
Received 20 September 2022, accepted 8 November 2022, date of publication 18 November 2022,
date of current version 28 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3223472

Three-Way Decisions on Streaming Computing
Platforms Supporting Decision-Making in
Complex Large Real-World Environments
GRAZIANO FUCCIO, VINCENZO LOIA , (Senior Member, IEEE),
AND FRANCESCO ORCIUOLI , (Member, IEEE)
Dipartimento di Scienze Aziendali–Management and Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano (SA), Italy

Corresponding author: Francesco Orciuoli (forciuoli@unisa.it)

ABSTRACT In complex environments, decision-making processes are more and more dependent on
gathering, processing and analysing huge amounts of data, often produced with different velocities and
different formats by distributed sensors (human or automatic). In this contexts, data arrive in streams and
often suffer of imprecision. Moreover, Three-way Decision is considered a suitable and convenient approach
for imprecise data analysis based on the tri-partitioning of the universe of discourse, i.e., exploiting the
notions of acceptance, rejection and non-commitment, as well as the human brain solves numerous problems.
On the other hand, Three-Way Decision needs to be implemented according to the stream computing
paradigm in order to support the analysis of data streams. With such a paradigm, data arrive, are processed
and depart in real-time without needing to be temporarily serialized into a storage system. The paper
analyses aspects related to implementation and architectural issues of the Three-Way Decision (based on
probability-based Rough Set Theory) approach on a real-time data processing platform supporting streaming
computing, i.e., Apache Spark. The paper shows the benefits of deploying Three-Way Decision on Spark
and the possibility to apply it to different and heterogeneous scenarios.

INDEX TERMS Three-way decisions, rough set theory, data streaming, distributed streaming computing.

I. INTRODUCTION
Internet of Things (IoT) enables a platform of sensor and
actuator devices [1] to communicate seamlessly within real-
world environments. Such environments, with the help of IoT,
are able to continuously produce data that, once captured,
offer a great chance to be processed and analysed in order to
support decision-making processes related to the aforemen-
tioned environments. Therefore, IoT becomes an important
source of contextual data with an enormous volume (size of
data), variety (different types of data from several sources)
and velocity (data collected in real-time), which represent
three of the main fundamental characteristics of Big Data
(the other two are veracity and value, respectively related to
uncertainty and imprecision of data and benefits provided

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhe Xiao .

by data for the organizations using them) [2]. From the
application scenario perspective, the fusion of Big Data and
IoT technologies has created opportunities for the develop-
ment of decision-making services for many complex systems
like, for instance, Smart Cities [3], Smart Grids, Intelligent
Transportation [4], etc. Moreover, from the technological
viewpoint, a plethora of distributed computing frameworks,
for dealing with Big Data, are available: Apache Hadoop,1

Apache Spark,2 Apache Storm,3 Apache Kafka,4 etc. In par-
ticular, Apache Spark is a data processing framework that
can quickly perform processing tasks on very large datasets,
and can also distribute data processing tasks across multiple

1https://hadoop.apache.org/
2https://spark.apache.org/
3https://storm.apache.org/
4https://kafka.apache.org/

122314
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-4807-8942
https://orcid.org/0000-0001-6899-4396
https://orcid.org/0000-0002-0440-5772
https://hadoop.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://kafka.apache.org/

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

machines. Apache Spark allows design, implementation and
deploy of a wide range of data engineering and data science
custom pipelines.

A. THREE-WAY DECISIONS
Three-Way Decision (3WD) is a theory that models a
particular class of human ways of problem-solving and infor-
mation processing [5]. It is built on solid cognitive foun-
dations and offers cognitive advantages [6] for the human
operator when adopted as a formal model behind a decision
support system. The basic idea of 3WD is to partition the
universe of discourse (available data describing objects that
are crucial for making the right decisions in the consid-
ered environments) into three pair-wise disjoint regions (tri-
partitioning) and act upon each region through a suitable
strategy or course of actions. Although the two-way model
(i.e., a binary classifier) provides high levels of acceptance
and rejection, it does not support deferment. In contrast,
the three-way model leads to moderate levels of acceptance,
rejection and deferment. The advantage of the three-way
model is that when costs of different types of error are consid-
ered, it generates less overall cost than the two-waymodel [7].
Thus, 3WD embraces all aspects of a decision-making pro-
cess by including tasks such as data and evidence collec-
tion and analysis for supporting decision making, reasoning,
and computing in order to arrive to a particular decision,
and justification and explanation for such a decision [6].
Principles of 3WD are commonly used in our life. For
example, past-present-future are used when dealing with
temporally-described objects or, if the important dimension is
the spatial one, people typically adopt the scheme left-middle-
right or top-middle-bottom, etc. Moreover, other plau-
sible schemes are acceptance-non_commitment-rejection
(judgmentally), small-medium-large (volumetrically), and
so on.

Three-way data analytics (3WDA) focus on techniques
that use the principles of three-way decision. The basic idea
of 3WDA is to consider a third option in the conclusions
drawn from data and, of course, in the subsequent decision-
making. For instance, if the task is to determine if an object
x, in a given universe U , belongs to a specific class X ,
the possible answer of 3WDA can be one of the following
three: i) x belongs to X certainly, ii) x does not belong to X
certainly, and iii) it is not possible to affirm that x belongs
to X certainly nor that x does not belong to X certainly.
Therefore, the third option provides reliability in decision-
making processes. If the information describing data is not
sufficient or reliable enough for saying either yes or no to a
decision, one may alternatively choose the third option that
may reduce the risk or cost in the decision-making. Further-
more, in a dynamic setting (as in themajority of complex real-
world environments) where additional data can be obtained
gradually, the third option can be further refined as time goes
on. Such refinement may lead to a definite answer of yes or
no [8].

B. RESEARCH OBJECTIVES
According to the available scientific literature, the problem
of 3WD for streams of data is essentially solved by pro-
viding incremental algorithms able to update, as time goes
on, structures representing the three regions or, alternatively,
lower and upper approximations when Rough Set Theory is
adopted [9].

Although existing incremental algorithms offer good solu-
tions in the case of centralized computation, they are not suit-
able for parallel and distributed computing within contexts
in which big data (especially medium-sized or large-sized
datasets) must be considered. These algorithms fail when the
volume of data contained in a temporal window cannot be
processed due to a memory overflow.

The main challenge faced by the paper is overcoming
the limitations (e.g., impossibility to scale and distribute the
computation, poor support for fault tolerance) of incremental
algorithms for 3WD when applied to big data contexts. More
concretely, the most important contribution of the present
work is the definition of an implementation approach for
3WD-based decision support systems through the adoption
of primitives of the state-of-the-art platforms for streaming
computing. The approach is defined through: i) the analysis
of the dynamic aspects of data within a real-world scenario,
and ii) the design of adequate solutions to handle the afore-
mentioned aspects by using streaming platform capabilities.

The objective of the work presented here is also to anal-
yse, considering a real-world scenario including challenges
related to big data (velocity, volume, veracity and variety),
the implementation of 3WD through the usage of themap and
reduce constructs provided by Apache Spark. Furthermore,
such implementation offers several non-functional advan-
tages like, for instance, the possibility to distribute and paral-
lelize the operations and the chance to apply such operations
to streaming data. In particular, distributed algorithms are
capable of processing data by mapping them into different
clusters of computation also providing redundancy mech-
anisms to prevent data loss without having data inconsis-
tency [10].

C. PAPER ORGANIZATION
The remaining parts of the paper are organized as it follows.
Section II describes the available scientific works related
to the results produced by this paper and the advance-
ments of the proposed work with respect to its objectives
introduced in Section I. Moreover, Section III introduces
the adopted computational methods for Three-Way Decision
based on probability-based Rough Sets. Section IV offers
a motivating scenario and a discussion on the dynamics of
decision tables when dealing with data streams. Section V
provides design information about the whole architecture in
which the proposed approach has been deployed. Section VI
describes the novel implementation of Three-Way Decision
by using map and reduce constructs. Such implementation
will be called streaming-based Three-WayDecision (S3WD).

VOLUME 10, 2022 122315

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

Furthermore, Section VII describes the experimentation and
evaluation activities. Lastly, Section VIII provides conclu-
sions and introduces some ideas for future works.

II. RELATED WORKS
In this section, according to the context depicted in Section I,
the focus is on those works dealing with the streaming com-
puting paradigm, as described in [11] where the authors state
that by means of such paradigm it is possible to perform both
data storage and computing directly in memory. Data is pro-
cessed as it arrives within sliding time windows. The differ-
ence between streaming computing and the traditional batch
computing paradigm is the need, for the latter, for accumulat-
ing (on storage systems) abundant data before starting with
computation. Note that, at the moment, it is not possible to
recognize implementations of Three-Way Decision approach
based on probability-based Rough Sets on streaming plat-
forms like Apache Spark. Despite this difficulty that makes
impossible fair comparisons with this work, it is important
to provide, on one hand, knowledge on alternative solutions
based on incremental algorithms for exploring the concepts
related to dynamic and temporal aspects of information sys-
tems and, on the other hand, MapReduce implementations of
Rough Sets in order to provide a fundamental brick for the
exploitation of streaming computing platforms, like Apache
Spark, which adopt similar programming models based on
map and reduce constructs. Definitely, the advancement of
the present work with respect to the state-of-the-art is the
combination of solid cognitive support for decision-makers
offered by 3WD with high levels of fault tolerance and
scalability offered by Apache Spark. In other words, the
proposed approach provides the advantages of incremental
algorithms for 3WD and overcomes their limitations due
to the impossibility to scale, distribute the computation and
tolerate faults, which are all fundamental characteristics in
big data streaming contexts.

A. APPROACHES BASED ON INCREMENTAL ALGORITHMS
The works based on incremental algorithms exploit
approaches in which lower and upper approximations evolve
over time [12] as new information arrives or old information
disappears or is replaced. In particular, the authors of [13]
propose a method to incrementally update approximations
when objects change dynamically in the information systems
considering the case of Variable Precision Rough Sets [14].
The aforementioned authors explore also the variation of the
actual value and value set of an attribute when inserting or
deleting an object into the universe of discourse. This paper,
in some sense, extends the approach proposed in [15] in
which the authors investigate methods for incremental updat-
ing approximations in terms of the coarsening and refining
of the object set. A similar approach has been described
in [16] where the approximations are calculated through the
application of Decision-Theoretic Rough Sets, and in [17]
where approximations are based on Neighborhood Rough
Sets. Moreover, the authors of [18] deal with incremental

learning of approximations in the context of incomplete
information systems (missing data). Other approaches facing
the problem of the evolution of attributes are described
in [19], [20], and [21]. Moreover, approaches dealing with
the evolution of attribute values are proposed in [22] and [23].
Interesting classifications of dynamic and temporal aspects in
information tables are provided by [24] and [25].

B. SUITABLE APPROACHES FOR BIG DATA
First of all, it is important to clarify some aspects related
to the term MapReduce. MapReduce (written as one term)
is a programming model and an associated implementation
for processing large datasets that is amenable to a broad
variety of real-world tasks. Users specify the computation
in terms of map and reduce constructs (typical of functional
programming paradigm), and the underlying runtime system
automatically parallelizes the computation across large-scale
clusters of machines, handles machine failures, and schedules
inter-machine communication to make efficient use of the
network and disks. Hence, MapReduce provides simplicity
for parallel programming, while at the same time offering
load balancing and fault tolerance [26]. With respect to the
scalable implementation of Rough Sets, the work of Zhang
et al. [27] provides a parallel method for computing Rough
Set approximations based on the MapReduce technique in
order to deal with massive data. A further work [28] of the
same authors compare the implementation of such approxi-
mation operators on three different platforms supporting the
MapReduce paradigm (Hadoop, Twister and Phoenix). The
results of an extensive experimental evaluation of different
large datasets show that the proposed parallel method is effec-
tive for data mining. Moreover, the authors of [29] propose
a parallel algorithm to compute rough approximations in
large-scale datasets. This method is based on MapReduce for
efficiently processing large-scale datasets with missing data
both in condition and decision attributes. A further work [30]
describes a new approach for outlier detection using fuzzy
rough set theory. Other works dealing with parallelization of
algorithms computing Rough Sets are focused on process-
ing reducts [31], Big Data regression [32], attribute subset
selection [33] and Apriori algorithm [34]. Lastly, the authors
of [35] propose a rough set fuzzy classification rule genera-
tion algorithm (RS-FCRG) for big data through aMapReduce
implementation.

Unfortunately, MapReduce (as-is) does not support stream
processing, but it can handle streams using a technique
known as micro-batching. The idea is to treat the stream as
a sequence of small chunks of data. At small time intervals,
the incoming stream is packed into a chunk of data and is
delivered to the batch system to be processed. Some run-time
systems, like Apache Spark, support such kind of stream-
ing computation and offer programming constructs based on
map and reduce for coding efficient streaming algorithms.
In this case, the computation is completely in-memory [36].
Therefore, although the scientific literature provides many
results on scalable implementations of Rough Set algorithms

122316 VOLUME 10, 2022

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

throughMapReduce [37], there is a lack of works focusing on
analysis and definition of such algorithms for streaming com-
puting (over one of the existing Big Data platforms enabling
micro-batching). The present work aims at analysing the
chance to develop these algorithms through the streaming
capabilities of Apache Spark.

III. THREE-WAY DECISIONS AND PROBABILITY-BASED
ROUGH SETS
Three-Way Decision (3WD) theory [6] models a particular
class of human ways of problem solving and information pro-
cessing. The basic idea of such theory is to divide a universal
set (of objects) into three pair-wise disjoint regions, or more
generally a whole into three distinctive parts, to handle com-
plexity, and to act upon each region or part by developing
strategies that are appropriate and possibly distinct. In 3WD
the Universe of discourse (U) is partitioned into three regions
(RegionI, RegionII and RegionIII) respecting the
following constraints:

(RegionI) ∩ (RegionII) = ∅,

(RegionI) ∩ (RegionIII) = ∅,

(RegionII) ∩ (RegionIII) = ∅,

(RegionI) ∪ (RegionII) ∪ (RegionIII) = U . (1)

On one side, 3WD is borrowed from the way the human
brain tends to represent and solve problems. On the other
side, 3WD can be adopted to support human decision-making
when the problem is represented by a universe of objects. The
aforementioned support is particularly useful for handling
complexity due to the huge number of involved data.

Therefore, 3WD provides an overall approach able to sus-
tain human cognitive processes, in general, when dealing
with data and, in particular, when data must be processed to
represent situations and reason on them in the context of tasks
requiring good levels of situation awareness.

Evaluation-based Three-Way Decision [6] and Three-Way
Decision based on Rough Sets [9] are two of the main classes
of concrete approaches to implement 3WD.

The main limitation of the traditional Rough Set The-
ory is that it does not allow any uncertainty in the defini-
tion of both lower and upper approximations [38]. In order
to introduce such tolerance, the probability approximation
space was brought into the Rough Set Theory (see [39]
and [40]) (i.e., probability-based Rough Sets). A widely
adopted variant of probability-based Rough Sets is repre-
sented by the Decision-theoretic Rough Set Model [41] based
on the notions of rough membership and rough inclusion
that can be interpreted in terms of conditional probabilities.
In particular, it is considered P(X |[x]), i.e., the probability
that an object belongs to the concept X given that such
object belongs to the equivalence class [x]. The conditional
probability can be calculated as P(X |[x]) = |X∩[x]|

|[x]| . Thus, the
approximation operators, in the Decision-theoretic Rough Set
Model, are defined as it follows:

B(X) = {x ∈ U : P(X |[x]B) ≥ α}, (2)

B(X) = {x ∈ U : P(X |[x]B) > β}, (3)

where α and β (0 ≤ β < α ≤ 1) are probabilistic thresholds
and establish the tolerance degree used to determine both
lower and upper approximations. Equations (2) and (3) are
defined by considering the Information System IS = (U ,A)
and the indiscernibility relation IB, where B ⊆ A:

IB = {(x, y) : x, y ∈ U ∧ ∀b ∈ B, b(x) = b(y)}. (4)

Once defined IB, it is possible to create information gran-
ules starting from the available information (or knowledge)
about the objects belonging to the universe of discourse.
In particular, each granule is constructed as an equivalence
class based on IB:

[x]B = {y ∈ U : (x, y) ∈ IB}. (5)

Moreover, the equivalence classes [x]B can be used to
compute conditional probabilities in eq. (2) and (3).

Starting from the sets resulting from such equations, the
tri-partitioning of the universe U with respect to concept
C ⊆ U has been constructed as it follows.

POS(C) = B(C),

BND(C) = B(C)− B(C),

NEG(C) = U − B(C). (6)

or equivalently:

POS(C) = {x ∈ U : P(C|[x]B) ≥ α},

BND(C) = {x ∈ U : β < P(C|[x]B) < α},

NEG(C) = {x ∈ U : P(C|[x]B) ≤ β}. (7)

More in detail, the three regions POS(C), BND(C) and
NEG(C) respectively represent the sets of i) objects that
certainly belong to C , ii) objects for which it is not possible
to affirm that they belong to C nor that they do not belong
to C , and iii) objects that certainly do not belong to C .

3WD seems to be particularly suited for representing con-
texts in which observed entities (objects) are classified with
respect to their occurring situation (e.g., safe or dangerous in
the maritime scenario introduced in Section IV-A).

IV. PRELIMINARY ANALYSIS
A. REAL-WORLD SCENARIO: MARITIME SURVEILLANCE
In the work [42] the authors define a decision support system
based on probability-based Rough Sets and Three-Way Deci-
sion. The provided case study deals with the maritime domain
that is typically represented by complex large environments.
In such a domain, it is crucial to understand why some
vessel movements take place and when such movements are
symptoms of threats. A possible threat could arise when, for
instance, the engine is broken or the vessel has been hijacked.
A surveillance operator could identify dangerous situations
and/or proceed to further investigations by only observing
the environment and exploiting her experience. But, in the
presence of a huge number of vessels (also of different types)
within a large environment, the human operator needs to be

VOLUME 10, 2022 122317

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

FIGURE 1. Example of object descriptions incoming within sliding windows.

aided by a decision support system that is essentially based
on the application of Three-Way Decision for learning the
concept of SAFENESS that is used to assess the situation in
the monitored environment. More in detail, the universe of
discourse consists of all monitored vessels that are described
by means of a set of condition attributes (for the sake of
simplicity, only drift angle and velocity will be
considered) and a decision attribute whose value set is {safe,
dangerous}. A decision table is constructed by observing
the monitored vessels (condition attributes) and by applying
simple heuristics (a vessel is said to be drifting when it is
moving slowly, usually with a velocity between 3 and 5 knots,
and its course and orientation have a significant difference,
usually an angle of more than 30 degrees) to calculate the
values for the decision attribute. Such a decision table is not
free from imprecision caused by errors coming from both
observations and adopted heuristics.

Therefore, it makes sense the adoption of the approxima-
tion operations of probability-based Rough Sets. The result
of Three-Way Decision over the above decision table is the
tri-partitioning of the whole set of vessels into three regions:
i) safe vessels, ii) dangerous vessels, and iii) vessels needing
further investigation. The work [42] assumes to start from a
complete static decision table and faces the temporal evo-
lution of object descriptions by considering a what-if anal-
ysis [43] (simulation) in which evolutionary scenarios are
pre-constructed (manually by analysts/operators) and anal-
ysed. In the real world, the challenge is to deal with decision
tables that evolve over time, i.e., they are constantly up-
to-date and a 3WD analysis must take into account such
dynamics.

Facing the aforementioned challenge is the aim of the
present work that has the ambition of providing generalized
solutions, valid in different and heterogeneous domains.

B. DYNAMICS IN DECISION TABLES
In the motivating scenario proposed in Section IV-A, as well
as in a plethora of further real-world scenarios, the infor-
mation related to an object (e.g., a vessel) could change
as time goes on, thus old object descriptions are replaced
by new descriptions that, of course, could impact upon the
results of the analysis. Another important aspect is related
to the obsolescence of information. In fact, old descriptions
could be dropped in order to reduce the load of data to
be analysed and, consequently, the latency. Therefore, it is
important to provide an implementation of 3WD that takes
into account such dynamics and is able to update the tri-
partitioning accordingly. In streaming computing, this kind
of dynamics is implemented by using a windowing approach.
More in detail, time is divided into sliding windows of fixed
length (window length) with a given offset (sliding length)
between the starting point of two consecutive windows. Fig. 1
provides an example in which descriptions are updated with
new ones, old descriptions become obsolete and new descrip-
tions replace old ones. In terms of incremental algorithms,
it is possible to extend the set of basic primitives consisting
of immigration (a new object enters into the universe) and
emigration (an existing object exits from the universe) with a
third operation namely update.

In the proposed model, an explicit immigration operation
is executed when a new description for an object is pushed
into the system. The description of an object is valid along
the window in which it is pushed into the system. When
an object is no longer valid, an implicit emigration opera-
tion is executed. In the case that a new description for an
object, still having a valid description, is pushed into the
system then an explicit update operation is executed. Such
operation is composed of a sequence of forced emigration
operations (the description of an object that exits the system

122318 VOLUME 10, 2022

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

prematurely - before the end of its window) and explicit immi-
gration operation. More in detail, we have an overall static
universe U including all the monitored objects and an evolv-
ing universe W where each element w ∈ W is a description
of an object x ∈ U produced at a given time t . Additionally,
it is needed to consider two functions: 1 : W → T that
maps a description w ∈ W onto the specific timestamp in
which such description is produced (T represents the set of
timestamps) and� : W → U that maps a description w ∈ W
onto the related observed object x ∈ U . At any time instant,
the set W contains zero or one description for each object in
U . The universeW is continuously modified as immigration,
emigration and update operations are executed. The universe
W is used to build a decision system (or decision table)DS =
〈W ,A∪ {d},V ∪Vd 〉, where A is a set of condition attributes
describing objects inU and d is the decision attribute for such
objects. Moreover, V =

⋃
a∈A Va, f : W × A → V and

g : W → Vd are information functions such that f (w, a) ∈ Va
and g(w) ∈ Vd for each w ∈ W and a ∈ A. BeingW dynamic
also DS is dynamic. Through functions f and g, observations
come with all the information related to attributes A ∪ d that
are needed to construct the decision table to be analysed.
The changes to the universe W occur in sliding windows
represented by possibly overlapping time intervals s0, s1, . . .
belonging to S. Thus, function 0 : W → S is used to state in
which window a given description arrived.

When the computation starts, let say, W 0 contains all the
available descriptions of objects belonging to U . If a new
description ū, with�(w̄) = ū, immigrates into the system, it is
added to the decision table if @w ∈ W : �(w) = ū,1(w) ≤
1(w̄). In this caseW evolves intoW ′:

W ′ = W ∪ {ū} (8)

otherwise, the new observation replaces the older one:

W ′ = (W − u) ∪ {ū} (9)

Furthermore, assume that the end of the k-th window is
reached, W is the universe soon before the end of such win-
dow and W ′ is the universe soon after the end of it, then W ′

is obtained by dropping from W all the descriptions arrived
in the time interval sk corresponding to the k-th window:

W ′ = W − {u ∈ W |0(u) = sk} (10)

In other terms, eq. (8) represents an explicit immigration,
i.e., when a new description is generated and pushed into the
system, eq. (10) represents an implicit emigration, i.e., when
a subset of descriptions become obsolete, and, lastly, eq. (9)
represents a forced update, i.e., when a recent description
replaces an existing one (still valid) and the two are related
to the same monitored object.

Let us discuss and better detail the example in Fig. 1.
W (t0) = {o1, o2, o3, o4}, W (t1) = {o4}, W (t2) = ∅, W (t3) =
{o′1, o

′

2, o
′

3}, andW (t4) = {o′1, o
′′

2, o
′

3}. In the above example,
o′′2 , o

′

2 and o2 are all observations related to the same object.
In particular, �(o′′2) = �(o′2) = �(o2) = xo2 ∈ U and
1(o2) ≤ 1(o′2) ≤ 1(o′′2).

The idea of the evolving universe is that the 3WD anal-
ysis can be executed on the current version of the universe
that depends on the time instant. Thus executing a 3WD on
streaming data means applying such analysis on the most
recent available knowledge on the monitored environment.

V. OVERALL ARCHITECTURE
A network of wireless sensors (possibly adopting IoT pro-
tocols) is deployed into the monitored environment and pro-
duces a set of sensor data streams. For the sake of simplicity,
it is assumed that observations into such streams are labelled
with the identifier of the observed object belonging to the
static universe of discourse (U in Section IV-B). In a given
time interval the observations related to the same object arrive
at a Kafka process and are integrated in order to generate a
timestamped record including values associated with a fixed
set of features describing the object. At the end of each inter-
val, all the generated records (possibly related to different
objects) are sent to a Spark application that manages them
as a DStream and contributes to the evolving universe of dis-
course (W in Section IV-B), where the Three-Way Decision
algorithm is continuously applied producing a time-evolving
tri-partitioning. Such results could be sent to a time-aware
dashboard to support the work of the decision-makers.

Fig. 2 shows records related to five object descriptions
(step 1), produced and sent by Kafka to Spark that realizes
the tri-partitioning of the evolving universe (step 2). Then
(step 3) a new description for object o2 arrives in the Spark
application that replaces the old description (for the same
object) and induces an evolved tri-partitioning (step 4) where
o2 moves from the boundary region to the negative region
and, consequently, object o4 moves from the boundary region
to the positive region.

Let us now consider more details about the system archi-
tecture that is reported in Fig. 3. Such architecture is
Kafka-centred in the sense that the publish & subscribe
paradigm of Kafka is used to coordinate the work of different
components. There are three components respectively based
on Faust,5 Apache Spark and Streamlit6 deployed as both
Kafka consumers and producers. In particular, sensor obser-
vations arrive to Kafka and are published under the Topic
A. A Kafka consumer based on Faust is listening Topic A
and reads all the incoming observations for processing and
transforming them into full object descriptions (see Tab. 1)
that are generated and attached to Topic B by a Kafka
producer based on Faust. A new Kafka consumer based on
Spark is listening on Topic B and is able to read all the
incoming object descriptions. Such consumer can build a
decision table with these descriptions. A new Kafka producer
based on Spark processes the decision table and computes
the three regions of 3WD as results attached to Topic C.
Lastly, a new Kafka consumer based on Streamlit visualizes

5A stream processing library https://faust.readthedocs.io/
en/latest/

6Web-based tool for data (streams) visualization https:
//streamlit.io/

VOLUME 10, 2022 122319

https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://streamlit.io/
https://streamlit.io/

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

FIGURE 2. Overall view of the system.

FIGURE 3. Kafka-centred system architecture.

data as generated by Spark. The above process is a contin-
uous process able to wait for new observations and process
them.

A. THE STREAMING COMPUTING PLATFORM:
APACHE SPARK
Apache Spark is the most used framework for big data
analytics thanks to its advanced in-memory programming
model and upper-level libraries for scalablemachine learning,
graph analysis, streaming and structured data processing. The
computation, within a Spark application, is managed by the
key components provided by Spark in order to transparently
distribute its tasks (smallest units of work composed of both
data and operations) over cluster nodes that run processes in
parallel [44]. In order to write data processing algorithms in
a way that distributed and parallel computation is allowed,
it is needed to leverage on the Spark data abstractions and the
corresponding sets of operations.

1) RESILIENT DISTRIBUTED DATASET
The Spark core data abstraction is the Resilient Distributed
Dataset (RDD) [45]. An RDD is a read-only, partitioned

collection of records. RDDs provide fault-tolerant, parallel
data structures that let users store data explicitly on disk or
in memory, control their partitioning and manipulate them
using a rich set of operations that are executed in parallel
on each partition. Such tasks are executed on the cluster
nodes managed by Spark and assigned to a specific Spark
application [44].

2) TRANSFORMATIONS AND ACTIONS
There are two types of parallel operations that it is possible to
execute on an RDD: transformations and actions [45]. Trans-
formations are deterministic and lazy operations, used to
apply a function that returns a newRDDwithout immediately
computing it. With a narrow transformation (e.g., map, filter),
each partition of the parent RDD is used by at most one parti-
tion of the child RDD. With a wide transformation (e.g., join,
groupByKey), multiple child partitions may depend on the
same partition of the parent RDD. Moreover, an action
(e.g., count, first, take) launches a computation on an RDD
and then returns the results to the driver program or writes
them to an external storage. When used in pipelines, trans-
formations produce a concrete result only when an action is
called. In the presence of such pipelines, Spark can break
the computation into tasks, organized into multiple stages,
which can be executed in parallel over separate machines.
Such stages are separated by distributed shuffle opera-
tions for redistributing data and improve the computation
performance [44].

3) STREAMING CAPABILITIES
Spark Streaming adopts a micro-batch architecture [46]
where a stream is treated as a sequence of small batches
of data. In this case, the streaming computation is executed
through a sequence of smaller computations of the afore-
mentioned batches. The basic programming abstraction in
Spark Streaming is the Discretized Streams (DStreams) [47].
DStream is a high-level abstraction representing a continu-
ous stream of data as a sequence of small batches of data.

122320 VOLUME 10, 2022

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

Internally, a DStream is a sequence of RDDs that can be
processed using normal Spark jobs. As a result, DStreams
have the same fault tolerance properties as those of RDDs
and streaming data can be processed using Spark core and
other upper-level rich libraries. The RDD abstraction itself
is a convenient way to design a data computation process
as a sequence of small and independent steps [45]. Trans-
formations on DStreams can be stateless, i.e., normal RDD
transformations, or stateful, i.e., based on sliding windows
and on tracking state across time. Stateful transformations,
which are relevant for the present work, use data or inter-
mediate results from previous batches to compute the results
of the current batch. In particular, the algorithm, proposed
in the present work, is based on windowed transformations
combining results from multiple batches and requires two
parameters: window duration and sliding duration. The actual
execution of DStream transformations is triggered by output
operations (similar to RDD actions). Through these opera-
tions, it is possible to specify what should be done with the
final results of a stream processing [44].

VI. IMPLEMENTING 3WD IN SPARK
3WD allows to define decision support systems in which
human operators are supported, in their decision-making pro-
cesses, bymeans of the tri-partitioning of the objects included
in the universe of discourse. This support is especially needed
when the universe is complex (composed of huge volumes
of objects changing their characteristics as time goes on).
Such systems do not provide automatic reasoning capabilities
but offer solid cognitive support that increases the level of
situation awareness of the decision-makers.

A. WINDOW-BASED PROCESSING APPROACH IN SPARK
In general, different application programming environments
(e.g., Python, MapReduce, Hadoop MapReduce, Apache
Spark, etc.) provide different implementations of the pro-
gramming style based on map and reduce functions.
Typically, the function map transforms sequences of data

from one type to another (the input sequence has the same
length as the output one). The function reduce transforms
a sequence of data into a data structure of any shape or
size. One of the main advantages is that algorithms, written
through custom combinations of map and reduce, make pos-
sible the definition of data transformation pipelines and their
distribution over a cluster of nodes. Moreover, such organi-
zation enable parallelism of tasks during the computation.
Other benefits regard, for instance, the chance to adopt lazy
computation allowing better performance also in the case
of traditional applications (no distribution, no parallelism).
Thus, assume that descriptions of monitored objects arrive
in Spark as records stored in RDDs. Spark operations are
executed over the RDDs that are valid with respect to the
windowing approach and its configuration (window length
and sliding length). More in detail, Spark continuously exe-
cutes, at time instants known as computation times, the
processing algorithm on a set of data, whose composition

depends on both the arrival time of such data and the win-
dowing configuration. Fig. 4 provides a picture representing
an example of how the set of data to be processed is com-
posed by Spark along the timeline, according to the win-
dowing approach and respecting the dynamics illustrated in
Section IV-B.

FIGURE 4. Composing the valid set of data to be processed by Spark.

In particular, Fig. 4 represents the cases in which the
second burst of data is added to the valid set of data
to be processed and persists in such a set also after the
first burst is excluded from it. This event happens because
the second burst arrives when windows wi and wi+1 over-
lap. Moreover, after the end of wi+1 also the second burst
is excluded from the valid set of data that, consequently,
becomes empty. In general, Spark computes operations every
X seconds (computation times), where X is the sliding length.
At each computation point, Sparks applies operations over
data arrived up to Y seconds before the computation time,
where Y is the window length. Lastly, there is a third time
parameter which is the batch time, i.e., the number of sec-
onds between consecutive data gathering operations. Once
described how the valid set of data to be processed is com-
posed, let us explain how such a set is represented through
the Spark data abstraction supporting streaming computing.

As shown in Fig. 5, the incoming records (e.g., r1, r2)
are put in different RDDs (according to the arrival time).
RDDs are embedded into a DStream. Only a subset of the
generated RDDs includes records that are in the valid set of
data to be processed. It is important to remember that records,
in each RDD, are organized into partitions (e.g., p1, p2),
hence enabling distribution and parallelism for Spark jobs
execution.

B. STRUCTURING RECORDS FOR 3WD IN STREAMING
Conceptually, records are organized as iterable structures of
arrays and grouped into RDDs which it is possible to apply
Spark transformations and actions to. Each array has length
N and is structured as described in Tab. 1.
Therefore, records arrived to Spark are object descriptions

in our 3WD problem and contribute to form the evolving
universe of discourseW . Hence, the decision table is (W ,A∪
d) where A = {a1, a2, . . . }. Record structure is crucial
for the algorithm definition. All the records share the same

VOLUME 10, 2022 122321

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

FIGURE 5. Storing records into DStream and RDDs.

TABLE 1. Structure of the input records produced by Kafka.

structure. Thus, assuming to deal with the scenario introduced
in Section IV-A, a sample record could be:

(v1, LOW, MID, FAR, Ferry, S, 1)

where v1 is the vessel identifier, LOW , MID, FAR and
Ferry are respectively the values associated to the con-
dition attributes Drift Angle, Velocity, Distance
and Type. Moreover, S is the value for the decision attribute
Safe and, lastly, 1 is the Timestamp of the record. Take
care that in Spark the record values are serialized as strings.

C. DATA PROCESSING ALGORITHM FOR 3WD
The main data processing algorithm to be deployed as a
Spark job is described by pseudocode (1). Such algorithm
foresees that data within RDDs (in the DStream) are provided
as iterable sequences of strings (to be clear we will assume
that iterable sequences are lists or arrays on which it is
possible to apply the subscript operator to access individual
elements). The algorithm adopts functions based on the map
and reduce programming model. For the sake of clarity,
functions used by pseudocode (1) will be explained by using
specific examples. Before starting to describe the algorithm,
it is needed to formalize the problem. In particular, the valid
records (according to the windowing approach along the
timeline) represent the universe of discourse, the concept to
study is the subset of the universe including records in which
the decision attribute assumes a given value dvalue. In the
next lines, we will assume a record structure that is proposed
in Tab. 1 and the provided examples (from the maritime
surveillance scenario) consider N = 7 and dvalue = S.
Let us start by describing all the custom functions. The

first one, used in the first operation of the algorithm,
is buildPairByID(e), where e is a list containing data
coming from one record (a full description of an observed
object). This function is used to map all input arrays (records)
into key-value pairs. The key will be the element 0 of an input
array and the value will be an inner array containing all the

Algorithm 1 3WD for Data Streams in Apache Spark
Require: rdd ← input micro-batch
Require: dvalue
Require: α, β
rdd ← rdd .map(buildPairByID)
rdd ← rdd .reduceByKey(updateInfo)
rdd ← rdd .map(buildArray)
rdd ← rdd .map(buildPairByCondition)
rdd ← rdd .reduceByKey(buildEquivalenceClass)
rdd ← rdd .map(addConditionalProbability)
rdd ← rdd .map(addRegionInfo)
rdd ← rdd .flatMap(explodeRegion)

remaining elements, from 1 to N − 1. If the input array is e
(remember that elements in e are organized as in Tab. 1) then
the output pair is constructed in the following way: (k, v) =
(e[0], (e[1], e[2], . . . , e[N-3], e[N-2], e[N-1])). For instance,
if the input is:

(v2, LOW, MID, NEAR, Ferry, D, 1)

then the output pair will be:

(v2, (LOW, MID, NEAR, Ferry, D, 1))

Such a reshaping is needed in order to support the work of the
Spark constructs reduceByKey.

The second custom function is updateInfo(e1, e2)
that is applied to the results of the previous operation by
means of a reduceByKey construct. The arguments for the
function are couples of pairs, with the same key, which will
be bound to the parameters e1 and e2. The idea is to reduce
two pairs into one if such pairs have the same key. The output
pair is the input pair with the greater timestamp. The idea is
that if two descriptions of the same object (same key) are in
the system at the same time, only the most recent one will
be considered during the 3WD analysis. If the input pairs are
(k1, v1) and (k2, v2) with k1 equal to k2 then the output pair
is (k1, v1) if v1[N − 2] > v2[N − 2], otherwise the output is
(k2, v2). For instance, if the result of the previous operation
contains:

(v2, (LOW, MID, NEAR, Ferry, D, 1))

(v2, (LOW, HIGH, NEAR, Ferry, D, 2))

122322 VOLUME 10, 2022

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

then the output pair will be:

(v2, (LOW, HIGH, NEAR, Ferry, D, 2))

and the first pair has been discarded. Such operation imple-
ments the explicit update primitive illustrated in Section IV-B.
The other two primitives (explicit immigration and implicit
emigration) are directly managed by the spark streaming
engine through stateful transformations.

The third and fourth operations map each pair obtained by
the previous operation into a new pair. Such transformation is
realized through two custom functions applied in the pipeline:
buildArray(e) and buildPairByCondition(e).
For the sake of simplicity, the above transformation is pro-
vided through two steps but it is possible to define only
one function offering the whole transformation behaviour.
More in detail, the function buildArray(e) re-transforms
an input pair (k, v) (provided by the previous operation)
into a flat array e = (k, v[0], . . . , v[N-2]) exposing
the original record structure. Furthermore, the function
buildPairByCondition(e) is applied to the results
of the previous function to transform the flat array
e into a new key-value pair: ((e[1], . . . , e[N-3]), ([e[0]],
[e[N-2]], γ)), where γ is an array containing e[N −2] if such
value is equal to dvalue, otherwise γ is the empty array. For
instance, if we start from the pair:

(v3, (LOW, MID, NEAR, Ferry, S, 2))

the first function transforms it into:

(v3, LOW, MID, NEAR, Ferry, S, 2)

and the second function transforms such result into:

((LOW, MID, NEAR, Ferry), ([v3],[S],[S]))

Otherwise, if we start from:

(v3, (LOW, MID, NEAR, Ferry, D, 2))

the first function transforms it into:

(v3, LOW, MID, NEAR, Ferry, D, 2)

and the second function transforms such result into:

((LOW, MID, NEAR, Ferry), ([v3],[D],[]))

The idea of this part of the algorithm is to organize data in
a way to support the grouping of records by the condition
attributes and obtaining the required equivalence classes (see
eq. (4) and eq. (5)).

The fifth operation is the most important one, in fact,
it is used to construct the equivalence classes with respect
to the condition attributes. Such operation is based on
the construct reduceByKey, with the custom function
buildEquivalenceClasses(e1, e2) that is used to
combine couples of pairs (provided by the previous opera-
tion) if they have the same key. More formally, if we have
two pairs (k1, v1) and (k2, v2) (with k1 equal to k2 equal to
k) bound respectively to e1 and e2, the result is the pair:

(k, (v1[0]+ v2[0], v1[1]+ v2[1], v1[2]+ v2[2])). If applying
such reduce operation incrementally, the result will be a
number of pairs equal to the number of different equivalence
classes based on the condition attributes. For instance, if we
have the following starting pairs:

((LOW, MID, NEAR, Ferry), ([v3],[S],[S]))

((LOW, MID, NEAR, Ferry), ([v2],[D],[]))

((LOW, MID, NEAR, Ferry), ([v6],[S],[S]))

((LOW, MID, FAR, Cargo), ([v1],[S],[S]))

((LOW, LOW, NEAR, Research), ([v4],[D],[]))

((LOW, MID, FAR, Cargo), ([v5],[S],[S]))

the resulting pairs are:

((LOW, MID, NEAR, Ferry), ([v3,v2,v6],[S, D,S],[S,S]))

((LOW, MID, FAR, Cargo), ([v1,v5],[S,S],[S,S]))

((LOW, LOW, NEAR, Research), ([v4],[D],[]))

Three equivalence classes have been obtained: [v2v3, v6],
[v1, v5] and [v4].
Furthermore sixth and seventh operations map equiv-

alence classes into the traditional 3WD regions, i.e.,
positive (POS), negative (NEG) and boundary (BND),
according to the eq. (7) and the thresholds α and β.
We have divided this transformation into two parts. The
first part is accomplished by means of the custom function
addConditionalProbability(e) that maps each
pair (k, v), obtained by the previous operation, into a pair
of the following shape: (v[0], |v[2]|/|v[1]|), where v[0] is
the list of IDs of the objects in the same equivalence class
(opportunely transformed into an immutable value) and |.|
is an operator measuring the array length. In other words,
we are calculating the conditional probability because |v[2]|
represents the number of objects belonging to the studied
concepts and |v[1]| represents the number of objects in the
current equivalence class. Let us provide an example. If we
have this input pair:

((LOW, MID, NEAR, Ferry), ([v3,v2,v6],[S, D,S],[S,S]))

the output pair is:

((v3,v2,v6), 0.67))

where 0.67 is the rough membership of the equivalence class
[v2v3, v6].
Moreover, the seventh operation maps, through the custom

function addRegionInfo(e), the pairs (k, v) created by
the previous operation into pairs (k,R), where R is POS,
BND or NEG according to the rules of eq. (7). For instance,
assuming α = 0.65 and β = 0.25, if the input pair is:

((v3,v2,v6), 0.67)

then the output pair is:

((v3,v2,v6), POS)

VOLUME 10, 2022 122323

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

The eighth operation (the last one of the algorithm) is real-
ized by means of the construct flatMap that transforms
one record into zero or more records. The custom function
explodeRegion(e) is applied by means of the above
construct in order to generate arrays for associating each
monitored object with the region it belongs to. For instance,
if the input pair is:

((v3,v2,v6), POS)

the output pairs are:

(v3, POS)

(v2, POS)

(v6, POS)

D. SPARK APPLICATION DEPLOY
The algorithm illustrated by the pseudocode (1) must be
deployed within a Spark StreamingContext in order
to allow Spark to continuously loading the input into the
DStream. Such algorithm is executed iteratively at each com-
putation time (as described in Section VI-A) over the up-
to-date variable rdd (pseudocode (1)) that contains all input
records that are valid with respect to the windowing approach
and the dynamics illustrated in Section IV-B. The work dis-
tribution and the parallelism capabilities are transparent, i.e.,
it is possible to change the number of worker nodes within
the cluster and modify other parameters to optimize the exe-
cution. Further optimizations could be realized by adding
instructions to the source code. For instance, it is possible
to modify window length, sliding length, data gathering fre-
quency (batch time) and also to modify the number of par-
titions for each RDD. This number is important because the
distribution of thework is firstly accomplished (automatically
by Spark) according to it.

E. FIRST SAMPLE RUN
Consider a run where the window length is 30, the sliding
length is 10 and data are read every second. The first burst of
data comes into the system at timestamp 16:26:31 and the
first computation time is 16:26:32. The burst includes the
following data:

(v1, LOW, LOW, FAR, Cargo, S, 1)

(v2, LOW, MID, NEAR, Ferry, D, 1)

(v3, MID, LOW, MID, Cargo, S, 1)

(v4, MID, MID, MID, Research, S, 1)

(v5, MID, LOW, FAR, Research, S, 1)

thus, such descriptions form the evolving universe of dis-
courseW . Moreover, the result of 3WD is:

(v1, POS)

(v2, BND)

(v3, POS)

(v4, BND)

(v5, POS)

The second computation time happens at timestamp
16:26:42 (remember that the sliding length is 10) and
the result (tri-partitioning) is exactly the same as that before
because, at this time, the evolving universe W ′ is equal to
its previous version W . The third computation time happens
at timestamp 16:26:52. Soon before, a data gathering
operation pushes into the system the following data:

(v2, LOW, HIGH, NEAR, Ferry, D, 2)

that is an update for the information related to the ves-
sel v2. Therefore, the third computation time produces a fresh
tri-partitioning that takes into account both first and second
bursts of data because both arrive into the system within
the window length (30 seconds), i.e., the evolving universe
W ′′ = (W ′−{des(v2, 1)})∪{des(v2, 2)}. In this case the result
is:

(v1, POS)

(v2, NEG)

(v3, POS)

(v4, POS)

(v5, POS)

It is clear that there is an important update. The
situation is more clear now given that the boundary
(BND) region disappears. The next computation time
occurs at timestamp 16:27:02 and considers data
arrived in the interval 16:27:02-16:26:32. Thus,
the first burst is excluded, i.e., W ′′′ = W ′′ −
{des(v1, 1), des(v3, 1), des(v4, 1), des(v5, 1)}. In such a case
the result (tri-partitioning) is the following one:

(v2, NEG)

The processing continues in this way as the Spark application
continues to monitor the environment.

VII. EXPERIMENTATION AND EVALUATION
Experimentation activities were configured in order to
emphasize the capability of the defined architecture to early
detect dangerous situations in order to allow human operators
to plan a suitable course of actions to mitigate the risks
in a maritime surveillance scenario. Therefore, the evalua-
tion objective is to show that the 3WD analysis approach
deployed into a streaming computing environment: i) allows
the real-time detection of potential drifting vessels, ii) antic-
ipates the results of classification rules (based on heuristics
and built through the expertise of human experts) that are
necessarily affected by imprecision. Such an objective will
be achieved by comparing the results of the aforementioned
rules to the results obtained by 3WD analysis over a dataset
of structured observations describing the evolving status of
some vessels along consecutive time windows. As described
in the next sections, the streaming-based 3WD provides,
in general, a performance comparable to that offered by the
considered heuristics. The experimentation also shows that
the proposed implementation anticipates, with respect to the

122324 VOLUME 10, 2022

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

expert-based classification rules, the detection of dangerous
situations for specific vessels.

A. DATASET CONSTRUCTION AND STREAM SIMULATION
The dataset has been generated by using Trumania,7 a
scenario-based random dataset generator library in Python 3.
The dataset includes 1200 rows. Each row describes an obser-
vation of a vessel at a given time with respect to its velocity
and drift angle. A row includes also the vessel identifier and
the timestamp at which the observation has been generated.
The monitored vessels are 20 and the 35% of them have a
drifting attitude, i.e., such vessels will drift during the experi-
mentation time. All 20 vessels start the simulation assuming a
safe status and could change their values along the monitored
period. In order to execute the experimentation, it was needed
to simulate the stream of observations and forward them to the
streaming-based 3WD algorithm executed within the defined
architecture. This operation was accomplished by running a
Python script generating a micro-batch of observations every
5 seconds. Each micro-batch has to be processed along all the
architecture phases before being analysed by the streaming-
based 3WD.

B. DATA WRANGLING
Observations included in the generated dataset are processed
and transformed into vessel descriptions (as shown in Tab. 1)
by the architecture whose sketch is provided in Fig. 3 and,
in particular, by the Faust-based component that executes the
following discretization rules applying them as new observa-
tions arrive:
• if 0 ≤ velocity ≤ 5 then LOW
• if 5 < velocity ≤ 15 thenMEDIUM
• if velocity > 15 then HIGH
• if drift angle ≤ 15 then LOW
• if 15 < drift angle ≤ 30 thenMEDIUM
• if drift angle > 30 then HIGH

and the following classification rule:
• if 3≤ velocity≤ 5 and drift angle> 30 thenDANGER-
OUS else SAFE

Both types of rules, coming from the works described
in [42] and [48], allow to build the evolving decision table
that can be processed by the algorithm (1). It is important
to note that the classification rule is expert-based and it
could produce imprecise results. Thus, the 3WD approach,
implemented through probability-based rough sets, well fits
to improve the situation assessment and provide interesting
results.

C. S3WD SETTINGS
The streaming-based 3WD algorithm is executed over the
stream of descriptions provided by Trumania. In particular,
window and sliding lengths (Spark Streaming parameters) are
respectively 30 and 10, and 3WD thresholds, i.e., β and α, are

7http://realimpactanalytics.github.io/trumania/

respectively 0.3 and 0.8. The 3WD target concept is SAFE,
hence POSITIVE region will contain all the vessels that are
not drifting certainly, NEGATIVE region will include all ves-
sels that are drifting certainly and, lastly, BOUNDARY region
will contain all the vessels for which it is not certain that they
are drifting nor that they are not drifting. As described in the
previous sections, the aforementioned regions evolve as time
goes on and, consequently, change their composition in terms
of included vessels. Therefore, the results will be provided
along the timeline to describe performances at given time
instants.

D. RESULTS
Simulation results will be discussed by considering two per-
spectives. The first perspective is the quantitative one, i.e.,
we will consider the typical measures, precision and recall,
to evaluate the tri-partitioning results. Subsequently, the sec-
ond perspective will focus on the analysis of the behaviour of
specific drifting vessels in order to show the real potential of
the proposed approach.

According to the first perspective, Tab. 2 reports precision
and recall values of streaming-based 3WD (S3WD) com-
pared to those obtained by applying the classification rules
described in Section VII-B. The table includes a row for
each application of S3WD. In particular, the first column
reports the timestamp associated with an update of the results
provided by S3WD, the further two columns report the preci-
sion measures calculated by considering that the information
provided by the BOUNDARY region consists always of true
positives (MPBY), or always of false positives (MPBN). The
last two columns report the recall measures calculated by con-
sidering that the information provided by the BOUNDARY
region consists always of true positives (MRBY) or always
of false positives (MRBN). Moreover, Tab. 3 adopts the same
scheme of Tab. 2 in order to report precision and recall
measures against the attitude of vessels to drift or not along
the full monitored period (the attitude informs us if a given
vessel will drift or not at any time instant during themonitored
period). In order to conclude this first evaluation perspective,
it is interesting to observe that the precision values of S3WD
are equal to the corresponding values reported by the clas-
sification rules (see SectionVII-B). Indeed, the recall values
of S3WD tend to become higher, as time goes on, than the
corresponding values obtained by applying the classification
rules as shown in Fig. 8. In particular, it is clear that S3WD
performs better than heuristics when the situation is more
tangled and it is needed computational support for increasing
the analyst/operator’s awareness. Aggregated measures like
F1 score8 and ROC AUC score9 in the case of comparison
with classification rules are respectively reported in Fig. 6 and
Fig. 7. Both the measures range from around 0.9 to 1. There-
fore, the results, according to the first perspective, show that

8The F1 score can be interpreted as a harmonic mean of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.

9Compute Area Under the Receiver Operating Characteristic Curve (ROC
AUC) from prediction score.

VOLUME 10, 2022 122325

http://realimpactanalytics.github.io/trumania/

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

FIGURE 6. F1 score (it is assumed that objects in the boundary region are
always true positive) against classification rules.

FIGURE 7. ROC AUC score (it is assumed that objects in the boundary
region are always true positive) against classification rules.

S3WD is able to maintain good classification performance
along all the execution time. Furthermore, according to the
second evaluation perspective, it is interesting to analyse
the results of S3WD with respect to the vessels having a
drifting attitude. Such vessels are those with identifiers 4, 5,
8, 11, 12, 13, and 18. In particular, for vessels 4, 8, 12, and
13 the proposed approach is able to point out the attention
on such vessels (putting them into the BOUNDARY region)
exactly when the heuristics classify them as DANGEROUS.
Moreover, vessel 5 is put into the NEGATIVE region (stating
that it is in a DRIFTING status) exactly when the heuristics
classify it as DANGEROUS. Thus, for the above vessels,
S3WD provides the same performance as the classification
rules. The advantages of S3WD are evident when dealing
with vessels 11 and 18.

Such cases are reported in Fig. 9 and Fig. 10 and, in some
sense, allows to emphasize some qualitative advantages of
a three-way decision model when compared to a traditional
two-way model. In these figures for the safe-dangerous line
(heuristics), value -1 is the DANGEROUS status and value
1 is the SAFE status. Moreover, for the S3WD (that is
the proposed approach), value -1 is the NEGATIVE region
(DRIFTING behavior), 0 is the BOUNDARY region (uncer-
tain behavior) and 1 is the POSITIVE region (not DRIFTING
behavior). In particular, the DRIFTING behaviour of vessel
11 is early detected by means of S3WD that puts it firstly into
the BOUNDARY region and secondly into the NEGATIVE

TABLE 2. Precision and recall values against classification rules.

TABLE 3. Precision and recall values against attitude.

FIGURE 8. Recall values of S3WD compared to those of classification
rules.

region before such vessel is classified as DANGEROUS by
the heuristics. The same phenomenon happens for vessel 18.

122326 VOLUME 10, 2022

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

FIGURE 9. Situation assessment for vessel 11.

FIGURE 10. Situation assessment for vessel 18.

Lastly, a few additional pieces of information can be pro-
vided in order to better clarify processing time. First of
all, it is important to underline that we have executed the
experiment by using an early prototype in which batches
of data (each batch contains 20 records) are sent to the
Spark Application through the Google Drive Storage. Thus,
the latency includes also the storage time. More in detail,
1200 records (tuples describing vessels) have been sent to
the Spark Application (implementing S3WD) during a time
window of around 600 seconds. All the S3WD processing
tasks have been executed in a time window of 603 seconds.
Let us explain. Couples of batches had an overall process time
(including Google Drive Storage latency, pre-processing and
three-way classification) of around 21 seconds. The through-
put, in this case, was 1.9 records/second. During the exper-
imentation activities, a new batch (20 records) is sent to the
Spark Application (S3WD) every around 10 seconds. In such
a case, the Application was able to process two consecutive
batches before the next one arrives.

VIII. CONCLUSION
This paper describes a novel implementation of Three-Way
Decisions, based on probability-based rough set theory, over
a streaming computing platform, namely Apache Spark. Such
implementation is based on map and reduce programming
style and is part of a whole architecture focused on deal-
ing with situation assessment in large and complex environ-
ments. The proposed approach provides many advantages
being able to support different and heterogeneous real-world
scenarios in which data to be analysed come from distributed

sources spread over the considered environment and have
the characteristics of Big Data (volume, velocity, etc.). The
architecture inherits from Apache Spark also additional use-
ful characteristics like, for instance, the fault tolerance one.
Furthermore, from the result quality point of view, the exper-
imentation activities show that streaming-based Three-Way
Decisions implementation is able to early detect some spe-
cific behaviour of the monitored objects as demonstrated by
the drifting behaviour of vessels. Lastly, future works have
been already planned for executing additional experimenta-
tion activities in different domains in order to test the imple-
mentation approach considering different contexts and to val-
idate the architecture also for non-functional characteristics.

ACKNOWLEDGMENT
The authors thank the Computational and Data Science
(CODAS) Laboratory10 at the Dipartimento di Scienze
Aziendali–Management & Innovation Systems (DISA-MIS)
of the Università Degli Studi di Salerno for the technological
support.

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet

of Things (IoT): A vision, architectural elements, and future
directions,’’ Future Generat. Comput. Syst., vol. 29, no. 7,
pp. 1645–1660, 2013. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167739X13000241

[2] M. Z. Ge, H. Bangui, and B. Buhnova, ‘‘Big data for Internet of Things:
A survey,’’ Future Gener. Comput. Syst., vol. 87, pp. 601–614, Oct. 2018.

[3] I. A. T. Hashem, V. Chang, N. B. Anuar, K. Adewole, I. Yaqoob, A. Gani,
E. Ahmed, and H. Chiroma, ‘‘The role of big data in smart city,’’ Int. J. Inf.
Manag., vol. 36, no. 5, pp. 748–758, Oct. 2016.

[4] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, ‘‘Big data analytics in
intelligent transportation systems: A survey,’’ IEEE Trans. Intell. Transp.
Syst., vol. 20, no. 1, pp. 383–398, Jan. 2019.

[5] Y. Yao, ‘‘An outline of a theory of three-way decisions,’’ in Rough Sets
and Current Trends in Computing, J. Yao, Y. Yang, R. Słowiński, S. Greco,
H. Li, S. Mitra, and L. Polkowski, Eds. Berlin, Germany: Springer, 2012,
pp. 1–17.

[6] Y. Yao, ‘‘Three-way decisions and cognitive computing,’’ Cogn. Comput.,
vol. 8, no. 4, pp. 543–554, 2016.

[7] Y. Yao, ‘‘The superiority of three-way decisions in probabilistic
rough set models,’’ Inf. Sci., vol. 181, no. 6, pp. 1080–1096, 2011.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0020025510005645

[8] M. Hu, ‘‘Three-way data analytics: Preparing and analyzing data in
threes,’’ Inf. Sci., vol. 573, pp. 412–432, Sep. 2021.

[9] Y. Yao, ‘‘Three-way decision: An interpretation of rules in rough set
theory,’’ in Rough Sets and Knowledge Technology, P. Wen, Y. Li,
L. Polkowski, Y. Yao, S. Tsumoto, and G. Wang, Eds. Berlin,
Germany: Springer, 2009, pp. 642–649.

[10] C. Fernandez-Basso, A. J. Francisco-Agra, M. J. Martin-Bautista, and
M. D. Ruiz, ‘‘Finding tendencies in streaming data using big data frequent
itemset mining,’’ Knowl.-Based Syst., vol. 163, pp. 666–674, Jan. 2019.

[11] J. Xu, D. Miao, Y. Zhang, and Z. Zhang, ‘‘A three-way decisions model
with probabilistic rough sets for stream computing,’’ Int. J. Approx. Rea-
soning, vol. 88, pp. 1–22, Sep. 2017.

[12] W.-C. Bang and Z.-N. Bien, ‘‘Incremental inductive learning algorithm in
the framework of rough set theory and its application,’’ in Proc. Korean
Inst. Intell. Syst. Conf. Seoul, South Korea: Korean Institute of Intelligent
Systems, 1998, pp. 308–313.

[13] H. Chen, T. Li, D. Ruan, J. Lin, and C. Hu, ‘‘A rough-set-based incremental
approach for updating approximations under dynamic maintenance envi-
ronments,’’ IEEE Trans. Knowl. Data Eng., vol. 25, no. 2, pp. 274–284,
Feb. 2011.

10https://www.disa.unisa.it/en/department/
structures?id=404

VOLUME 10, 2022 122327

https://www.disa.unisa.it/en/department/structures?id=404
https://www.disa.unisa.it/en/department/structures?id=404

G. Fuccio et al.: Three-Way Decisions on Streaming Computing Platforms Supporting Decision-Making

[14] W. Ziarko, ‘‘Variable precision rough set model,’’ J. Comput. Syst. Sci.,
vol. 46, no. 1, pp. 39–59, Feb. 1993.

[15] H. Chen, T. Li, C. Hu, and X. Ji, ‘‘An incremental updating principle for
computing approximations in information systems while the object set
varies with time,’’ in Proc. IEEE Int. Conf. Granular Comput., Aug. 2009,
pp. 49–52.

[16] H. Chen, T. Li, C. Luo, S.-J. Horng, and G. Wang, ‘‘A decision-theoretic
rough set approach for dynamic data mining,’’ IEEE Trans. Fuzzy Syst.,
vol. 23, no. 6, pp. 1958–1970, Dec. 2015.

[17] J. Zhang, T. Li, D. Ruan, and D. Liu, ‘‘Neighborhood rough sets for
dynamic data mining,’’ Int. J. Intell. Syst., vol. 27, no. 4, pp. 317–342,
Apr. 2012.

[18] D. Liu, T. Li, and J. Zhang, ‘‘A rough set-based incremental approach for
learning knowledge in dynamic incomplete information systems,’’ Int. J.
Approx. Reasoning, vol. 55, no. 8, pp. 1764–1786, Nov. 2014.

[19] Y. Cheng, ‘‘The incremental method for fast computing the rough fuzzy
approximations,’’ Data Knowl. Eng., vol. 70, no. 1, pp. 84–100, Jan. 2011.

[20] S. Li, T. Li, and D. Liu, ‘‘Incremental updating approximations in
dominance-based rough sets approach under the variation of the attribute
set,’’ Knowl.-Based Syst., vol. 40, pp. 17–26, Mar. 2013.

[21] D. Liu, J. Zhang, and T. Li, ‘‘An probabilistic rough set approach for incre-
mental learning knowledge on the change of attributes,’’ in Computational
Intelligence: Foundations and Applications. Singapore: World Scientific,
2010, pp. 722–727.

[22] D. Liu, T. Li, G. Liu, and P. Hu, ‘‘An approach for inducing interesting
incremental knowledge based on the change of attribute values,’’ in Proc.
IEEE Int. Conf. Granular Comput., Aug. 2009, pp. 415–418.

[23] D. Liu, T. Li, and J. Zhang, ‘‘An incremental approach for rule induction
under coarsening and refining of attribute values in E-business systems,’’
in Proc. Int. Conf. E-Business Intell., 2010, pp. 541–547.

[24] D. Ciucci, ‘‘Classification of dynamics in rough sets,’’ in Rough Sets and
Current Trends in Computing, M. Szczuka, M. Kryszkiewicz, S. Ramanna,
R. Jensen, and Q. Hu, Eds. Berlin, Germany: Springer, 2010, pp. 257–266.

[25] D. Ciucci, ‘‘Temporal dynamics in information tables,’’Fundamenta Infor-
maticae, vol. 115, no. 1, pp. 57–74, 2012.

[26] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[27] J. Zhang, T. Li, D. Ruan, Z. Gao, and C. Zhao, ‘‘A parallel method for
computing rough set approximations,’’ Inf. Sci., vol. 194, pp. 209–223,
Jul. 2012.

[28] J. Zhang, T. Li, and H. Chen, ‘‘Composite rough sets for dynamic data
mining,’’ Inf. Sci., vol. 257, pp. 81–100, Feb. 2014.

[29] T. Cao, K. Yamada, M. Unehara, I. Suzuki, and D. Nguyen, ‘‘Parallel
computation of rough set approximations in information systems with
missing decision data,’’ Computers, vol. 7, no. 3, p. 44, Aug. 2018.

[30] E. M. Marouane and Z. Elhoussaine, ‘‘A fuzzy neighborhood rough set
method for anomaly detection in large scale data,’’ IAES Int. J. Artif. Intell.,
vol. 9, no. 1, p. 1, Mar. 2020.

[31] P. Sowkuntla and P. S. V. S. S. Prasad, ‘‘MapReduce based parallel fuzzy-
rough attribute reduction using discernibility matrix,’’ Int. J. Speech Tech-
nol., vol. 52, no. 1, pp. 154–173, Jan. 2022.

[32] S. Vluymans, H. Asfoor, Y. Saeys, C. Cornelis, M. Tolentino, A. Teredesai,
and M. De Cock, ‘‘Distributed fuzzy rough prototype selection for big
data regression,’’ in Proc. Annu. Conf. North Amer. Fuzzy Inf. Process.
Soc. (NAFIPS) Held Jointly 5th World Conf. Soft Comput. (WConSC),
Aug. 2015, pp. 1–6.

[33] E.-S. M. El-Alfy and M. A. Alshammari, ‘‘Towards scalable rough set
based attribute subset selection for intrusion detection using parallel
genetic algorithm in MapReduce,’’ Simul. Model. Pract. Theory, vol. 64,
pp. 18–29, May 2016.

[34] M. Wu and H. Sakai, ‘‘On parallelization of the NIS-apriori algorithm for
data mining,’’ Proc. Comput. Sci., vol. 60, pp. 623–631, Jan. 2015.

[35] H. Bhukya and M. Sadanandam, ‘‘MapReduce-driven rough set fuzzy
classification rule generation for big data processing,’’ in Intelligent
Systems, Technologies and Applications, M. Paprzycki, S. M. Thampi,
S. Mitra, L. Trajkovic, and E.-S. M. El-Alfy, Eds. Singapore: Springer,
2021, pp. 87–102.

[36] S. Shahrivari, ‘‘Beyond batch processing: Towards real-time and streaming
big data,’’ Computer, vol. 3, no. 4, pp. 117–129, 2014.

[37] B. Zhou, H. Cho, and X. Zhang, ‘‘Scalable implementations of rough set
algorithms: A survey,’’ in Recent Trends and Future Technology in Applied
Intelligence, M. Mouhoub, S. Sadaoui, O. A. Mohamed, and M. Ali, Eds.
Cham, Switzerland: Springer, 2018, pp. 648–660.

[38] G.-Y. Wang, Y.-Y. Yao, and H. Yu, ‘‘A survey on rough set theory and
applications,’’ Chin. J. Comput., vol. 32, no. 7, pp. 1229–1246, Aug. 2009.

[39] Y. Yao, S. Greco, and R. Słowiński, ‘‘Probabilistic rough sets,’’ in Springer
Handbook of Computational Intelligence, J. Kacprzyk and W. Pedrycz,
Eds. Berlin, Germany: Springer, 2015, pp. 387–411, doi: 10.1007/978-3-
662-43505-2_24.

[40] S. K. M. Wong and W. Ziarko, ‘‘Comparison of the probabilistic approx-
imate classification and the fuzzy set model,’’ Fuzzy Sets Syst., vol. 21,
no. 3, pp. 357–362, Mar. 1987.

[41] Y. Yao, ‘‘Decision-theoretic rough set models,’’ in Rough Sets and Knowl-
edge Technology, J. Yao, P. Lingras, W.-Z. Wu, M. Szczuka, N. J. Cercone,
and D. Ślȩzak, Eds. Berlin, Germany: Springer, 2007, pp. 1–12.

[42] G. D’Aniello, A. Gaeta, V. Loia, and F. Orciuoli, ‘‘A model based on
rough sets for situation comprehension and projection,’’ in Proc. IEEE
Conf. Cognit. Comput. Aspects Situation Manag. (CogSIMA), Mar. 2017,
pp. 1–7.

[43] A. T. Primer, ‘‘Structured analytic techniques for improving intelli-
gence analysis,’’ CIA Center study Intell., Charlottesville, VA, USA,
Tech. Rep., 2009.

[44] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, ‘‘Big
data analytics on Apache spark,’’ Int. J. Data Sci. Anal., vol. 1, no. 3,
pp. 145–164, 2016.

[45] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,’’ in Proc. 9th
USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2012, pp. 15–28.

[46] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark:
Lightning-Fast Big Data Analysis. Sebastopol, CA, USA: O’Reilly Media,
2015.

[47] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, ‘‘Discretized
streams: Fault-tolerant streaming computation at scale,’’ inProc. 24th ACM
Symp. Operating Syst. Princ., Nov. 2013, pp. 423–438.

[48] N. Willems, R. Scheepens, H. van de Wetering, and J. J. van Wijk,
‘‘Visualization of vessel traffic,’’ in Situation Awareness With Systems of
Systems, P. van de Laar, J. Tretmans, and M. Borth, Eds. New York, NY,
USA: Springer, 2013, pp. 73–87, doi: 10.1007/978-1-4614-6230-9_5.

GRAZIANO FUCCIO received the master’s
degree in business innovation and informatics
from the University of Salerno, Fisciano, Italy,
in 2018, where he is currently pursuing the Ph.D.
degree. During his university studies, he worked
on many research projects related to data science.
His research interests include decision support sys-
tems, situation awareness, and big data analytics.

VINCENZO LOIA (Senior Member, IEEE)
received the master’s degree in computer sci-
ence from the University of Salerno, Fisciano,
Italy, in 1985, and the Ph.D. degree in computer
science from the University of Paris 6, Paris,
France, in 1989. He is currently a Full Pro-
fessor of computer science at the University of
Salerno. He is the Editor-in-Chief of the Journal of
Ambient Intelligence and Humanized Computing
(Springer) and the Journal of Evolutionary Intel-

ligence (Springer). He also serves as an associate editor of more than ten
international journals.

FRANCESCO ORCIUOLI (Member, IEEE)
received the master’s degree (cum laude) in com-
puter science from the University of Salerno, Fis-
ciano, Italy. He is currently an Associate Professor
of computer science at the University of Salerno.
He is also focusing his research activities on data
science and computational intelligence. He is the
coauthor of more than 130 scientific publications
indexed by Scopus and a co-founder of a university
spin-off involved in several research and develop-

ment projects related to e-health.

122328 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-662-43505-2_24
http://dx.doi.org/10.1007/978-3-662-43505-2_24
http://dx.doi.org/10.1007/978-1-4614-6230-9_5

