

ResNet101 has 101 layers and four blocks. The modified
ResNet101 has 97 convolution layers, 3 dilated convolution
layers and one max pooling layer. In convolution and dilated

convolution layers, kernel size of 1 × 1, 3 × 3, and 7 ×
7 are used as described in Figure 3. ReLU activation function
is utilized in the MSF model. Fully connected and average
pooling layers are removed from the modified ResNet101
feature extractor. Use of dilated convolution layers is valuable
to preserve the local and the global features of input images.
Multiple dilated layers may affect the structure of input
images. In the modified ResNet101 model, three dilated con-
volution layers are used in different blocks. First dilated layer
is used in conv2_block1, second is used in conv3_block1, and
third is used in conv4_block1. Dilation rate of two is used
in all three dilated convolution layers. Dilated layer is used
after the decrease in image in three blocks to increase size of
objects by preserving their shapes.

2) MODIFIED EfficientNetB3
Various deep learning models are introduced which either
follow depth scaling, width scaling, or resolution scaling. The
depth scaling process involves in sequentially increasing or
decreasing the number of layers in various models. More
layers are frequently used to get more complex features.
However, performance of plain networks often decreases as
their depth is increased. In width scaling, several layers work
concurrently in the form of branches. It is beneficial to obtain
fine-tuned features with comparably less depth. However, the
accuracy of wide networks reaches to saturation as the width
increases. The increase in input resolution is referred to as
resolution scaling. Literature depicts that accuracy of model
increases with resolution. However, after certain resolution,
accuracy is unaffected, and larger inputs also prolong the
computation time of models. Combination of all scales in a
model, solves these issues. EfficientNet is one of the promi-
nent deep learning models. It scales the CNNs in an efficient
way by combining three dimensions: depth scaling, width
scaling, and resolution scaling. This combination makes the
EfficientNet capable to extract complex, and fine-gradient
features. So, the performance of EfficientNet improves by
balancing the combination of its depth, width, and image
resolution.

EfficientNetB3 is modified in the MSF model. Modified
EfficientNetB3 is shown in Figure 4. It has total seven blocks.
It contains stem, three modules, and addition to concatenate
blocks and modules. Stem and modules are further divided
into various layers as shown in Figure 5. Stem is a starting
point of EfficientNet which takes image as input and resize
it into defined size. Input is normalized after rescaling. Zero
padding is applied after normalization. After zero padding
conv2d, batch normalization, and activation function are used
in stem, respectively.

M1, M2, M3 are module 1, module 2, and module 3,
respectively. The modified EfficientNetB3 contains one M1,
six M2 and nineteen repetitions of M3. M1 and every M2 has
M3 as successor. Addition of feature maps is performed after
every M3. M1 is the sequence of depth-wise conv2D�batch
normalization �and activation function whereas M2 is the
sequence of M1 �zero padding �and M1, respectively.
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FIGURE 3. Modified ResNet101.

FIGURE 4. Modified EfficientNetB3.

M3 is the combination of global average pooling �
rescaling �conv2D �conv2D except the modified M3
as shown in Figure 5. In the modified EfficientNetB3,
total four M3 modules are modified including first M3 of
block3, block4, block5 and block6. Modified M3 is the
combination of global average pooling�rescaling�dilated
conv2D�conv2D.

3) MODIFIED DenseNet121
Densely connected convolutional network [41] is introduced
in ILSVRC challenge 2017. DenseNet uses concatenation
method (.) to connect output of preceding layers with subse-
quent layers. In DenseNet, every layer is directly connected
to all next layers so each layer in this model has collec-
tive knowledge of all previous layers. This connection is
helpful to overcome vanishing gradient. Total connections
of DenseNet model can be calculated using the equation 3

where L is the number of layers in the model. This con-
nection is only possible if layers have feature maps of same
dimensions.

TotalConnections =
L(L+ 1)

2
(3)

DenseNet model is divided into dense blocks and tran-
sition layers. Dense blocks contain multiple convolutional
layers with different number of filters but each layer in the
block has same dimensions of feature maps. Dense blocks
in the model have different dimensions so transition layers
are used to downsize the feature maps of previous block to
connect with the next blocks. A transition layer consists of
batch normalization�activation function�convolution 1×
1�drop out layer�and pooling 2× 2 as shown in Figure 6.
This model extracts diversified features as every layer in this
model takes feature maps from all previous layers. It is faster
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FIGURE 5. Modules of modified EfficientNetB3.

FIGURE 6. Modified DenseNet121.

and memory efficient due to a smaller number of additional
channels.

Modified DenseNet121 has 116 convolution layers, four
dilated convolution layers, and four pooling layers. First con-
volution layer of modified DenseNet121 has 7 × 7 kernel
size with stride of two. All other convolution layers including
the dilated convolution layers have stride one and 1 × 1,
3× 3 kernels’ size. The modified DenseNet121 has total four
blocks. In the modified model, total four dilated layers are
added, one in each block. Every block starts with convolution
layer having kernel size 1 × 1. Second layer of each block
is modified to dilated convolution layer with kernel size of
3 × 3 with dilated rate of two. Dilated layers are added

to extract detailed local features. It is helpful to increase
small patterns in images by decreasing the probability of
disappearing of important information. First pooling layer of
modified DenseNet121 is a max pooling layer having kernel
size of two and other three layers are average pooling layers
with kernel size 2 × 2 and stride of two.

D. FEATURE FUSION AND CLASSIFICATION
Regarding the fusion, decision fusion and feature fusion can
be the good consideration. Decision fusion is late fusion
which could be based on average voting, maximum voting,
or majority voting whereas feature fusion is mostly used early
fusion technique. Effective integration of features in feature
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fusion technique makes it superior over decision fusion tech-
nique. Feature fusion is concatenation of feature extracted
from variousmodels, hence weak features of onemodel could
be covered with the rich features of other models. In decision
fusion, all models make independent decision based on their
own features. These features could be weak which may affect
the overall decision of the model. However, in feature fusion,
modelsmake decision based on rich features of all fusedmod-
els so, interdependency of models in feature fusion makes
them superior over the other fusion techniques. Therefore,
feature fusion technique is used in the proposed MSF model.

Features from the six sub-models are extracted in the
proposed MSF model. Purpose of using heterogeneous
multi-models is to extract diverse features for better perfor-
mance. Features of all six models are fused using concate-
nation function. Dimensions of features are reduced during
concatenation process to remove redundant features. This
process is helpful to reduce computational time. Featuremaps
are further provided to convolution layer that has kernel size
3× 3 and stride of two. Output of convolution layer is further
provided to sequence of three fully connected layers. These
layers are further used to refine the features of multi-models.
Finally, SoftMax layer is used to classify input data into two
class breast cancer classification. The proposed MSF model
is implemented on BreaKHis dataset which represents benign
as normal images and malignant as cancerous images. Green
circle of Figure 2 represents benign class whereas red circle
indicates the malignant class.

V. RESULTS AND DISCUSSION
The MSF model is implemented in python programming
language. The proposed model is trained for 100 epochs on
BreaKHis dataset. Data is divided into 70%, 20%, and 10%
for training, validation, and testing of the proposed model,
respectively. Results of the proposed MSF model are dis-
cussed and compared with other existing studies.

A. EVALUATION METRICS AND COMPLEXITY OF MODEL
Performance of the MSF model is measured using precision,
recall, f-measure and accuracy, evaluation metrics as shown
in following equations 4, 5, 6, and 7.

Precision =
TP

TP + Fp
(4)

Recall =
TP

TP + FN
(5)

F−Measure =
2 ∗ precision ∗ Recall
precision+ Recall

(6)

Accuracy =
TP + TN

TP + TN + FN + TN
(7)

F-measure is calculated on the basis of precision and recall.
Precision and recall rely on the values of correctly classified
samples. True positive (TP) are correctly classified samples.
False positive (FP) samples are those samples which are clas-
sified as cancerous images while these were non-cancerous.
False negative (FN ) are considered as non-cancerous while

these were cancerous. True negative (TN ) are correctly clas-
sified samples.

Time Complexity of any model depends on the number of
arithmetic operations performed by it for an image during
forward pass operation. Input size, image channels, padding,
stride, filter size, number of layers, and layer type are the
factors that affect the number of operations in convolution,
pooling, and fully connected layers. Arithmetic operations
of the convolutional layer are calculated using equation 8 as
given below.

conv_operations = k(cwh+ 1)
(
M− w+ 2pw

sw
+ 1

)
×

(
N− h+ 2ph

sh
+ 1

)
(8)

In all equations ’k’ represents the number of biases and ’c’
is used for the number of channels of both input image and
filters. ’w’, and ’h’ denote width and height of filters used in
different layers, respectively. Width and height of the input
image to any layer is represented with ’M’, ’N’, respectively.
Widthwise or horizontal padding and stride are pw and sw,
respectively. Vertical or heightwise padding is denoted with
ph and stride is denoted with sh. Number of operations per-
formed by any pooling layer is calculated using equation 9.

pool_operations = c(wh− 1)
(
M− w+ 2pw

sw
+ 1

)
×

(
N− h+ 2ph

sh
+ 1

)
(9)

Operations of fully connected flatten layers are calculated
using equations 10.

FC_operations = k(n+ 1) (10)

’n’ in equation 10 represents the number of input neu-
rons whereas ’k’ represents the number of output neurons
or bias connections. Overall operations of any model are
calculated by adding the floating point operations (multi-
plication, addition) of all layers. Total operations of the
model are calculated by the addition of operations performed
in convolutional, pooling, and fully connected (FC) layers
with some extra ’X’ operations using equation 11. Limited
operations are performed in SoftMax and other activation
functions. Normally these extra operations are ignored during
calculation.

Total_operations =
m∑
i=1

conv_operationsi

+

n∑
j=1

pool_operationsj

+

o∑
l=1

FC_operationsl + X (11)
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TABLE 2. Performance of proposed model at different
magnification levels.

B. COMPARISON OF RESULTS AT ALL
MAGNIFICATION LEVELS
BreaKHis dataset has four magnification levels; 40×, 100×,
200× and 400×. The proposed MSF model is trained, val-
idated, and tested on all magnification levels. Precision,
recall, f-measure, and accuracy are used as evaluation met-
rics. The proposed MSF model achieved 98.20%, 98.60%,
97.70%, and 97.20% validation precision at 40×, 100×,
200×, and 400× magnification levels, respectively as shown
in Figure 7(a).
Validation recall of the proposed MSF model is 97.80%,

98.20%, 97.50%, and 97.10% at 40×, 100×, 200×, and
400×magnification levels, respectively which is represented
in Figure 7(b). Magnification levels 40×, 100×, 200×, and
400× have validation f-measure of 98%, 98.15%, 97.73%,
and 97.25%, respectively as shown in Figure 7(c). The pro-
posed MSF model achieved 98.30%, 98.70%, 97.80% and,
97.30% validation accuracy at 40×, 100×, 200×, and 400×
magnification levels, respectively as given in Figure 7(d). The
proposed MSF model achieved highest validation accuracy,
precision, recall, and f-measure at 100× magnification level.
Steep growth in precision, recall, f-measure, and accuracy
of the proposed MSF model for all magnification levels is
observed till forty-five epochs. After forty-five epochs this
increase become smooth till hundred epochs.

The MSF model is tested for all magnification levels.
Results of the proposed model are close to each other for
all magnification levels, but it is observed that it performed
better at 100× magnification level as compared to the other
magnification levels. Highest performances of the proposed
model are at 100×, 40×, 200×, 400× in a sequence. Per-
formance of the proposed model can be observed from the
Table 2. Graphical representation of the proposed model is
shown in Figure 8. Results at 100× are better for the proposed
model so, results at magnification level 100× are adapted and
further used in remaining sections.

C. COMPARISON OF TRAINING AND
VALIDATION RESULTS
The proposed MSF model performed better at 100× magni-
fication level. Model is trained for 100 epochs. Training and
validation results of the model are observed for all epochs.
Precision, recall, f-measure, and accuracy of the MSF model
for training and validation is shown in Figure 9. The MSF
model achieved up to 98.51%, and 98.20% precision for train-
ing and validation data, respectively as shown in Figure 9(a).

TABLE 3. Evaluation results of the MSF model at 100× magnification
level.

Similarly, the model achieved 98.40% training and 98.08%
validation recall, as elaborated in Figure 9(b). F-measure of
the MSF model for training is 98.45% and 98.17% is for
testing as shown in Figure 9(c). Figure 9(d) is showing accu-
racy of the MSF model. It has achieved 99.01% training and
98.70% validation accuracy on BreaKHis dataset. Smooth
increase in the training and validation graphs with the change
of epochs, shows better tuning of the model.

The MSF is tested on 10% of the augmented dataset.
On test data, the model achieved 98.00%, 98.15%, 98.08%,
and 98.23% precision, recall, f-measure and accuracy, respec-
tively at 100× magnification level. Test results are explained
in Table 3 and graph of test results is presented in Figure 10.
Performance of the model at test data is close to training and
validation performance. It indicates that model performed
well for unknown samples.

VI. ABLATION STUDY
Ablation study of the proposed MSF model is conducted to
dive deep insight into the effects caused by variations and
components of the model. The proposed model is compared
with the existing state-of-the-art studies.

A. STRUCTURAL VARIATIONS OF THE MSF MODEL
The MSF model has experimented through five structural
variations during training and validation process. Effects of
each variation over proposed model and their results are
discussed in this section of ablation study. Variation 1 is the
training of model from scratch whereas transfer learning is
used in variation 2. The CLAHE, a pre-processing technique
is used in variation 3. Same domain transfer learning is used
in variation 4 whereas dilation rates are used in variation 5 to
extract features of small objects in deep layers.

In first variation, theMSFmodel is trained and validated on
augmented BreaKHis dataset from the scratch. In this vari-
ation, pre-trained weights or transfer learning is not utilized.
It is comparatively a slow learning processes which can be
seen as variation 1 in Figure 11(a,b,c,d). Figure 11(a,b,c,d)
has the validation of model in term of precision, recall,
f-measure, and accuracy, respectively. In variation 1, theMSF
model achieved 92.10%, 92.23%, 92.17%, 92.50% testing
precision, recall, f-measure, and accuracy, respectively that
is shown in Table 4.

In variation 2, initially, the MSF model is trained on the
ImageNet dataset for hundred epochs to obtain pre-trained
weights. These pre-trained weights of the model are used as
transfer learning for further training of the MSF model at
BreaKHis dataset. It is analyzed from various studies that
transfer learning tunes model in a better and fast way as
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FIGURE 7. Performance of the proposed MSF model at different magnification levels during validation.

FIGURE 8. Performance of proposed model at different magnification
levels.

compared to the training from the scratch. Precision, recall,
f-measure, and accuracy of variation 2 during validation of
model for 100 epochs is shown in Figure 11(a,b,c,d), respec-
tively. Test results of the MSF model for variation 2 are
shown in Table 4. It can be observed that variation 2 of the

model achieved 94.60%, 94.64%, 94.62%, 94.65% testing
precision, recall, f-measure, and accuracy, respectively. The
model achieved better results at transfer learning as compared
to learning from the scratch.

Variation 3 is the advancement of variation 2. In third
variation, CLAHE, a pre-processing technique is used
on BreaKHis dataset for contrast enhancement and noise
removal. During this variation transfer learning is applied
on CLAHE-based pre-processed dataset. It improved test
accuracy up to 0.78%. Validation results of precision,
recall, f-measure and accuracy during variation 3 are plot-
ted in Figure 11(a,b,c,d), respectively. This variation of the
model achieved 95.10% precision, 95.30% recall, 95.20%
f-measure, and 93.43% accuracy at test dataset as shown
in Table 4.

Various studies resulted that different domain transfer
learning for complex histopathology images is not the best
solution. Structure of microscopic images is different as com-
pared to natural images of ImageNet dataset. To overcome
domain adaptation issue, same domain transfer learning tech-
nique is adapted in variation 4. Initially, model is trained for
100 epochs at patchcamelyon17 dataset. Pre-trained weights

122540 VOLUME 11, 2023



H. U. Khan et al.: MSF-Model: Multi-Scale Feature Fusion-Based Domain Adaptive Model for Breast Cancer Classification

FIGURE 9. Evaluation results of the MSF model at 100× magnification level during validation.

FIGURE 10. Evaluation the MSF model at 100× magnification level.

of the model at patchcamelyon17 are further used for training
of the model at BreaKHis dataset. Both patchcamelyon17 and
BreaKHis are histopathology datasets of breast cancer. In this
variation, the model improved test accuracy up to 1.49%.
Validation results of precision, recall, f-measure and accuracy
during variation 4 are shown in Figure 11(a,b,c,d), respec-
tively. Model achieved 96.95% precision, 97.00% recall,

TABLE 4. Structural variations of the MSF model and their test results.

96.98% f-measure, and 97.14% accuracy at test dataset dur-
ing variation 4 as shown in Table 4.

Variation 5 is the final structure of the proposed MSF
model. Results of this proposed variation are also compared
in previous sections. It is the advancement of variation 4.
In this variation, dilated layers are used to overcome the dis-
appearing of small objects in histopathology images in deep
layers. These dilated layers are used in all feature extractors of
proposedMSFmodel. Structure and dilated layers are already
explained in the proposed MSF model section. In variation 5,
same domain transfer learning-basedMSFmodel with dilated
layers is applied on CLAHE-based pre-processed BreaKHis
dataset. The MSF model improved test accuracy up to
1.63% in this variation. Validation results of precision,
recall, f-measure and accuracy of variation 5 are shown in
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FIGURE 11. Model variations and their performance during validation.

Figure 11(a,b,c,d), respectively. The MSF model achieved
98.00% precision, 98.15% recall, 98.08% f-measure, and
98.23% accuracy at test dataset during variation 5 as shown
in Table 4. Overall, the proposed MSF model improved pre-
cision 5.90%, recall 5.92%, f-measure 5.91%, and accuracy
5.73% from variation 1 to variation 5 which is the proposed
MSF model. Graphical representation of all variations is
shown in Figure 12.

B. RESULTS OF ALL COMBINATIONS
In the proposed MSF model, six modified sub-models
including ResNet101-1, EfficientNetB3-1, DenseNet121-1,
ResNet101-2, EfficientNetB3-2, and DenseNet121-2 are
used for feature extraction. Initially, all models are trained on
patchcamelyon17 dataset, and their weights are used as same
domain transfer learning. ResNet101-1, EfficientNetB3-1,
and DenseNet121-1 as a combination make block 1 of
the proposed model whereas sub-models: ResNet101-2,
EfficientNetB3-2, and DenseNet121-2 make block 2 of the
proposed MSF model. The MSF model is the combination
of block 1 and block 2. All sub-models of block 1 take
224× 224× 3 dimensions input while sub-models of block 2

FIGURE 12. Structural variations of the MSF model and their test results.

take input of 512 × 512 × 3 dimensions. In this ablation
study, individual results as well as possible combinations of
sub-models are described.

Use of multi-scale inputs is helpful to extract various
rich features which increased the overall performance of the
model. Features fusion extracted from all six components

122542 VOLUME 11, 2023



H. U. Khan et al.: MSF-Model: Multi-Scale Feature Fusion-Based Domain Adaptive Model for Breast Cancer Classification

TABLE 5. Comparison of model with its components.

boosted overall performance of the MSF model as shown in
Figure 13(a,b,c,d).

Results during test phase are explained in Table 5. The
precision, recall, f-measure, and accuracy of the proposed
MSF model are higher as compared to its sub-components
and blocks. This result provided two indications. One is
that feature fusion of multiple models is better technique as
compared to stand-alone feature extractor as feature fusion
has better results than stand-alone model. Other indication is
that feature extraction from multi-scale models is better as
compared to feature extractions from the single scale. Same
models at various scales provided different results.

Test accuracies of sub-models ResNet101-1, EfficientNet
B3-1, DenseNet121-1, ResNet101-2, EfficientNetB3-2, and
DenseNet121-2 are 92.15%, 90.41%, 94.13%, 92.71%,
90.75%, and 94.40%, respectively. Combination of
ResNet101-1, EfficientNetB3-1, and DenseNet121-1 has
provided 96.31% test accuracy whereas combination of
ResNet101-2, EfficientNetB3-2, and DenseNet121-2 has test
accuracy of 96.60%. Combination of all six models has test
accuracy of 98.23% which is better than its block 1 and
block 2 which have 96.31%, and 96.60% accuracy. Similarly,
precision, recall, and f-measure of all possible combinations
are shown in Figure 14. It is observed that feature fusion
of multi-models is helpful to boost the performance of the
model by combining their rich features. In feature fusion,
limitations of one model could be resolved by overcoming
with the strengths of other models

The MSF model is the combination of six sub-models.
Complexity of all six sub-models including their parameters
is shown in Table 6. Execution time of models depend on
hardware resources which are used for computation. Accord-
ing to the rules of algorithm’s complexity, max of the par-
allel threads is taken as time complexity of models using
equation 12. So, ResNet101-2 sub-model with 512 × 512 ×
3 sized input images has the highest complexity. In best
case, complexity of the MSF model is the computational
complexity of ResNet101-2 which is 41 giga (G) operations.

MSF_modeltime_complexity

= max(ResNet1011,

×ResNet1012,DenseNet1211,DenseNet1212,

×EffecientNetB31,EffecientNetB32)+ X (12)

TABLE 6. Computational complexity of models.

The MSF model has a total computational complexity of
72.96 G operations which is the combination of operations of
all sub-models, calculated using equation 13. Computational
time of 72.96 G operations is dependent on clock speed of
processing hardware. High value of floating-point operations
per second (FLOPS) takes less time to compute the operations
whereas less value of FLOPS takes higher computational
time. Space complexity of models depends on the number of
parameters. High number of parameters takes higher space as
compared to a smaller number of parameters.

MSF_modelcomputational_cost

= ResNet1011 + ResNet1012 + DenseNet1211
+DenseNet1212 + EffecientNetB31
+EffecientNetB32)+ X (13)

C. COMPARISON WITH EXISTING STUDIES
The MSF model has focus to extract rich effective fea-
tures by using domain adaptive multi-scale heterogeneous
feature fusion technique. In this ablation study, results of
the proposed MSF model are compared with state-of-the-
art ResHist [7], Kernelized Weighted Model (KWM) [32],
multi-instance support vector machine (pdMISVM) [42],
Resolution Adaptive Network (RAN) [43], MA-MIDN [44],
DBLCNN [45], GLCM [46], and AE + Siamese Network
(AE+SN) [47] studies which are implemented on the same
dataset. The proposed MSF model has 72.96 G operations.
On the other hand, MA-MIDN [44] used 4.12 G opera-
tions whereas 11.58 G and 65.92 G operations are used in
ResHist [7] and Kernelized Weighted Model (KWM) [32],
respectively. In GLCM [46], 4.37 G and in DBLCNN [45]
2.36 G operations are performed during feature extraction.
Resolution Adaptive Network (RAN) [43] and autoencoder
based Siamese networks [47] used resolution adaptive, mul-
tiple feature extractors having higher operations as compared
to other studies. It is observed from the comparative studies
that models having rich feature extractors, achieved better
performance. The proposed MSF model has a higher number
of operations due to multiple parallel feature extractors which
made the model to extract rich features.

It is observed that the proposed MSF model outperformed
the existing state-of-the-art models in precision, recall,
f-measure, and accuracy. Precision of the proposed model
is second highest as compared to state-of-the are models.
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FIGURE 13. Comparison of model with its components and validation results.

TABLE 7. Comparison of the proposed model with existing studies.

TheMSFmodel has precision 98.00%whereas highest preci-
sion of existing study, RAN [43] is 98.12%. pdMISVM [42]
has the lowest precision which is 87.30%. Precision of
the ResHist, KWM, MA-MIDN, DBLCNN, GLCM and
AE+SN is 91.87%, 94.71%, 96.08%, 96.21%, 97.47%, and
95.70%, respectively. A framework which is designed with
the combination of autoencoder and siamese framework [47]
has the highest recall value 98.7%. Recall of the proposed
model is second highest which is 98.15% whereas kernelized
weighted extreme learning model [32] has the lowest 85.66%
recall. Recall of other ablative studies including the ResHist,

pdMISVM, RAN, MA-MIDN, DBLCNN, and GLCM is
89.54%, 94.40%, 97.80%, 95.51%, 95.43%, and 95.99%,
respectively.

The MSF model has f-measure of 98.07% which is highest
as compared to other models. Kernelized weighted extreme
learning model [32] has f-measure of 89.90% which is the
lowest value as compared to other studies. Accuracy of the
proposed model surpassed the existing studies. It has accu-
racy 98.23% whereas its closest competitor resolution adap-
tive network [43] has accuracy 97.91%. Kernelized weighted
extreme learning model [32] has the lowest accuracy of
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FIGURE 14. Comparison of model with its components.

FIGURE 15. Comparison of the proposed model with existing studies.

87.14% on BreaKHis dataset. Precision, recall, f-measure,
and accuracy of models is shown in Table 7 whereas graph-
ical comparison of evaluation metrics of models is shown
in Figure 15. It can be observed that the proposed model
has smooth performance on breast histopathology dataset.
All evaluation metrics have results close to each other
whereas some of the other models perform well for one
evaluation metric but not for the others.

The proposedMSFmodel performed better as compared to
state-of-the-art classification models. Same domain transfer
learning is one of the reasons that made it prominent. Transfer
learning from natural images to microscopic, low contrast
and complex images is one of the reasons for low perfor-
mance of models. Multi-scale inputs provide advantages to
models to extract rich features at different resolutions so,
inputs of two different scales are used in the proposed model.
It is concluded by numerous studies that plain deep learning
models provide better results however, they face vanishing
gradient problems when depth of plain deep learning mod-
els is increased. To avoid vanishing gradients, branch based
parallel deep learning models having direct connections to
their previous blocks are used in this study. This approach
made the proposed model superior as compared to state-of-
the-art models. Another advantage of the proposed model

over existing studies is the use of dilated layers. These layers
are used in feature extractors to retain small objects in deep
layers to extract their global features.

VII. CONCLUSION
Early cancer classification is one of the important tasks to
save human lives. In this study, multi-scale feature fusion
model based on domain adaptation is introduced for breast
cancer classification. Various studies concluded that transfer
learning from natural images to microscopic images cause
high misclassification rate. In this study, the model is trained
on patchcamelyon17 dataset. It is a microscopic dataset of
breast cancer. The pre-trained weights are further used for
same domain transfer learning of the MSF model. Same
domain transfer learning is used to overcome the issue of
domain adaptation in medical images due to complexity
of histopathology images. The proposed MSF model is the
combination of two blocks which are further divided into
six different sub-models. These sub-models took multi-scale
input images to extract various features. These features are
fused, and redundant data is removed. Dilated layers are used
in feature extractors to overcome the disappearance of small
objects. The MSF is trained and validated on clahe-based
pre-processed and augmented BreaKHis dataset. It achieved
98.00% precision, 98.15% recall, 98.08% f-measure, and
98.23% accuracy on test data. To best of our knowledge,
it surpassed state-of-the-art models. In future, same domain
multi-scale feature fusion technique could be used for the
detection and segmentation of the mitotic nuclei for better
identification. This technique could be used for whole slide
images.
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