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ABSTRACT In traditional industrial fields, a robot arm is usually used for high-precision or highly repetitive
movements, but now, with the development of three-dimensional (3D) stereo machine vision in smart
manufacturing, the smart factory has moved toward the development of a robot arm combined with the
image recognition technology. Currently, in the manufacturing industry, most of the images for computing
are obtained using two-dimensional (2D) machine vision; here, the 2D advantage is that the camera lens can
obtain the simulation of the plane color pixel, but the disadvantage is that it cannot obtain the real space depth
distance information, resulting in a more accurate analysis of the workpiece position and features. Therefore,
in this study, a pixel-wise voting network (PVNet)-based object pose estimation and feature extraction was
developed to perform more diverse object testing for the considered network model. Unlike other workpiece
picking systems for smart manufacturing, most of the systems today still framed the workpiece in two
dimensions only, but the approach proposed in this paper framed the workpiece pose in three dimensions.
Thus, the network could successfully predict the pose even when the workpiece was obscured or the image
was not fully captured. The images were input into the neural network by means of supervised learning,
and training was performed using transformation matrices between multi-angle images of the artifacts and
feature points extracted from the 3D models. The results of this study revealed the pose estimation results
of various objects at different viewing angles and proposed the feature gripping strategy for the robot arm to
follow this process in the future.

INDEX TERMS 3D stereo machine vision, smart manufacturing, pose estimation, feature extraction.

I. INTRODUCTION
With the rise of Industry 4.0, it is all about smart produc-
tion, which means using various integrated sensor systems to
combine a human-centered approach into more flexible man-
ufacturing, and using technologies such as information tech-
nology, cloud computing, and business analytics to achieve
the goal of rapid adjustment and strategy setting [1], [2].
Thus, the term ‘‘smart factory’’ was coined.

There are alreadymany applications in flexible production-
oriented smart factories that have introduced robotic arms
as automated logistics or processing equipment, with the
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identification of diverse workpieces as the main intelligent
challenge and three-dimensional (3D) visual recognition as
the mainstream development solution [3], [4]. In recent years,
the increasing labor costs and health consciousness have led
to the rapid growth of industrial robot usage and market, and
robots need to becomemore flexible and intelligent if they are
to replace or assist operators in the related tasks. In addition,
with the increasing precision of the various parts produced
by various companies, the task of detecting scratches that are
difficult to notice by the naked eye requires industrial-grade
machine vision systems. Chamberlain et al. [5] published a
report on the application of machine vision systems based on
their rapid processing ability to solve the labor-intensive qual-
ity inspection and analysis of the causes of quality defects,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 122387

https://orcid.org/0000-0002-6872-9979
https://orcid.org/0000-0003-4156-442X
https://orcid.org/0000-0003-0621-9647


Y.-H. Kao et al.: Object Pose Estimation and Feature Extraction Based on PVNet

when the production line of the operating robots into the
vision-assisted systems equips the production robots with
more complex and sophisticated operational capabilities,
such as the application of automotive production lines and
pharmaceuticals. The application of vision-assisted systems
in the production line will enable the robots to have more
complex and precise operation, such as in the automotive pro-
duction line, pharmaceuticals, packaging of various products,
and food industry.

In the past, in traditional industrial fields, in the case of
stacked workpieces, to make the clamping of the robot arm
on the production line convenient, almost all of them used
vibrations or shunts to disperse the workpieces in advance,
and once the workpieces were large or heavy, they used visual
methods to distinguish the position and the direction of the
workpieces along with certain other information. Therefore,
the traditional robotic arm technology can only pick up ‘‘clear
and well-defined workpieces,’’ and if a bunch of irregular
objects are placed in the same box, it is impossible to pick
them up smoothly. Therefore, random bin picking is still a
major issue in smart manufacturing. In the traditional prob-
lem of determining the 3D pose of a workpiece, the common
method used is the (Perspective-n-Point, PnP) algorithm [6],
which aims to solve the changes in the two-dimensional (2D)
points corresponding to the 3D points, and can be recognized
as the estimation of the camera pose under the condition that
the coordinates of N 3D spatial points and their projection
in the 2D image position are known. The objective of the
present study was to extract the characteristic points of a
workpiece and estimate its 6D pose through the regression
image coordinates before the robot arm clamped the work-
piece. However, because RGB-D cameras have limitations in
terms of the frame rate, field of view, and depth range, their
effects are affected to a certain extent to improve their results
under occlusion.

The network architecture used in this study was trained by
a modified network model using ResNet18 as the backbone,
as proposed by Peng et al. [7]. The deep convolutional neural
network technique for target detection on RGB images has
been well demonstrated and has been used to improve six-
dimensional (6D) target pose detection [8], [9], [10]. There-
fore, to improve the recognition efficiency on the production
line, in this study, firstly, in the prior work we tested the
feasibility of connecting the 3D camera to the computer and
ensuring its stability, and later on, the training images of
various objects were acquired by means of a handheld cam-
era. After collecting the images of the objects, various image
information is processed by semi-automatic methods, such as
point cloud reconstruction, segmentation. . . etc. Finally, the
object point cloud model is recovered and its 3D feature
points are extracted from it. Finally, the PVNet network
model is trained to perform the estimation task of the artifact
pose.

The image quality trained by neural network is considered
as an important information. We learned from the actual 3D
camera shots that the trained estimation results are poor when

the images are blurred. In this study, we not only tested the
pose estimation under the LINEMOD dataset from previous
studies [7], but also conducted a new dataset with the hard-
ware equipment used in the proposed system, and determined
the significance of the representation in the transformation
matrix.

II. SYSTEM DESCRIPTION AND METHODS
The flowchart of this research is shown in Fig. 1. First, a
3D camera (Intel RealSense) was used to take the pictures
of object. At the same time, through the characteristics of
USB connection with the computer, we can obtain colored
images (RGB), internal parameters of the camera, and depth
map information. From the RGB image and camera internal
parameters, we could obtain the pose matrix of each view-
point map. Meanwhile, to obtain the pose information of
each viewpoint, we used an ArUco tag for pose orientation
to obtain the conversion matrix between images, and through
this conversion matrix [11], [12], we aligned the point clouds
generated from each angle and then generated a complete
scene point cloud. The data of the point cloud not only pro-
vided the RGB color information but also helped to determine
the coordinates of the workpiece in space.

Then, we segmented the generated scene point cloud by
using the MeshLab tool for object segmentation and deter-
mined the 3D feature points from the segmented artifact point
cloud by using the farthest point sampling method. Eight
feature points were calculated from the center of the artifact
point cloud. The 3D feature points were aligned with the 2D
feature points by using the pose matrix, and the information
of these marker points was used as the Pixel-wise Voting
Network (PVNet) input; the final output through the PVNet
network provided the results of the 6D pose boundary frame
with different angles and the error of the real marker data.

FIGURE 1. Schematic illustration of object pose estimation and feature
extraction.

A. PERSPECTIVE PROJECTION METHOD
The 6D workpiece pose was one of the most important pieces
of information obtained in this study. The correct pose could
accurately guide the robot arm in the correct direction for
gripping tasks. However, the RGB image generated by the
camera could only provide 2D information, so the depth
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FIGURE 2. Schematic illustration of object pose estimation and feature
extraction.

map and 3D point cloud were used to know the location of
the workpiece feature points. Furthermore, through perspec-
tive projection, a camera projection matrix of size 3∗4 was
calculated, which implied that the 3D feature points of the
workpiece corresponded to the two-dimensional points on the
RGB image. This method not only helped us to calculate the
workpiece pose but also presented the result of the 6D pose
on the RGB image in a more intuitive manner.

1) CAMERA MODEL
Figure 2 shows the model of the camera in perspective projec-
tion. The 3D point Pw in the camera coordinate system was
transformed to correspond to the 2D point p in the imaging
plane in the image coordinate system; such a transformation
process could also be called projective transformation, where
the focal length of the camera could be calculated assuming
that the coordinates of the 3D point Pw in space under the
camera coordinate system were Pw = [xw, yw, zw] and the
coordinates in the image coordinate system were p = [u, v].
Thus, on the basis of the principle of similar triangles:

xw
u
=
zw
f
=
yw
v

(1)

where xw, and yw, and zw are the coordinate points of Pw in
the world coordinate system. Furthermore, the coordinates of
point p in the image plane could be derived as follows:

u = f
xw
zw
, v = f

yw
zw

(2)

where u and v are the coordinate points of p in the image
plane. Expressed in the matrix form,

zw

 uv
1

 =
 f 0 0
0 f 0
0 0 1



xc
yc
zc
1

 (3)

Through the above conversion formula, we projected the
camera coordinate system onto the image coordinate system,
which also implied transferring the 3D information to the 2D
plane. Finally, we used the bilinear interpolation method to
convert the origin of the image coordinate system uv into the
origin of the pixel coordinate system xy, and the geometric
relationship was obtained as follows:

u =
x
dx
+ cx

v =
y
dy
+ cy

(4)

where dx denotes the direction width of pixel x, dy indicates
the direction width of pixel y, and cx , cy represent the coordi-
nate point on the screen.

The representation in the matrix form would be as follows:

 uv
1

 =


1
dx

0 cx

0
1
dy

cy

0 0 1


 xy
1

 (5)

One of the important parameters of the camera is the
internal parameter K. This internal parameter is composed
of two parts. One is the projective transformation, which
denotes the distance from the focus of the camera to the
imaging plane, that is, the focal length in (1). The other is the
coordinates (Focal point) of the main point (cx, cy) projected
on the imaging plane. Therefore, we combined thematrices of
(3) and (5) to obtain the following intrinsic parameter matrix
K:

K =

 fx 0 cx
0 fy cy
0 0 1

 (6)

In this study, the internal parameters were used in the depth
camera of RealSense, and thus, they could be obtained by
the official function called get_intrinsics() [13]. Furthermore,
we expressed the internal parameter matrix of the camera
when capturing UNO-2272G of Case1 as follows:

K =

 610.897827 0 327.844085
0 610.898620 237.670547
0 0 1

 (7)

2) PERSPECTIVE PROJECTION
Perspective projection transformation is aimed at transferring
the world coordinate system to the camera coordinate sys-
tem, also known as rigid transformation [14]. In this study,
we rotated, translated, and scaled the original world coordi-
nate system, and then projected the camera coordinate system
onto the image coordinate system first and then through
discrete sampling, onto the pixel coordinate system. Thus,
we found the best rotation matrix R3∗3 and translation vector
t3∗1 by using the external parameters of the camera in the
transformation of 2D RGB image and 3D space, and the
internal value of the external parameter matrix T could be
expressed as follows:

T =
[
R3∗3 t3∗1

]
(8)

In the world coordinate system, we assumed that point X
in space could be defined and that its origin position plus
the direction of the 3D axes was equal to the attitude of
the coordinate system. Therefore, in the definition of the
camera coordinate system, the origin was the center of the
camera, and thus, the representative point Xw was expressed
as Xw = [xw, yw, zw]T in the world coordinate system and
Xc = [xc, yc, zc]T in the camera coordinate system. As men-
tioned earlier, the main task was to first scale down the world
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coordinates and add rotation and translation to rotate around
the z-axis, y-axis, and x-axis, as represented in (9), (10),
and (11). xcyc

zc

 =
 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 xwyw
zw

 = R1

 xwyw
zw


(9) xcyc

zc

 =
 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 xwyw
zw

 = R2

 xwyw
zw


(10) xcyc

zc

 =
 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 xwyw
zw

 = R3

 xwyw
zw


(11)

Finally, these coordinates were transformed into the cam-
era coordinates, according to the complete transformation
equation (12), and the internal parameters of the camera
model were obtained as follows. Combining these with the
conversion matrix of (12), we obtained the complete opera-
tion shown in (13). xcyc

zc

 = [R3∗3 t3∗1
]

xw
yw
zw
1

 (12)

UV
1

 =
 fx 0 u0

0 fy v0
0 0 1

[R3∗3 T 3∗1
]

xw
yw
zw
1


(13)

B. DATASET GENERATION AND POSE LOCATION
In order to get a more realistic image of the actual work-
piece on the production line, the RealSense D435i depth
camera was used to take pictures of the scene. In addition,
the ArUco marker data were used to surround the work-
piece to be photographed as the current camera pose esti-
mation, and the transformation matrix between view angles
was stored as an auxiliary tool to create the complete point
cloud data. Through the depth camera of RealSense, the RGB
image, depthmap, and internal parameters of the camerawere
acquired. First, the workpiece to be photographed was placed
in the established field, and the camera position was not
fixed. Furthermore, to ensure the accuracy of the rotational
attitude, at least two ArUco markers were included in the
image during the shooting process to facilitate the calculation
of the rotational attitude matrix between images.

1) ARUCO
ArUco is a camera pose estimation library embedded in
OpenCV [15]. The image is similar to a binary barcode
QRCode, and each individual ArUco has its own specification
and ID number. Furthermore, it is composed of a dark border

FIGURE 3. ArUco pose estimation and marking results.

and a square composite marker structure with an internal
binary matrix. The size of the label determines the size of
the internal matrix, e.g., a 4 × 4 ArUco is composed of
16 bits. In this study, we created 12 different types of ArUco
of size 6 × 6 and generated the marker images by using the
drawMarker() function, which contains five parameters. The
second parameter was the marker ID, so the valid ID values
were 0–249 according to the ArUco used in this study, and the
subsequent parameters were the output image size, the output
image, and the specified border width.

2) CAMERA POSE LOCATION
Even without the original CAD file of the workpiece,
we could restore the point cloud of the workpiece with the
RGB image, depth map, and the internal parameters of the
camera with the depth camera. The inspection process was
mainly based on segmentation and contour extraction with
adaptive thresholds for the markers, and then, the markers
were identified by analyzing the internal codes. In order to
accurately restore the workpiece point clouds, we computed
the pose relationship between the viewpoint images, so the
important task was to obtain the camera pose after detecting
the ArUco marker. While the pose estimation was similar to
the important pose estimation in this study, the difference was
the target coordinate system for the conversion carried out
mainly through a PnP algorithm to solve the coordinate sys-
tem conversion problem from 3D to 2D. However, the ArUco
module also provides a function for estimating the marker
pose. Therefore, we used this function to estimatePoseSin-
gleMarkers() to detect the camera pose, and the estimation
result is shown in Fig. 3.

3) POINT CLOUD REGISTRATION
In order to reconstruct the point clouds of the scene, we found
the optimal rotation and translation matrix for different view-
point point clouds based on singular value decomposition
(SVD) [16] and then, aligned the point clouds corresponding
to each viewpoint map [17]. First, we determined the center
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FIGURE 4. Scene point cloud merged result.

of mass of the two different point cloud datasets; it was
calculated as follows:

centroidA =
1
N

N∑
i=1

PiA

centroidB =
1
N

N∑
i=1

PiB

 (14)

wherePA andPB are assumed as the points in the two different
point cloud datasets.

Then, to find the optimal rotational matrix, the center of
mass of the two datasets was positioned at the same origin,
and a matrix of M was obtained by simply calculating the
rotation angle as in (15). Next, SVD was applied to matrix
M , and the rotational matrix R was obtained on the basis of
matrix U and matrix V . The result was as follows:

M =
N∑
i=1

(
PiA − centroidA

) (
PiB − centroidB

)T
(15){

[U , S,V ] = SVD (M)
R = VUT

}
(16)

Finally, we combined the rotating matrix R and the center
of mass to obtain a 4 × 4 transformation matrix T. After
obtaining the transformation matrix between the viewpoints,
we determined the overlapping parts of the point clouds by
using the KD-tree nearest neighbor search. Because of the
large number of point clouds in the 3D space, the KD-tree
method reduced the total time consumption, ensured the
search of associated points between point clouds, and main-
tained the real time alignment. The corresponding result is
shown in Fig. 4.

4) WORKPIECE POINT CLOUD DIVISION
For the point cloud segmentation [18], [19], we used the
MeshLab tool suite to manually remove the background point
clouds and reconstruct the mesh of the workpiece. First,
we used the Select Vertice tool to remove the point clouds
outside of the workpiece body; the corresponding result is
shown in Fig. 5.

FIGURE 5. Select vertice diagram.

The normal vector is an indispensable piece of information
in the processing of 3D point clouds because of its important
locality property. The point cloud obtained by the depth
camera only records the coordinates of each point in a 3D
space, because there is no meaning of the normal vector and
therefore no connection between points. We also calculated
the normal vector of the point cloud in the 3D space by using
Compute for the point set.

Second, after calculating the normal vector, we recon-
structed the surface of the workpiece; the corresponding
result is shown in Fig. 6. The main principle of this method
is that the point cloud represents the position of the sur-
face of the workpiece [20], and the normal vector repre-
senting the inner and outer directions is used to derive the
smooth surface of the workpiece by using the indicator func-
tion χM produced by the workpiece, which is defined as
follows:

χM (x) =
{
1x ∈ M
0x ∈ M

}
(17)

FIGURE 6. Poisson surface reconstruction results.

Finally, we removed the excess parts from the recon-
structed result to obtain the remaining parts where the real
workpiece belonged to, and then, filled the empty parts by
using the Close Holes tool, as shown in Fig. 7.

5) FARTHEST POINT SAMPLING
To establish the bounding box of the object, the extraction
of 3D feature points was particularly important. Moreover,
the 3D feature points were used to calculate the correspon-
dence between the coordinate points on the 2D plane by
using the projection transformation matrix used in this study.
The farthest point sampling method (FPS) was adopted [21],
because this method can be uniformly sampled for point
cloud data and is widely used. Moreover, the main goal of
this algorithm is to select the farthest point. The farthest
feature point is extracted and voted to calculate the attitude.
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FIGURE 7. Final workpiece reconstruction result.

As shown in Fig. 8, FPS can be mainly divided into three
steps.

FIGURE 8. Principle of the farthest point sampling algorithm.

The first step is to input the point cloud data for calculation
and to arbitrarily select the initial point. In this study, the
object was selected. The center point is the initial point. The
second step is to select the point farthest from the initial point
as the second point. The third step is to calculate the point
farthest from the initial point and the second point as the third
point. Then, iterate these steps until the number of feature
points reaches the set number.

III. FEATUR EXTRACTION AND POSE ESTIMATION
In this section, we introduce the PVNet neural network based
on the ResNet18 architecture for feature point extraction and
pose estimation. As shown in Fig. 9, first, we took a tag
file containing RGB images, mask images, internal camera
parameters, feature points, 2D and 3D projection conversion
matrix, etc. as the input data for the neural network. The
pose matrix was generated by transforming the object space
coordinate system to the camera coordinate system. In the
training phase, we learnt the network model from the real
ground-truth data, so that when a new view angle image
was input to the PVNet network for prediction, the pose of
the artifact in the new image could be estimated quickly by
learning the training results.

FIGURE 9. Feature point extraction and pose estimation based on PVNet.

A. FEATURE POINT SELECTION
In the past, some algorithms used a convolution neural net-
work (CNN) to return 2D feature points and then calculated
their 6D pose with the PnP algorithm. However, the feature
point extraction method used in this study used the FPS algo-
rithm to calculate the 3D feature points of the ground truth.
Thereafter, the 3D to 2D transformation matrix was obtained
by using the perspective projection method to determine the
3D feature points and the corresponding 2D feature points.
However, in the prediction stage, a pixel-level voting neural
network (PVNet) was used to predict the 2D feature points
in an analogous search manner, which could present the pose
estimation results without affecting the blocked or truncated
images.

In order to reduce the localization error of the feature
points, it was necessary to perform feature point extraction
based on the 3D point cloud data of the workpiece instead of
the eight vertices of the bounding box. If the eight vertices
of the bounding box were used as the feature points, when
the coordinates of each vertex were far away from the target
object, the positioning error would have been larger as the
distance from the target pixel increased. The logic of the FPS
algorithm is to assume that there are N points and all points
are classified into two different sets A and B. Set A represents
the set of selected points, and Set B represents the set of
unselected points. With this principle, first, we set the center
of the workpiece as the initial point and then calculated the
farthest point from the initial point. We repeatedly searched
for the feature points on the surface of the workpiece and
categorized the points farthest from each current feature point
into the selected set.

B. PVNET NETWORK ARCHITECTURE
This architecture is modified from the model architecture of
ResNet18 and is divided into three parts. First, RGB images
(size: 640 × 480) with ArUco markers are input to the pixel-
based voting neural network to obtain a feature map of the
same size as the input image. Strictly speaking, the 6D pose
is the rigid transform from the world coordinate to the camera
coordinate, and the result of the pose estimation is plotted in
the output image as a 3D bounding box.
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1) RESNET18 REFINED NEURAL NETWORK
We used ResNet18 as the backbone of PVNet to predict the
location of the feature points of the artifacts in the image.
The network architecture mainly consisted of a series of
convolution layer, pooling layer, upper sampling layer, and
residual block with stride convolution and dilated convolu-
tion. The residual block was composed of the upper sampling
layer with stride convolution and dilated convolution. The
difference from the original ResNet18 network was that we
first took an original image of size 640 × 480 × 3 as the
input image and performed down-sampling with the stride
volume set as 2 until the image feature map size was 80 × 60.
Then, we discarded the subsequent pooling layer and did not
perform further down-sampling. At the same time, to avoid
the omission of some feature information as in the case of
traditional pooling, the same feature information was retained
without reducing the image size, by expanding the convo-
lution feature during the process. Finally, the fully connect
layer in the original architecture was replaced with a con-
volution layer, and the previously obtained feature map was
repeatedly skip connected, convolved, and up-sampled to
return the feature map to its original size of 640 × 480. The
final convolution layer yielded the unit vector Vk(P) of each
pixel and the class label, which represents the semantics of a
specific object;Vk(P) represents the direction of each pixel P
towards each 2D feature Xk. The definition of the unit vector
Vk(P) is as follows:

Vk (P) =
Xk − P
‖Xk − P‖2

(18)

Given the segmentation label and unit vectors, in this study,
we formulated the hypothesis of feature points on the basis
of the RANSAC voting mechanism [22], extracted the pixel
range of the target artifact from the class label, randomly
selected two pixels, and used the intersection of their vectors
as the hypothesis hk,i of 2D feature points xk. The set of
feature point positions

{
hk,i|i = 1,2, . . . ,N

}
was generated

by repeating N times, and the voting scores of these hypo-
thetical points are defined as wk,i in (19), where II represents
the pointer function, θ is set to a threshold value of 0.99,
and P ∈ O represents the pixel P belonging to the target
workpiece O.

wk,i =
∑
PεO

I

( (
hk,i − P

)T∥∥hk,i − P∥∥2Vk (P) ≥ θ
)

(19)

2) 6D POSE ESTIMATION
We can solve it by using the PnP algorithm, but in the tra-
ditional PnP algorithm, there is uncertainty and variability
in the confidence of the feature points, and the probability
distribution of each feature point is obtained by the voting
system. The final evaluation criterion for each feature is
obtained by calculating the mean µk as in (20):

µk =

∑N
i=1 wk,ihk,i∑N
i=1 wk,i

(20)

and the covariance matrix
∑

k is expressed as (21), where
k = 1,2, . . . ,K .

6k =

∑N
i=1 wk,i

(
hk,i − µk

) (
hk,i − µk

)T∑N
i=1 wk,i

(21)

The 6D pose was obtained by minimizing the Mahalanobis
distance [23], as defined in (22), where Zk denotes the 3D
feature coordinate and z̃k represents the corresponding point
of the 3D feature projected on 2D.

z̃k = π (RZk + t)

minimizeR,T
K∑
k=1

(z̃k − µk)
T
∑−1

k
(z̃k − µk)

 (22)

We also used this pose estimation result to calculate dif-
ferent evaluation metrics, such as the 2D projection error and
the 3D model point average distance (ADD) of asymmetric
objects [24]. If the result was less than five pixels, then
the pose estimation was correct. In this study, the threshold
value was set to the diameter of the workpiece pixels and the
five-pixel diameter distance was calculated proportionally.
The two calculations are shown in (23) and (24), respectively.
In addition, the pose estimation results were evaluated using
the 5 cm-5◦ index. When the rotation angle error was less
than 5◦ and the translation error was less than 5 cm, the pose
estimation was correct.

2DProjection =
1
m

∑
x∈M

∥∥∥K (Rx + t)− K (R̂X + t̂)∥∥∥ (23)

ADD =
1
m

∑
x∈M

∥∥∥(Rx + t)− (R̂X + t̂)∥∥∥ (24)

3) LOSS FUNCTION
In deep learning, the selection of the loss function is neces-
sary, and the common loss functions can be divided into two
major categories. One is the least absolute error, also known
as L1 Loss, and the other is the least square error, also known
as L2 Loss. The drawback of L1 Loss is that it is not smooth
at the zero point, while L2 Loss is easily affected by outliers.
To improve these shortcomings, Smooth L1 Loss was created.
Moreover, to have more stable robustness under various data,
in this study, we adopted Smooth L1 Loss to learn the unit
vector, and its loss function was as defined in (25) and (26).

4vk (P;w) = ṽk (P;w)− vk (P) (25)

` (w) =
K∑
k=1

∑
P∈O

`1
(
4vk (P;w)|x

)
+ `1

(
4vk (P;w)|y

)
(26)

where 4vk |x and 4vk |y represent two different elements of
4vk and w represents the parameter in the PVNet network,
vk is the base unit vector, and ṽk is the prediction vector.

In the training process, the segmentation loss and the vot-
ing loss were also calculated, in which the CrossEntropy loss
function was used to determine the closeness of the real out-
put to the desired output. Therefore, when the classification
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training was performed, the output node of a class had to be
1 and the output of the other nodes had to be 0; this resulted
in a set of labels for this class, which was the desired output
of the neural network and measured the difference between
the output of the network and the class labels.

IV. EXPERIMENTS RESULTS
In this study, we tested a variety of workpieces by using a
depth camera to capture multiple RGB images (size: 640 ×
480) at 40-s intervals around the workpiece as the network
model input data. Then, we combined the pose information
to restore the workpiece point cloud. Finally, the prediction
results were output with 3D bounding boxes and plotted them
on 2D images through a series of trainings. However, as the
main purpose of this study was to estimate the 6D pose of
the workpiece, we used three of the evaluation metrics for the
6D pose estimation: one was the ADD metric for comparing
the difference in the model points in the 3D space, the second
was the 5 cm-5◦ metric that calculated the rotation and the
translation error of the model in the 3D space, and the last
was the Projection_2D metric that calculated the average
distance difference of the 3D model points projected in the
2D plane. Finally, Projection_2D was used to calculate the
average distance difference among the 3D model points in
the 2D plane.

A. WORKPIECE 6D POSE ESTIMATION RESULTS
With the abovementioned three pose estimation indices to
determine the accuracy of various workpiece pose predictions
and to observe the curve of the loss function during the train-
ing process, we set the initial learning rate to 1 × 10−3 and
used the learning rate decay to gradually reduce the learning
rate by half every 20 steps; the training frequency was set to
240 epoch.

1) CASE1: ADVANTECT UNO-2272G HIGH-PERFORMANCE
AUTOMATION CALCULATOR
The first test piece was Advantech’s UNO-2272G high-
performance automatic computer, which captures RGB
images with ArUco with the depth camera, and because
ArUco has the feature of pose information, the current pose
of each image was obtained through ArUco. In addition,
the maximum diameter of the workpiece was measured to
be 15.7 cm; this information was necessary to estimate the
border of the workpiece within this range. In the training,
Adam was used as the optimizer, the Momentum parameter
was set to 0.9, and Batch Size was set to 4. In this study, the
real pose of the workpiece at each view angle was obtained
by pre-processing before training; the predicted pose of the
workpiece by PVNet was expected to be closer to the real
pose so that the accuracy of the system could be maintained at
a certain level. The total loss function after 240-epoch training
sessions is shown in Fig. 10(a), the classification loss function
in Fig. 10(b), and the voting loss function in Fig. 10(c).

In addition, the 2D_Projection, ADD, and 5 cm-5◦ met-
rics were used to evaluate the accuracy of the predicted

FIGURE 10. Case 1 loss function curve: (a) total loss function,
(b) segmentation loss function, and (c) voting loss function.

FIGURE 11. Case 1 evaluation indicator curve: (a) 2D_Projection, (b) ADD,
and (c) 5 cm-5◦.

attitude with respect to the real attitude under various
conditions. As shown in Fig. 11(a), the accuracy of the
2D_Projection metric was 0.5781. Fig. 11(b) shows the accu-
racy of 0.4289 under the ADD indicator, and Fig. 11(c) shows
the final accuracy of 0.7129 for the 5 cm-5◦ pointer, where
the x-axis represents the number of operations and the y-axis
represents the accuracy.

Moreover, the results of the 6D pose prediction bounding
box for this workpiece are shown in Fig. 12, where the green
bounding box denotes the ground truth and the blue bounding
box represents the pose estimation.

2) CASE2: SHOE
In the shoe experiment, 500 RGB images with ArUco were
acquired, and the maximum diameter of the workpiece was
26.5 cm, as determined by actual measurement. The total
loss function after the 240-epoch training sessions is shown
in Fig. 13(a), the categorical loss function in Fig. 13(b),
and the voting loss function in Fig. 13(c), with the x-axis
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FIGURE 12. Case 1: Ground-truth bounding box and pose estimation box
results.

FIGURE 13. Case 2 loss function curve: (a) total loss function,
(b) segmentation loss function, and (c) voting loss function.

coordinates representing the training time spent and the
y-axis representing the loss function value.

From the graph, we can infer that the training curve in Case
2 oscillated at 3k–4k but then decreased until it converged at
10k–5k, and the total training time was approximately 30k,
where the x-axis coordinates represent the training time spent
and the y-axis represents the loss function value.

In the shoe experiment, the 2D_Projection, ADD, and
5 cm-5◦ metrics were evaluated. The curves are shown
in Fig. 38, with the x-axis representing the number of
training sessions and the y-axis representing the accuracy
rate. Fig. 14(a) shows that the accuracy rate was 0.669 for
2D_Projection, while Fig. 14(b) shows that the accuracy rate
was as high as 0.998 for ADD, and Fig. 14(c) shows that the
accuracy rate was as high as 0.998 for the 5 cm-5◦ metric.

With the different metrics, we could demonstrate that the
attitude estimation results in the 3D space were highly similar
to the real conditions, thus proving that the completeness of
the dataset enabled the system to obtain good estimation.
We have presented the results of the bounding box for the
6D attitude prediction in Fig. 15.

FIGURE 14. Case 2 evaluation indicator curve: (a) 2D_Projection, (b) ADD,
and (c) 5 cm-5◦.

FIGURE 15. Case 2: Ground-truth bounding box and pose estimation box
results.

3) CASE3: STAIRS
In all, 500 RGB images of ArUco were taken in the experi-
ment for the ladder model, and the maximum diameter of the
workpiece was measured to be 10 cm. the 1× 10−3, and the
batch size was set to 4 for the training. The total loss function
after the 240-epoch training sessions is shown in Fig. 16(a),
the categorical loss function in Fig. 16(b), and the voting loss
function in Fig. 16(c), where the x-axis coordinates represent
the training time and the y-axis represents the loss function
value.

In addition, in the experiment of the ladder model, the three
metrics of 2D_Projection, ADD, and 5 cm-5◦ were evaluated,
and the corresponding curves are shown in Fig. 17, with the
x-axis representing the number of operations and the y-axis
representing the accuracy. Fig. 17(a) shows the accuracy
of 0.844 for the 2D_Projection metric after comparing the
complete data, and Fig. 17(b) shows the accuracy of 0.976 for
the ADD pointer. Finally, in Fig. 17(c), an accuracy of 1 was
observed for the 5 cm-5◦ pointer.
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FIGURE 16. Case 3 loss function curve: (a) total loss function,
(b) segmentation loss function, and (c) voting loss function.

FIGURE 17. Case 3 evaluation indicator curve: (a) 2D_Projection, (b) ADD,
and (c) 5 cm-5◦.

The good performance of the three metrics in Case 3 with
more than 85% accuracy could be attributed to the fact that the
size of the model was more significant in terms of height than
that in the previous cases; thus, the attitude in the 3D space
or in 2D could be computed through the network model.

B. SYNTHESIS
In this study, the object observation PVNet network model
could effectively perform the pose estimation task for all
types of objects. The previous experiments by Peng et al. [7]
demonstrated the robustness of this network model in the
LINEMOD and OCCLUSION LINEMOD datasets. This
study not only reproduced Peng et al.’s experiments to test
the feasibility of the model but also focused on the cre-
ation of various types of images with different environ-
mental conditions that could also be input into the PVNet
model for training. However, the difference from Peng et al.’s
experiment was that in this study, six objects were tested,
the main training parameters were set to an initial learn-
ing rate of 0.001, and the learning rate was halved every

FIGURE 18. Case 3: Ground-truth bounding box and pose estimation box
results.

TABLE 1. Results for model evaluation metrics.

TABLE 2. Comparison evaluation metrics with different method.

20 epochs until the total number of training sessions was
240 epochs. The accuracy of the experimental dataset was
evaluated by three different pose estimation indices, as shown
in Table 1. However, the average accuracy of the three evalu-
ation indices in the overall experimental data was maintained
at 70%.

In addition, to convert 2D flat images into the 3D space,
solving the projection conversion matrix is an important com-
putational step, an open dataset such as LINEMOD was cho-
sen, we compared with other previous experimental results
shown in Table 2. Our estimation results achieve better per-
formance under the same pose evaluation metrics. The pro-
jection transformation matrix from the 2D plane and the 3D
space could not be calculated effectively in this study. There-
fore, in this study, we solved the problem of the projection
transformation matrix, which was not explicitly mentioned in
Peng et al.’s previous experiments [7], by inputting the corner
points of the 3Dmodel of the workpiece and the corner points
of the workpiece in the 2D image plane and calculating the
corresponding projection transformation matrix at different
viewing angles with the PnP algorithm.
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FIGURE 19. Selection strategy flow chart.

C. APPLICATIONS
The ultimate goal was to allow the robot arm to achieve the
clamping purpose in the correct way. Therefore, when there
was a target workpiece posture, the next task was to select a
suitable clamping position and direction, so that the robot arm
could effectively clamp the target workpiece, according to the
past reference data obtained using the following mainstream
methods:

• Selection by a force analysis of the geometry of the
workpiece model [25].

• Selection of the clamping area by means of human cus-
tomary definitions [26].

It is possible to clamp the workpiece by using different
strategic approaches. To alleviate the need to perform calibra-
tion before each clamping, we proposed a special clamping
strategy from the 3D bounding box and feature information
obtained from the 6D pose estimation results in this study,
to guide the robot arm to adopt an automatic clamping strat-
egy according to the pre-defined conditions before the action.
The strategy flow chart is shown in Fig. 19.

In this strategy process, the 3D bounding box results and
the feature point information from the previous pose estima-
tion were used to find the clamping position according to the
judgment conditions of each stage. In order for the robot arm
to be able to clamp smoothly, we limited the clamping range
to less than the retractable range of the fixture, so that all
of the clamping tasks could be completed without changing
the fixture. When there was a feature point distance that
could be clamped in a certain plane, the calculation of the
center of gravity was performed by the original point cloud
of the workpiece. Therefore, we calculated two points that
were orthogonal to the position of the center of mass. Then,
we compared the masks in the direction of the view angle to
determine the contour of the workpiece in this direction, and
finally, we executed this strategy of clamping at a relatively
smooth position with the center of mass.

In contrast, when there was no restriction on the distance of
feature points in all the planes, another strategy was adopted
to select the clamping position, and we defined the clamp-
ing area in the CAD model of the workpiece beforehand.
In this strategy, the clamping point was selected as the best

clamping point by comparing the pre-defined clamping area
with the mask image, finding the relatively smooth part of
the workpiece contour, calculating the angle with the center
point, and selecting the clamping point with the smaller angle
to the center point.

V. CONCLUSION
This study was based on PVNet for object pose estimation
and feature extraction not only by using the previous public
dataset on the Internet for testing but also for practical appli-
cations in any future factory production line. ArUco, in the
real production line, sometimes does not have the CAD file
of the workpiece itself in advance, but we could generate
the workpiece point cloud file by registering, aligning, and
segmenting the point cloud with the pose of each view angle
image. However, most of the current processing methods
are still simply using the traditional RGB image recognition
technology, but it is not possible to obtain the required depth
information, and only simple object segmentation and inspec-
tion can be performed, which makes it limited in many states
and even causes the robot arm to be unable to accurately know
the workpiece position and attitude during clamping tasks.
Therefore, in this study, the 6D pose of the workpiece was
finally estimated in real time by training the PVNet model,
and the 3D boundary frame characteristic information applied
to derive a clamping strategy are currently under study, and
expected to be published soon.
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