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ABSTRACT Designing a reasonable obstacle avoidance method for AUV 3D path planning is difficult,
and existing obstacle avoidance methods have certain drawbacks. For example, they are only applicable
to 2D planar applications and cannot effectively handle dynamic obstacles. To address these problems,
we design an obstacle collision prediction model (CPM). Based on the results of the simulation of obstacles’
inertial motion, the safety of the AUV navigation is evaluated to improve the model’s sensitivity to
dynamic obstacles. Then, we enhance the learning ability of the sequence sample data by combining it
with a long short-term memory (LSTM) network, thus improving the training efficiency and effect of
the algorithm. The trained proximal policy optimization (PPO) network can output reasonable actions in
order to control the AUV to avoid obstacles, forming an AUV 3D dynamic obstacle avoidance strategy
based on the CPM-LSTM-PPO algorithm. The simulation results show that the proposed algorithm has
good generalization in uncertain environments. Moreover, it achieves dynamic AUV obstacle avoidance in
different three-dimensional unknown environments, providing theoretical and technical support for real path
planning.

INDEX TERMS AUV, dynamic obstacle avoidance, deep reinforcement learning, proximal policy optimiza-
tion algorithm, collision prediction model.

I. INTRODUCTION
The autonomous underwater vehicle (AUV), which serves
as a lightweight underwater observation tool, has gradually
become an important piece of equipment for countries to
explore marine resources and strengthen the national navy.
Among other advantages, AUVs are small, easy to control,
and highly intelligent. [1], [2] In a complex and changing
marine environment, AUVs’ safety obstacle avoidance tech-
nology not only supports their navigational and operational
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functions but is also an important part of their navigation
control technology. As various countries have expanded their
efforts in ocean exploration, further improvement of AUVs’
dynamic obstacle avoidance capability in complex marine
environments has become a key avenue for increasing their
effectiveness [3], [4].

In AUVs’ application scenario, the complex and dense
dynamic obstacles of an uncertain environment pose a huge
challenge to safe navigation. Traditional obstacle avoidance
methods (such as the A∗ algorithm, artificial potential field
method, Voronoi diagram, RRT algorithm, swarm intelli-
gence algorithm [5], [6], [7], [8], [9], etc.) have been used

121340 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6089-2002
https://orcid.org/0000-0002-7221-6279


G. Zhu et al.: AUV Dynamic Obstacle Avoidance Method Based on Improved PPO Algorithm

to avoid obstacles when the environmental information is
known. However, due to the dense dynamic obstacles in
uncertain environments, AUVs cannot obtain the motion
information of dynamic obstacles in advance. Therefore, tra-
ditional methods cannot be effectively applied to real-time
obstacle avoidance. In addition, the complexity and variabil-
ity of the uncertain environment imposes higher requirements
on the speed of the obstacle avoidance algorithm. Traditional
methods are overly reliant on environmental dynamic models
and AUV models; as a result, the accuracy of the models
greatly affects these methods’ performance. On the one hand,
simple models cannot adequately characterize the complexity
of the environment. On the other, complex models are too
computationally intensive, which not only wastes computa-
tional resources but also takes too long to meet the needs of
AUVs in uncertain environments. Therefore, it is necessary to
design a method that can realize dynamic obstacle avoidance
for AUVs in an uncertain environment [10], [11].

With the development of artificial intelligence, more and
more advanced intelligent algorithms have been applied in
various fields to solve problems that cannot be solved by
traditional algorithms. Among intelligent decision-making
algorithms, deep reinforcement learning methods stand out
for their powerful high-dimensional information percep-
tion, understanding, and nonlinear processing capabilities.
Wu Yahui et al. proposed a model of obstacle avoidance
built on a modified artificial potential field method with the
obstacle information in the environment and the posture and
angle information of the robot movement, thus achieving
autonomous movement of the robot in unfamiliar scenes [12].
Xiong Juntao et al. addressed the problem that the range
repulsion of the artificial potential field method affected
the shortest path planning. They proposed a method for
setting the directional penalty obstacle avoidance function,
which converted the obstacle range penalty into a single
direction penalty. By establishing a virtual robot motion
collision model, the direction penalties were given selec-
tively by the analysis results of the model [13]. Liu Qingjie
et al. note that rewarding sparseness in the learning pro-
cess makes it difficult to obtain better results; therefore,
to improve the reward mechanism, they increase real-time
rewards and punishments as a supplement to solve the prob-
lem of long learning time and unstable training [14]. Sun
Lixiang et al. developed a reward function for reinforcement
learning based on human spatial behavior. In this approach,
states in which the robot angle changes significantly are
punished to achieve the requirements of comfortable obstacle
avoidance [15]. Mirowski et al. used deep reinforcement
learning to make navigation decisions in a grid environment.
However, they performed the task in a static obstacle envi-
ronment, thus failing to verify the algorithm’s practicability
in an uncertain environment [16]. Qiao et al. used CMAC
(cerebellar model arithmetic computer) and SARSA
(a temporal-difference reinforcement learning method) to
complete automatic obstacle avoidance in unknown environ-
ments. However, this method is limited to collision avoidance

for a single obstacle [17]. Finally, Zhou Bin et al. used
the received signal strength to define the reward value and
employed Q-learning to complete AUV path planning and
obstacle avoidance. Nevertheless, as the application scenario
is simple, they also fail to consider uncertain environments
with a large number of dynamic obstacles [18].

In summary, although the above methods have achieved
good results in their respective environments, there are still
some shortcomings, mainly in the following two areas.
First, most algorithms only perform obstacle avoidance or
path planning in a static environment and cannot deal with
dynamic obstacles; as a result, they are difficult to apply
in uncertain environments. Second, due to the environ-
ment type for obstacle avoidance and the consideration of
model complexity and computational intensity, deep rein-
forcement learning algorithms can only be applied to the
field of two-dimensional plane obstacle avoidance, which is
far from a three-dimensional environment. Therefore, these
algorithms have certain limitations in guiding real-world
applications.

Aiming at the above problems and relying on existing
research, this study proposes an AUV dynamic obstacle
avoidance method based on proximal policy optimization
(PPO) for uncertain environments with dense dynamic obsta-
cles. The specific steps of the study are as follows. First,
the obstacle collision prediction model is designed. Based
on the results of the simulation of the obstacles’ inertial
motion, the safety of the AUV navigation is evaluated to
improve the model’s sensitivity to dynamic obstacles. The
introduction of the long short-term memory network trans-
forms the environmental state into a high-dimensional per-
ception situation, strengthening the network’s ability to learn
time-series obstacle avoidance data. Thus, we propose an
AUV dynamic obstacle avoidance method based on a CPM-
LSTM-PPO algorithm, which makes full use of the plasticity
of the offline training of the neural network and real-time
online use. Finally, we design various obstacle avoidance
simulation experiments to compare the proposed method
with other algorithms in order to verify its effectiveness and
superiority.

II. PPO ALGORITHM AND LSTM NETWORK
A. PROXIMAL POLICY OPTIMIZATION ALGORITHM
The proximal policy optimization algorithm [19] is an
improved deep reinforcement learning algorithm proposed
by OpenAI in 2017. In the same year, DeepMind showed
that the agent could explore complex skills without special
instructions by training a PPO. This further proved that the
PPO algorithm can be better applied to the tasks of continuous
control and continuous plotting.

PPO is a new type of policy gradient (PG) algorithm.
The main philosophy of the PG algorithm is to use gradient
boosting to update the policy π in order to maximize the
expected reward. In the PG algorithm, the objective function
of the network parameter θ update is as follows:

LPG(θ ) = Et
[
lgπθ (at |st )× At

]
(1)
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FIGURE 1. Schematic diagram of the clip function of PPO.

The biggest advantage of the PG algorithm is that it can
choose actions in a continuous space. Its disadvantage is
that although it is sensitive to step size, choosing a suitable
step size is difficult. To address this shortcoming, this paper
first uses the ratio of the action probability πθ (a|s) under
the current strategy to the action probability πθold(a|s) of the
previous strategy to observe the effect of the agent’s action.
The ratio of old and new strategies is recorded as

rt (θ ) =
πθ (at |st )
πθold (at |st )

(2)

If the reward function rt (θ ) > 1, it indicates that the prob-
ability of the action occurring under this policy is higher than
that of the previous policy; if 0 < rt (θ ) < 1, the probability
is lower than the previous policy. The objective function can
be designed as follows:

LCPI (θ ) = Et

[
πθ (at |st )
πθold (at |st )

At

]
= Et [rt (θ )At ] (3)

Second, to avoid policy mutation during the process of
parameter updating, the objective function (Formula (3))
must be constrained. The PPO algorithm improves the stabil-
ity of training agent behavior by constraining policy updates
to a small range. There are two kinds of constraints that the
PPO algorithm can adopt: limiting the KL divergence or trun-
cation. In practical applications, researchers have found that
the truncated method works better. Therefore, the objective
function of PPO is optimized as follows:

LCLIP(θ ) = Et [min(rt (θ )At , clip(rt (θ ), l − ε, l + ε)At )]

(4)

Among them, ε is a truncation constant used to assist in
setting the range of policy updates; it is usually set to 0.1 or
0.2. The clip function is a truncation function that limits
the value of the old and new policy parameters rt (θ ) to the
interval [1 − ε, 1 + ε], as shown in Figure 1. The objective
function uses the min function to represent the smaller value
between the probability ratio of the old and new strategies and
the truncation function.

When the advantage function A is positive, it means that
the current action has a positive effect on the optimization
goal. Therefore, the probability of its occurrence should

FIGURE 2. LSTM cell structure.

be increased, but the update range should be limited to
below 1+ ε. When A is negative (indicating that the current
behavior is negative), it should be blocked while reducing its
probability to 1− ε.
The core philosophy of the PPO algorithm is to avoid the

use of large policy updates in order to solve the problem
of difficult step size determination and low data efficiency
in the PG algorithm. This greatly reduces the difficulty of
debugging by researchers.

B. LONG SHORT-TERM MEMORY NETWORK
Each unit of the LSTM network can be divided into a forget
gate ft , input gate it , and output gate ot (Fig. 2).

Among them, the forget gate uses the sigmoid function
to determine whether the output ht−1 and cell state Ct−1 of
the network at the previous time continue to exist in the cell
state Ct of the current network. The calculation formula of
the forget gate is as follows:

f t = σ
(
W f · g [ht−1, xt ]+ bf

)
(5)

In formula (5), Wf is the weight matrix; bf is the offset; xt
is the input of the current network; and g represents vector
splicing.

The input gate multiplies the information output by the
sigmoid function and the tach function to determine how
much of the current input xt is to be transferred to the cell
state Ct . The formula of the input gate is as follows:

it = σ (W i · g [ht−1, x1]+ bi) tach (W c · g [ht−1, xt ]+ bc)

(6)

The output gate also uses the information output by the
sigmoid function and the tach function to determine how
much of the unit state Ct can be transferred to the current
output ht . The formula of the output gate is as follows:

ht = σ (W0 · g [ht−1, xt ]+ b0) · tach (C t) (7)

III. CPM-LSTM-PPO ALGORITHM
The main goal of this paper is to allow the AUV to find a
reasonable path to the target position within the specified step
size. Here, ‘‘reasonable’’ refers to distinguishing obstacles
in different directions and speeds so that the AUV behavior
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FIGURE 3. Schematic diagram of AUV training process.

path is closer to reality. In this paper, the PPO algorithm is
used for 3D dynamic obstacle avoidance tasks in an unknown
environment with multiple obstacles. The training process
consists of four stages: initialization, action execution, reward
acquisition, and training decision-making (Fig. 3).

First, a reasonable environment state and action state are
designed. Second, AUV uses sonar to detect environmen-
tal information and collect data. Then, it inputs these data
as feature vectors combined with a reward function into a
neural network for training. Finally, the optimal action is
selected according to the exploration strategy, and the output
reaches the next visual observation. AUV continuously loops
and iterates the three stages—executing actions, obtaining
rewards, and making training decisions—until the training is
completed.

A. COLLISION PREDICTION MODEL
The first step is to construct a 3D coordinate system. Take the
position of the AUVwhen the active sailing function is turned
on as the origin (0, 0, 0). The heading is the positive direction
of the y-axis. The positive direction of the x-axis is in the
horizontal direction, perpendicular to the heading direction
and pointing to the right. The positive z-axis direction is
perpendicular to the heading direction and pointing to the
water surface. The second step is to map the detected obsta-
cle recognition frame to the map and update the coordinate
information of obstacles and the AUV in real time.

Assuming that the velocity vobs, pitch angle θobs, and yaw
angle ψobs of the obstacle within t seconds are all fixed, the
position of the coordinate system in the previous frame of the
obstacle measured by the sonar is (x1, y1, z1), and the current
frame position of the obstacle is (xobs, yobs, zobs), the speed of
obstacle navigation is as follows:

vobs =
√
(x1− xobs)2 + (y1− yobs)2 + (z1− zobs)2/t (8)

The yaw angle is

ψobs = arctan ((y1− yobs)/(x1− xobs)) (9)

The pitch angle is

θobs = arctan
(
(z1− zobs)/

√
(x1− xobs)2 + (y1− yobs)2

)
(10)

These formulas allow the dynamic information of the
obstacle to be judged.

After storing the above information, a three-dimensional
map of the absolute coordinates of obstacles, target positions,
and the AUV itself is formed.

To build a collision prediction model, the collision distance
must be calculated first.

Assuming that the position of the current frame of the AUV
is (xauv, yauv, zauv), the movement of the coordinates after
completing a step navigation action is (1xauv,1yauv,1zauv).
That is, the position of the AUV after completing a step
navigation action is (xauv+1xauv, yauv+1yauv, zauv+1zauv),
and the time required for the AUV to complete a step sailing
action is 1t seconds (1t is on the order of milliseconds).
The amount of movement of the obstacle in the x-axis after

1t seconds is 1xobs = vobs1t cos θobs cosψobs.
The amount of movement on the y-axis is 1yobs =

vobs1t cos θobs sinψobs.
The amount of movement on the z-axis is 1zobs =

vobs1t sin θobs.
That is, the coordinate of the obstacle after 1t seconds is

(xobs +1xobs, yobs +1yobs, zobs +1zobs).
Then, after1t seconds, the distance between the AUV and

the obstacle in (11), as shown at the bottom of the next page.
The obstacle distance is scored according to dist, from

which the obstacle distance reward R1t is obtained. In this
paper, the safe distance is set to 5 meters, the general distance
is 3.5 meters, and the dangerous distance is 2 meters. There-
fore, the AUV obstacle distance reward R1t is as follows:

2, dist > 5m
1, 3.5m < dist ≤ 5m
−1, 2m < dist ≤ 3.5m
−2, dist ≤ 2m

(12)

AUV dynamic obstacle avoidance is a continuous process,
and the navigation action taken in the current step will greatly
affect the next action. Therefore, focusing exclusively on the
effect of the current action will often affect overall obstacle
avoidance. At the same time, considering the inertia of object
motion, both the AUV and dynamic obstacles are unlikely
to change their original speed and heading within a few tens
of 1t seconds. Therefore, it may be assumed that the AUV
takes the current navigation action over the course of the
next several dozen steps, and the influence of inertial motion
is estimated to calculate the overall AUV obstacle distance
reward Gm1t :

Gm1t = R1t + γR21t + γ 2R31t + . . . =
m∑
k=1

γ k−1Rk1t

Gm1t = R1t + γR21t + γ 2R31t + γ 3R41t + . . .

= R1t +
m∑
k=1

γ kR(k+1)1t (13)

In formula (13), Gm1t is the total obstacle distance reward
obtained in m steps. Rn1t is the obstacle distance reward at
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the nth step (that is, after n 1t seconds). γ is the attenua-
tion factor, which is between (0, 1) because the closer R1t
is, the greater its impact on the algorithm. As A gradually
becomes farther, the accuracy gradually decreases due to
its predictability. The addition of γ prevents the collision
prediction model from being either too short-sighted or too
long-term.

Considering the computational performance of AUV, after
simulation experiments, we obtain m = 30, γ = 0.95:

G301t =
∑30

k=1
0.95k−1Rk1t (14)

The collision prediction model in this paper is divided into
four levels: A (safe), B (lower collision risk), C (higher colli-
sion risk), and D (extremely dangerous). We substituteG301t
into the following formula to obtain the AUV’s estimated
collision rating Sq for this obstacle:

A, G301t > 25.13
B, 18.85 < G301t ≤ 25.13
C, 6.28 < G301t ≤ 18.85
D, G301t ≤ 6.28

(15)

Assuming that q obstacles are identified on the same frame
of the sonar image, we repeat the above steps for these q
obstacles to obtain collision prediction set S:

S = {S1, S2, S3, . . . , Sq (16)

B. STATE SPACE AND ACTION SPACE
The environment model of the AUV must consider the target
position, boundary information, and obstacle collision pre-
diction model to engage in reasonable behavior to avoid a
collision. A variety of obstacles are set up in this paper’s
simulation environment and change randomly within a cer-
tain range. Due to the huge number of states and actions in
the continuous high-dimensional space, it is difficult for the
algorithm to converge. Therefore, we discretize information
such as obstacles around the AUV into a finite number of
states and formulate the state space reasonably. The state
space is defined as follows:

st = (xauv, yauv, zauv, distend , step, S) (17)

In formula (17), (xauv, yauv, zauv) is the position of the
AUV’s current frame, and distend is the distance between the
AUV and the target position. In addition, step is the number
of steps taken to navigate, and S is the collision prediction
set.

To speed up the convergence of the network model, the
action space consists of six discrete actions:

at = (a0, a1, a2, . . . , a5) (18)

Among them, a0, a1, a2, a3, a4, and a5 are 0.2 m for-
ward in the directions of+x-axis,−x-axis,+y-axis,−y-axis,
+z-axis, and −z-axis, respectively. + and − indicate the
forward and reverse directions, respectively.

C. DESIGN OF CPM-LSTM-PPO ALGORITHM FRAMEWORK
Since the underwater environment has highly dynamic, high-
dimensional characteristics and complexity, simply using
the fully connected neural network in the PPO algorithm
to approximate the policy function and evaluation function
is inadequate. The policy network and evaluation network
in this paper use the LSTM network framework. First, the
LSTM network is introduced to extract features from a
high-dimensional environmental situation, output useful per-
ception information, and enhance the learning ability of serial
sample data. Then, it approximates the policy function and
evaluation function through a fully connected neural net-
work. Figure 4 shows the framework of the CPM-LSTM-PPO
algorithm.

For the policy network part, six nodes are set up in the
input layer, corresponding to the six states of st . The hidden
layer sets up the LSTM layer and the fully connected layer.
The LSTM layer sets up three network units, and the fully
connected layer is designed as three layers, all of which use
tach as the activation function. The output layer sets a node
and uses softmax as the activation function for the simpli-
fied discrete action at . Figure 5 shows the policy network
framework.

D. REWARD AND PUNISHMENT FUNCTION
In deep reinforcement learning algorithms, all objectives can
be described by maximizing the expected cumulative reward.
Therefore, AUVs can learn the correct strategy from feedback
signals when interacting with the environment.

The reward and punishment function is the key to deter-
mining whether the deep reinforcement learning network
model can successfully converge. In this paper, the reward
and punishment function R is mainly composed of three
parts: the reward and punishment for distance change R1,
the reward and punishment for collision prediction R2, and
the reward and punishment for arrival, out of bounds, and
collision occurrence R3.
R1 means that if the AUV is closer to the target position

after performing a step action, it will give an appropriate
reward; otherwise, it will give a penalty. R2 indicates that
the collision prediction reward and punishment are given
according to each rating Sq in S. R3 means that the AUV will
give a completion reward when it reaches the target position
and a failure penalty if the coordinates exceed the delimited
boundary or collide.

dist =
√
(xauv +1xauv − xobs −1xobs)2 +

(
yauv +1yauv − yobs −1yobs

)2
+ (zauv +1zauv − zobs −1zobs)2 (11)
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FIGURE 4. CPM-LSTM-PPO algorithm framework.

FIGURE 5. Policy network framework.

The reward and punishment function is designed as
follows:

R = R1 + R2 + R3 (19)

R1 =

{
3, distend < predistend
−4, distend ≥ predistend

(20)

R2 =


0.2, Sq = A
0.1, Sq = B
−10, Sq = C
−30, Sq = D

(21)

R3 =

{
30000, distend < 0.1
−30000, (out of boundsorcollision)

(22)

In formula (20), predistend represents the distance between
the AUV before performing the action and the target position.

Appropriate safety rewards and punishments and severe
dangerous action penalties through collision prediction allow
the algorithm to take safe obstacle avoidance actions.

To prevent situations in which the AUV can never reach
the target position, this paper sets a maximum limit number
of steps σ of the map. This value changes according to map
size:

σ = λ ∗ (l ∗ w ∗ h) (23)

where l,w, h are the length, width, and height of the map,
respectively. λ is a parameter related to the complexity of the
map; a larger value should be set for a more complex map.
R ≥ 30, 000, or R ≤ −10, 000, or step number ≥ σ , will

immediately end the current round of episodes.

IV. EXPERIMENTS
This paper uses the Python-based physics engine PyBullet to
build the simulation environment. The computer configura-
tion for AUV training is as follows: the hardware environ-
ment is an Intel i5-7300HQ processor, 16GB memory, and
NVIDIA GeForce GTX 1050Ti graphics card. The software
environment is Python 3.10.

In this paper, several experiments are designed to verify the
algorithm’s effectiveness.

Experiment 1 is an AUV dynamic obstacle avoidance sim-
ulation experiment based on the CPM-LSTM-PPO algorithm.

Experiment 2 is a comparison experiment between the
algorithm in this paper and other algorithms.

Experiment 3 examines a random dynamic obstacle avoid-
ance scene.

A. SIMULATION EXPERIMENT
1) ENVIRONMENT MODEL AND TRAINING PARAMETERS
The basic training simulation environment designed in this
paper has certain representativeness (Fig. 6). The length,
width, and height of the training environment are 55 m, 18 m,
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FIGURE 6. AUV basic training environment.

TABLE 1. PPO algorithm parameters.

and 14 m, respectively. The red line is the boundary line,
the green line is the target position, and the orange line is
a segment of the navigation trajectory generated by the AUV
every 40 steps. The AUV first traverses three uprights and
then five lateral static obstacles. Then, it passes through two
dynamic obstacles that move left and right and one that moves
up and down. The obstacles follow uniform round-trip linear
motion.

In the experiment, the continuous observation vector space
is used, and the eigenvectors are applied to represent the
observation results of the intelligent agent at each step.
Each AUV continuously learns and explores according to the
method proposed in this paper. During the training process, R
is always followed for certain rewards and punishments. The
entire scene is reset at the end of each round or if the AUV
goes out of bounds. The total number of training iterations in
this experiment is 6,000, and the PPO parameter settings are
shown in Table 1.

2) EXPERIMENTAL RESULTS AND ANALYSIS
The average reward obtained every 10 rounds during the
training process, as well as the number of steps taken by the
AUV to reach the target position each time, was recorded
(Figs. 7 and 8). As the number of iteration rounds increases,
when the algorithm iterates to about 2,000 rounds, the aver-
age reward has increased from a negative value to 0. This
indicates that the CPM-LSTM-PPO algorithm has gained

FIGURE 7. Average reward.

FIGURE 8. Number of steps used.

some obstacle avoidance experience. When the algorithm
iterates to the 3,000th round, the average reward for every
10 rounds fluctuates around 15,000. The reason why the
average reward fails to converge above 30,000 rounds is
that the failed attempts will lower the average reward every
10 rounds; as a result, the algorithm’s success rate is below
100%. Figure 8 shows that after the AUV first reaches the
target position, the number of steps used gradually decreases.
After reaching the target position 1,500 times, the number of
steps used tends to be stable and continues to fluctuate around
500 steps, indicating that the CPM-LSTM-PPO algorithm
tends to converge.

Figure 9 shows the path planned by the training model
using the CPM-LSTM-PPO algorithm. The AUV selects the
safest position in the middle when crossing the static and
horizontal columns, indicating that the model has high path
smoothness and has learned the target position and dynamic
obstacle avoidance function.

In the same experimental environment, this paper divides
the reward and punishment functions into two cases for com-
parison: first, a complete reward and punishment mechanism,
namely R = R1+R2+R3; and second, a version without the
collision prediction model, that is, R = R1 + R3.

Figure 10 compares the average rewards per hundred
rounds based on different reward and punishment functions.
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FIGURE 9. The planning path diagram of the proposed algorithm training
model.

FIGURE 10. Comparison of training situations based on different reward
functions.

The blue line represents the first training case (the CPM-
LSTM-PPO algorithm), and the orange line represents the
second case. It can be intuitively seen from the figure that
the blue line achieves a better cumulative reward value in
fewer iterations; the average reward has reached 15,000 after
3,000 rounds of training. In the case without the collision
prediction model, the AUV has a longer learning time in
the early training, and the average reward reaches 10,000
when training 5,000 times. The experimental results show
that adding a collision prediction model can improve AUV
training efficiency and speed up the AUV’s exploration of the
environment.

B. COMPARATIVE EXPERIMENT
For more complex multi-dynamic obstacle scenarios, this
paper performsAUVdynamic obstacle avoidance tasks based
on the DQN algorithm, the TRPO algorithm, the LSTM-PPO
algorithm, and the proposed CPM-LSTM-PPO algorithm.
In particular, we compare the average reward obtained in the

same scenario and the number of steps taken to reach the
target position.

The multi-dynamic obstacle scene consists of seven cubes
that engage in round-trip linear motion with different head-
ings and speeds. Figure 11 shows the average rewards
per hundred rounds obtained by the four algorithms in a
multi-dynamic obstacle environment. The CPM-LSTM-PPO
algorithm has less fluctuation in the early training process
than the DQN and TRPO algorithms. All three algorithms
start to converge around 6,000 rounds, but the LSTM-PPO
algorithm gradually decreases after achieving a high reward
score in 2,000 rounds. The algorithm in this paper uses the
memory function of the LSTM neural network to accumu-
late higher rewards with the help of the collision prediction
model. In the later stages of training, the average reward
convergence per ten rounds fluctuates around 22,000. The
DQN, TRPO, and LSTM-PPO algorithms converge at 5,000,
8,000, and 10,000 rounds, respectively. These results indicate
that the CPM-LSTM-PPO algorithm model has high perfor-
mance, strong stability, and better generalization ability.

Figure 12 shows the algorithm’s obstacle avoidance pro-
cess in a multi-dynamic obstacle scene. It can be clearly
seen that the AUV maneuvers to avoid cubic obstacles,
always maintains a safe distance from the obstacles, and
completes the obstacle avoidance task in the process of
driving to the target position. The path is smooth, without
sharp turns, and without many redundant sections. The track
of the LSTM-PPO algorithm without collision prediction is
similar to this, but it does not keep enough distance from the
obstacles.

Figure 13 is the obstacle avoidance diagram of the com-
parison algorithm in the multi-dynamic obstacle scene. The
planned paths of theDQNandTRPO algorithms are the same.
They all make only the necessary evasive maneuvers, and the
path tends to be a smooth arc, which results in the fewest steps
used and the shortest path. However, the downside is that they
ignore the need to keep a safe distance from the obstacles,
giving the system a lower score. This is also one of the factors
explaining why the final average reward of the DQN, TRPO,
and LSTM-PPO algorithms is lower than that of the proposed
algorithm in this paper.

Figure 14 provides a comparison chart of the number of
steps used in a multi-dynamic obstacle scene. The number
of steps used by the CPM-LSTM-PPO algorithm decreases
rapidly after reaching the target position 200 times, while the
number of steps converges around 570 steps after 300 times.
Meanwhile, the number of steps used by the LSTM-PPO
algorithm gradually decreases with the increase in the num-
ber of successes, finally converging around 450 steps after
400 times. Both the DQN and TRPO algorithms converge to
around 260 steps after reaching the target position 600 times.
Table 2 shows the obstacle avoidance results of each algo-
rithm in a multi-dynamic obstacle scene after 5,000 rounds
of training. Although the CPM-LSTM-PPO algorithm uses
the most average steps, its 70.76% success rate is much
higher than the 56.66% of the DQN algorithm and 52.06%
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FIGURE 11. Comparison of average rewards in a multi-dynamic obstacle scene.

FIGURE 12. Diagram of the obstacle avoidance process of the algorithm
in this paper in a multi-dynamic obstacle scene.

of the TRPO algorithm. The CPM-LSTM-PPO algorithm
takes more evasive actions to maintain a safe distance from
obstacles, using the collision prediction model to improve
the AUV’s sensitivity to dynamic obstacles. It thus achieves
a higher obstacle avoidance success rate.

V. DISCUSSION
Although the obstacles are dynamic in the above two experi-
mental scenarios, their initial position, heading, and speed are
all fixed. To give the algorithm good generalizability, it is nec-
essary to randomize the position and motion information of
each obstacle in the training environment. This will inevitably
lead to longer algorithm training times and will require better
obstacle avoidance performance from the algorithm.

FIGURE 13. Obstacle avoidance diagram of the comparison algorithm in a
multi-dynamic obstacle scene.

To test the obstacle avoidance effect of the CPM-LSTM-
PPO algorithm in a random environment, we modify the
multi-dynamic obstacle scene used in this paper. The initial
positions (x, y, z) of the seven cube obstacles will appear
randomly among ([−8, 8], [0, 45], [2, 10]). The speed of
each step is random between [0.02, 0.15], and the heading
is uncertain. The obstacles engage in back-and-forth motion
after touching the boundary.

Transfer learning makes the training of the target task
more flexible, efficient, and realistic by applying the expe-
rience learned from the source task to the target task.
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FIGURE 14. Comparison of steps used in multi-dynamic obstacle
scenarios.

TABLE 2. Obstacle avoidance results in multi-dynamic obstacle scenarios.

FIGURE 15. Average reward.

The implementation methods of transfer learning include
instance-based, feature-based, model-based, and relation-
based methods. In this paper, model-based transfer learning
is used to initialize the weights of the CPM-LSTM-PPO
model network by using the model parameter pretrained in
the multi-dynamic obstacle scenario, replacing the original
random initialization operation, and completing global fine-
tuning. The rest of the training process is carried out as usual.
This can achieve a faster model fit and improve the results.

Figures 15 and 16 show the average reward per 10 rounds
and the average number of steps taken by the AUV to reach
the target position per 10 times, respectively. With the prior
knowledge of transfer learning, the model achieves high
scores at the beginning of training, and the average reward
fluctuates around 15,000. When the algorithm iterates to the
10,000th round, the average reward fluctuation decreases, but
the score decreases as well. Figure 16 shows that the average
number of steps gradually decreases with the number of

FIGURE 16. Average number of steps.

times the target position is reached. After reaching the target
position 5,800 times, the average number of steps continued
to fluctuate around 490 steps.

Figure 17 is a path-planning diagram for a random dynamic
obstacle avoidance scenario. It can be seen that the proposed
algorithm still has good passing performance and strong
generalization ability in this completely random, complex,
unknown environment. This suggests that the algorithm could
also be used in a real unknown underwater environment.

In the experimental data for 5,000 runs after training,
2,971 times are successful, and the success rate is 59.42%.
The average number of steps is 503. While the success rate
is lower than that of the multi-dynamic obstacle scene, the
number of steps used is also lower. In this paper, a near-end
policy optimization algorithm is used to control the virtual
AUV on the map to explore the obstacle avoidance path
(instead of directly controlling a real AUV). This approach
decouples the obstacle avoidance method from the AUV’s
propulsion system. The obstacle avoidance method in this
paper is applicable as long as the propulsion system can
be controlled to follow the path on the map. Regardless of
the number of thrusters and the method of propulsion, the
obstacle avoidance method greatly improves the algorithm’s
generalizability.

However, there are inevitably errors in the actual appli-
cation process. In particular, this paper assumes that AUVs
can avoid obstacles in an ideal environment, which means
that they can obtain obstacle information without delay
and are not affected by dynamic current and other factors
in the underwater environment. Therefore, future research
can refer to the following latest work. Zhengru Fang et al.
formulated a two-stage joint power control, computational
resource allocation, and trajectory scheduling for Internet of
Underwater Things (IoUT) networks; the approach consid-
ered the turbulent ocean environments in the context of a
multi-AUV-aided heterogeneous network for energy-efficient
information collection [20]. J Wang et al. proposed an active
queue management (AQM) policy for the IoUT node in
order to reduce the peak age of information (PAoI), benefi-
cially compressing the packets with a long waiting time [21].
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FIGURE 17. Random dynamic obstacle avoidance scenario path-planning
diagram.

G. Han et al. focused on passive attacks in underwater acous-
tic sensor networks and proposed an autonomous underwater
vehicle (AUV)-aided data-importance-based scheme for pro-
tecting location privacy (DIS-PLP) [22].

VI. CONCLUSION
This study builds an obstacle collision prediction model.
Based on the results of the simulation of the obstacle iner-
tial motion, the safety of AUV navigation is evaluated to
improve the model’s sensitivity to dynamic obstacles. The
introduction of the long short-term memory network trans-
forms the environmental state into a high-dimensional per-
ception situation, strengthening the network’s ability to learn

time-series obstacle avoidance data. Thus, we propose an
AUV dynamic obstacle avoidance method based on a CPM-
LSTM-PPO algorithm. Using the improved PPO algorithm in
an unknown 3D environment with multiple types of obstacles
and without any prior knowledge, AUV can find a better
path and complete the obstacle avoidance task after repeated
trial and error. This is more in line with actual situations and
has a high success rate of obstacle avoidance.
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