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ABSTRACT Globally, 1.6 billion individuals suffered from hearing disability in 2019. According to the
World Health Organization, by 2050, the number of people with hearing impairments will rise to 2.5 billion.
Speech perception in noisy surroundings is a challenge for hearing aid users. This study aimed to design a
novel methodology to improve the speech recognition ability of hearing aid users from various backgrounds.
To improve speech enhancement, we propose a discrete cosine transform (DCT)-based improved amplitude-
magnitude spectrogram (I-AMS) algorithm with a fuzzy classifier. First, the I-AMS approach disintegrates
speech signals containing noise into time-frequency units and eliminates the noise present in the signal.
Next, the time frequency units (t-f units), modulation frequency (fm), and centre frequency (fc) are extracted
from the denoised signal. A neuro-fuzzy classifier was used to classify the background speech environment
into three different classes. The proposed I-AMS algorithm was tested, achieved improvements in terms of
sensitivity (+1.02%) and accuracy (+11.80%). Speech denoising revealed a 1.27% improvement in speech
recognition performance.

INDEX TERMS Improved amplitude magnitude spectrogram, insertion gain, intelligibility, marathi speech,
neuro-fuzzy classifier, time-frequency units.

I. INTRODUCTION
Speech is a form of human communication, and over the
past 50 years, speech recognition has become a fascinat-
ing research field. Speech is the core of human activity
because it helps humanity collaborate in a common and viable
manner [1]. Approximately 13% population in developed
countries suffers from hearing deficiencies. These factors
influence communication abilities and prevent normal liv-
ing [2]. In addition, approximately 25% users avoided the
use of hearing aids owing to bothering and repulsive shrieks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

Most hearing aids (HA) are designed for single-background
environments. In a noisy background, the signal and noise
are amplified similarly [3]. Hearing aids are electroacoustic
devices that improve the audibility of individuals with hearing
impairment. The main objective is to increase speech intelli-
gibility through amplification to achieve a better hearing aid
performance [4]. However, this procedure typically increases
the sound power levels in each frequency band, including the
hearing thresholds of the user, which has no noticeable benefit
[5]. To avoid this, a frequency-lowering technique was used
to transfer the frequency band from the dead (impaired) to
the audible band [6], [7]. Speech playback at a lower rate
than sampling is a unique method of frequency lowering
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that degrades the speech quality [8]. Several approaches have
been proposed to overcome the challenges of speech recog-
nition. The speech recognition process was developed using
the hidden Markov model [9] and the stereo vision neural
network model [10]. Some known speech denoising meth-
ods include Wiener filtering [11], spectral subtraction algo-
rithms [12], and subspace filtering [13], which have attracted
substantial attention and exploration owing to their simple
designs and implementations. The orthogonal-polynomial-
based speech enhancement algorithm emphasizes the devel-
opment of aminimum low-distortion estimator for speech and
noise data signals. The observed signal was transformed into
the transform domain using an orthogonal polynomial [14].
During speech processing, these linear approaches minimize
noise while simultaneously enhancing the signal-to-noise
ratio (SNR). The Support vector machine (SVM) approach
[15] has been proven to improve the oversimplification capa-
bility of the classifier. Speech recognizers are generally
calibrated to avoid mismatches during the recognition period,
such as minimal distinction malfunctions [16].

This study proposes a novel combinational feature
extraction and classification approach to increase the speech
intelligence of hearing aid users in the Marathi language.
Numerous commercial hearing aids cannot adapt to acoustic
environmental changes or background conditions. The focus
of this study was to design a speech background classifier that
helps improve the auditory performance of HA users under
different background conditions. First, we decomposed the
input speech into discrete t-f units and reduced the signal
noise. Next, we extracted useful features such as the time
frequency unit (t-f), center frequency (fc), and modulation
frequency (fm) from the Marathi speech using the improved
amplitude magnitude spectrogram (IAMS) technique. The
input speech feature values were categorized into correspond-
ing classes based on the ratio [17]. This ratio was determined
using a neuro-fuzzy classifier based on approximate and
original spectral values. A window function was applied, fol-
lowed by weighting and addition of the corresponding mask
value to obtain an enhanced signal. Quality improvement of
speech includes the recognition of syllables, monosyllables,
vowels, consonants, words, short sentences, and phonemes
by hearing aid users under different speech background con-
ditions. Marathi speech samples were collected from partic-
ipants of different sexes and speech backgrounds. A novel
contribution of the proposed approach lies in feature selection
for speech enhancement in HA. The features are selected
using a discrete cosine transform (DCT)-based improved
amplitude magnitude spectrogram (I-AMS) algorithm, which
reduces speech processing time. The neuro-fuzzy classifier
categorized the denoised speech signal into four classes: tar-
get, target-dominated, masker-dominated, and masker.

This paper is organized into six sections. In Section 2,
state-of-the-art literature is provided. The proposed approach
for improving speech intelligibility is described in detail
in Section 3. Section 4 illustrates the collection of
databases, experimentation process, and audiogram analysis.

Section 5 focuses on the signal enhancement, classifier per-
formance, and recognition results. Finally, in Section 6, con-
clusions and future work are presented.

II. LITERATURE REVIEW
Numerous researchers have assessed the hearing loss on cer-
tain frequencies.

Ching et al. [18] clarified the speech perception of people
with hearing disabilities and calculated their speech intelli-
gibility index (SII). Customization of the SII is considered
to boost the accuracy [19]. The index scale was considered
inadequate in a recursive recognition skill test, and alternative
improvements were proposed [18]. Satisfactory outcomes
were obtained using this system, in which the amount of dis-
tortion with the audible frequency capability of the user was
merged. This approach has been assessed for syllables and
sentences. Moreover, in [20], noise reduction techniques for
speech quality improvement useful for hearing-impaired (HI)
individuals were examined. Speech quality was improved
using the shrinkage sparse coding (SSC) technique [21].
In this method, the examination is extended to contain speech
quality evaluations using interrelated comparative ranking
(ICR) [22].

In [23], improved high-frequency speech intelligibility in
noise was proposed, and sound sources were located on a
horizontal plane with high accuracy. First, speech frames are
decomposed into three groups of speech models: amplitude,
frequency, and phase [24]. The input speech frequency above
the reference cut-off frequency (fc) was reallocated towards
a lower frequency range to improve high-frequency speech
recognition ability [25]. Frequency compression ratio (CR)
was set for various frequency ranges. To prevent spectral dis-
tortion of speech, the input spectrum was categorized into six
octaves [26]. Furthermore, Matthias et al. [27] developed the
F0 modulation F0 (mod) processing technique for the cochlear
implant (CI). This approach offers F0 (mod), which enhances
the spectral pitch cue by performing intensity modulation
of multichannel electrical stimulation [28]. The input speech
signal F0 (fundamental frequency) was used. This approach
has been verified for recognition at word and sentence levels
in various noise-level situations.

Table 1 depicts existing speech processing methods [1],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39]
and their processing strategies, along with their highlights
and limitations for vowel, consonant, word, and sentence
recognition.

Cochlear implant (CI) speech perception systems, where
acoustic listening was proposed to replicate the effects of
speech-in-noise intelligibility, have been proposed in [40]
and [41]. In relation to electrical and/or acoustic stimuli, a
model has been used to simulate the neurons of the auditory
system [42]. Positioning and spatial-temporal structured
spiking variations were employed as inner illustrations of
the noisy voices. For signals including stagnant noise, speech
reception thresholds were predicted for a sentence [43] and
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TABLE 1. Comparative study of existing speech processing algorithms.

checked for an automatic method of speech recognition
in [44].

Furthermore, in [45], interaural differences in terms of
intensity, time, and phase were introduced. The sound arrival
time (Sat) and sound arrival level (Sal) allow the distinction
of sounds in the horizontal planes, and these parameters
are helpful for source separation and speech perception in
environments with background noise [46], [47]. Sound local-
ization behaviour was examined using 14 bimodal uses; all
users adopted the same CI, the advanced Phonak hearing aid.
The primary objective was to find binaural andmonaural cues
for horizontal sound-source localization [48].

In [49], speech intelligibility in terms of inconsistency
in cochlear implant (CI) users was investigated. Speech

comprehension in various environments with background
noise was investigated in [46] and [50]. They utilized a
speech amplification algorithm [51] based on a neural net-
work to increase the speech perception in the presence of
background noise. The noise was separated from the speech
signal and converted into time-frequency units [52], [53].
A neural network was used for channel frequency estimation
in [54].

There is still a need for improvement in terms of the
gain frequency correlation, noise cancellation, acoustic feed-
back, and signal processing delay. Many algorithms that
are designed and implemented for single-background envi-
ronments are not useful for other speech backgrounds.
Input speech denoising, insertion gain, and feature extraction

123030 VOLUME 10, 2022



P. G. Patil et al.: Marathi Speech Intelligibility Enhancement Using I-AMS Based Neuro-Fuzzy Classifier Approach

required for classification are key parameters of the proposed
method.

III. THE I-AMS BASED SPEECH SIGNAL ENHANCEMENT
TECHNIQUE
The proposed approach focuses on four phases: preprocess-
ing, feature extraction, training-testing rate for classifiers,
and speech enhancement. Figure 1 shows the overall diagram
of the proposed neuro-fuzzy classifier for speech enhance-
ment. First, noise was removed from the input speech. Sub-
sequently, an improved amplitude-magnitude spectrogram
(I-AMS) technique is used. The extracted features are trained
using a neuro-fuzzy classifier. During the training phase,
the noise-masked signal t-f units [55] were classified into
four classes: target class (class_1), target-dominated class
(class_2), masker class (class_3), and masker-dominated
class (class_4).

During the enhancement phase, the noise-masked signal
has individual t-f units, which aremultiplied by the equivalent
class weight to obtain the enhanced speech waveform.

A. PRE-PROCESSING
Pre-processing in I-AMS is an important stage in speech
enhancement and consists of four steps: pre-emphasis, Auto-
matic Gain Control (AGC), FFT filter bank, and envelope
extraction.

1) PRE-EMPHASIS
Pre-emphasis is the first stage involved in the pre-processing.
The input signal may have different frequency components
that fall between high and low frequencies. To avoid high
frequencies and compensate for the high-frequency compo-
nents [2], we use a pre-emphasis filter whose pre-emphasis
factor ‘α’ is selected in the range of 0.9 1. In the pre-emphasis
phase, the high-frequency speech components are amplified
to a highermagnitude than the noise components, which helps
improve the signal-to-noise ratio (SNR).

2) AUTOMATIC GAIN CONTROL
After the pre-emphasis stage, the filtered output signals were
passed through automatic gain control (AGC) [56]. Ampli-
fication converts soft, moderate, and loud sounds to audible
ranges. The AGC controls the gain during processing accord-
ing to the background environment of the speaker and the
HA user. It is improved using a dual-loop AGC that contains
low-gain AGC for level deviation and high-gain AGC for
severe deviation. In sentence assessments, the dual-loop AGC
offered a better speech understanding ability than the fast
AGC approach.

3) FFT FILTER BANK
The compressed signal was transformed using FFT. It com-
putes the real and imaginary parts of the signal, where it
decomposes the N’ point time-domain signal into the fre-
quency domain. Then it calculates corresponding ‘N’ point

frequency spectra and convolves into a single frequency
spectrum.

B. FEATURE EXTRACTION USING IMPROVED AMPLITUDE
MAGNITUDE SPECTROGRAM (I-AMS)
Feature extraction is the most significant step in the I-AMS
technique, as illustrated in Fig. 2. The signals were sampled,
bandpass filtered, rectified, and segmented. In this method,
we used the discrete cosine transform rather than the normal
Fourier transform [57]. We also added delta functions to
improve the feature vector values by using Equation (1).

1FT (λ, t) = FS (λ, t)− FS (λ, t − 1) (1)

where FT is the transformed frequency and FS is the speech
frequency. Dataset (D) of the Marathi speech samples was
partitioned into the training (DTR) and testing

(
DTS

)
datasets.

The input signal I (t) contains both the clean signal C(t)
and noise signal N (t) as indicated in Equation 2.

I (t) = C (t)+ N (t) (2)

During the sampling process, the continuous time signal
is transformed into a discrete-time domain at a sampling rate
of 16 KHz [58], [59]. The input signal I (t) in Equation (2) is
sampled as I (n) as shown in Equation (3).

I (t) = I (n.T ) , where n = 0, 1, 2, . . . (3)

The time duration of each frame with 320 samples was
20m-sec with an overlap of 50%. Rounding and truncation
are widely used in quantization processes. We implemented
a 6-bit quantization process in which quantization improve-
ment was performed using the µ law. The quantized signal
is processed through a pre-emphasis phase to enhance the
power level, in which emphasis is placed on the higher fre-
quency contents of the signal compared to the lower one. SNR
improvement is achieved by limiting the undesirable effects
of saturation and attenuation losses [60]. The SNR of the nth

frequency band was calculated using Equation (4).

R̄n = Rn − α(Rn−1) (4)

where α = 0.95 and R̄n is nth frequency. The pre-emphasized
signal was passed through a band-pass filter with 25 chan-
nels. The processed signals were separated into different
time-frequency units (t-f) using bandpass filters. The signal
is converted into 25 different t-f units where each t-f unit
related to corresponding channel which is represented by ‘Ci’
where1 ≤ i ≤ 25. Each channel has a corresponding upper
and lower cut-off frequency. After complete wave rectifi-
cation, the envelope of each band was decimated using 3.
The decimation envelope was divided into 128 intertwining
segments, which had 32 ms segments with 64 overlapping
samples per frame. Each segmented signal is defined by ‘Sij’
where 1 ≤ i ≤ 25, 1 ≤ j ≤ Ni, w here,N i is the number of
segments related to the ith channel. The sampled signals are
windowed using the Hanning window with a 25ms window
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FIGURE 1. The proposed Neuro fuzzy classifier and I-AMS Speech enhancement system.

size that eliminates spectrum artifacts [61]. The window
function is defined by Equation (5):

w(n) =
1
2

[
1− cos

(
25n
N − 1

)]
(5)

where N is the sample width, and n is an integer from 0 to
(N -1). Zero padding and DCT have also been used [62].
In terms of the number of cosine functions at various frequen-
cies [6], a discrete cosine transform (DCT) conveys a limited-
magnitude sequence at different DCT data points. The DCT
was applied to the input signal using (6).

Yt =
∑N−1

t=0
yn.
[
cos

π

N

(
n+

1
2

)
.t
]

(6)

where t = 0, . . . ,N − 1
The DCT computes the modulation spectrum for each of

the 25 channels, and each channel is duplicated by 15 trian-
gular windows [63] within a range of 15.6–400 Hz (Equa-
tion (7)).

w(n) =
2

N − 1

[(
N − 1

2

)
−

∣∣∣∣n− N − 1
2

∣∣∣∣] (7)

These spectrum amplitudes are summed, and each
describes the feature vector Fs (ρ, t) , where t is the time slot
and ρ corresponds to the subband.
We included delta functions in the extracted features to

consider shifts in the time and frequency domains [64], [65],
where the delta function is expressed in Equation (8).

1FT (ρ, t) = FS (ρ, t)− FS (ρ, t − 1) For t = 2, . . . ,T

(8)

The delta function [66] in terms of frequency is defined by
Eq. (9).

1FB(ρ, t) = FS (ρ, t)/FS (ρ − 1, t) For ρ = 2, . . . ,B

(9)

For t = 1, Equation (9) is expressed as

1FT (ρ, 1) = FS (ρ, 2)− FS (ρ, 1)

For ρ = 2 Equation (9) becomes

1FB(1,t) = FS (2,t)/FS (1,t).

The overall feature vector [67] is expressed using the delta
function:

As(ρ, t) = [Fs(ρ, t),1FT (ρ, t),1FB(ρ, t)] (10)

We selected 25 sub-bands: B. Because aS (b, τ ),1aT (b, τ )
and1aB (b, τ ) have dimensions of 15, the total feature vector
dimension of AS (b, τ ) is 45.

C. NEURO-FUZZY CLASSIFIER TRAINING
Each input t-f unit is classified into the corresponding
class [68]. In the proposed method, the signal was clas-
sified into four classes: masker, masker-dominated, target-
dominated, and target classes. The quality ratio classes are
represented as Q1, Q2, Q3 and Q4, respectively. Let us
consider the noisy speech spectrum N (b, τ ) at time slot τ
and sub-bandb. The signal spectrum Ȳ = (b, τ ) is estimated
by multiplying the gain function [72], [73] with the noisy
speech spectrum N (b, τ ) at time slot τ and sub-bandb using
Equation (11).

Ȳ (b, τ ) = G(b, τ ).|N (b, τ )| (11)
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FIGURE 2. The block schematics of the I-AMS feature extraction.

The gain G (b, τ ) is calculated using Equation (12).

G(b, τ ) =

√
SNRp(b, τ )

1+ SNRp(b, τ )
(12)

The prior signal-to-noise ratio [71] is SNRp and is com-
puted using Equation (13).

SNRp(b, τ ) =
α.|Ȳ = (b, τ − 1)|2

λD(b, τ − 1)
+ (1− α)

· max
[
|N (b, τ )|2

λD(b, τ )
− 1, 0

]
(13)

where the smoothing constant is α = 0.98 and the back-
ground noise variance estimation is λD.
The estimated magnitude of speech was compared to the

actual speech magnitude [72], and Equation (14) was used
for the corresponding t-f unit.

Q =
|X̄ (b, τ )|
|S(b, τ )|

(14)

During the training stage, the four different classes shown
in Equation (15) were used:

G(b, τ ) =


Q1 if t − f units belongs to class 1
Q2 if t − f units belongs to class2
Q3 if t − funits belongs to class3
Q4 if t − f units belongs to class4

(15)

where Q1 is the masker class, Q2 is the masker-dominated
class, Q3 is the target-dominated class, and Q4 is the
masker, masker-dominated, target-dominated, and target
classes, respectively. The DCT provides significantly higher
energy compaction than the DFT. We collected 8100 Marathi
speech samples from female and male (14 female, four male)
speakers in different speech background conditions. For
neuro-fuzzy classifier training and testing purposes we used
70-30%, 60-40% and 80-20% data from collected samples.

D. ENHANCEMENT MODULE
After classifier training, the pre-processing noise input signal
is convolved with the calculated optimal binary value.

The proposed waveform synthesis technique is illustrated
in Fig. 3. The predicted class [73] produces gain G(b, τ ) of
the mask represented in Equation (16).

G(b, τ ) =


0.00, if t − f units belongs to class 1
0.33, if t − f units belongs to class 2
0.66, if t − f units belongs to class 3
1.00, if t − f units belongs to class 4

(16)

IV. EXPERIMENTATION AND TESTING
This section presents a detailed analysis of the proposed
method of experimentation and testing using hearing-aid
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FIGURE 3. Block schematics of the I-AMS feature extraction.

TABLE 2. Statistics of recorded marathi speech dataset.

users. The selection of hearing aid users with relevant audio-
gram analysis is a key stage in the experimentation. Each
participant was accurately examined to determine their audio-
gram response at a particular decibel frequency level.

A. RECORDING SPEECH DATASET
Marathi letters, words, short sentences, and rhyming words
were recorded in three main situations: a silent room, speech
with a musical background, and speech with fan noise. The
speech dataset statistics and sample details are listed in
Table 2.

B. EXPERIMENTATION FLOW
Figure 4 illustrates the experimental flow for the speech
intelligibilitymeasurements. Each speech-processingmethod
was examined in terms of the performance parameter (sci-
entific) and the recognition approach (developmental). The
recognition scores of all hearing-aid users were measured
using all the processing techniques.

C. PARTICIPANTS SELECTION PROCESS AND
AUDIOGRAM ANALYSIS
Candidate selection and system design verification proce-
dures were performed in accordance with the clinical test

practice suggested by the hearing aid manufacturers’ stan-
dards; 12 hearing aid users participated in testing: seven
in the 7–14-year age group and five in the 14–17-year age
group. The participants were selected from the NGO operated
Priyadarshini deaf residential school, Shirpur (M.S) located
in North Maharashtra region. All selected participants had
mild to moderate hearing loss. The participants were cate-
gorized into two groups according to their sex. This catego-
rization was useful for detecting the impact of words spoken
by female speakers, sentence recognition, and intelligence
ability. The audiologist’s outcome and parameter fitting pro-
cess revealed the dead region and patient’s requirements. The
use of audiologist outcomes helped us to select the essential
set of performance parameters for the algorithm to avoid
overfitting.

V. RESULTS AND DISCUSSIONS
In this study, the amplitude–frequency variation for noisy
input and enhanced (de-noised) signal and the neuro fuzzy
classifier performance parameter were calculated for differ-
ent training and testing rates. After designing and implement-
ing the proposed algorithm, recognition tests are performed
under different conditions for a group of HA users.

A. SIGNAL ENHANCEMENT RESULTS
Denoisingwas the primary stage of this section. The proposed
classifier was used to identify the class of incoming signals.

The signal-to-noise ratio (SNR) variation was plotted for
various collected samples and compared with the existing
pitch-intensity-based neural network approach [5], [7], [28]
in terms of the SNR for various collected samples, as shown
in Figs. 5 and 6. Both methods showed an SNR improve-
ment over the existing neural-network approach for differ-
ent backgrounds. The proposed denoising approach achieved
a maximum SNR of 25 dB, whereas traditional neural-
network-based speech intelligibility achieved a maximum
SNR of 23 dB in a silent room situation.

The proposed I-AMS based Neuro fuzzy classifier
approach achieves a maximum SNR of 13db while neural
network-based speech intelligibility achieves a maximum
SNR of 11 dB under a music background situation.
Insertion Gains for Speech (IGSPXX): Insertion gains

(IG) are required to maintain the processed signal up to the
requirements of a hearing aid user [76]. The insertion gain
was estimated using an audiogram. The insertion gain (dB)
response over the channel center frequency is shown in Fig. 7.
Audiogram observations and frequency gain functions were
incorporated into the proposed algorithm.

B. NEURO FUZZY CLASSIFIER PERFORMANCE
The neuro-fuzzy classifier performance results were mea-
sured using the following parameters: sensitivity [76], speci-
ficity, classification accuracy, false positive classification
rate (FPCR), false negative classification rate (FNCR), false
acceptance classification rate (FACR), false rejection classifi-
cation rate (FRCR), positive estimation value (PEV), negative
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FIGURE 4. Speech intelligibility experimental flow and testing algorithm.

FIGURE 5. SNR comparison for the collected samples in a quiet room.

estimation value (NEV), and the Mathews correlation coeffi-
cient (MCC). These performance parameters were calculated
for the different training and testing ratios of the neuro-
fuzzy classifier. Sensitivity refers to the ability of the clas-
sifier to classify correctly; specificity [77] is a measure of

the capability of the classifier to correctly classify negative
signals [78]; and accuracy is given by Equation (17).

Accuracy =
[∑

Truepositive+
∑
Truenegative∑

no of samples

]
(17)
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FIGURE 6. SNR comparison for the collected samples having a music background.

TABLE 3. Performance parameters measurement for different training and testing rates.

False positive classification Rate (FPCR) is defined by
Equation (18)

FPCR =
False Positive
Actual Negative

=
FP

TN + FP
(18)

False negative classification Rate (FNCR) is defined by
Equation (19)

FNCR =
False Negative
Actual Negative

=
FN

TN + FP
(19)

False Acceptance classification Rate (FACR) is defined by
Equation (20)

FACR =
False Positive

Total No of Attempts
=
FP
N

(20)

False Rejection classification Rate (FRCR) is defined by
Equation (21)

FRCR =
False Negative

Total No of Attempts
=
FN
N

(21)

Positive Estimation Value (PEV) is defined by Equation (22)

PEV =
True Positives

True Positives+ False Positive
=

TP
TP+ FP

(22)

Negative Estimation Value (PEV) is defined by Equation (23)

NEV =
True Negative

True Negative+ False Negative
=

TN
TN + FN

(23)
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TABLE 4. Short sentence correct recognition rate comparison.

FIGURE 7. Insertion gain (dB) response over the channel center
frequency.

The Matthews correlation coefficient (MCC) is widely
adopted in machine learning to calculate the excellence
of binary (two-class) classification. MCC is the rela-
tionship coefficient between experiential and forecasted
two-stage classifications [79]. It has a value between
−1 and +1.

Where; coefficient of + 1 = Correct estimation

coefficient of − 1 = Incorrect estimation.

coefficient of 0 = Randome stimation

Table 3 shows the performance parameters of the
I-AMS-based classifier by extracting different features as t-f
units, center frequency, and modulation frequency for differ-
ent training and testing rates. The target (higher) frequency
band is linearly compressed to a lower (audible) frequency
This approach is designed using critical bark-band scaling,

which reduces spectral loss in the lower speech frequency
range [47].

C. MARATHI LANGUAGE RECOGNITION TEST RESULTS
The 7- to 12-year-old participants were randomly divided into
two groups.

Figures 8 and 9 show the average vowel and con-
sonant recognition scores calculated for the proposed
method by extracting the t-f unit, center frequency, mod-
ulation frequency, and individual hearing aid. In these
experiments, each vowel and consonant were played ran-
domly multiple times with different speaker and listener
backgrounds. For the short-sentence recognition test, six
listeners were selected from existing 12 users. These
participants were selected based on their perception of
the highest individual recognition rate during the vowel
and consonant tests. A short-sentence recognition test was
conducted with different backgrounds of the speakers and
listeners.

The overall recognition score was measured for speak-
ers and listeners in the quiet-quiet, quiet-crowded, crowded-
quiet, and crowded-crowded rooms. Table 4 shows that
the individual recognition score calculated for five differ-
ent cases, which indicates that the highest rate of approx-
imately 67% was achieved after denoising and t-f unit
extraction.

In Fig. 10, the SNR variation comparison for the
proposed technique indicates that the processing method
retains the SNR level and reduces the insertion gain
requirement.

In Table 5, the processed speech after t-f unit extraction
retains a SNR level between minimum 50.6 dB to maxi-
mum 67.3 dB which yields a better speech quality for HA
users, while other speech features as centre frequency (fc)
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FIGURE 8. Average recognition score for the Marathi vowels.

FIGURE 9. Average recognition score for the Marathi consonants.

FIGURE 10. Signal to Noise Ratio (SNR) variation comparison for the proposed technique.

and modulation frequency (fm) reduces processed speech
SNR and demands more insertion gain to meet patient’s
requirement.

Table 6 presents the spoken and listened confusion matri-
ces for the Marathi consonants. The confusion matrix diag-
onals specified the correct identification of each consonant.
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TABLE 5. Feature vector extraction and processed speech SNR correlation.

TABLE 6. Spoken and listened confusion matrix test for marathi consonants.

The Marathi confusing consonants group was responsible for
the reduced recognition rate.

VI. CONCLUSION
The proposed speech enhancement based on I-AMS pro-
cessing was designed to improve hearing precision for the
hearing-disabled under different speaker and listener back-
ground conditions. It makes several contributions to signal
denoising (enhancement), insertion gains at different fre-
quency levels, and feature extraction, training, and testing of
neuro-fuzzy classifiers.

Current signal processing techniques in hearing aids pro-
cess speech signals regardless of the speech background,
which may maintain the SPL below the hearing threshold
level. In the proposed technique, the minimum insertion
gain (IGSPxx) is added according to the speech background
to satisfy the hearing aid user requirements. The proposed
method achieves an SNR of 25 dB in contrast to the existing
technique, providing 23 dB in quiet room conditions, which
is similar to a noisy background SNR of 13 dB as compared
to the existing 11 dB. The recognition results showed the

importance of denoising; the short sentence correct recogni-
tion rate increased from 47.33% to 48.60%. Denoising has a
greater impact on recognition results in a noisy background
than in a quiet background situation. The performance of the
neuro-fuzzy classifier varies according to the training and
testing rates. Sensitivity variation was found in the range
98.44%- 99.46%, 97.61-100 % and 94.44%-98.40% respec-
tively, after extracting t-f unit, centre frequency, and mod-
ulation frequency. The classification accuracy ranged from
74.86% to 86.66% for 80-20% training and testing condi-
tions. Finally, the t-f unit and training testing rate played
a vital role in improving classifier performance. Speech
enhancement with t-f unit extraction had a positive impact
on short sentences recognition, and 66.70% accuracy was
obtained for the t-f unit.

In addition, the proposed AMS-based classification
method showed a significant improvement for female speak-
ers when compared to male speakers. This research can be
extended by extracting additional speech features and incor-
porating appropriate modifications during the training, clas-
sification, and testing phases. Additionally, implementations
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on different hardware platforms, such as complex pro-
grammable logic devices (CPLD) and field-programmable
gate arrays (FPGA), are envisaged.
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