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ABSTRACT Wind power prediction (WPP) is necessary to the safe operation and economic dispatch of
power systems. In order to improve the prediction accuracy of WPP, in this paper we propose a three-step
model named SDAE-SVR-BA to be applied in short-term WPP based on stacked-denoising-autoencoder
(SDAE) feature processing, bat algorithm (BA) optimization and support vector regression (SVR). First,
we preprocessed the original NWP data input into the SDAE-SVR-BA model to adapt to the training and
prediction of the proposed model. Second, we input the preprocessed features into the SDAE network, whose
parameters are optimized by BA to obtain the depth-mapping features. Finally, we input the features of SDAE
network mapping into SVR, whose parameters are optimized by BA for prediction, so as to obtain the SDAE-
SVR-BA model. In this paper, we used BA during the training process to optimize the number of hidden
layers and hidden layer nodes of SDAE, the penalty factor parameter C and the kernel function radius g
of the SVR model. Additionally, we verified the model with a wind farm example and compared it to the
traditional model. Based on the verification data applied in this article, in a forecast for the next twelve hours,
the normalized root means square error (NRMSE) of SDAE-SVR was 11.97% and the NRMSE of SDAE-
SVR-BAmodel was 11.54%, reduced by 1.24% compared with SDAE, which demonstrates the effectiveness
of the proposed method.

INDEX TERMS Stack denoising autoencoder, bat optimization algorithm, wind power prediction.

I. INTRODUCTION
With the development of new energy, the installed capacity
of wind power is increasing year by year worldwide [1]. Due
to the intermittent, fluctuating and random characteristics of
wind power generation, large-scale grid integration of wind
power brings challenges to the safe and stable operation of the
grid. Wind power prediction (WPP) is intended to predict the
future output of wind power through weather forecast data,
wind-farm operating status data and other parameters, which
can improve the predictability of wind power, provide a basis
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for grid operation and dispatch, and realize the safety and
reliability of the grid run [2], [3], [4].

At present, there are two difficulties inWPP: 1) the volume
ofWPP input data is large and covers a large amount of infor-
mation, making it difficult to fullymine effective information,
and its featuremapping is required; 2) theWPPmodel is com-
plex, and it is difficult to obtain the optimal model structure
and parameters. It is necessary to apply efficient artificial
intelligence algorithms to optimize the model structure and
parameters.

In order to fully mine the effective information in
the input data of wind power forecasting, deep neural
networks need to be applied to extract features abstract.
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The deep neural network adopts a multilayer structure that
simulates the human brain, and it extracts features from the
bottom to the top of the input data step by step, finally it forms
more ideal features suitable for prediction. In addition, deep
learning and machine learning algorithms have applications
in the field of electricity markets prediction [5], [6].

In the literature [7], a convolutional neural net-
works (CNN) model is applied to predict wind energy, but
the CNN model is more suitable for processing image infor-
mation, and wind is typically time-series information. In the
literature [8], a long short-term memory (LSTM) network is
applied to analyze time-series data, which is more suitable for
forecasting time-series data. LSTM has a memory function
for historical data, so that this type of network can well fit the
trend of wind power changes [9], [10], [11], [12], [13]. In the
literature [10], specific methods of how to classify, identify,
and predict are proposed, which are two-level clustering,
CNN and LSTM, but the parameters of the neural network
are not optimized and the accuracy of the model may not be
the highest. In the literature [11], a LSTM recurrent neural
network-based framework was proposed to predict the load
and the accuracy is higher than other listed rival algorithms.
However, the main part of the framework, LSTM, is not
well described in this paper. In the literature [12], a novel
reliability assessment strategy is proposed and the effec-
tiveness of proposed assessment strategy is verified by real
data. However, there is no comparison between the prediction
results of other neural networks. To summarize, when the
power sequence transitions from one trend to another trend
or when predicting a longer time scale, the prediction results
of the network will show a certain phase delay, resulting in
errors [14].

In the literature [15], stacked autoencoders (SAE) are
applied for feature dimensionality reduction. This method
abstracts feature information through a layer-by-layer net-
work. Through the unsupervised learning of data samples,
the information contained in the original high-dimensional
data can be restored to the maximum extent, which can effec-
tively process nonlinear data and has stronger applicability
[16]. This indicates that SDAE can be well used to process
nonlinear time series.

Deep learning is currently a hot and cutting-edge method
for power systems [17]. However, how to design the structure
and parameters of the deep learning model has always been
the bottleneck of its application. In the literature [18], the
gradient-descent algorithm is applied to optimize the model
parameters. The optimization idea of this method is to apply
the negative gradient direction of the current position as the
search direction. The closer the gradient-descent method is
to the target value, the smaller the step size and the slower
the progress. This method is simple to implement, but only
is suitable for optimization problems where the objective
function is convex.

In the literature [19], Newton’s method is applied to opti-
mize model parameters. Newton’s method is a common
method for solving unconstrained optimization problems.

This method is an iterative algorithm, and its convergence
speed is faster than that of the gradient-descent algorithm,
but each step needs to solve the inverse matrix of the Hessian
matrix of the objective function, which makes the calculation
more complicated.

In the literature [20], the bat algorithm (BA) is applied to
optimize the model parameters. This algorithm is an opti-
mization technique based on iteration. First, a set of random
solutions are initialized, and then the optimal solution is
searched through iteration, and a new local solution is gen-
erated by random flight around the optimal solution, which
strengthens the local search [21]. Compared with other algo-
rithms, BA is far superior in terms of accuracy and effective-
ness, and not many parameters need to be adjusted.

Combining the advantages of deep learning methods and
optimization algorithm, in this paper we propose a novel
combined WPP model based on the SDAE deep learn-
ing method, BA optimization and support vector regression
(SVR). We verified the model with data from one wind farm
in a province of China. The results show that the proposed
method has significant advantages in terms of the NRMSE
andNMAE compared to traditional SDAE and SVRmethods.

This paper first introduces the SDAE, SVR and BA algo-
rithms applied in this paper, and what parameters of SDAE
and SVR need to be optimized, and proposes the three-stage
model SDAE-SVR-BA. This paper uses the wind farm data
of a province, compares the prediction accuracy of different
methods, different nodes, different hidden layers and different
optimization methods, and finally proves that the proposed
SDAE-SVR-BA has the highest accuracy.

II. THE COMBINATION METHOD OF SDAE, SVR AND BA
A. INTRODUCTION OF SVR APPLIED IN THIS PAPER
Support vector machines (SVM) are rooted in Vapnik–
Chervonenkis and Structural Risk Minimization principles of
statistical learning theory [22], [23], [24], which are widely
applied in academia and industry. Compared to previous
machine learning algorithms, SVM provides a more power-
ful method for dealing with nonlinear problems. The SVR
applied in this paper refers to the application of SVM to linear
regression. The difference between SVR regression and SVM
classification is that the sample points of SVR have only one
category in the end.

The penalty factor parameter C and kernel function radius
g of the SVR model have great influence on the accuracy
of the prediction model. The penalty factor C is applied to
indicate the importance attached to individual points. The
size of C should be moderately. If the penalty factor C is
too large, SVR can process only linear samples, resulting in
overfitting and poor generalization ability. Kernel function
is a feature- transformation function, and for different dis-
tributed data, kernel radius g should be selected to achieve the
best feature mapping. The comparison of model parameters
before and after optimization is shown in Fig. 1. It can be
seen from the figure that SVR after parameter optimization
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has better linearity. At the same time, the model accuracy is
also improved accordingly.

FIGURE 1. Comparison of model parameters before and after
optimization.

B. INTRODUCTION OF SDAE APPLIED IN THIS PAPER
The SDAE proposed by Pascal Vincent et al. is an extension
of the SAE. Its central idea is to add random noise at each
input layer of the encodermodel to train and learnmore robust
feature representation.

1) DENOISING AUTOENCODER
Autoencoder (AE) is an unsupervised learning neural net-
work which reconstructs the target representation accord-
ing to the input data; it is composed of an encoder and a
decoder. The basic AE network structure is the same as the
three-layer traditional neural network, including the input
layer, the hidden layer and the output layer. The output layer
and the input layer have the same dimension. The network
structure is shown in the first part of Fig. 2. The learning goal
of self-coding is x̃ = hW , b(x) ≈ x, that is, to make the
output vector x̃ equal to the input vector x as far as possible.
So AE tries to approximate the identity function to obtain
a compressed representation of the input data at the hidden
layer, which often better represents the original data.

Denoising autoencoder (DAE) adds noise to the training
data of the AE. Noise can be added by using Gaussian noise
or by randomly setting the input neuron value to zero (i.e., the
dropout technique is applied). By adding random noise to
the data applied in the AE training, the AE can be forced to
learn how to remove the noise, thus obtaining data that is not
polluted and destroyed. The DAE can find a more effective
and stable feature representation in the case of corrupted or
polluted input data, which is a more abstract and high-level
representation of the original input data, thus enhancing the
robustness of the whole model [10], [21].

The second part of Fig. 2 shows the principle of denoising
training. The character x represents the original input data,
x ′ represents the data obtained after being destroyed or pol-
luted, y represents the characteristic representation obtained
by encoding processing of x ′, and z represents the output after
the decoding of y.

The loss function is applied to represent the training effect
of the DAE. To minimize the difference between the output

data and the original input, the loss function must be mini-
mized. TheDAEmodel enhances the robustness of the feature
representation through the feature mapping of contaminated
data during the training process.

2) THE BASIC STRUCTURE OF SDAE
SDAE are obtained by stacking the DAE together to obtain
more advanced and abstract feature representations [16].
A model diagram of the SDAE is shown in the third part of
Fig. 2. The structure of the AE is a neural network containing
three layers, and the characteristic mapping between the input
layer and the output layer is required after the training of a
single AE. Multiple DAE are stacked to form SDAE with
deep learning hierarchy structure for layer-by-layer training,
and the outputs of the former DAE are applied as the input of
the latter DAE.

FIGURE 2. Principle of the AE/DAE/SDAE model.

C. INTRODUCTION OF BA APPLIED IN THIS PAPER
BA is a new meta-heuristic optimization algorithm proposed
by Xin-She Yang [25]. The superiority of BA over other
widely applied optimization methods, such as genetic algo-
rithm and particle swarm optimization, has been proved by
scholars in various research fields [26], [27].

This algorithm is based on the echolocation behaviour
of microbats. When bats hunt and find prey, they change
the frequency, loudness and pulse emissivity of transmitting
signals to select the best solution until the target stops or the
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conditions are met. In essence, tuning technology is applied
to control the dynamic behaviour of a bat population and
balance the parameters related to the algorithm to obtain the
optimal BA [26]. The model optimization process based on
BA is shown in Fig. 3.

FIGURE 3. Model optimization process based on BA.

The BA optimization is applied as follows:
Step 1: Initialize the objective function and algorithm

parameters of the optimization calculation. We set bat pop-
ulation size nb, upper pulse frequency fu, lower pulse fre-
quency f1, pulse loudness A0, pulse emittance R, dimensionD
of position vector, and maximum number of iterations N1.
Step 2: Randomly set the initial location and characteristic

values of themicro bats. For cell bat i, a pulse frequency fi and
a D position vector X0

i should be randomly generated, and
a D zero vector should be initialized to represent the initial
velocity v0i and the subsequent velocity after the update.

Step 3: Calculate the fitness of each bat in the initial
population, and retrieve the bat X∗ with the optimal fitness
value of the initial generation.

Step 4: Update the eigenvalues of each bat in the
population.

Step 5: In each iteration, if rand1 > R(i) (R(i) is the
impulse emissivity of the ith bat), the current optimal solution
is selected to locally perturb the random number rand1 gener-
ated by the unit bat, and the new solution is judged to accept
the disturbance. The judgment basis is to calculate the new
fitness of bats after disturbance. If the new fitness is better
than its own optimal fitness or random number rand2 > R(i)

(R(i) is the impulse loudness of the ith bat), the new position
after disturbance will be applied to replace the old position
for storage.

Step 6: Determine whether there is a cell bat with better
fitness than the global optimal fitness during this iteration.
If there is, update the location and fitness value of the global
optimal solution.

Step 7: Update loudness and pulse rate.
Step 8: Judge whether the end condition is met. If not, skip

step 4; if it is met, skip step 9.
Step 9: The search stops and outputs the location and

fitness of the bat corresponding to the global optimal solution.
BA is a new meta-heuristic optimization algorithm. Its

superiority over other widely applied optimization methods,
such as genetic algorithm and particle swarm optimization,
has been proved by scholars in various research fields. The
parameter settings of BA in this paper are shown in Table 1.
The population size is twenty, the pulse transmission rate is
0.5 times/s, the maximum frequency is 2Hz, the minimum
frequency is zero, the initial loudness is 0.5dB, and the num-
ber of iteration rounds is one hundred.

TABLE 1. Parameter setting of bat optimization algorithm.

D. INTRODUCTION OF BA APPLIED IN THIS PAPER
Combining the advantages of SVR, SDAE and BA opti-
mization algorithms, we proposed an SDAE-SVR-BA short-
term wind-power forecasting model. The overall flowchart
of SDAE-SVR-BA is shown in Fig. 4. The process mainly
consists of three parts: SDAE based onBAoptimization, SVR
based on BA optimization and prediction process based on
SDAE-SVR-BA.

The BA optimization algorithm simply consists of four
steps. The first is the initial population parameter, then evalu-
ate fitness and select optimal bat, then update feature of each
bat, and finally searching and output the optimal solution. The
second step and the third step are in loop iteration. In part 1,
as for SDAE, the number of hidden layers and the number of
hidden layer nodes are both optimized by BA. In part 2, as for
SVR, the penalty factor parameter C and kernel function
radius g are both optimized by BA.

In part 3, the specific steps of short-term WPP based on
SDAE-SVR-BA are as follows. First, the multidimensional
NWP data and wind-farm historical power data in the original
feature database are preprocessed. Then the BA optimized

123598 VOLUME 10, 2022



R. Duan et al.: Hybrid Three-Staged, Short-Term Wind-Power Prediction Method

FIGURE 4. Flowchart of SDAE-SVR-BA.

stack denoising self-encoder is trained with the preprocessed
data, and the low-dimensional feature data are abstracted
from the high-dimensional feature data. Finally, the low-
dimensional feature data are input into SVR optimized by BA
for prediction.

III. CASE STUDY
In order to evaluate the performance of the proposed predic-
tion model, we derived the data for the calculation example
in this paper from a wind farm in a province, with a time
resolution of one hour. We used the data from July 1, 2009,
to January 1, 2011, for training, and the data from January
1, 2011, to February 1, 2011, for testing. The features used
in this paper are wind speed and direction at four different
heights. And We used the historical power and NWP data of
the twelve points before the predicted point as themodel input
and the wind power for the next twelve hours as the model
output.

To evaluate the prediction accuracy of the proposed predic-
tion framework, we applied two error standards: normalized
root mean square error (NRMSE) and normalized mean abso-
lute error (NMAE). We applied ENRMSE to evaluate the dis-
persion degree of power prediction error, and its expression is
shown in (1), where fi represents the predicted power of the
first point, yi represents the actual power of the first point,

ymax represents the maximum value of the actual power, and
represents the number of samples. The smaller the ENRMSE ,
the better the prediction effect.

ENRMSE =
1

ymax

√√√√1
n

n∑
i=1

(yi − fi)2 (1)

We applied NMAE to evaluate the average level of power
prediction error; its expression is shown in (2), where fi
represents the predicted power of the first point, yi represents
the actual power of the first point, ymax represents the max-
imum value of the actual power, and represents the number
of samples. The smaller the ENMAE , the better the prediction
effect.

ENMAE =
1
n

n∑
i=1

∣∣∣∣yi − fiymax

∣∣∣∣ (2)

A. COMPARISON OF IMPROVED SDAE-SVR DEEP
LEARNING MODEL AND TRADITIONAL SINGLE MODEL
We compared SDAE-SVR with the deep learning model
SDAE-NN and the shallowmachine learning model SVR and
BPNN. The results are shown in Fig.5 and Fig.6.

In Fig. 5 and Fig. 6, the standard root mean square error and
standard mean absolute error of the four models are shown.
The results of the prediction were as follows.
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FIGURE 5. NRMSE of the four prediction models.

FIGURE 6. NMAE of the four prediction models.

The deep learning models SDAE-SVR and SDAE had
excellent feature extraction and abstraction capabilities, and
their prediction performance at all steps was significantly
better than that of the other two shallow machine learning
models, BPNN and SVR. Moreover, compared with the shal-
low model, the larger the number of prediction steps, the
more obvious the prediction error of the deep learning model
was reduced. This indicates that the deep learning model has
more advantages in multistep prediction and confirms the
robustness of the deep learning model for multistep predic-
tion. For example, compared to BPNN and SVR, the NRMSE
of the SDAE prediction model at steps 1, 4 and 12 was
reduced by 0.80% and 0.71%, 1.75% and 1.53%, 1.59% and
0.37%, respectively; the SDAE-SVR prediction model was
in one step, four steps, and twelve steps, of which NRMSE
decreased by 0.86% and 0.77%, 1.80% and 1.58%, 1.91%
and 0.69%, respectively.

The NRMSE of SDAE-SVR in the 12-step prediction was
lower than that of SDAE and SVR. Comparedwith SDAE and
SVR, theNRMSEof SDAE-SVRpredictionmodel at 1, 4 and
12 steps decreased by 0.07% and 0.77%, 0.05% and 1.58%,
0.32% and 0.69%, respectively, which shows that, compared
to the SDAE-NN and SVRwhen applied alone, the combined
method we propose can better utilize the high-level abstract
features extracted by SDAE.

B. VALIDATION OF BA OPTIMIZATION ALGORITHM
1) BA OPTIMIZED SDAE
The number of hidden layers of SDAE was set to 1–5, the BA
was applied to optimize the number of hidden layer nodes of

each SDAE model, and the optimal structure of the SDAE
model with different hidden layers and the corresponding
of the average RMSE was predicted at 12h. The results are
shown in Table 2.

TABLE 2. Optimal structure and prediction error of the SDAE model with
different hidden layers optimized by BA.

FIGURE 7. Curve of the average NRMSE predicted at 12h with the number
of SDAE layers.

FIGURE 8. Number of nodes in each hidden layer of SDAE varies with the
number of iterations.

The curve of the 12h predicted average NRMSE with the
number of SDAE layers is shown in Fig. 7. It can be seen
that when the hidden layer number of SDAE was three, the
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FIGURE 9. Average NRMSE predicted by 12h varies with the number of
iterations.

FIGURE 10. Comparison of NRMSE of SDAE model with and without BA
optimization.

FIGURE 11. Comparison of NMAE of SDAE model with and without BA
optimization.

average NRMSE of the corresponding 12h prediction was the
smallest.

For the BA optimized SDAE model, when the number of
hidden layers of SDAE is three, it has the highest predic-
tion accuracy. Therefore, further study on the BA optimiza-
tion process of SDAE with three hidden layers is needed.
Fig. 8 shows the changes in the number of nodes in each
hidden layer of SDAE as the number of iterations increases;

FIGURE 12. Comparison of NRMSE of the three prediction models at
twelve prediction time steps.

FIGURE 13. Comparison of NMAE of the three prediction models at
twelve prediction time steps.

FIGURE 14. Error distribution statistics of the three prediction models.

Fig. 9 shows the change in the average NRMSE predicted for
12h with the increase in the number of iterations.

It can be seen from the figure that as the number of itera-
tions of the BA optimization algorithm increases, the predic-
tion accuracy of the SDAE prediction model containing three
layers gradually increases. When the number of iterations
reaches twelve, the number of hidden layer nodes in SDAE
1–3 is twenty-five, thirty-one and sixteen, respectively, and
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FIGURE 15. Comparison of the output power curve of the two prediction models and the actual power curve.

the prediction accuracy is optimal and no longer increases.
The corresponding 12h prediction NRMSE is 11.6%.

The comparison of prediction accuracy among the three
models which are BA-optimized, PSO-optimized and unopti-
mized SDAE (set as n1 = 9, n2 = 9, n3 = 8 according to the
empirical formula) is shown in Fig. 10 and Fig. 11. Compared
to SDAE-NN without optimization, the NRMSE of the one-
step, four-step and twelve-step predictions of the SDAE-NN
prediction model optimized by BA was reduced by 0.35%,
0.76%, and 0.69%, respectively. Compared with SDAE-NN
prediction model optimized by PSO, the NRMSE of the one-
step, four-step and twelve-step predictions of the SDAE-NN
prediction model optimized by BA declined 0.17%, 0.45%,
and 0.21%, respectively.

2) BA OPTIMIZED AND IMPROVED SDAE-SVR DEEP
LEARNING MODEL
In order to further illustrate the effectiveness of the bat
optimization algorithm, we also compare SDAE-SVR-BA,
SDAE-SVR-PSO and SDAE-SVRwithout optimization (two
parameter penalty factor C and kernel function radius g are
7.4102 and 0.0016). The accuracy results of the WPP models
are shown in Fig. 12 and Fig. 13. Fig. 14 shows the error
distribution statistics of the three prediction models.

It can be seen from Fig. 14: Firstly, the RMSE of SDAE-
SVR-BA at twelve-time steps was smaller than that of SDAE-
SVR without optimization. Compared with SDAE-SVR,
the NRMSE of SDAE-SVR-BA prediction model at three
steps, 1, 4 and 12, was reduced by 0.48%, 0.98%, 0.43%,
respectively. Compared with SDAE-SVR-PSO, the NRMSE

of SDAE-SVR-BA prediction model at three steps, 1, 4 and
12, was reduced by 0.41%, 0.77%, 0.23%, respectively. The
results prove the effectiveness of BA optimization. Secondly,
When the prediction time step was greater than 6, the effect
of BA algorithm optimization became more and more obvi-
ous, which shows the advantages of the optimized model in
multistep prediction.

Fig. 15 shows the statistics of output power error predicted
by SDAE-SVR-BA with BA and SDAE-SVR without BA.
The errors of the two methods roughly obeyed the normal
distribution with a mean value of zero, but the variance of
the model using BA was smaller, more at the time between
−0.3 and 0.2, while the variance of the model without BA
was greater; there were more moments less than −0.3 and
greater than 0.2. That proves the advantages of the optimized
model in prediction.

IV. CONCLUSION
In this paper we proposed a short-termWPPmethod based on
SDAR-SVR-BA and validated it with data from a wind farm
in a province of China. The conclusions are summarized as
follows.

The model SDAE-SVR-BA proposed in this paper has
greater accuracy than the deep learning model and traditional
model. Based on the data in this paper, compared with SDAE
and SVR, the NRMSE of the SDAE-SVR-BA prediction
model at the first and twelfth step was reduced in accu-
racy by 1.05% and 1.75%, 1.72% and 1.99%, respectively,
which shows that the deep learning model SDAE-SVR-BA
has excellent feature extraction and abstraction capabilities.
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Compared with shallow models, the larger the number of
prediction steps, the more obvious the prediction error of
the deep learning model is reduced, which demonstrates the
robustness and stability of the deep learning model for mul-
tistep prediction.

The bat optimized model has greater accuracy than the
PSO optimized model and the prediction model without
optimization algorithm. The NRMSE of SDAE-SVR-BA in
the twelve-step prediction is lower than that of SDAE-SVR-
PSO and SDAE-SVR. Compared with SDAE-SVR-PSO
and SDAE-SVR, the NRMSE of SDAE-SVR-BA prediction
model at the first and twelfth step reduced by 0.15% and
0.30%, 0.97% and 1.94% in accuracy, respectively, which
demonstrate that the accuracy of the optimization algorithm
is greater, and the model optimized by BA is more accurate
than the model optimized by PSO.

The hidden layers of SDAE have an impact on the pre-
diction accuracy of the model. The SDAE method with three
hidden layers is more accurate than that with one, two, four
or five hidden layers. The NRMSE of the SDAEmethod con-
taining three layers is 0.116. Compared to the SDAE method
with one, two, four and five hidden layers, the NRMSE of
SDAE method with three layers reduced accuracy by 6.90%,
1.72%, 3.45%, 7.76%, respectively.

In this paper, there are some questions that are not referred.
Other deep learningmethods, such as LSTMandBLSTM, are
not discussed in this paper, because the model proposed in
this paper is relatively complex and the sequence processing
time is long. The relationship between each stage of themodel
proposed in this paper and error transmission is the focus of
subsequent research in this paper.
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