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ABSTRACT Accurate bearing remaining life prediction guarantees safety and continued profitability for the
industry. Variable operating conditions of the bearing and difficulty in obtaining corresponding data labels in
the industry result in low prediction accuracy of the model. To solve these problems, a bearing life prediction
model based on an improved temporal convolutional network and transfer learning is proposed. First, the
squeeze-and-excitation network is used to mine and recalibrate the deep features of source domain data.
Second, the temporal convolutional network is used to calibrate the relationship between the features and
lifetime, and the optimal source domain model is trained. Finally, the transfer learning training is conducted
with the source domain model to obtain the transfer model, which can accurately predict the remaining life
of the multi-operating condition signal. Comparative experiments were performed on IEEE PHM Challenge
2012 bearing life dataset. The results show that the proposedmethod can better mine the inherent degradation
trend of bearings and effectively improve the prediction accuracy of the remaining useful life. Comparedwith
the existing popular prediction methods, the prediction error was reduced by ‘‘20.8%’’ to ‘‘51.5%’’, which
proves the effectiveness and feasibility of the proposed method.

INDEX TERMS Bearing, prediction of residual life, SENet, time convolution network, particle swarm
optimisation, life prediction.

I. INTRODUCTION
Rolling bearings are widely used in various machines as a
mechanical standard component [1]. Predicting the remaining
useful life (RUL) of rolling bearings is extremely important
for manufacturing engineering [2]. An accurate RUL can
improve the maintainability, security and reliability of equip-
ment while improving production efficiency and reducing
production costs. These can help avoid personal injury and
property damage caused by mechanical equipment damage.

RUL prediction methods can be roughly divided into
two categories: mechanism-based models and data-driven
methods [3]. Mechanism-based models establish an equip-
ment degradation model according to the physical structure
of the bearing to predict remaining life. The data-driven
method uses machine or deep learning algorithms to fit
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main characteristic data that can reflect the bearing degra-
dation state, thereby predicting the remaining service life
of the bearing. The mechanism-based model requires a cer-
tain in-depth understanding of the bearing structure, and
the mechanism of rolling bearings has a certain complex-
ity. Thus, it is difficult to construct a mechanism model
because the data-driven method can grasp the degradation
of the bearing only through historical data. RUL prediction
must be performed regularly. With the rapid development
of artificial intelligence and deep learning in recent years,
data-driven bearing life prediction methods have gradually
become mainstream [4]. All the fully connected layers in the
traditional convolutional neural network with convolutional
and pooling layers should be replacedwhen predicting the life
of a bearing; this is to reduce the parameters that the neural
network requires for training [5]. Life prediction of rocker
gearboxes is based on a long short-term memory model
in a practical engineering environment [6]. Based on the
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online monitoring data, the prediction model of an automatic
encoder combined with a deep bidirectional gated recursive
unit (bi-GRU) was constructed to predict a shearer RUL [7].
By combining DenseNet and squeeze-and-excitation network
(SENet), a SE-DenseNet model is proposed to enhance the
transmission of deep information, avoid the disappearance of
gradients and recalibrate data features [8]. The remaining ser-
vice life of the bearing is predicted by parallel multi-channel
convolution long-and short-term memory network. [9]. The
temporal convolution network (TCN) model was constructed
to accomplish the RUL prediction by mining the inherent-
time-series characteristics of the degradation trend using the
TCN [10]. The vibration trend of the rolling bearing is pre-
dicted using the TCN, and the residual life of the rolling
bearing is predicted by adding an attention mechanism to the
TCN [11]. The original feature extraction in the above meth-
ods and models is unable to fully use the characteristics of the
data and some methods ignore the time-series characteristics
of the data. The machine contains different types of bearings
in the actual engineering. The data collection is incomplete
because of various working conditions and long-term oper-
ation of the equipment, and the data cannot be added to
the label. The existing model is difficult to meet the actual
situation.

In response to the above problems, a transfer learning
method is introduced to the field of bearing RUL. Com-
pared with traditional machine learning, which requires the
same distribution of training and test data, this method can
avoid the labour and material costs caused by re-labelling
the obtained data in traditional machine learning [12]. Note
that transfer learning is not a single method but a machine
learning algorithm [13]. The main idea of transfer learning is
to use similar information from the source domain to improve
the task performance in the target domain [13]. In transfer
learning, we first train a base network on a base dataset and
task; then, we reuse or transfer the learnt features to a second
target network for training on the target dataset and task. This
process works when the features are generic [14].

Presently, transfer learningmethods have shown promising
effects in several fields, such as text [15], image [16], [17]
and software defect classifications [18]. Furthermore, it was
successfully applied to the bearing life prediction problem
this year. These techniques include the LSTM-DNN trans-
fer network method [19], cross-case method for time-series
clustering [20], convolutional neural and long short-term
memory networks [21], deep transfer metric learning for
kernel regression [22] and bi-GRU network [23]. However,
the research on the RUL of rolling bearings, which is based on
transfer learning, is still in its infancy. Kang et al. [24] used
a semi-supervised migration component analysis method to
predict the RUL of rolling bearings under variable operat-
ing conditions. However, this method does not consider the
influence of the bearing timing characteristics in the RUL
during degradation. Chen [10] et al. used a deep time-series
feature transfer model for RUL prediction, but they could not
effectively mine the data features of the original vibration
signal.

Based on the above discussion, a bearing residual-life pre-
diction model based on improved SENet-TCN and transfer
learning is proposed to improve the RUL prediction perfor-
mance under different working conditions. The model com-
bines the SENet and TCN and uses SENet to mine the data
features of the original vibration signal, which is used to
adaptively construct feature indicators. Furthermore, it uses
multilayer TCN to mine the inherent-time series features
of bearing degradation trend from the construction feature
indicators to improve the RUL accuracy of the model. Fur-
thermore, it is crucial to learn the time-series characteris-
tics of different bearing variable working conditions through
transfer learning; the learnt content should be used to train
the transfer model. The purpose of improving the prediction
effect of bearing RUL under different working conditions is
achieved, and comparative experiments were performed on
the IEEE PHM Challenge 2012 bearing life dataset to verify
the effectiveness of the proposed method.

The contribution of this study can be summarised as
follows:

1. The SENet network is improved. The improved SENet
reduces the number of calculations, and it is more sen-
sitive to vibration signals, which can effectively build
feature indicators.

2. The residual structure of the TCN is optimised, and an
attention mechanism is integrated into the TCN so that
it can effectively use past information to improve its
time-series prediction performance.

3. A transfer learning method based on improved SENet-
TCN is proposed to predict the RUL of bearings, which
improves the RUL prediction performance of rolling
bearings under different working conditions and with
fewer data.

The rest of this study is organised as follows:
Section 2 introduces the theoretical background. Section 3
describes the technical process of the proposed method in
detail. Section 4 presents relevant experiments to verify the
effectiveness of the method. Finally, Section 5 concludes the
study.

II. THEORETICAL BACKGROUND
A. SENet
The SENet learns the feature weight through the network
according to the loss function so that the effective feature has
a large weight, while the invalid feature has a small weight.
It adaptively and selectively emphasises important features
and suppresses unimportant ones. Fig. 1 shows the squeeze
excitation structure.

Given an input, the number of feature channels is, W and
H are the length and width of the feature map after a series
of changes, such as full connection pooling. A feature with
the number of feature channels is obtained, and the following
three steps are used to recreate and calibrate the preceding
features.

1. The squeeze operation performs feature compression on
the channel information dimension and compresses the global
spatial information into a channel descriptor with a global
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receptive field, which is expressed as follows:

zc = Fsq(uc) =
1

W × H

H∑
i=1

w∑
j=1

uc(i, j) (1)

zc, which represents the output of the squeeze operation,
uc is the C feature of the input matrix and Fsq is the compres-
sion operation.

2. The excitation operation is an adaptive adjustment,
which automatically adjusts the correlation between feature
channels and generates weights for each feature channel. The
C feature output is sc.
3. The reweight operation uses sc weights, which are then

multiplied and weighted to uc channel-by-channel to com-
plete the recalibration of the original features in the channel
dimension.

x̃c = Fscale(uc, sc) = sc · uc (2)

x̃c is the input data of the next level.

FIGURE 1. Squeeze excitation structure.

B. TCN
Shao-jie Bai et al. proposed the TCN in 2018 [25]. It has been
proven in recent years that the sequence data are more accu-
rate, simpler and clearer than standard cyclic networks, such
as the LSTM and CNN. TCN consists of causal convolution,
dilated convolution and residual connections. The causal con-
volution processes time-series data, dilates convolution for
handling long-distance dependencies common in time-series
models and uses residual connections to solve the problems of
gradient disappearance and explosion, which may be caused
by increasing network depth.

1) CAUSAL CONVOLUTION
The causal convolution is a strictly time-constrained model,
and its formula is as follows:

P(xt ) =
∏T

t=1
P(xt |x1, x2, . . . , xt−1) (3)

Here, P(xt ) is the predicted probability, T is the total
time and

∏
is the quadrature operation. Causal convolution

ensures that when predicting time-series data, the data (input)
x1, x2, . . . , x(t−1) before time t are used to predict the data
(input) xt at time t.

2) DILATED CONVOLUTION
The dilated convolution has a larger receptive field than the
traditional convolution. Its expression calculation F is given
as follows:

F(xs) = (x × fd )(s) =
k−1∑
i=0

f (i)x(s−di) (4)

Here, F(xs) is the network output of the input xs pair at time s,
which is in the dilated-convolution calculation process, k
is the size of the convolution kernel, d is the expansion
coefficient and s − di is the sequence corresponding to the
elements in the convolution kernel, i ∈ (0, 1, . . . , k − 1).

FIGURE 2. Expansion convolution structure of the TCN.

FIGURE 3. TCN residual-connection structure.

Fig. 2 shows the TCN structure for the dilated causal
convolution with dilation coefficient d=1, 2 and 4 and convo-
lution kernel size k=3. During the convolution operation, the
input data are sampled orderly based on a certain interval, and
the sampling rate is controlled by d; d=1 means that every
point is collected and d=2 means that every two points are
sampled during the input process. Take the first sample point
as input such that the higher the level, the larger the value of d.

3) RESIDUAL CONNECTIONS
Fig. 3 shows the residual-connection structure. The input x
of the model is weighed and fused into the output F(x) of the
model to obtain the final TCN output o. The formula is given
as follows:

o = Activation[x + F(x)] (5)

Here, Activation activates a function.
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C. TRANSFER LEARNING
Transfer learning is a machine learning method that uses
existing knowledge to solve problems in different related
fields [12]. The learnt domain is defined as the source
domain; DS is defined as the field to be applied as the target
domain and uses DT means. TS and TT means the source and
target domain tasks, respectively.

For a given target domain, based on the knowledge of
the existing source domain and its task, a transfer model
is established combined with the knowledge of the target
domain to complete its task. Fig. 4 shows the principle of
transfer learning.

FIGURE 4. Squeeze excitation structure.

III. SENET-TCN MODEL
In this section, we describe the main steps of the SENet-TCN
model and its improvements.

A. MODEL STRUCTURE
Fig. 5 (a) shows the basic structure of the proposed
SNEet-TCN, which consists of two modules: feature adap-
tive calibration and RUL prediction modules. The former is
composed of a normalisation and a SENet layer. It can effec-
tively mine deep-level features from the original vibration
signal while reducing the amount of calculation, and it can
perform feature adaptive calibration. The latter consists of
three stacked TCN blocks, an average pooling layer and a
fully connected layer. It compares the output of the network
with the labelled real RUL value and backpropagates the
error. Fig. 5 (b) shows the TCN structure. The model input
is a two-dimensional tensor that flows through the feature
adaptive calibration module, dropout layer and RUL predic-
tion module. First, the model recalibrates the corresponding
relationship between the features and the full life. Dropout
is used to prevent overfitting, and global average pooling is
used to integrate global information for dimension reduction
and average feature extraction. Finally, the current life stage
according to calibrated sequence features before obtaining
the remaining life is predicted. The feature extraction of
the model and dimension transformation process are shown
in the model architecture (Table 1). As the selection of
super-parameters will affect the prediction results, in order
to further improve the prediction accuracy of the model, the
particle swarm optimization algorithm (PSO) is used to auto-
matically find the optimal values of some super-parameters
of the model. The specific process will be described in detail
in the PSO section.

TABLE 1. Model architecture.

TABLE 2. Params comparison of different prediction methods.

B. SENet NETWORK OPTIMISATION STRATEGY
To improve the sensitivity of the SENet network to vibration
signals, two one-dimensional convolutional layers are used
instead in the excitation process, and the two activation layers
recalibrate the data features. Fig. 6 shows the improved exci-
tation structure, and the comparison of the number of parame-
ters is shown in Table 2. Using the nonlinear sigmoid function
alone requires a large number of exponential calculations, and
information loss will occur when the derivative reaches zero.
Calculating the Relu function is very simple and there is no
gradient saturation or disappearance. Adding a Relu function
before the sigmoid function reduces the amount of network
calculation; however, it will not cause information loss.

C. TCN NETWORK OPTIMISATION STRATEGY
The literature [26] compares five structures of residual
networks, experiments in the literature show that the fully
pre-activated structure is superior to othermethods in improv-
ing the generalisation ability of the network and preventing
overfitting. Therefore, causal convolution is applied after
batch standardisation and activation function, and the com-
plete pre-activation of residual connection is considered.
Fig. 3 shows the improved residual connection.

The improved TCN uses Leaky Relu as the activation
function and assigns a non-zero slope to all negative values,
which can be expressed mathematically as follows:

yi

 xi if xi ≥ 0
xi
ai

if xi ≺ 0
(6)

Here, ai is a fixed parameter in the interval (1,+∞).
Leaky Relu has a small positive slope in the negative region;
thus, it can perform backpropagation even for negative input
values. Furthermore, it has the advantage of a rule activation
function.

To make the TCN appropriately use past information, the
attention mechanism is integrated into the TCN, and its cal-
culation formula is shown in formulas 6–8:

at = LeakyRelu(M · yTt ) (7)
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FIGURE 5. (a) SNEet-TCN basic structure (b) TCN structure.

FIGURE 6. Improved excitation structure.

ct = aTt M (8)

yr = soft max(w[yt ; ct ]) (9)

Here, W is a trainable parameter, soft maxLeakyRelu are
all activation functions and t is transposed.
The output vector at the current time t is yt when predicting

the life of bearings. The output vector of t − 1 TCNs before

time t is M = [y0, y1, . . . , yt−2, yt−1]; the attention score
vector at is obtained through the relationship between yt
and M . According to at gets the vector ct . Will ct and yt
combined with life prediction for bearings.

D. HYPERPARAMETER SETTING
SENet and TCN must set hyperparameters, and the setting
hyperparameters will affect the accuracy of the prediction
results. The PSO solves the problem of hyperparameter selec-
tion, which is a probabilistic method of collective move-
ment of biological organisms. It obtains the best solution by
optimising the fitness function, which is simple and easy to
achieve without numerous parameters. The important hyper-
parameters in the SENet-TCN are the SENet convolution ker-
nel, number of TCN filters, TCN convolution kernel length
and learning rate. According to the variation range of hyper-
parameters, the upper and lower bounds of the PSO search
space are set as [10, 10, 128, 0.01] and [1, 1, 2, 0.0001]; the
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population size is 20, and the optimal one is automatically
selected. As an adaptive optimisation algorithm, Adam can
dynamically update the learning rate, and this study chooses
an Adam optimiser for gradient optimisation.

IV. SENET-TCN TRANSFER MODEL
Because of the problems in practical engineering, such as the
variable operating conditions of a machine, it is impossible to
label the incomplete real collected signals. Thus, migration
learning can be used to solve this problem. Bearing sig-
nals under different working conditions demonstrates good
migration characteristics. Through the migration learning of
vibration signals, the accuracy of the RUL prediction under
multiple working conditions and few samples without labels
is improved, thus migrating information features from the
source to the target domain. The source and target domains
DS and DT , respectively, have the same characteristic space
XS = XT and different probability distributions P(XS ) 6=
P(XT ). The specific process of the migration model (Fig. 7)
is as follows:

1) Obtain the original vibration signal of the bearing under
a certain working condition and label it as DS (with
the RUL label). Next, label the original vibration signal
of the bearing under other working conditions as DT
(without the RUL label).

2) TS trains the source domain model by improving the
transferred TCN model. It verifies the model through
the verification set and saves the optimal model as the
source domain model.

3) TT inputs the training data with the RUL label in the
source domain and those without the RUL label in the
target domain into the source domain model to gener-
ate a derived training set, which is used to minimise
the distribution difference between DS and DT . Then,
the derived training set is entered into the improved
SENet-TCN model for transfer training to generate a
transfer model. Finally, the transfer model is verified
using the target domain validation set data.

4) Save the transfer model and perform the remaining life
prediction on the target domain data.

V. EXPERIMENTAL RESULTS AND DISCUSSION
To verify the effectiveness of the proposed method, IEEE
PHM 2012 Data Challenge bearing data [27] is used to exper-
imentally verify the proposed bearing life prediction based on
the SENet-TCN and transfer learning. The algorithm running
environment is Python 3.7 andKeras 2.3.1; the configurations
used in the experiment consist of AMD 4800H processor,
NVIDIA 2060 graphics card and 16 GB of memory.

A. CASE INTRODUCTION
The IEEE PHM2012 dataset was obtained from the Pronostia
test bench. Through the accelerated-life degradation experi-
ment of rolling bearings, the vibration acceleration data of the
rolling bearing from normal to fault under different operating
conditions were collected. The experiment stops when the
amplitude of the vibration signal exceeds 20 g. Fig. 8 shows

FIGURE 7. Transfer model flowchart.

photos of normal and degraded bearings. Bearing failures can
result from the failure of balls, rings and cages or a com-
bination of these components. These bearing failure modes
cause different degradation trends under different operating
conditions.

FIGURE 8. Normal and degradation bearings.

The collected vibration signals are divided into horizontal
and vertical directions. The sampling frequency of the data is
25.6 kHz. Data were recorded every 10 s, and the collection
time was 0.1 s. Here, 2560 vibration data were collected each
time.

The basic characteristics of the bearing in the IEEE PHM
2012 test are listed in Table 3. The test includes three working
conditions (Table 4). For the first working condition, the
motor speed and load are 1800 rpm and 4000 N, respectively.
In the second working condition, the motor speed and load
were 1650 rpm and 4200 N, respectively. For the third con-
dition, the motor speed and load are 1500 rpm and 5000 N,
respectively. Working Conditions 1 and 2 contain seven dif-
ferent bearings while working Condition 3 contains three
different bearings. [23] calculates the theoretical failure fre-
quency of the bearing under three working conditions accord-
ing to bearing speed and characteristics; results are recorded
in Table 5.

Fig. 9 shows the entire life vibration signal diagram of
Bearing 1 under working conditions and the vibration signal
of the 50th, 1166th and 2500th data points.
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FIGURE 9. B1_1 Vibration signal diagram (a) full life, (b) 50th, (c) 1166 th and (d) 2500th.

TABLE 3. Characteristics of the bearings.

TABLE 4. PHM2012 data description.

TABLE 5. Theoretical fault frequency of each dataset.

B. PERFORMANCE METRICS
To evaluate the performance of the model, three indicators,
mean absolute error (MAE), root mean square error (RMSE)
and a score function (score) are used to evaluate the prediction

effect of the model. The formula is as follows:

MAE =
1
m

m∑
i=1

|yi − yi| (10)

RMSE =

√√√√ 1
m

m∑
i=1

(yi − ŷi)2 (11)

Score=w1
1
n

n∑
i=1

|yi−ŷi|+w2
1

m− n

m∑
n+1

|yi−ŷi| (12)

During the lifetime of a machine, the accuracy of the RUL
prediction in the later stages is more critical than in the earlier
stages because the machine has a relatively low probability
of failure in the earlier stages of its life cycle; thus, a larger
weight should be assigned to the later stages. In the given
10,11 and12 formula, m is the number of forecast points; n is
the percentage of the early stages to the total stage; i is the
serial number of the forecast point; yi is the actual value; ŷi is
the forecast value; w1 and w2 are the early and late weights,
respectively. Here, w1 = 0.35, w2 = 0.65, n = m÷ 2. MAE
value range is [0,+∞), and the smaller the better; the smaller
the RMSE value is, the higher the accuracy is; the value of
score is in the range of (0, 1), higher values indicate better
prediction performance.

C. SENET-TCN MODEL VALIDATION
1) DATA PARTITION
We used the cross-validation method in our experiment, and
the data is divided as follows: 1) under working Condition 1,
where bearings 1–7 are used as validation data in turn, and the
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TABLE 6. Training time of four models.

other six bearings are used as training data (with RUL label);
2) under working Condition 2, where bearings 1–7 are used
as validation data in turn, and the other six bearings are used
as training data (with RUL label).

2) IMPLEMENTATION DETAILS
The service life of the bearing may vary differently, even
under the same working conditions. If the true RUL value is
directly used as the output label, one RUL value may corre-
spond to various degradation states from the bearings [28].
Significant differences in the life of bearings will cause
underfitting [29]. Therefore, we use the life percentage of
each bearing as the output label in the data preparation pro-
cess. This implies that the actual RUL of each bearing is nor-
malised in the range of 0%–100%. We entered the vibration
signal and RUL label of the training set into the prediction
model for training, trained the optimal model and entered the
vibration signal of the verification set into the trained model
to predict the verification set, and we obtained the prediction
results. The abscissa in the figure is the time (min); the
ordinate is the ratio of the remaining life corresponding to
the current time of the total life (the full life value is 100, and
the end of life is zero). The red and blue lines represent the
predicted and actual life values, respectively. Fig. 10 shows
the RUL prediction map of bearing 1_3; here, (a) is bearing
1_4, (b) is bearing 1_7, (c) is bearing 2_4, (d) is bearing
2_6, (e) is bearing 2_7 and (f) uses the improved SENet-TCN
model.

3) COMPARE WITH RELATED MODELS
To illustrate the effectiveness and superiority of the proposed
method, we compared three similar RUL prediction models
in our experiments. These prediction models are SENet-
TCN, TCN and improved TCN. The hyperparameters of the
three models in the training process are the same as those
of the proposed method, which uses PSO to find the opti-
mal parameters. Fig. 11 shows the prediction results of the
four methods for bearings 1_1 under working Condition 1.
Table 7 shows the corresponding evaluation scores of the
14 bearing comparison test results, and Fig. 12 shows the
comparison of the MAE and score based on different com-
parison purposes. The training time of the four methods is
shown in Table 6. The comparison results are as follows:

(1) The proposed method is compared with the
SENet-TCN to illustrate the effectiveness of improving the
SENet. Comparing the prediction graphs and performance
indicators, the SENet-TCN prediction results were very poor.
The prediction result is worse than using TCN alone. It shows
that SENet is insensitive to the bearing vibration signal and

will have an adverse effect, but the improved SENet-TCN
model showed a good RUL prediction effect under the same
data conditions. The unimproved SENet is not sensitive to
the bearing vibration signal features, which reduces the pre-
diction accuracy of the TCN. However, the improved SENet
can effectively construct feature indicators and improve the
RUL accuracy. Combining Tables 2 and 6 reveals that the
proposed method has fewer training parameters and shorter
training time than SENet-TCN.

(2) Comparing the improved TCN of the proposed method
with the unimproved TCN, the improved TCN prediction
curve of the proposed method has a better fitting effect and
lower error than the real RUL curve. It has been proven that
improving the TCN can make better use of its past informa-
tion to improve its prediction performance for time series.

(3) The comparison between the proposed method and the
improved TCN is to verify that the combination of the SENet
and the proposed TCN can better improve the RUL prediction
accuracy based on the improved TCN. The results show that
the proposed method has higher accuracy, and the prediction
error is reduced by 20.8%–51.5% compared with the other
three models.

4) COMPARE WITH RELATED WORKS
In the experiments, the bearing RUL prediction results are
compared with related studies [30], [31] on the same dataset
to further verify the performance of the proposed method.
Table 8 shows the evaluation score of the comparison results,
and Fig. 13 shows the comparison of the MAE.

Table 7 and Fig. 12 show that the method proposed in this
study has the lowest percentage error, absolute percentage
error and highest score. This result demonstrates the usability
of the proposed RUL prediction method. In conclusion, the
results show that the improved SENet-TCN has better accu-
racy than other methods in dealing with the RUL prediction
of bearings.

5) MODELS WITH AND WITHOUT PSO COMPARISON
To verify the advantage of using the PSO to automatically
select hyperparameters in the proposed method, the proposed
method is compared with itself to remove the PSO. The
hyperparameter SENet convolution kernel was set to two after
removing the PSO; the number of TCNfilters was one and the
TCN convolution kernel length was 0.008. Table 9 shows the
comparison results.

Furthermore, Table 9 shows that the performance param-
eters of the proposed method under PSO-adding conditions
are significantly higher than those of the model without the
PSO, which proves the advantage of adding the PSO to
automatically select the optimal hyperparameters.

D. TRANSFER MODEL VALIDATION
1) TRANSFER EXPERIMENT DATA PARTITION
When verifying the migration model experiment to simulate
the changing operating conditions of the machine in the real
project, the actual signal acquisition is incomplete and the
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FIGURE 10. The bearing of an RUL prediction diagram of the proposed model.

FIGURE 11. RUL prediction results of bearings B1_1 (a) SENet-TCN, (b) TCN, (c) Improved TCN and (d) Proposed model.

TABLE 7. Performance comparison of the four models.

collected signals have no labels. Table 10 shows the transfer
of the experimental data, and working Condition 1 is used

as the source domain data (label). Case 2 (unlabelled) and
Case 3 (unlabelled) are used as target domain data, and the
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FIGURE 12. MAE and score comparison of the four models.

TABLE 8. Performance comparison of related works.

source domain data and source domain task knowledge are
migrated to the target domain task. The specific operations
are as follows:

1) Under working Condition 1, bearing 1_1 is the source
domain data to be tested, and the remaining six bearings
under working Condition 1 are source domain training
data (with RUL labels) used to train the source domain
model.

2) Select one of bearings 2_1, 2_2 and 2_3 under working
Condition 3 as the target domain to test data (with RUL
label), and the remaining two bearings are the target
domain training data (without RUL label). Then, train
the transfer model according to the steps in IV and
verify the model with the data to be tested in the target
domain, thereby leading to three verifications.

3) Select one of bearings 3_1, 3_2 and 3_3 under working
Condition 3 as the target domain to test data (with RUL
label), and the remaining two bearings are the target
domain training data (without RUL label). Then, train
the transfer model according to the steps in IV, and
verify the model with the data to be tested in the target
domain, thereby leading to three verifications.

2) COMPARISON WITH AND WITHOUT TRANSFER
LEARNING
To prove the advantages of adding transfer learning to the arti-
cle, the proposed transfer model and method without transfer
learning are compared under the same dataset conditions; the
results are shown in Table 11.

123016 VOLUME 10, 2022



Y. Wang et al.: Residual Life Prediction of Bearings Based on SENet-TCN and Transfer Learning

FIGURE 13. The MAE and score comparison of related works.

FIGURE 14. Transfer experiment MAE performance comparison.

TABLE 9. With or without PSO performance comparison.

TABLE 10. The transfer experiment data classification.

Table 11 shows that the error of each performance index
of the proposed transfer model is lower and score is higher,
which is better than that of the proposed method without

TABLE 11. Comparison of performance with or without transfer learning.

transfer learning. Thus, the advantages of adding transfer
learning are demonstrated.

3) COMPARISON OF RELATED TRANSFER MODELS
The proposed transfer model was compared with the
TCN transfer model to illustrate its effectiveness and
superiority.

Fig. 15 shows the prediction result of bearing 3_2 using
the improved SENet-TCN transfer model; here, the predicted
RUL curve generated by the unlabelled data through the
bearing remaining life prediction method, which is based on
the SENet-TCN and transfer learning, still fits well with the
real RUL curve.

Table 12 shows the evaluation score of the compared
results of the migration experiment, and Fig. 14 shows the
MAE performance comparison. Comparing the performance
indicators of the two models, the prediction performance of
the proposed migration model is better than that of the TCN
migration model. Thus, the feasibility and superiority of the
proposed transfer model are proved.
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TABLE 12. Transfer experiment performance comparison.

FIGURE 15. The prediction result of the improved SENet-TCN transfer
model for bearing 3_2.

4) COMPARISON WITH RUL-LABELLED MODELS
In the experiments, the RUL prediction results of the pro-
posed SENet-TCN transfer model are compared with the
proposed SENet-TCN and the same dataset in the study [31]
under the condition that the training data have RUL labels,
which is used to further verify the performance of the pro-
posed transfer method. Table 12 and Fig. 14 show the com-
parison results.

By comparing the RUL prediction results of the proposed
SENet-TCN model under the condition that the training data
has RUL labels, we observed that the SENet-TCN training
with RUL labels has the best prediction results and its results
are the closest to the real values. However, tags cannot be
added to practical projects in most cases.

Through the proposed SENet-TCN migration model, the
prediction results of the model with the RUL label on the
same data [31] are compared. The prediction results of
other bearings were better except for the prediction error of
bearing 2_1, which was higher than the prediction results
of the study [31]. The study [31] has a large error in the
prediction performance index under the working Condi-
tion 3. The proposed SENet-TCN transfer model has a small
error in the prediction performance index under working

Conditions 2 and 3 of the target domain, which can meet
the actual needs. The proposed SENet-TCN transfer model
can still achieve excellent prediction results for multi-mode
target tasks under Conditions 2 and 3 using Condition 1 as
the source data.

Therefore, under the condition of no labels in the training
data, the proposed bearing residual-life prediction method
based on improved SENet-TCN and transfer learning can
still achieve good results in predicting bearing RUL under
multiple working conditions.

VI. CONCLUSION
A bearing residual-life prediction method based on improved
SENet-TCN and transfer learning was proposed to address
the problems of bearing operating conditions under multi-
ple operating conditions because the actual signal cannot be
added to the label and the prediction accuracy is low. Through
the RUL prediction comparison experiment and the transfer
model RUL prediction comparison experiment on the IEEE
PHM Challenge 2012 bearing life data set, the following
conclusions are drawn:

1) The experiments show that by improving the structure
of SENet to make it more sensitive to vibration sig-
nals, it can better construct characteristic indicators.
The residual structure of the TCN is improved, and
the attention mechanism is integrated into the TCN.
Furthermore, the experiments show that it can make
better use of past information to improve the prediction
performance of time series.

2) Compared with other existing popular models, the pro-
posed improved transmitted TCN model has a better
fitting effect, higher accuracy and 20.8%–51.5% reduc-
tion in prediction error under the same data conditions.

3) Introducing transfer learning can effectively solve the
problem of limited RUL prediction results in the case
of multiple operating conditions, fewer data and no
labels. Compared with other existing popular models,
the results show the feasibility and superiority of the
transfer model in this research.
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