
Received 13 October 2022, accepted 11 November 2022, date of publication 18 November 2022,
date of current version 23 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3223446

E-CNMPC: Edge-Based Centralized Nonlinear
Model Predictive Control for Multiagent
Robotic Systems
ACHILLEAS SANTI SEISA , (Student Member, IEEE), BJÖRN LINDQVIST ,
SUMEET GAJANAN SATPUTE, (Member, IEEE),
AND GEORGE NIKOLAKOPOULOS , (Member, IEEE)
Robotics and AI Team, Department of Computer, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden

Corresponding author: Achilleas Santi Seisa (achsei@ltu.se)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie
under Agreement 953454.

ABSTRACT With the wide deployment of autonomous multi-agent robotic systems, control solutions based
on centralized algorithms have been developed. Even though these centralized algorithms can optimize the
performance of the multi-agent robotic systems, they require a lot of computational effort, and a centralized
unit to undertake the entire process. Yet, many robotic platforms like some ground robots and even more,
aerial robots, do not have the computing capacity to execute this kind of frameworks on their onboard
computers. While cloud computing has been used as a solution for offloading computationally demanding
robotic applications, from the robots to the cloud servers, the latency they introduce to the system has
made them unsuitable for time sensitive applications. To overcome these challenges, this article promotes
an Edge computing-based Centralized Nonlinear Model Predictive Control (E-CNMPC) framework to
control, and optimize, in swarm formation, the trajectory of multiple ground robotic agents, while taking
under consideration potential collisions. The data processing procedure for the time critical application of
controlling the robots in a centralized manner, is offloaded to the edge machine, thus the framework benefits
from the provided edge resources, features, and centralized optimal performance, while the latency remains
bounded in desired values. Besides, real experiments were conducted as a proof-of-concept of the proposed
framework to evaluate the system’s performance and effectiveness.

INDEX TERMS Edge-based centralized nonlinear model predictive control (E-CNMPC), edge computing,
Kubernetes, robotics.

I. INTRODUCTION
Many key technologies have emerged over the recent years to
encounter the challenges of massive data production and pro-
cessing. From cloud and edge computing for data storage and
processing to 4G/LTE and 5G networks for low latency, high
bandwidth, data transferring [1], [2], [3]. Researchers seek
to take advantage of these technologies and integrate them
to their robotic applications [4], [5], [6], [7], [8], [9], [10],
[11]. Edge computing - 5G enabled robotic applications will
provide the advantages of computational resources, features
for scalable, automated and self-healing applications, and low

The associate editor coordinating the review of this manuscript and

approving it for publication was Christos Anagnostopoulos .

latency. Through edge-based architectures [12], robots will
be able to communicate, exchange information and cooperate
with each other to execute complex tasks in optimal ways.
In that context, centralized schemes will play an important
role to ensure the optimization of these multi-agent systems,
while edge computing technologies will manage the compu-
tational workload over powerful clusters.

Cloud and edge computing have been used for numer-
ous different robotic applications, based on Robotic Oper-
ating System (ROS), like in [13], [14], and [15] or in [16],
where researchers developed a system for a ground robot to
autonomously navigate inside data center rooms and collect
useful measurements. The different processes and the Graph-
ical User Interface (GUI) for the measurement visualization

121590 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-9685-1026
https://orcid.org/0000-0003-3922-1735
https://orcid.org/0000-0003-0126-1897
https://orcid.org/0000-0003-1517-6757

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

are handled by the cloud. Mainly, cloud and edge have been
studied for offloading computationally intensive tasks, such
as simultaneous localization and mapping (SLAM). That is
the subject in [17], [18], [19], and [20], where researchers
created a framework to expand the ROS environment so it
would be easy for users to offload the SLAM algorithms to
the edge servers [17], and architectures for a multi-ground-
robot [18], [19] or single-robot [20] edge-based SLAMmech-
anism. While the previous works focused on the SLAM
problem, [21] and [22] asses the problem of deep learning
based visual odometry and the problem of path planning and
localization, respectively, for mobile robots through the edge.
In [23], a cloud-based framework is presented for Unmanned
Aerial Vehicles (UAVs), where the resourced-constrained
UAVs operates as a client and connects to the cloud servers to
access information about their mission, thus it can overcome
the limited computational processing capabilities. In [24],
a swarm ofUAVs has access to amobile edge server to offload
the computation tasks based on a deep reinforcement learning
model, while respecting latency requirements. On the other
hand, a powerful UAV has been deployed, as an assisted edge
computing node, in [25] and [26]. In these cases, computation
procedures can be offloaded from ground users to the UAV
edge node or, if the UAV cannot handle the process, it oper-
ates as a relay to offload the task to the ground base station.
The researchers also took under consideration a communica-
tion strategy to minimize the total energy consumption.

Even though some studies like [27], where a cloud-based
formation control was applied for multiple robots, none of
the above works are focused on the centralized or distributed
control properties that cloud and edge can offer. Model Pre-
dictive controller (MPC) is a complex and advanced method
to control a systemwhile satisfying a set of constraints. It uses
optimization methods, in fixed and bounded time instances,
which can have high complexity. MPC schemes, which are
the base of the proposed framework, have been assisted by
edge or cloud in several cases like [28], [29], [30], [31],
[32], [33], [34], and [35]. All these works though, investigate
the control system for only one agent as in [30] and [32],
where we introduced architectures to control an UAV in
a simulation and real-world environment, respectively. For
multi-agent systems, distributed or centralized frameworks
should be implemented. A detailed analysis for centralized
and distributed control schemes for UAV swarms based on
cloud and edge computing is presented in [36]. In this work,
only separately systems are studied for UAV swarms task
allocation missions. Either a cloud system is utilized for the
centralized control system or edge servers are used. The cen-
tralized schemes clearly outperform the distributed one when
the number of agents that form the swarm is small. However,
when the number of agents is large enough, the centralized
framework introduces major scheduling latencies, while for
the distributed framework, the scheduling latency maintains
the same. A hybrid framework was not investigated but the
authors suggest that it could probably exceed the performance
of the two studied schemes. Distributed approaches were

introduced in [37] and [38] to achieve optimized behavior but
at the same time reduced computational complexity for the
cooperation of multiple UAVs. In [39], a decentralized con-
trol scheme based on leader-follower formation for an UAV
swarm system was presented. In [40] and [41], distributed
Nonlinear Model Predictive Control (NMPC) for collision
avoidance between multiple aerial agents was presented,
while in [42] distributed and centralized MPC frameworks
were evaluated for cooperative motion of multiple UAVs.
In [43], authors proposed and compared centralized and
decentralized MPC formulations for controlling the UAVs’
maneuvers when carrying a payload. In [44], a strategy with
centralized and distributed MPC algorithms was addressing
the problem of controlling platoons with both autonomous
and human-driven vehicles, and in [45] distributed and cen-
tralized MPC formulations are also studied for tracking mul-
tiple targets using a swarm of UAVs. Centralized schemes
were proposed in [46], [47], and [48], for controlling platoons
based on leader’s behavior, for placing UAVs to form a mesh
network, and for preventing potential collisions betweenmul-
tiple UAVs navigating in a narrow area, respectively.

Another important part of this work, is the integration of
cloud services and technologies to our framework, to make
our application scalable and robust. Containerized applica-
tions should be implemented in a way to minimize edge
latency and enable resource provision as in [49]. Afterwards,
a proper orchestrator should be used. Thus, it has been
proposed the utilization of microk8s which is a lightweight
container platform comparable to kubernetes [50]. In [51],
authors suggested an infrastructure to connect the cloud to the
edge, and expand the cloud services and kubernetes manage-
ment to the edge through a proposed network protocol, while
in [52], a remote controller was implemented in a form of a
docker containerized application and was running through a
mobile edge server. In [53], an automated process based on
stochastic processes and implemented through kubernetes for
optimizing the distribution of containers to the cloud, edge
and fog, was introduced. A virtual robotics lab, based on a
kubernetes cluster implementation, was presented in [54], for
students to access it, get familiar with it and develop their
robotic applications. Finally, a framework based on docker,
kubernetes andROS formonitoring containerized robot tasks,
was proposed in [55] and a mechanism for deploying robotic
containerized application to the edge and the cloud was pre-
sented in [56].

The motivation behind this work was to control mul-
tiple agents in an optimized manner, while keeping their
swarm behavior. To the best of our knowledge, the existing
frameworks rely on distributed methods because the needed
computational effort for centralized methods is drastically
increasing with respect to the increase in the number of
agents. Thus, robots’ onboard computers cannot execute
these centralized controllers since the controller fails under
resource constraints, like the limited Central Processing
Unit (CPU) and the Random-Access Memory (RAM) capac-
ity. On the other hand, centralized control schemes seems to

VOLUME 10, 2022 121591

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

FIGURE 1. Concept of edge computing-based centralized control scheme for multiple ground robots. The
robots send their states, generated by their sensors, to the edge where the E-CNMPC is executed, and they
are receiving commands from the edge to navigate into the environment, avoid collisions, and reach
desired points (colour dots) and/or behaviors (swarm).

have enhanced performance as quoted in [36], but need to be
executed in powerful external centralized units. The improved
centralized performance can be in fact, of great importance
for our application because controlling multiple agents is a
time critical task and we must ensure that potential collisions
will be prevented. In the proposed work, the parameters of the
optimization problem, which significantly increase the com-
plexity, are depended on the number of agents, the prediction
horizon, the initial tolerance, the hard constrains for collision
avoidance and swarm behavior. To overcome the drawback of
computational limitations, our proposed framework is based
on edge computing solutions by utilizing an edge machine.
Suggested solutions based on cloud computing cannot be
applied for controlling robots in real-time, since the system
will fail due to the introduced latency. The novel proposed
E-CNMPC framework is offloaded to an edge machine that
hosts a kubernetes cluster. The kubernetes cluster and the
ground robots exchange messages for the operation of navi-
gating the robots in the environment in a swarm behavior and
at the same time prevent any potential collisions, while this
concept is depicted in Fig. 1. The edge machine is located in
physical proximity to ground robots and therefore, remark-
ably shortens data communication distance, lowers offload-
ing transmission delay, and allows the advanced quality of
kubernetes services.

The proof-of-concept experimental analysis corroborates
the feasibility and efficiency of the proposed framework,
while demonstrating the advantages of the edge-based sys-
tem. Thus, several key contributions can be highlighted.

The initial contribution stems from the fact that the pro-
posed E-CNMPC framework is based on a novel robot-edge
architecture to enable relatively real-time trajectory control
for a multi-agent system. In the proposed approach, each
agent can offload their states to the edge so they do not need
to run the computationally demanding MPC on their onboard
computer. Thus, we can secure the availability of sufficient
resources for the execution of the controller, even when we
want to change the values of some MPC parameters, such
as the MPC prediction horizon, that improve the behavior
of the system but on the other hand increase its complexity.
Moreover, edge kubernetes cluster can give the capability of
assigning resources for the application, thus we can request
more resources on demand, which is of great importance for a

centralized scheme, where the number of agents and several
control parameters, might vary, thus the required resources
will vary as well.

The second contribution concerns the novel architecture of
the proposed framework that it is utilizing technologies such
as containers and orchestrators that enable novel capabilities
from a control systems approach, as scalability, robustness,
management and overall resiliency. The proposed controller
and the related architecture can be fast and easily deployed
and redeployed, in case of failure, in any external edge
machine. In addition, the proposed control architecture is
introducing a novel concept in edge based closed loop sys-
tems as it is running in a form of containerized application,
thus it does not have software dependencies from the host
machine for instance the robot’s onboard computer or the
users operating system. Users will just have to connect to the
edge machine to control the robotic fleet, from any device,
without having to carry computational heavy devices, and
will not have to worry whether their computer or device can
handle the execution of the application.

By investigating the current state-of-art, we realized that
the existing multi-agent systems are based on distributed
control schemes that fall behind in terms of performance. Our
centralized optimization framework considers all the ground
agents and solves the optimization problem for the entire sys-
tem online and in an edge architecture orientation that forms
the third contribution. As such the E-CNMPC framework is
able to generate control actions for the trajectories of every
agent, in an optimal manner and to optimizes the behavior of
the entire system as in [48]. The designed framework differs
from [48], in terms of architecture since our framework is
based on a total novel robot-edge architecture and real-life
experiments.

Finally, the last contribution is related to the comparison of
the E-CNMPC framework to [48]. In this case we introduce a
system that provides a swarm-kind behavior for the coopera-
tion of the agents. Even though most swarm systems that are
based on classical approaches, such as the leader-follower,
the proposed E-CNMPC guarantees the swarm behavior
through hard constrains. Minimum and maximum distances
have been considered, thus the agents would always try to
keep the swarm behavior while navigating in an area and
avoiding collision between each other and the surrounding

121592 VOLUME 10, 2022

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

environment. In Fig. 2 this concept is demonstrated, where
rswarm represents the radius for maximum allowed dis-
tance between agents, and rsafe the minimum allowed dis-
tance between agents. The E-CNMPC takes care that these
constrains would not be violated, or if they do violated,
the optimizer will generate trajectories for all the ground
robots, in order to move accordingly and respect again the
constrains.

FIGURE 2. The E-CNMPC generates control actions for the ground robots
in an effort to respect the constrains. The constrains are depending on
the maximum distance between the agents in order to keep the swarm
behavior and the minimum distance between the agents with each other
and the surrounding environment in order to avoid any type of collision.

The rest of the article is divided into discrete sections
and subsections to present and describe the different com-
ponents of the proposed framework, as well the results of
the experimental setup. The developed framework is pre-
sented in Section II. This Section is divided into several parts
in an effort to address in detail the main implementations,
the developments and the multiple proposed components of
this work. In Section III, we demonstrate the experimental
setup for the multi-agent system and we quote representative
results for each study case. Lastly, we end this work with
Section IV, where we state our conclusions and discuss future
directions.

II. CENTRALIZED CONTROL FRAMEWORK
A. MULTIPLE AGENTS
The concept of this work is to control multiple agents through
the proposed edge-based centralized framework as depicted
in Fig. 3. In an effort to achieve this task, all the agents have
to send their states to the edge machine, where the centralized
controller is offloaded and running. Despite the spatially dis-
tributed nature of the multi-agent system, the states are sent to
the edge as a unified flow of data collection to satisfy the input
requirements of the system. Then, the edge-based centralized
control framework calculates and generates control action for
each agent. In that way, the control framework can optimize
the performance of the entire system by generating trajecto-
ries for each agent, while taking into account the trajectories
of the other agents and potential collisions. In addition, by set-
ting an increased prediction horizon (60 steps or greater)
for the E-CNMPC, the framework can make more accurate
predictions for the future trajectories of the agents, thus, it can
produce smoother and safer trajectories for every agent. This
optimal behavior though, comes with computational cost,

which our framework was able to overcome since it integrates
edge computing resources and services.

The right part of Fig.3 depicts the closed looped system.
The states that need to be sent to the edge for the execution of
the controller are the position and orientation of each robot,
x1(k), x2(k), . . . , xn(k). Since these states do not arrive at the
edge at the exact time that they are generated, the states
that arrive as the inputs to the controller are delayed, hence
are represented as x1(k − d1), x2(k − d1), . . . , xn(k − d1).
The parameter d1 expresses the robot to edge travel time
delay and depends on the network characteristics, as well
to the ROS publishing/subscribing delays and kubernetes
message forwarding delays. Once the controller receives the
states of the agents, it generates control action denoted as
u1(k− d2), u2(k− d2), . . . , un(k− d2). These control actions
are the control commands forward/backward velocities and
angular rates for each robot. Due to the execution time of
the controller, which can be comparable to the travel time
delays, we introduced another parameter specified as d2. This
parameter is the sum of the d1 plus the execution time delay
of the controller. Yet again, the control commands need to be
sent through the network from the edge cluster to the robots.
To express this delay, the input commands arriving to the
robots are denoted as u1(k − d3), u2(k − d3), . . . , un(k − d3),
where d3 describes the travel time delay from the edge to the
robot plus the delays d2. The last parameters of the closed
loop system are the outputs y1(k), y2(k), . . . yn(k).

B. ROBOTIC OPERATING SYSTEM
ROS is the fundamental software that researchers use to
develop their robotic applications. Due to its friendly inter-
face and the convenience it provides when it comes to
coding experience, it is universally accepted. On the other
contrary, on the communication level, it introduces some
challenges when integrated with technologies, such as con-
tainers and kubernetes. ROS handles the source code and
manages the communication into topics through publishers
and subscribers. All the robotic agents are running ROS nodes
that need to publish their states to their own odometry topic
and subscribe to the command topic to receive their control
actions. On the edge side, a CNMPC ROS node is running to
execute the controller and it needs to subscribe to every odom-
etry topic to receive the states of every robot and publish the
control action for each agent to the corresponding command
topic. When different ROS nodes need to communicate to
exchange data through a topic, these nodes first need to regis-
ter to the same ROS master. Then, the master opens a random
socket and assigns the nodes to communicate through that
socket by publishing and subscribing to the topic. The way
ROSmaster opens ports for communication is random and the
ports are different each time the nodes need to communicate.
However, kubernetes by default, only allows some ports to
be exposed for communication. In this work, because some
ROS nodes are running on the edge side of the architecture,
where they are deployed inside the kubernetes cluster, and

VOLUME 10, 2022 121593

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

FIGURE 3. Block diagram of CNMPC framework including the kubernetes architecture for controlling multiple ground robots.

others are running on the robots, the kubernetes cluster should
allow all the ports to be exposed. To overcome this challenge,
when deploying the kubernetes pods, we choose the host
Network option to expose all the ports of the edge machine
to all the pods and vice versa. By doing that, we allow all the
data that arrive to the edge machine to be forward inside the
pods.

C. DOCKER IMAGES
For the CNMPC framework, we had to create images for
each different task. We used docker to develop our cus-
tomized images, which were two in total. For both images,
we used ROS entrypoint and ROS noetic environment, run-
ning on Ubuntu 20.04. The main image is the one running
the CNMPC execution. We deployed the image with all the
necessary libraries and dependencies as well as the needed
packages for the execution of the CNMPC. When we run the
kubernetes pod created by that docker image, the UAVs regis-
ter to the CNMPC, and the operator get the options discussed
in Section II-A. The other image hosts the ROS master and is
responsible for executing the roscore. By developing and
using docker containers, our application does not depend on
software and operating system dependencies of the host unit,
thus the application can run in any environment.

D. KUBERNETES
Kubernetes is responsible for managing the procedure
regarding the containerized applications. To achieve that,
kubernetes consists of many different components, each
one of them handling a different task. These compo-
nents are running either on the master node, which is
the control panel or ‘‘brain’’ of kubernetes, or the worker
nodes which host the applications as depicted in Fig. 3.
On the master node the main components are the controller
manager (kube-controller), which runs all build-in
controllers, like node or replication controller, the scheduler
(kube-scheduler) that distributes unscheduled work-
loads across the available worker nodes, the API server

(kube-apiserver), which is tracking the state of all clus-
ter components and it is managing interactions between them
and finally, the etcdwhich is the key value store for all clus-
ter configuration data. Optional components on the master
node, that can be useful for the edge cluster operation are:
the cluster DNS, which provides in-cluster DNS for pods
and services and the cloud controller manager,
which runs cloud controller processes that take care of
tasks, such as node auto scaling, creating DNS entries, etc.
The kube-controller, kube-scheduler, cluster
DNS, and cloud controller manager watch for
changes related to their tasks and register them to the
kube-apiserver, which reads andwrites data from/to the
etcd. The worker node on the other hand consists mainly of
the application’s components. These are the kube-proxy,
which accepts and controls network connections to the
node’s pods, the kube-let, which manages containers
based on incoming pod specifications and uses container
runtime that implements the CRI, and finally, the pods
which host the application’s several tasks.

E. CENTRALIZED NONLINEAR MODEL PREDICTIVE
CONTROL SCHEME
The base CNMPC module that is combined with the edge
framework is based on the preliminary work in [48]. In this
work, we apply the framework on a multi-agent set-up of
ground robots as opposed to aerial vehicles and we trans-
form it into a novel edge based architecture. The ground
robots are non-holonomic and as such pose an interesting
receding-horizon problem where the predictive nature of the
CNMPC scheme can shine in orchestrating trajectories for
all agents in the system while considering the kinematic con-
straints of their movements. The ground robots are described
by a simple nonlinear kinematic model as:

ṗx(t) = cosψ(t)uv(t)

ṗy(t) = sinψ(t)uv(t)

ψ̇(t) = uω(t) (1a)

121594 VOLUME 10, 2022

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

where [px , py] describes the position states and ψ is the
heading state. It is assumed that the ground robot takes input
commands in the form of a forward/backward velocity uv and
an angular rate command as uw. We describe each agents’
states as x(i) = [p(i)x , p

(i)
y], ψ (i) and inputs u(i) = [u(i)v , u

(i)
w],

where i = 1 . . .Na, and Na denotes the total number of
agents in the system. In the centralized scheme, the states are
collected into an augmented model as x = [x1, x2 . . . xNa]
and similarly we define the total control actions as u =
[u1, u2 . . . uNa]. The entire system dynamics can then be dis-
cretized with a sampling time Ts using the forward Euler to
obtain the predictive form xk+1 = ζ (xk , uk). The CNMPC
problem is solved with a receding horizon, where we denote
the prediction horizon as N and denote predicted time steps
with k + j|k denoting a discrete prediction j steps into the
future produced at time k . From this, we can describe the full
vectors of predicted states and control inputs along the hori-
zon, and for all agents, as xk = (x(i)k+j|k)j,i and uk = (u(i)k+j|k)j,i
respectively.

We form a cost function for the complete centralized sys-
tem that penalized deviations from a state reference, while
minimizing the inputs’ actuation and change in actuation
from one time step to the next as:

J (xk ,uk ; uk−1|k)

=

N∑
j=0

Na∑
i=1

‖p(i)ref − p
(i)
k+j|k‖

2
Qp

+Qψ (− cos(ψ (i)
ref − ψ

(i)
ref)+ 1)+ ‖uref − u

(i)
k+j|k‖

2
Qu

+‖u(i)k+j|k − u
(i)
k+j−1|k‖

2
Q1u , (2)

where the cost matrices for various states, inputs and input
rates respectively are denoted as Qp ∈ R2×2, Qψ ∈ R,
Qu,Q1u ∈ R2×2. While the other terms follow the classical
quadratic penalties, the penalty on the heading state stands
out as strange. The motivation is quite simple: the centralized
scheme requires that all agents share the same coordinate
frame for their states, and as such we need to properly capture
the 2π -modularity of the heading state ψ as to avoid the
discontinuity at ψ ∼ ±π . Although more computation-
ally complex, the utilized solver [57] in combination with
the assistance from the Edge offloading, has no problems
with it.

To enforce collision avoidance and swarm behavior,
we impose set-exclusion constraints [58] on the available
position space of each agent in the system. First, the most
critical component in any multi-agent scheme is to avoid
agent-agent collisions. As such, we can form a constraint for
each pair of agents l, i as:

C l,i
safe(xk) := [r2safe − (p(i)x,k+j|k − p

(l)
x,k+j|k)

2

−(p(i)y,k+j|k − p
(l)
y,k+j|k)

2]+ = 0, (3)

where we use the max(a, b) = h[a, b]+ operator to form
an expression such that C l,i

= 0 implies that the constraint
is satisfied, e.g., we can write it as an equality constraint.

The result is that each agent is commanded to be at least
a distance of rsafe from each other. Let us also form an
additional Ccircle(xk , pobs, robs) as a general static circle-type
obstacle that all agents should avoid using the same kind of
‘‘circle’’-expression.

We also pose a similar constraint to set a maximum dis-
tance among agents in the system as:

C l,i
swarm(xk) := [−r2swarm + (p(i)x,k+j|k − p

(l)
x,k+j|k)

2

+(p(i)y,k+j|k − p
(l)
y,k+j|k)

2]+ = 0, (4)

that sets a maximum allowed distance between agents in
the system defined by rswarm. We should note that these
constraints are also imposed along the prediction horizon at
all predicted time steps for all agents. Classically, in swarm
robotics these terms are handled as competing potentials or
costs but, in this research, we will impose these ‘‘attrac-
tive’’ and ‘‘repulsive’’ terms as hard bounds, while letting
the agents move freely as long as those two conditions are
met (we will for example, in Section III, set Qp,Qψ =
0 for all agents except one forming a leader-follower set-up).
In this way, the grouping and agent-agent safety terms of
the swarm dynamics are implicitly formed. This results in
a very high number of constraints, and for a large horizon
it becomes an incredibly complex CNMPC problem to be
solved. We fully utilize the edge computation offloading in
order to be able to solve an optimization problem with such a
high number of constraints. The resulting CNMPC problem is
(let us for the sake of notation combine all constraints into the
simple C l,i(xk)):

Minimize
uk ,xk

J (xk ,uk ; uk−1|k) (5a)

s.t.: xk+j+1|k = ζ (xk+j|k , uk+j|k),

j = 0, . . . ,N − 1, (5b)

umin ≤ u
(i)
k+j|k ≤ umax, j = 0, . . . ,N , (5c)

C l,i(xk) = 0, j = 0, . . . ,N ,

i, l = 1, . . . ,Na, (5d)

x(i)k|k = x(i)k , i = 1, . . . ,Na, (5e)

This problem fits into the framework of the open-source
solver OpEn [57], that solves parametric optimization prob-
lems of the general form (see the preliminaryworks for details
[48], [57]:

Minimizez∈Z f (z) (6a)

subject to: F(z) = 0, (6b)

For the consideration of equality constraints, a quadratic
Penalty Method [58] is applied. The penalty method is based
on solving gauge problems (referred to as inner problems),
which have the form: Minimizez∈Z f (z)+ c‖F(z)‖2, where c
is a positive penalty parameter. The inner problems are solved
using PANOC and the penalty parameter is increased in an
outer iteration loop until ‖F(z)‖∞ drops below a specified
infeasibility tolerance. This provides the perfect use-case

VOLUME 10, 2022 121595

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

for the edge offloading system as this method of solving
the CNMPC problem in many ways benefits greatly from
increased computational effort. Optimally, wewant to impose
a higher number of penalty method iterations and a lower
(more strict) tolerance to solve for collision-free trajectories
more perfectly. Additionally, increasing the prediction hori-
zonN , especially in the case of the swarm concept, will result
in more optimal orchestration of trajectories at the trade-off
of computational effort. Also, as we increase the number
of agents, the constraints in (3) and (4) become consider-
ably more complex. The result is an optimization problem
whose performance scales with the available computational
resources.

III. EXPERIMENTAL EVALUATION
In this Section we present the experimental setup, we describe
the different study cases, and we evaluate the results.
The proposed framework consists of many different com-
ponents; thus, the experimental setup has many different
components as well. The controllable ground robots for the
following experiments are the TurtleBots (TBs) [59], and the
odometry of these robots is generated by Vicon Motion Cap-
ture (MoCap) System [60]. ThisMoCap system provides high

accuracy for the position, velocity, and orientation of each
robot, and is considered as the ground truth of the system.
Moreover, the edge kubernetes cluster is hosted in a local
Linux-based unit. The specifications of the unit are shown in
Table 1. For the kubernetes cluster, microk8s [50], which is
a lightweight kubernetes environment with one master node
and one worker node, was utilized.

The accessibility of the system is justified by accessing
the edge kubernetes cluster through a Secure Socket Shell
(SSH). The user can use any device as operating working
station to access the edge and the TBs when connected to
the same network. In our case, we used a laptop connected
to the edge. For the transmission of the data from the MoCap
system to the edge, two different connection topologies were
carried out as depicted in Fig. 4. In the first case, both the
laptop and the edge unit are connected to the same network
throughRouter 1 viaWi-Fi. This is the TBs’ network towhich
the TBs are connected and through which they are receiv-
ing the control commands. Additionally, a second network
is accessed through Router 2 for the MoCap system. The
working station receives the odometry of the robots from the
MoCap system through Router 2 and sends it to the edge
unit through Router 1. Finally, edge can transmit the control

FIGURE 4. Experimental setup of the proposed framework. In setup A, the edge unit is connected in the TurtleBots’ network only while in setup B, the
edge unit is connected in both the MoCap network and the TurtleBots’ network.

FIGURE 5. Minimum distance between the TBs (top figures) and computation time (bottom figures) of the solver for prediction horizon of 20 steps (left
figures), 40 steps (middle figures) and 60 steps (right figures).

121596 VOLUME 10, 2022

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

commands to the TBs through Router 1. In the second case,
the edge unit is connected to both the TBs’ network viaWi-Fi
and the MoCap’s network via ethernet cable. Since the edge
unit and the MoCap system are communicating directly with
each other via ethernet cable, the travel time from the agents
to the edge in significantly smaller, in comparison to the first
case where the data had to be forwarded from the MoCap to
the operating working station, to the edge, wireless. In both
cases, TBs do not communicate directly with each other but
only through the edge machine via Wi-Fi.

TABLE 1. Edge machine specifications.

FIGURE 6. Minimum distance between the TBs (top figures), and
computation time (bottom figures) of the solver when the initial
tolerance is set at 0.001, and the prediction horizon is set at 60 steps.

For the first set of experiments, we utilized four TBs that
should avoid potential collision while navigating into space.

In Fig. 5 the minimum distance between the TBs (top
figures) and the computation time (bottom figures), during
the duration of the mission, for three different prediction
horizons is depicted. When the prediction horizon was set
to 20 steps, the TBs could not follow the desired trajectory
and they would even crash with each other. With 40 steps the
behavior of the system was better, but the best performance
was when the horizon was set at 60 steps. The utilization
of the edge was beneficial because it gave us the chance to
assign high values for the horizon, without having compu-
tational problems. The black line shows the minimum dis-
tance between the agents, and the red line shows the allowed
minimum distance between the agents (constrain for collision
avoidance).

FIGURE 7. Distances between the TBs (top figure) and computation time
(bottom figure) of the solver for prediction horizon of 60 while utilizing
swarm behavior.

FIGURE 8. Distances between the TBs (top figure) and computation time
(bottom figure) of the solver for prediction horizon of 60 while utilizing
swarm behavior and avoiding obstacle.

Besides experimenting with different horizons, we also
conducted experiments with different initial tolerance. The
initial tolerance increases the complexity of the optimization
problem, when reduced, since the solution of the optimization
problem should be accurate enough to be within the certain
initial tolerance value. Even though in the previous runs the
initial tolerance was set at 0.00001, which is a relatively small
value, the solver could find solutions in bounded time and
do not break the execution of the application, as depicted in
the previous graphs, thanks to the edge resources. Because in
some light onboard computers, we cannot solve the problem
when we use this small value, we increased the value of
the initial tolerance up to 0.001. The results are depicted
in Fig. 6.

With reduced initial tolerance, the solver can find solutions
faster as depicted in Fig. 6 but it can fail to local minima. The

VOLUME 10, 2022 121597

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

FIGURE 9. Trajectories of the TBs for a. exchanging positions and ending up in their initial position (TB1 (blue trajectory) goes from A to B then C and
back to A, TB2 (red trajectory) goes from B to A then D and back to B, TB3 (yellow trajectory) goes from D to C then B and back to D, TB4 (purple
trajectory) goes from C to D then A and back to C) while the prediction horizon is set at 40 steps, b. following the swarm behavior, c. following the
swarm behavior while trying to avoid a static obstacle. In figures b. and c. the o symbol represent the starting position of the TBs and the x symbol
their ending position. The big circle dashed line represents the maximum allowed distance between the TBs in order to keep the swarm behavior
while the small circle dashed lines represent the minimum distance between two TBs in order to avoid collisions.

behavior of the TBs is not the desired one, since they do not
follow the reference points but instead, they might avoid the
collision but then they go to random positions.

Up next, we performed the same experiments with 4 TBs
for the swarm behavior. The results with and without obsta-
cles are depicted in Fig 7 and Fig 8, respectively. The blue
line shows the maximum distance between the leader and any
other agent, and the red lines show the allowed maximum
distance between the leader and any other agent and the
allowed minimum distance between the agents, respectively.
The prediction horizon for these experiments was set at
60 steps and the initial tolerance 0.00001.

In Fig. 9, the trajectories of the TBs are depicted for the
previous experiments. The figure a. shows the exchanging
positions and ending up in their initial position while the
prediction horizon is set at 40 steps. The TB1 (blue trajectory)
starts from point A goes to point B then point C and then
back to point A, TB2 (red trajectory) goes from B to A then
D and back to B, TB3 (yellow trajectory) goes from D to C
then B and back to D, and finally TB4 (purple trajectory)
goes from C to D then A and back to C. The figure b.
demonstrates the swarm behavior when we indicate the end
point for the TB following the blue trajectory. The blue TB
have to reach the end point while the E-CNMPC has to
figure out the trajectories of all the TBs in order to respect
the constrains regarding the maximum distance between the
TBs (the big circle dashed line to keep the swarm behavior),
and the minimum distance between the TBs (the small circle
dashed lines to avoid collisions). The maximum distance was
set at 1m and theminimum 0.4m. Finally, in figure c. the TBs
should again keep the swarm behavior, but at the same time
they should be trying to avoid a static obstacle and respect the
previous constrains.

In addition, the Round-Trip Time (RTT) was calculated
for the presented system, and every time delay that the RTT

FIGURE 10. Uplink: the travel time for the data to travel from the ground
robots to the edge kubernetes cluster. The A setup is used for these
measurements.

FIGURE 11. Uplink: the travel time for the data to travel from the ground
robots to the edge kubernetes cluster. The B setup is used for these
measurements.

is depended on is depicted in Fig. 10, 11, 12 and 13. The
uplink time (tup) and downlink time (tdown) represent the
travel time for the data to travel from the agents to the edge,
and vice versa respectively. These time delays were described
in Section II-A through the parameters d1 and d3, are shown
in Fig. 10, 11 and in Fig. 13. The mean uplink and downlink
were measured 124.7 ms and 214.3 ms while the maximum
measurements were 917.9 ms and 793 ms respectively when

121598 VOLUME 10, 2022

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

FIGURE 12. The computational time for the execution of the E-CNMPC.

FIGURE 13. Downlink: the travel time for the data to travel from the edge
kubernetes cluster to the ground robots.

setup A was used. For the uplink, when setup B was used, the
mean and maximum measurements were 10 ms and 98.2 ms,
while the downlink time was the same since the transmission
of the data for the downlink trip was the same in both setups.
Moreover, the execution time (texec) of the controller which
was described through d2 in Section II-A as well, is depicted
in Fig. 12. The measured mean execution time was 100.6 ms
and the maximum 168.2 ms. Since we measured the time
dependencies of RTT, we can calculate the RTT from the
following expression 7. The deviation of RTT is depicted in
Fig. 14.

RTT = tup + texec + tdown (7)

FIGURE 14. The deviation of the round trip time for both setup A and
setup B.

In Fig. 14 the RTT is calculated for both setups. For
setup A, the mean RTT is 448.6 ms and the maximum is
1250.2 ms while for setup B the mean and maximum mea-
surements were 325.3 ms and 897.4 ms respectively. The dif-
ference between the two RTTs is expected since for the first
setup the routing for uplink the data is longer in comparison
to the second setup.

FIGURE 15. Computation time (top figure) of the solver and CPU usage
for the execution of the E-CNMPC (bottom figure).

In Fig. 15, we evaluate the usage of CPU for the execution
of the E-CNMPC. From the figure, it is obvious that the usage
of the CPU depends on the computation time of the solver.
The solver requires more time when we increase the com-
plexity of the optimization problem (more agents, higher
prediction horizon, reduced initial tolerance) and when the
constrains are about to or are even violated, and they are
trying to pull the system to the desired behavior. In these
cases, the kubernetes pod is using near maximum resources
and the CPU is even over 90%.

IV. CONCLUSION AND FUTURE WORK
In this work we presented an edge-based centralized non-
linear model predictive control framework to control multi-
ple agents through an edge unit. The utilized technologies
provide several advantages, and the centralized mechanism
enables the swarm behavior of the system, while optimizing
the performance of the entire system. To evaluate the pro-
posed framework, a sequence of experiments was conducted
and tested. Even though the system suffered from latency,
when we selected high values for the prediction horizon and
the initial tolerance, the ground robots followed the desired
behavior. We were able to choose these values and control
4 ground robots simultaneously thanks to the edge resources.

Even though we were able to control multiple agents in
a centralized manner thanks to the edge resources, there are
still some limitations that should be taken into consideration.
Our framework is characterized by latency. In some cases,
the introduced latency might be higher and not bounded
in the desired values, thus, the E-CNMPC will not be the
optimal solution for controlling the multi-agent system. The
maximum latency the robots can tolerate to guarantee safety
is depended on several parameters such as the speed and the
mission of the robots. In addition, the CNMPC has some

VOLUME 10, 2022 121599

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

computing limitation in terms of controllable agents and
prediction horizon, regardless of the available resources.

An interesting future direction would be to make the appli-
cation evenmore scalable and controlmore agents. This could
be by utilizing bigger edge units or by dividing the E-CNMPC
into more sub-controllers that would be responsible for con-
trolling up to a specific number of agents. Additionally, safety
actions can be implemented to secure the smooth transition
between different edge controllers or local ones in case of
network failure, high latency or when a controller or applica-
tion is crashing. Thanks to the kubernetes managing proper-
ties and features, these additions can be implemented and can
provide a secure environment for offloading time sensitive
robotic applications for scalable systems.

REFERENCES
[1] N. A. Sulieman, L. Ricciardi Celsi, W. Li, A. Zomaya, and M. Villari,

‘‘Edge-oriented computing: A survey on research and use cases,’’Energies,
vol. 15, no. 2, p. 452, Jan. 2022.

[2] G. Barb and M. Otesteanu, ‘‘4G/5G: A comparative study and overview
on what to expect from 5G,’’ in Proc. 43rd Int. Conf. Telecommun. Signal
Process. (TSP), Jul. 2020, pp. 37–40.

[3] H. Zhu, M. Sharma, K. Pfeiffer, M. Mezzavilla, J. Shen, S. Rangan, and
L. Righetti, ‘‘Enabling remote whole-body control with 5G edge comput-
ing,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Jan. 2021,
pp. 3553–3560.

[4] B. Dhiyanesh, ‘‘Dynamic resource allocation for machine to cloud com-
munications robotics cloud,’’ in Proc. Int. Conf. Emerg. Trends Electr. Eng.
Energy Manage. (ICETEEEM), Dec. 2012, pp. 451–454.

[5] M. Groshev, G. Baldoni, L. Cominardi, A. De La Oliva, and
R. Gazda, ‘‘Edge robotics: Are we ready? An experimental evaluation
of current vision and future directions,’’ Digit. Commun. Netw.,
May 2022.

[6] T. Haidegger, P. Galambos, and I. J. Rudas, ‘‘Robotics 4.0—Are we there
yet?’’ in Proc. IEEE 23rd Int. Conf. Intell. Eng. Syst. (INES), Apr. 2019,
pp. 117–124.

[7] J.Wan, S. Tang, H. Yan, D. Li, S.Wang, andA. Vasilakos, ‘‘Cloud robotics:
Current status and open issues,’’ IEEE Access, vol. 4, pp. 2797–2807,
2016.

[8] G. Hu, W. P. Tay, and Y. Wen, ‘‘Cloud robotics: Architecture, challenges
and applications,’’ IEEE Netw., vol. 26, no. 3, pp. 21–28, May 2012.

[9] O. Saha and P. Dasgupta, ‘‘A comprehensive survey of recent trends in
cloud robotics architectures and applications,’’ Robotics, vol. 7, no. 3,
p. 47, 2018.

[10] J. P. Queralta, L. Qingqing, Z. Zou, and T. Westerlund, ‘‘Enhancing
autonomy with blockchain and multi-access edge computing in distributed
robotic systems,’’ in Proc. 5th Int. Conf. Fog Mobile Edge Comput.
(FMEC), Apr. 2020, pp. 180–187.

[11] G. Toffetti and T. M. Bohnert, ‘‘Cloud robotics with ROS,’’ in
Robot Operating System (ROS) (Studies in Computational Intelli-
gence), vol. 831, A. Koubaa, Ed. Cham, Switzerland: Springer, 2020.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-
20190-6_5, doi: 10.1007/978-3-030-20190-6_5.

[12] A. S. Seisa, G. Damigos, S. G. Satpute, A. Koval, and G. Nikolakopoulos,
‘‘Edge computing architectures for enabling the realisation of the next
generation robotic systems,’’ in Proc. 30th Medit. Conf. Control Autom.
(MED), Jun. 2022, pp. 487–493.

[13] J. Luo, L. Zhang, and H. Zhang, ‘‘Design of a cloud robotics middleware
based on web service technology,’’ in Proc. 18th Int. Conf. Adv. Robot.
(ICAR), Jul. 2017, pp. 487–492.

[14] S. A. Miratabzadeh, N. Gallardo, N. Gamez, K. Haradi, A. R. Puthussery,
P. Rad, and M. Jamshidi, ‘‘Cloud robotics: A software architecture: For
heterogeneous large-scale autonomous robots,’’ in Proc. World Autom.
Congr. (WAC), Jul. 2016, pp. 1–6.

[15] R. Rahimi, C. Shao, M. Veeraraghavan, A. Fumagalli, J. Nicho, J. Meyer,
S. Edwards, C. Flannigan, and P. Evans, ‘‘An industrial robotics application
with cloud computing and high-speed networking,’’ in Proc. 1st IEEE Int.
Conf. Robotic Comput. (IRC), Apr. 2017, pp. 44–51.

[16] S. Rosa, L. O. Russo, and B. Bona, ‘‘Towards a ROS-based autonomous
cloud robotics platform for data center monitoring,’’ in Proc. IEEE Emerg.
Technol. Factory Autom. (ETFA), Sep. 2014, pp. 1–8.

[17] K. E. Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonzalez,
J. Kubiatowicz, and K. Goldberg, ‘‘FogROS: An adaptive framework for
automating fog robotics deployment,’’ inProc. IEEE 17th Int. Conf. Autom.
Sci. Eng. (CASE), Aug. 2021, pp. 2035–2042.

[18] P. Huang, L. Zeng, X. Chen, L. Huang, Z. Zhou, and S. Yu, ‘‘Edge robotics:
Edge-computing-accelerated multirobot simultaneous localization and
mapping,’’ IEEE Internet Things J., vol. 9, no. 15, pp. 14087–14102,
Aug. 2022.

[19] F. Okumuş and A. Fatih, ‘‘Exploring the feasibility of a multifunctional
software platform for cloud robotics,’’ in Proc. Int. Conf. Artif. Intell. Data
Process. (IDAP), Sep. 2018, pp. 1–4.

[20] D. Dechouniotis, D. Spatharakis, and S. Papavassiliou, ‘‘Edge robotics
experimentation over next generation IIoT testbeds,’’ in Proc. IEEE/IFIP
Netw. Oper. Manage. Symp. (NOMS), Apr. 2022, pp. 1–3.

[21] F.M. de Sousa,M. Silva, andR.Oliveira, ‘‘Applying edgeAI towards deep-
learning-based monocular visual odometry model for mobile robotics,’’ in
Proc. 24th Int. Conf. Enterprise Inf. Syst., 2022, pp. 561–568.

[22] D. Spatharakis, M. Avgeris, N. Athanasopoulos, D. Dechouniotis, and
S. Papavassiliou, ‘‘A switching offloading mechanism for path planning
and localization in robotic applications,’’ in Proc. Int. Conferences Internet
Things (iThings) IEEEGreen Comput. Commun. (GreenCom) IEEECyber,
Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData) IEEE
Congr. Cybermatics (Cybermatics), Nov. 2020, pp. 77–84.

[23] G.Mehrooz, E. Ebeid, and P. Schneider-Kamp, ‘‘System design of an open-
source cloud-based framework for Internet of Drones application,’’ inProc.
22nd Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2019, pp. 572–579.

[24] X. Wang and H. Guo, ‘‘Mobility-aware computation offloading for swarm
robotics using deep reinforcement learning,’’ in Proc. IEEE 18th Annu.
Consum. Commun. Netw. Conf. (CCNC), Jan. 2021, pp. 1–4.

[25] H. Sun and H. Xi, ‘‘Resource optimization technology using genetic algo-
rithm in UAV-assisted edge computing environment,’’ J. Robot., vol. 2022,
pp. 1–8, Apr. 2022.

[26] S. Wang and N. Kong, ‘‘Network resource allocation strategy based
on UAV cooperative edge computing,’’ J. Robot., vol. 2022, pp. 1–9,
Mar. 2022.

[27] L. Turnbull and B. Samanta, ‘‘Cloud robotics: Formation control of a multi
robot system utilizing cloud infrastructure,’’ in Proc. IEEE Southeastcon,
Apr. 2013, pp. 1–4.

[28] K.-E. Årzén, P. Skarin, W. Tärneberg, and M. Kihl, ‘‘Control over the edge
cloud-an mpc example,’’ in Proc. 1st Int. Workshop Trustworthy Real-Time
Edge Comput. Cyber-Phys. Syst., Nashville, TN, USA, 2018. [Online].
Available: https://portal.research.lu.se/en/publications/control-over-the-
edge-cloud-an-mpc-example and https://cps-vo.org/group/TREC4CPS_
conference and http://2018.rtss.org/program-for-the-1st-international-
workshop-on-trustworthy-and-real-time-edge-computing-for-cyber-
physical-systems-trec4cps/

[29] P. Skarin, J. Eker,M. Kihl, andK.-E. Arzen, ‘‘Cloud-assistedmodel predic-
tive control,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jul. 2019,
pp. 110–112.

[30] A. S. Seisa, S. G. Satpute, B. Lindqvist, and G. Nikolakopoulos, ‘‘An edge
architecture oriented model predictive control scheme for an autonomous
UAV mission,’’ in Proc. IEEE 31st Int. Symp. Ind. Electron. (ISIE),
Jun. 2022, pp. 1195–1201.

[31] A. Papadimitriou, H. Jafari, S. S. Mansouri, and G. Nikolakopoulos,
‘‘Multi-stage NMPC for a MAV based collision free navigation under
varying communication delays,’’ 2022, arXiv:2208.03692.

[32] A. S. Seisa, S. G. Satpute, B. Lindqvist, and G. Nikolakopoulos, ‘‘An
edge-based architecture for offloadingmodel predictive control for UAVs,’’
Robotics, vol. 11, no. 4, p. 80, Aug. 2022.

[33] P. Skarin, J. Eker, and K.-E. Arzen, ‘‘A cloud-enabled rate-switching MPC
architecture,’’ in Proc. 59th IEEE Conf. Decis. Control (CDC), Dec. 2020,
pp. 3151–3158.

[34] P. Skarin, J. Eker, and K.-E. Årzén, ‘‘Cloud-based model predictive
control with variable horizon,’’ IFAC-PapersOnLine, vol. 53, no. 2,
pp. 6993–7000, 2020.

[35] X. Yang and J. Ni, ‘‘A cloud-edge combined control system with
MPC parameter optimization for path tracking of unmanned ground
vehicle,’’ Proc. Inst. Mech. Eng., D, J. Automobile Eng., 2022, doi:
10.1177/09544070221080312.

121600 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-030-20190-6_5
http://dx.doi.org/10.1177/09544070221080312

A. S. Seisa et al.: E-CNMPC: Edge-Based Centralized Nonlinear MPC for Multiagent Robotic Systems

[36] J. Hu, A. Bruno, D. Zagieboylo, M. Zhao, B. Ritchken, B. Jackson,
J. Y. Chae, F. Mertil, M. Espinosa, and C. Delimitrou, ‘‘To centralize or
not to centralize: A tale of swarm coordination,’’ 2018, arXiv:1805.01786.

[37] Y. Kuwata and J. P. How, ‘‘Cooperative distributed robust trajectory opti-
mization using receding horizon milp,’’ IEEE Trans. Control Syst. Tech-
nol., vol. 19, no. 2, pp. 423–431, Mar. 2011.

[38] J. Huang, Z. Ji, S. Xiao, C. Jia, Y. Jia, and X. Wang, ‘‘Multi-agent vehicle
formation control based on MPC and particle swarm optimization algo-
rithm,’’ in Proc. IEEE 6th Inf. Technol. Mechatronics Eng. Conf. (ITOEC),
Mar. 2022, pp. 288–292.

[39] E. Nejabat and A. Nikoofard, ‘‘Switched robust model predictive based
controller for UAV swarm system,’’ inProc. 29th Iranian Conf. Electr. Eng.
(ICEE), May 2021, pp. 721–725.

[40] B. Lindqvist, P. Sopasakis, and G. Nikolakopoulos, ‘‘A scalable distributed
collision avoidance scheme for multi-agent UAV systems,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2021, pp. 9212–9218.

[41] H. Zhou and C. Liu, ‘‘Distributed motion coordination using convex fea-
sible set based model predictive control,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2021, pp. 8330–8336.

[42] S. S. Mansouri, G. Nikolakopoulos, and T. Gustafsson, ‘‘Distributed
model predictive control for unmanned aerial vehicles,’’ in Proc. Workshop
Res., Educ. Develop. Unmanned Aerial Syst. (RED-UAS), Nov. 2015,
pp. 152–161.

[43] J. Wehbeh, S. Rahman, and I. Sharf, ‘‘Distributed model predictive control
for UAVs collaborative payload transport,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2020, pp. 11666–11672.

[44] J. Zhan, Z. Ma, and L. Zhang, ‘‘Data-driven modeling and distributed
predictive control of mixed vehicle platoons,’’ IEEE Trans. Intell. Vehicles,
early access, Apr. 19, 2022, doi: 10.1109/TIV.2022.3168591.

[45] A. Sahu, H. Kandath, and K. M. Krishna, ‘‘Model predictive control
based algorithm for multi-target tracking using a swarm of fixed wing
UAVs,’’ in Proc. IEEE 17th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2021,
pp. 1255–1260.

[46] S. Graffione, C. Bersani, R. Sacile, and E. Zero, ‘‘Model predictive control
of a vehicle platoon,’’ in Proc. IEEE 15th Int. Conf. Syst. Syst. Eng. (SoSE),
Jun. 2020, pp. 513–518.

[47] S. Sabino, N. Horta, and A. Grilo, ‘‘Centralized unmanned aerial vehicle
mesh network placement scheme: A multi-objective evolutionary algo-
rithm approach,’’ Sensors, vol. 18, no. 12, p. 4387, Dec. 2018.

[48] B. Lindqvist, S. S. Mansouri, P. Sopasakis, and G. Nikolakopoulos, ‘‘Col-
lision avoidance for multiple micro aerial vehicles using fast centralized
nonlinear model predictive control,’’ IFAC-PapersOnLine, vol. 53, no. 2,
pp. 9303–9309, 2020.

[49] S. Hu, W. Shi, and G. Li, ‘‘CEC: A containerized edge computing frame-
work for dynamic resource provisioning,’’ IEEE Trans. Mobile Comput.,
early access, Feb. 7, 2022, doi: 10.1109/TMC.2022.3147800.

[50] S. Böhm and G. Wirtz, ‘‘Profiling lightweight container platforms:
MicroK8s and K3s in comparison to Kubernetes,’’ in Proc. ZEUS, 2021,
pp. 65–73.

[51] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, ‘‘Extend cloud to edge with
KubeEdge,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2018,
pp. 373–377.

[52] I. A. Tsokalo, H. Wu, G. T. Nguyen, H. Salah, and F. H. P. Fitzek, ‘‘Mobile
edge cloud for robot control services in industry automation,’’ in Proc.
16th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2019,
pp. 1–2.

[53] P. Kochovski, R. Sakellariou, M. Bajec, P. Drobintsev, and V. Stankovski,
‘‘An architecture and stochastic method for database container placement
in the edge-fog-cloud continuum,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2019, pp. 396–405.

[54] R. P. Salas and J. Ho, ‘‘A remote/virtual robotics lab,’’ in Proc. IEEE
Frontiers Educ. Conf. (FIE), Oct. 2021, pp. 1–4.

[55] S. Aldegheri, N. Bombieri, S. Germiniani, F. Moschin, and G. Pravadelli,
‘‘A containerized ROS-compliant verification environment for robotic sys-
tems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Feb. 2021,
pp. 222–225.

[56] F. Lumpp, M. Panato, F. Fummi, and N. Bombieri, ‘‘A container-based
design methodology for robotic applications on Kubernetes edge-cloud
architectures,’’ in Proc. Forum Specification Design Lang. (FDL), 2021,
pp. 1–8.

[57] P. Sopasakis, E. Fresk, and P. Patrinos, ‘‘Open: Code generation for embed-
ded nonconvex optimization,’’ Int. Fed. Autom. Control, vol. 53, no. 2,
pp. 6548–6554, 2020.

[58] B. Hermans, G. Pipeleers, and P. P. Patrinos, ‘‘A penalty method for
nonlinear programs with set exclusion constraints,’’ Automatica, vol. 127,
May 2021, Art. no. 109500.

[59] K. Li and H. Tu, ‘‘Design and implementation of autonomous mobility
algorithm for home service robot based on Turtlebot,’’ in Proc. IEEE 5th
Inf. Technol., Netw., Electron. Autom. Control Conf. (ITNEC), Oct. 2021,
pp. 1095–1099.

[60] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier, ‘‘A study
of Vicon system positioning performance,’’ Sensors, vol. 17, no. 7, p. 1591,
Jul. 2017.

ACHILLEAS SANTI SEISA (Student Member,
IEEE) received the integrated master’s degree
in electrical engineering and computer science
from the University of Patras, Greece, with a
focus on automatic control and robotic systems.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science, Electrical and
Space Engineering, Luleå University of Technol-
ogy, Luleå, Sweden. He is a part of the Robotics
and Artificial Intelligence Research Group, Signal

and System Division, under the guidance of Prof. George Nikolakopoulos.
His research interests include edge computing architectures for robotic appli-
cations, aerial manipulation autonomy components, and augmented reality
for remote aerial operation.

BJÖRN LINDQVIST received the master’s degree
in space engineering with specialization aerospace
engineering from the Luleå University of Tech-
nology, Sweden, in 2019, where he is currently
pursuing the Ph.D. degree in aerial robotics with
the Robotics and AI Team, Department of Com-
puter Science, Electrical and Space Engineer-
ing. He worked as a part of JPL-NASA led
Team CoSTAR in DARPA Sub-T Challenge on
subterranean UAV exploration applications and

specifically in the search-and-rescue context. His research interests include
collision avoidance and path planning for single and multiagent unmanned
aerial vehicle systems, and field applications of such technologies.

SUMEET GAJANAN SATPUTE (Member, IEEE)
received the Ph.D. degree from the Onboard Space
Systems Group, Kiruna, and the master’s degree in
electrical engineering with specialization in con-
trol systems from the Veermata Jijabai Techno-
logical Institute (VJTI), India. He is currently a
Postdoctoral Researcher with the Robotics and
Artificial Intelligence Group, Luleå University of
Technology, Luleå, Sweden. His current research
interests includemultiple spacecraft formation and

autonomous planetary explorations with multiple agents.

GEORGE NIKOLAKOPOULOS (Member, IEEE)
is currently the Chair of robotics and artifi-
cial intelligence and a Professor of robotics and
automation with the Department of Computer Sci-
ence, Electrical and Space Engineering, Luleå
University of Technology, Luleå, Sweden. His
main research interests include robotics and arti-
ficial intelligence, field robotics, UAVs, auto-
matic control applications, learning, reasoning,
networked embedded controlled systems, wire-

less sensor and actuator networks, mechatronics, adaptive control, system
identification and multimedia wireless sensor networks, and cyber-physical
systems.

VOLUME 10, 2022 121601

http://dx.doi.org/10.1109/TIV.2022.3168591
http://dx.doi.org/10.1109/TMC.2022.3147800

