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ABSTRACT Fingerprinting devices based on unique characteristics of their sensors is an important research
direction nowadays due to its immediate impact on non-interactive authentications and no less due to privacy
implications. In this work, we investigate smartphone fingerprints obtained from microphone data based on
recordings containing human speech, environmental sounds and several live recordings performed outdoors.
We record a total of 19,200 samples using distinct devices as well as identical microphones placed on
the same device in order to check the limits of the approach. To comply with real-world circumstances,
we also consider the presence of several types of noise that is specific to the scenarios which we address,
e.g., traffic and market noise at distinct volumes, and may reduce the reliability of the data. We analyze
several classification techniques based on traditional machine learning algorithms and more advanced deep
learning architectures that are put to test in recognizing devices from the recordings they made. The results
indicate that the classical Linear Discriminant classifier and a deep-learning Convolutional Neural Network
have comparable success rates while outperforming all the rest of the classifiers.

INDEX TERMS Machine learning, microphone, smartphone fingerprinting.

I. INTRODUCTION AND MOTIVATION
In the recent years, due to the fast evolution of the IoT
(Internet of Things) and the stringent need for fast authentica-
tion mechanisms that do not call for user interaction, device
fingerprinting within the scope of authentication evolved into
an important research area that asked for urgent exploration.
Nonetheless, privacy related topics and forensic investiga-
tions provide complementary use cases of significant interest
for inimitable device characteristics.

Contemporary smartphones are equipped with numerous
sensors, i.e., microphones, accelerometers, gyroscopes, mag-
netometers, light sensors, cameras, etc., all of which can be
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fingerprinted since each sensor has unique characteristics due
to chemical and physical imperfections resulting from the
fabrication process. The idea of circuit identification based
on physical properties was explored since the early 2000s [1].
Later, Physically Unclonable Functions (PUFs) were intro-
duced for security applications such as device authentication
based on unique and unpredictable characteristics [2]. How-
ever, extracting unique sensor characteristics is challenging
because sensor characteristics are also influenced by the
environment, regardless of the sensor type, e.g., accelerom-
eter [3], microphone [4], camera [5], etc. In this work,
we analyze smartphone fingerprints provided by microphone
characteristics using the frequency domain representation
of the recorded sounds and machine learning classifiers.
Concretely, we use several traditional machine learning
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FIGURE 1. Overview of the scenarios and methodology steps in our work.

algorithms, i.e., Linear Discriminant (LD), Ensemble-
Subspace Discriminant (ENS), Decision Tree (DT), Fine
K-Nearest Neighbor (KNN) and Linear Support Vector
Machines (SVM), to which a deep-learning Convolutional
Neural Network (CNN) is added as a comparison.

We are focusing on three distinct scenarios, as depicted
in Figure 1, as a result of various types of sounds and envi-
ronments. A specific area of application which concerns us
are the vehicular environments which recently become of
much interest due to the evolution of the automotive domain
towards interactions with smart devices that are carried by
users. The scenarios from which we collect and analyze data
are the following:
Scenario A. Fingerprinting smartphones from different

manufacturers and different models based on human speech:
for this scenariowe use the existingMOBIPHONEdataset [6]
which is a public speech database containing 21 smart-
phones from distinct brands and models. For each smart-
phone the dataset contains 24 audio files from 12 female
and 12 male speakers. The speakers were chosen from the
TIMIT database [7]. Each recording file contains 10 spoken
sentences, the first two are identical for each speaker while
the rest are different.
Scenario B. Fingerprinting identical smartphones on envi-

ronmental sound using prerecorded sounds: for this scenario
we built our own recordings with 16 microphones from the
same smartphone model (a Samsung Galaxy S6) which are
used to record in-vehicle and traffic noise replayed by a
high-end audio system. These experiments were performed

indoors since it is much easier to work with a batch of
identical microphones which are connected to the same
phone in order to determine if the microphone alone (or
the rest of the circuits in the smartphone) influences the
fingerprinting. To generate environmental sounds, we use the
SoundArchive1 database from which we use sounds corre-
sponding to some events that are commonly encountered in
vehicular environments: (i) locomotive signaling departure,
(ii) closing barriers with bells jingling, (iii) car screeching
tiers and (iv) the horn sound of a car. In Figure 2 we depict
the sounds which we use from SoundArchive, played in
the indoor experiments (with identical microphones) in the
time domain (left) as well as their power spectrum, i.e., the
frequency domain representation (right). On each plot there
are two signals which correspond to the two channels of a
stereo recording.
Scenario C. Fingerprinting smartphones from distinct

manufacturers and models based on live recordings: for this
scenario we built our own recordings outdoors and inside a
vehicle by using 16 distinct smartphones that record the sound
at the same time. Each smartphone records sounds in three
distinct sub-scenarios:

1) A car honking in an open space to avoid reflections
from the nearby obstacles (for these measurements
we took the car outside the city on an open area).
In this scenario we performed 400 measurements with
each smartphone, totaling 6400 measurements. The
smartphones were placed outside the car as would be
expected in case of bystanders’ incidental recordings.

2) Vehicle hazard lights since these are commonly trig-
gered inside cars in various circumstances related to
traffic conditions. For this scenario we did 300 mea-
surements for each smartphone, totaling 4800measure-
ments.

3) Wipers noise as this is also commonly heard inside
cars (such a scenario generally occurs due to circum-
stances caused by the environment). For this scenario
we did 300 measurements for each smartphone, total-
ing 4800 measurements. In the last two settings, the
smartphones were placed inside the car.

In real-life circumstances, additional noise may be present
in the environment. For this reason, we also analyze the influ-
ence of four types of noise on our fingerprinting procedure.
For outdoor recordings we consider overlaps with music, for
which we used several songs from the top 10 of the Spotify
list for 2021. For indoor recordings, we used two environ-
mental noises from the SoundArchive: (i) heavy traffic and
(ii) outdoor market sounds. In Figure 3 we graphically depict
the representation of these sounds from the SoundArchive
in the time domain (left) and frequency domain respectively
(right). Each plot contains two signals as the files from the
SoundArchive are two-channel, stereo recordings.

The rest of the work is organized as follows. In Section II
we analyze some related works. Section III depicts the exper-

1https://www.soundarchive.online/?s=police

122400 VOLUME 10, 2022



A. Berdich et al.: Fingerprinting Smartphones Based on Microphone Characteristics

FIGURE 2. Sounds played in our experiments in time domain (left) and
power spectrum (right).

FIGURE 3. Noises used in our experiments in time domain (left) and
power spectrum (right).

imental setup, devices and tools. In Section IV we attempt to
fingerprint microphones using the LD, ENS, DT, KNN and
SVM classifiers based on prerecorded sounds from indoor
experiments. In Section V we fingerprint microphones based
on live outdoor recordings using the LD classifier, which was
selected as the top performer based on the experiments from
the previous scenario, and we also add a more demanding
deep learning CNN architecture. Section VI concludes our
work.

II. RELATED WORK
Several lines of work have focused on fingerprinting smart-
phones based on their microphones and various types
of sounds and classification mechanisms were employed.
We survey these in what follows, Table 1 provides an
overview. Indeed, previous approaches differ not only in the

algorithms that they use, i.e., traditional machine learning or
deep learning, but also in the features employed for classify-
ing the samples. For example, while most works are using the
frequency spectrum extracted via the FFT transform, some
works that employed human speech have also been using
MFCC coefficients (which are commonly used for speech
recognition). We also note that for synthetic recordings,
SVM, KNN and CNN were the most used classifiers. Several
details on these works follow.

In [8] smartphone microphones are identified based on the
recordings of a periodic tone at 1kHz with KNN, SVM and
CNNs and [9] uses a similar methodology. Noise produced by
a pneumatic hammer and a gun are used in [10]. The micro-
phone classification was realized based on the frequency rep-
resentation of the recorded sound with KNN, SVM and CNN.
Artificial neural networks are used in [12] for microphone
identification based on the frequency response for 80 tones
ranging between 100Hz and 8kHz. In [13] the microphones
are identified using the inter-class cross correlation of the
phase spectrum. The microphones were used to record the
ambient noise generated with a fan cooler which is positioned
at 0.7m from the microphones and runs at the maximum
speed.

Audio signal characteristics, e.g., mean, standard devia-
tion, dynamic range D, the crest-factor Q and auto-correlation
time are analyzed in [24] within the scope of forensics
applications. In [14], one-class classification is used based
on noise collected from different locations, i.e., indoors or
outdoors, inside a park or on a busy street. Characteris-
tics extracted from FFT coefficients are used in [15] along
with machine learning algorithms, i.e., Naive Bayes, multi
class SVM, decision trees and KNN. In [11] mobile devices
are identified based on two approaches. In one approach,
the authors use the frequency response of the speaker and
microphone based on the minimum likelihood classification
of 13 tones with frequencies between 100Hz and 1300Hz.
The other approach is based on calibration errors of the
accelerometer sensors.

Also, human speech has been used by several papers
for smartphone microphone fingerprinting. In [16] speech
recordings from 25 speakers are used for microphone identi-
fication with SVM, Gaussian Supervector (GSV) and Sparse
Representation-based Classifier (SRC). Speech recordings
are used in [18] for microphone identification based on the
band energy difference descriptor. CNN classification based
on frequency domain representation of human speech is done
in [22]. In [19] the smartphone is identified using CNNs
based on the spectrogram extracted from speech recordings.
SVM-Recursive Feature Elimination (SVM-RFE) and vari-
ance threshold are used in [20] for smartphone microphone
identification based on speech recordings. Mel-frequency
cepstral coefficients (MFCCs) of speech recordings are used
in [17] for microphone identification. Audio source identifi-
cation in the scope of anti-forensics using SVM andMFFC is
proposed in [21]. In [23] the smartphone is identified based
on MFCC of audio recordings.
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TABLE 1. Overview of various works which is proposed fingerprinting smartphones based on their microphone.

An open-set classification algorithm is proposed in [25]
for microphone identification. Microphone and environment
classification using Naive Bayes is done in [26]. Distinct
audio signals were used, i.e., distinct music styles, noises,
speech and instrumental. Electrical network frequency (ENF)
and SVM are used in [27]. Mobile device identification
using deep learning algorithms, i.e., softmax regression and
multilayer perceptron (MLP) based on audio recording data,
is proposed in [28].

Other papers have used the loudspeaker instead of the
microphone for smartphone identification. In [29] and [30]
the smartphone loudspeaker is identified based on natural
sounds, i.e., instrumental, song and human speech using
distinct audio features, i.e., RMS (root-mean-square), ZCR
(zero crossings), Low-Energy-Rate, Spectral Centroid, Spec-
tral Entropy, etc. In [31], the Euclidean distance is used for
the smartphones loudspeaker identification based on cosine
tones between 14kHz and 21kHz with 100Hz increment.
SVM, Random Forest (RF), CNN and Recurrent Neural
Network-Long Short-Term Memory Neural Network (RNN-
BLSTM) based on MFCC and SSF sketches of spectral
features extracted from human speech are used in [32] for
smartphone loudspeaker identification. In a previous work,
we have used a convolutional neural network (CNN) and a
Bidirectional Long Short-Term Memory network (BiLSTM)
to fingerprint smartphones based on the loudspeaker response
to a sweep signal [33]. Interestingly, the BiLSTM network
from our previous work [33] performed very poor on micro-
phone data and the CNN required significant modifications
for this task. This suggests microphone data to be more
challenging for fingerprinting.

Mobile devices identification based on 20 features in time
and frequency domain, extracted from accelerometer data is
proposed in [34]. A more rarely employed sensor for fin-
gerprinting is the magnetometer. In [35] the mobile devices

are identified based on magnetometer fingerprints extracted
from 18 features in the time and frequency domains. Multiple
features extracted from distinct sensors, i.e., microphone,
accelerometer, gyroscope and magnetometer are used in [36]
for smartphone identification.

Other fingerprinting attempts have used camera sensors.
In [37] a method for fast camera identification and verifi-
cation in forensics investigations based on Photo-Response
Non-Uniformity (PRNU) is proposed. Smartphone identifi-
cation using camera fingerprints extracted based on hybrid
green channel PRNU is proposed in [38].

In addition to smartphone fingerprinting, authentication
and secure communication protocols are proposed by other
works based on fingerprints extracted from speakers, micro-
phones or other sensors.Wireless device authentication based
on fingerprints extracted in the frequency domain from speak-
ers and microphones is proposed in [39]. In [40] and [41]
a secure communication system based on ambient audio is
proposed. Also, [42] proposes a system for secure mobile
devices pairing based on audio fingerprints extracted from
the recorded audio data. An acoustic communication mecha-
nism for smartphones based on jamming signals is proposed
in [43]. In [44] a two factor authentication system is proposed
which works at high frequencies, i.e., between 18kHz and
20kHz. Also, SVM is used to analyze the similarity between
the recorded audio data in the time and frequency domains.

III. SETUP AND METHODOLOGY
In this section we give an overview of the devices used in
the experiments, the environment configuration and software
platforms.

A. DEVICES
Our experiments focus on the classification of both dis-
tinct and identical smartphones based on their microphones.
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FIGURE 4. Samsung Galaxy S6 dissembled with two flex cables with
microphone and charging USB port dock connector.

FIGURE 5. 16 flex cables with microphone and charging USB port dock
connector for Samsung Galaxy S6.

To make the experiments convincing and account for
differences between identical microphones, we dissembled
a Samsung Galaxy S6 smartphone and bought 16 identi-
cal (original) flex cables with microphones. The Samsung
Galaxy S6 microphone is placed on the same board, also
referred as the flex cable, with the micro USB charging port,
jack connector, navigation key and capacitive keys. For an
easier replacement of the flex cables we cut out the capacitive
keys from the board (as the capacitive keys are glued to the
display they are difficult to insert in another case and are
of no interest for our experiments). In Figure 4 we present
both sides of a dissembled Samsung Galaxy S6 smartphone
along with a flex cable nearby. In Figure 5 we present the
16 identical microphones from the Samsung Galaxy S6 on
their flex cables. In Table 2 we give a summary of the
devices and measurements.2 We have fingerprinted a total of
32 devices out of which 16 are identical microphones from
Samsung Galaxy S6 smartphone which were placed in the
same case. The remaining 16 devices are distinct smartphones
from various brands as shown in the table.

B. TOOLS AND ENVIRONMENTS
For the analysis of the recorded data we used Matlab,3 which
is a numerical computation environment commonly used for
data analysis, algorithms and model development. In the

2the performed measurements are publicly available to serve for future
investigations at https://github.com/ABerdich/Microphone-Fingerprint

3https://nl.mathworks.com/products/matlab.html

FIGURE 6. Suggestive depiction of our indoor experimental setup.

FIGURE 7. Frequency response of the audio system used in our
experiments tested with miniDSP UMIK-1 microphone (left) and with a
smartphone (right).

initial analysis of the recorded data we used the Signal Ana-
lyzer application from Matlab 2021a. For the initial analysis
of the classification algorithms we used the Classification
Learner application from Matlab. Also, for the initial setup
calibration we have used Room EQ Wizard4 (REW), which
is a free room acoustic software.

C. EXPERIMENTAL SETTINGS OVERVIEW
For scenario A we used existing measurements from MOBI-
PHONE dataset [6].

For the experiments in scenario B, where we fingerprint
microphones for the same Samsung Galaxy S6 smartphone
based on environmental noise, we carried indoor measure-
ments with already recorded noises since rewiring is nec-
essary, i.e., to replace the microphone of the smartphone,
which is difficult to perform outdoors. Moreover, recordings
with distinct microphones on the same phone cannot be done
at the same time, since each of them has to be separately
plugged to the phone, and thus environmental conditions
will be dissimilar. Figure 6 gives a graphic depiction of our
indoor experimental setup. Sincewewant to reproduce a large
frequency spectrum and low cost speakers cannot cope with
this and introduce higher distortions, in our experiments we
used a high-quality audio systemwhich was able to reproduce

4http://roomeqwizard.com/
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TABLE 2. Summary of devices and associated measurements.

sounds with a more linear response. The audio system used
in our experiments contains two professional loudspeakers
which can produce a more accurate low-frequency response.
Each loudspeaker contains two drivers, one for mid-bass
response and another one for high-frequency response. The
amplifier that we used is a class A amplifier which is known
to have low distortions. Also, the speakers placement and the
audio room/environment is very important to obtain a good
quality reproduction. The speakers were placed at 150cm dis-
tance one from another, with an interior angle of 60◦, forming
an equilateral triangle with the recorder (as recommended
for stereo reproductions).5 The distance between the speakers
and the back wall was 50cm. To avoid sound reflections and
reverberations, we added an acoustic absorbing material on
the side walls at mirror points, on the front and back wall and
on the floor. Also, we isolated the corners of the room.6 In
Figure 7we depict the frequency response of the audio system
used in our experiments as tested in REWwith a linear sweep
signal generated between 0Hz and 20kHZ and recorded with
the calibrated microphone UMIK-1 omni-directional USB
from miniDSP. Note that the response is sufficiently linear
in the order of +/−5db. For scenario B, we played in a
loop each MP3 file with in-vehicle and traffic noises from
SoundArchive: (i) a locomotive’s long toot signaling depar-
ture, (ii) barriers closing with two bells jingling, (iii) a car
arriving in a hectic, snappy manner with screeching tiers and
(iv) the two tone horn of a Mercedes-Benz. On each of the
smartphones, we run an Android application which records
and saves the sounds as a PCM and WAV file for analysis.
The recordings were done at a sampling rate of 48kHz and
16-bit resolution.

For the experiments in scenario C, we performed outdoor
experiments with 16 smartphones from distinct brands which
recorded the following:

1) A car honking live for 400 times. This experiment was
done in an open space. The car engine was stopped,
the smartphones were placed on a board located on the
front-right of the car at a distance of 3 meters from the

5https://theproaudiofiles.com/better-acoustics-in-your-home-studio/
6http://nzacoustics.com/PolyesterPanelsColoured.htm

FIGURE 8. Suggestive depiction of our outdoor and in-vehicle
experimental setup.

car as we depict in Figure 8. In the recorded files as the
car honks some background noise could be also heard.
This scenario is more challenging because the honks
are not identical, some being shorter and others longer
since the honk was triggered by hand for 400 times.

2) In-vehicle hazard lights blinking for 300 times. This
experiment was done inside the vehicle, the car was
parked in the front of the house near a street without
traffic, the engine was running at idle speed. The smart-
phones were placed on the rear seat next to each other
as we depict in Figure 8.

3) Vehicle wipers were running at low speed 300 times.
This experiment was done inside the vehicle, the car
was parked in the front of the house near a street
without traffic, the engine was running at idle speed and
the windshield was artificially watered with the help of
a garden hose. Again, the smartphones were placed on
the rear seat next to each other as we depict in Figure 8.

Again, on the smartphones we run an Android application
which records and saves the sounds as a PCM and WAV file
for subsequent analysis.

IV. FINGERPRINTING MICROPHONES BASED ON
PRERECORDED SOUNDS
In this section we analyze microphone characteristics
extracted from the power spectrum of the recorded signal
using traditional machine learning algorithms: LD, ENS,
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DT, KNN and SVM classifiers to identify the microphones.
Regarding these classifiers, the following settings have been
used. The linear discriminant LD was used with no regu-
larization, i.e., gamma set to 0. For KNN we used the fine
KNNversionwhich uses a single neighbor with the Euclidean
distance as a metric. For DT we used Gini’s diversity index
as slip criterion and the maximum number of splits was set
to 100 which corresponds to the Fine Tree classifier type.
SVM was used with a linear kernel function and the default
heuristic procedure to select the kernel scale. The Ensemble
classifier had a subspace dimension of 2048 (equal with the
number of samples of the power spectrum), 30 learning cycles
and used the discriminant learner.

A. PROCEDURE OVERVIEW
For each signal we extract the power spectrum which is used
as input for the classifiers. The power spectrum is an array
with 4096 elements, so for each audio signal the input for the
classifiers will consist in the 4096 features.

Further, for each dataset we analyze the impact of distinct
types of ambient noise in our fingerprinting procedure. That
is, to the original signal we add noise at distinct SNR levels,
i.e.,

SigWithNoise = Sig+ NoiseAmp.

Here, SigWithNoise is the signal with noise, Sig is the
original signal (recorded with the tested microphones in the
time domain) and NoiseAmp consists in traffic or market
noise as retrieved from SoundArchive. The NoiseAmp is
actually the noise amplified by a specific SNR factor com-
puted by us as

NoiseAmp = Noise× Fac×
MaxNoise
MaxSig

.

Here, Noise is the noise signal from SoundArchive in the
time domain, MaxNoise is the maximum absolute value of
the noise, MaxSig is the maximum absolute value of the
recorded signal andFac is the scalar amplification factor. The
SNR is computed as:

SNR = 10× log10
OrigBandPower

NoiseBandPower
[dB].

where OrigBandPower is the average power of the orig-
inal signal (the signal recorded by the microphones) and
NoiseBandPower is the average power of the noise (market
or traffic noise from the MP3 file on SoundArchive).

B. FINGERPRINTING MICROPHONES BASED ON HUMAN
SPEECH
For fingerprinting smartphones based on human speech we
used the MOBIPHONE dataset [6] which contains 21 smart-
phones from distinct brands and models. For each smart-
phone there are 24 audio files from 24 speakers, 12 males
and 12 females. For each audio file we compute the power
spectrum, i.e., the frequency response, which is used as input
for the machine learning classifiers.

FIGURE 9. Overview of the method for smartphone recognition based on
human speech (Mobiphone Dataset).

TABLE 3. Precision, recall and accuracy for five classifiers (MOBIPHONE
dataset).

Since the primary application scenario that we target is
device identification, we evaluate the classifier’s performance
in what follows in terms of False Acceptance Rate (FAR)
and False Rejection Rate (FRR). FAR is the probability of
an unauthorized microphone to be accepted as legitimate and
FRR is the probability of an authorized microphone to be
rejected. The FAR and FRR coefficients are computed as
follows:

FAR =
FP

TN + FP
, FRR =

FN
TP+ FN

.

Here TP are the true positives, TN the true negatives, FP
the false negatives and FP the false positives.

1) FINGERPRINTING MICROPHONES BASED ON HUMAN
SPEECH (CLEAN RECORDINGS)
In order to fingerprint distinct smartphones based on human
speech from MOBIPHONE dataset, we use the five classi-
fiers previously mentioned. To make the identification pro-
cess more challenging we consider two cases. First we use
as training the power spectrum from the speech of 10 male
speakers and as test the speech of 12 females and the rest
of 2 male speakers. Secondly, we use as training the power
spectrum from the speech of 10 female speakers and as test
the speech of 12 male and the rest of 2 female speakers.
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A. Berdich et al.: Fingerprinting Smartphones Based on Microphone Characteristics

FIGURE 10. FARs (up) and FRRs (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 10 females used
as training (MOBIPHONE dataset).

FIGURE 11. FARs (up) and FRRs (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 10 males used
as training (MOBIPHONE dataset).

FIGURE 12. Precision (left), recall (middle) and accuracy (right) obtained with linear discriminant classifier with noise between −80dB to
20dB with 5dB increment.

In Figure 9 we depict the flowchart of these scenarios. Table 3
shows the mean precision, mean recall and accuracy for each
classifier for the both cases from this scenario. It is obvious
that the LD classifier has the best results, followed closely by
the ENS, while the KNN and SVM have much poor results
and the worst results are obtained with DT classifier likely
due to its tendency for over-fitting. As an additional metric
for performance, more specifically focused on the authen-
tication/impersonation success rate, in Figure 10 we depict
the FAR (False Acceptance Rate) and FRR (False Rejection
Rate) as heatmaps (left) and as numerical values (right) for
each classifier and microphone for the 10 females used as
training samples. It is again obvious that the DT classifier
has the worst results followed by KNN, while the best results
are obtained with LD and ENS classifiers. However, the FAR
is very low for all classifiers, the maximum value is 3.7% for
the DT classifier on microphone P. The FRR however reaches
64% for the DT classifier on microphones C and G which is
too high. For the LD classifier, the maximum value for FAR
is only 0.7% on microphones C, H and J and the maximum
value for FRR is only 17% on microphone T. In Figure 11 we
depict the FAR (up) and FRR (down) as heatmap (left) and
numerical values (right) for each classifier and microphone
for the 10 males used as training. Again, it is obvious that the

DT classifier gives the worst results followed by KNN, while
the best results are obtained with the LD and ENS classifiers.
However, overall the FAR is very low for all classifiers, the
maximum values is 3.4% for the DT classifier on microphone
F. The FRR reaches 70% for the DT classifier on microphone
C. For the LD classifier, the maximum value for FAR is 1%
on microphone F and the maximum value for FRR is 12.5%
on microphone G.

2) FINGERPRINTING MICROPHONES BASED ON HUMAN
SPEECH WITH MARKET NOISE
To make the fingerprinting process more challenging and
comparable to a real-life scenario in which ambient noise is
present, we add market noise to the signals at different SNRs,
i.e., from −80dB to 20dB with an increment step of 5dB.
In order to obtain different SNRs, we simply amplified the
amplitude of the noise in the prerecorded signal. Since the
noise comes from external recordings, e.g., indoors and out-
doors noise, we needed a gradual analysis of the noise impact,
for which amplifying the amplitude was the only option.
For this scenario we use only the LD classifier because for
this classifier we obtained the best results and nonetheless
because it is faster than the others, i.e., ∼87 samples/second
prediction speed with 18.364 seconds training time. The

122406 VOLUME 10, 2022



A. Berdich et al.: Fingerprinting Smartphones Based on Microphone Characteristics

FIGURE 13. Overview of the method for smartphone recognition based
on environmental noise.

training and the test dataset have the same SNR level. In
Figure 12 we plot the mean precision (left), mean recall
(middle) and accuracy (right) for different levels of noise. At a
SNR lower than −50dB the identification no longer works
while at a SNR between −50 and 0dB the precision, recall
and accuracy are increasing from −0.2 to 0.9 and finally at a
SNR greater than 0dB the precision, recall and accuracy are
close to 1.

C. FINGERPRINTING IDENTICAL MICROPHONES BASED
ON ENVIRONMENTAL NOISE (INDOOR EXPERIMENTS)
The dataset which we build contains 16 microphones from
the same smartphone model. We use four prerecorded envi-
ronmental noises from the SoundArchive: (i) a locomotive
signaling departure, (ii) barriers closing with two bells jin-
gling, (iii) car arriving with screeching tiers and the (iv)
two tone horn sound of a Mercedes-Benz. With each sound
played in the background we did 50 measurements on each
microphone, i.e., resulting in 800 measurements for each
sound and a total of 3200 measurements. Again, to get closer
to a real-life scenario, we add the two previous types of noise,
i.e., market and traffic, at distinct levels. In Figure 13 we
depict the flowchart of this test scenario.

1) FINGERPRINTING MICROPHONES BASED ON
ENVIRONMENT SOUNDS (CLEAN RECORDINGS)
We use 20 measurements for training and 30 measurements
for testing. In Table 4 we depict the mean precision, mean
recall and accuracy for each classifier on each type of sound.
It is obvious that the LD and ENS classifiers have the best
results, followed closely by the SVM. The KNN has poor
results and as expected the worst results are again obtained
with the DT classifier.

In Figures 14, 15, 16 and 17 we depict the FAR and FRR
for each classifier and microphone on the four testing sounds

TABLE 4. Precision, recall and accuracy for five classifiers (this paper
dataset).

as heatmaps and numerical values. In Figure 14, we depict the
FAR (up) and FRR (down) for the locomotive sound and the
overall FAR is very low for all classifiers, while themaximum
values is 4.5% for the DT classifier for microphone H. The
FRR reaches 62% for the DT classifier on microphone E.
For the LD and ENS classifiers the FAR and FRR are zero
for all microphones. In Figure 15 we depict the FAR (up)
and FRR (down) for the barrier sound. Again, the overall
FAR is very low for all classifiers, the maximum values
is 2.6% for the DT classifier on microphone F. The FRR
reaches 36% for the DT classifier on microphone O. Again,
the LD and ENS classifiers have a FAR and FRR equal to
zero for all microphones. In Figure 16 we depict the FAR
(up) and FRR (down) for the car tiers sound. The FAR is
very low for all classifiers with a maximum value of 4.2%
for the DT classifier on microphone P. The FRR reaches
48% for the KNN classifier on microphone H. For the LD
and ENS classifiers the FAR and FRR are again zero for all
microphones. In Figure 17 we depict the FAR (up) and FRR
(down) for the car horn sound. The maximum value for the
FAR is 4% for the DT classifier on microphone C, the FRR
reaches 45% for the DT classifier on microphone F. For the
LD and ENS classifiers the FAR and FRR are again zero for
all microphones.

Overall, as can be seen from these results, the LD and
ENS classifiers have the FAR and FRR equal to zero on all
microphones. For the other classifiers, the barrier and horn
sounds resulted in the highest values for the FAR and FRR,
i.e., worst identification rates, than the locomotive and car
tiers sounds.

2) FINGERPRINTING MICROPHONES BASED ON
ENVIRONMENT SOUNDS WITH AMBIENT NOISE
Since in real-life scenarios ambient noise is present, we again
add two types of noise (traffic and market noise) at distinct
SNR, i.e., from −80dB to 20dB with a increment step of
5dB, to the clean signals. For this scenario we use only the
LD classifier because it gave the best results and had a fast
prediction speed. In Figure 18 we depict the mean precision
(left), mean recall (middle) and the accuracy (right) for dis-
tinct noise levels. The noise level influences the classification
distinctly on the four sounds type. For the barrier sound, at a
SNR lower than −70dB the identification is not working,
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FIGURE 14. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 16 identical
microphones for locomotive sound (our dataset).

FIGURE 15. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 16 identical
microphones for barrier sound (our dataset).

FIGURE 16. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 16 identical
microphones for car tiers sound (our dataset).

FIGURE 17. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 16 identical
microphones for car horn sound (our dataset).

at a SNR between −70 and −63dB the precision, recall and
accuracy are increasing from −0.2 to 0.9, while at a SNR
greater than −63dB the precision, recall and accuracy are
close to 1. For the horn sound, at a SNR lower than −60dB
the identification is not working, at a SNR between −60 and
−40dB the precision, recall and accuracy are increasing from
−0.2 to 0.9, while at a SNR greater than−40dB the precision,
recall and accuracy are close to 1. For the locomotive sound
the influence of the noise is similar as in case of horn sound.
For the car tiers sound, at a SNR lower than −35dB the
identification is not working, at a SNR between −35 and
−8dB the precision, recall and accuracy are increasing from

−0.2 to 0.9, while at a SNR greater than−8dB the precision,
recall and accuracy are close to 1.

As a partial conclusion, the least influence of the ambient
noise is on the screeching tiers, while fingerprinting based on
the barriers, horn and locomotive sounds are influenced to a
higher degree.

V. FINGERPRINTING MICROPHONES BASED ON LIVE
RECORDINGS
In this section we evaluate microphone fingerprinting in
the more challenging scenario with live recordings. As an
additional comparison, we also add a deep-learning CNN
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FIGURE 18. Precision (left), recall (middle) and accuracy (right) obtained with linear discriminant classifier with noise between −80dB to 20dB
with 5dB increment.

architecture and compare it with the traditional machine
learning algorithm LD (we keep only the LD algo-
rithm since it gave the best results in all the previous
tests).

A. DETAILS ON THE TEST SCENARIO
In this section we analyze scenario C for which we build
our outdoor recordings with 16 smartphones that record: i)
a car honk for which we did 400 measurements for each
smartphone, totaling 6400 measurements, ii) in-vehicle haz-
ard lights blinking for which we did 300 measurements
for each smartphone, totaling 4800 measurements and iii)
vehicle wipers running at low speed for which we did
300 measurements for each smartphone, totaling 4800 mea-
surements. For each signal we extract the power spectrum
which is used as input for the classifiers. The power spectrum
is an array with 4096 elements, so for each audio signal
the input for the classifiers will be the 4096 features. For
both, LD and CNN we chose random 55% of measure-
ments for training and the remaining 45% of measurements
are used for testing. To make the identification even more
challenging, we also add background music noise to the
recordings. For this we use the first 3 songs from Spotify
top 10 list available in 2021. In Figure 19 we depict this
scenario.

FIGURE 19. Smartphone recognition based on car honk.

B. DEEP-LEARNING APPROACH WITH CNN
For each smartphone i, we induce a CNN-based binary clas-
sifier that is responsible for authenticating it (i.e., return ‘1’ if
a given input sample is associated with smartphone i, and ‘0’
otherwise). The dataset for training binary classifier i consists
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FIGURE 20. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the linear discriminant classifier and CNN for 16 microphones for
horn, hazard lights and wipers sounds.

FIGURE 21. FARs (up) and FRRs (down) as heatmap (left) and numerical values (right) for the linear discriminant classifier and CNN for 16 microphones
for horn, hazard lights and wipers sounds affected by music.

of positive and negative examples. The positive examples are
associated with smartphone i, and the negative examples are
associated with other smartphones.

To induce the best binary classifier for authenticating
smartphone i, we first execute a hyperparameter tuning pro-
cedure which is based on a random search over 50 trials.
On each trial, the best hyperparameters are chosen using
a stratified 3-fold cross-validation procedure [45]. On each
fold iteration, to address the data unbalance, we use the
cost-sensitive learning method described in [46]. We choose
the known cross-entropy score [47] to measure the best set of
hyperparameters.

Finally, given the best set of hyperparameters for binary
classifier i, we generate the model.We first divide the training
dataset, which represents 55% of the entire dataset as the
remaining 45% was used for testing, into 70% for training
and 30% for validation. Then we train the model until the
loss function reaches its minimum on the validation set. Also,
at this step, we use the same cost-sensitive learning method
as we used during the hyperparameter tuning [46]. The loss
function that we pick to minimize is the binary cross-entropy,
and the optimizer that we use for thismission is the RMSProp.
The learning rate is optimized over the set of [0.001, 0.0001].

Regarding the CNN architecture, it consists of filter layers
followed by fully connected layers. We vary the number of
filter layers in the set of [1, 2, 3]. All the filter layers are
applied with a kernel size in the set of [3, 4, 5] and a filters
count in the set of [16, 32, 64]. To avoid overfitting, the filter
layers are followed by a dropout in the set of [0, 0.1, 0.2,
0.3, 0.4]. Regarding the fully connected layers, we vary the
number of them in the set of [2, 3, 4, 5], and the number of
neurons for each fully connected layer in the set of [16, 32,

64, 128]. Finally, another dropout is attached, varied in the
set of [0, 0.1, 0.2, 0.3, 0.4].

C. RESULTS ON CLEAN RECORDINGS
In Figure 20 we depict the FAR (up) and FRR (down) as
heatmap (left) and numerical values (right) for the linear
discriminant classifier and CNN for 16microphones for horn,
hazard lights and wipers sounds. For the horn sound, recorded
outdoors, it is obvious that for both algorithms the FAR and
FRR are very low. But even so, the best results are obtained
with CNN, i.e., only for the J5 the FAR is 0.1% and for the
rest of the smartphones the FAR is zero. In case of the LD
classifier, the FAR is between 0% and 0.1%. Also, the FRR
are more accurate for the CNN, i.e., only for three smart-
phones the FRR are not zero, but it is kept very low between
0.5% and 1.6%. For the linear discriminant classifier, seven
smartphones have non-zero FRR that are between 0.5% and
5.5%. For hazard lights, the blinking sound was recorded
inside the vehicle. Again, for both algorithms the FAR and
FRR are very low, but in this scenario the best results are
obtained with the LD classifier. Both the FAR and FRR are
zero in case of the LD classifier while in case of the CNN
the FAR is between 0% and 0.4% and the FRR are between
0% and 3.7%. For wipers, the sound was recorded inside the
vehicle. Again, for both algorithms the FAR and FRR are very
low, but the best results are obtained with the LD classifier.
The FAR and FRR are zero in case of the LD classifier, except
for a smartphonewhere the FAR is 0.1% and the FRR is 0.6%.
In case of CNN the FAR is zero, except for two smartphones
where the FAR is 0.1%, while the FRR is not zero for four
smartphones with values between 0.7% and 1.4%.
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D. RESULTS ON RECORDINGS INFLUENCED BY NOISE
In Figure 21 we depict the FAR (up) and FRR (down) as
heatmap (left) and numerical values (right) for the linear
discriminant classifier and CNN for 16microphones for horn,
hazard lights andwipers soundswhen affected by background
music. In case of the horn sound, the results are close between
the CNN and the LD classifier. For the CNN, the FAR is
between 0.1% and 1.7% and the FRR between 0% and 38.8%
while for LD the FAR is between 0.2% and 2% with the FRR
are between 1.6% and 51.6%. In case of the hazard lights
affected by noise, the best results are obtained with the LD
classifier. The FAR for the LD classifier is between 0% and
0.6% and the FRR is between 0% and 9.5%. For the CNN, the
FAR is between 0% and 6.1% and the FRR is between 0 and
35%. In case of the wipers sound affected by music, the FAR
is little bit lower for the LD classifier, while the FRR is close
between the CNN and LD. The FAR for the LD classifier is
between 0% and 2% and the FRR is between 0% and 22%.
For the CNN, the FAR is between 0% and 4.5% and the FRR
between 0% and 25.9%.

VI. DISCUSSION AND CONCLUSION
In this work, we explored smartphone microphone finger-
printing based on microphone data by using the power spec-
trum of the recorded signal with distinct supervised machine
learning algorithms, i.e., Linear Discriminant, Ensemble-
Subspace Discriminant, Decision Tree, Fine KNN and Linear
SVM.We tested three major use cases of fingerprinting based
on human speech, synthetically reproduced environmental
sound and finally live recordings. In all the scenarios, noise
was added to make identification more challenging. For the
first two scenarios the LD classifier behaved almost perfect.
The last scenario was more demanding and we added a
CNN deep-learning architecture to serve as a comparison.
There was no clear cut between the accuracy of the LD and
CNN, on the recordings unaffected by noise they performed
similar. When noise was added, the LD gave poor identi-
fication results for 2 phones (the LG and Nexus 7), while
the CNN had no particular problem with these 2 phones
but the identification was slightly poorer for the rest of the
phones. Since the LD classifier has a fast prediction speed
and uses small amounts of memory, it may be still preferable
to the CNN architecture. The rest of the traditional machine
learning classifiers gave poorer results.

As expected, separating between identical smartphones,
i.e., same model and manufacturer, is more challenging than
separating smartphones of different types or brands. This is
visible as for clean recordings, in case of different smart-
phones, in Figure 8, the maximum FAR is 0.004 for Samsung
S6 with CNN for the sound produced by the hazard lights,
while the maximum FRR is 0.055 for LG with the LD classi-
fier in case of the car honk. While in case of identical smart-
phones, the FAR reaches 0.042 for smartphone E in the case
of DT on the locomotive sound, and the FRR reaches 0.62 for
several smartphones and classifiers – this means a one order

of magnitude higher FARs and FRRs when identical phones
are used.

It may also be expected that some smartphones may be
easier to identify than others due to specifics related to the
manufacturing process or quality control, etc. Our results
do not necessarily indicate that this is so. By inspecting
Figures 20 and 21 which show the heatmaps and numerical
results for the batch of 16 distinct phones, the FAR and FRR
are small and comparable between different smartphones.
It seems that the results are much more influenced by the
type of sounds that are used as some sounds contain fre-
quencies that are reproduced differently by the smartphones,
making identification easier. Concretely, in the case of the
live recordings with 16 identical smartphones, the best results
were obtained for the locomotive and car honk sounds which
gave better results than the barrier and hazard lights sounds.

Possible applications of such fingerprints are manifold:
security minded use cases could include attestation of posses-
sion of a particular phone to act as second, unclonable factor
token; however, such fingerprinting could also be abused by
apps to fingerprint deviceswithout otherwise having access to
device-unique identifiers. While this could indeed be a pow-
erful fingerprint, we argue that malicious apps (or libraries
embedded within) with high-fidelity access to microphone
sampling already has more serious security and privacy
impact [48] without the added device fingerprint. Nonethe-
less, on-device countermeasures to this particular method —
such as adding noise or lowering sampling fidelity— are still
subject to future work.
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