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ABSTRACT Finding software vulnerabilities in concurrent programs is a challenging task due to the size
of the state-space exploration, as the number of interleavings grows exponentially with the number of
program threads and statements. We propose and evaluate EBF (Ensembles of Bounded Model Checking
with Fuzzing) – a technique that combines Bounded Model Checking (BMC) and Gray-Box Fuzzing (GBF)
to find software vulnerabilities in concurrent programs. Since there are no publicly-available GBF tools for
concurrent code, we first propose OpenGBF – a new open-source concurrency-aware gray-box fuzzer that
explores different thread schedules by instrumenting the code under test with random delays. Then, we build
an ensemble of a BMC tool and OpenGBF in the following way. On the one hand, when the BMC tool in
the ensemble returns a counterexample, we use it as a seed for OpenGBF, thus increasing the likelihood
of executing paths guarded by complex mathematical expressions. On the other hand, we aggregate the
outcomes of the BMC and GBF tools in the ensemble using a decision matrix, thus improving the accuracy
of EBF. We evaluate EBF against state-of-the-art pure BMC tools and show that it can generate up to 14.9%
more correct verification witnesses than the corresponding BMC tools alone. Furthermore, we demonstrate
the efficacy of OpenGBF, by showing that it can find 24.2% of the vulnerabilities in our evaluation suite,
while non-concurrency-aware GBF tools can only find 0.55%. Finally, thanks to our concurrency-aware
OpenGBF, EBF detects a data race in the open-source wolfMqtt library and reproduces known bugs in
several other real-world programs, which demonstrates its effectiveness in finding vulnerabilities in real-
world software.

INDEX TERMS Concurrency-aware gray-box fuzzer, bounded model checking, concurrent programs,
instrumentation, LLVM pass.

I. INTRODUCTION
Concurrency is becoming prevalent in present-day software
systems thanks to the performance benefits provided by

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

multi-core hardware [1]. Examples of such software systems
include online banking, auto-pilots, computer games and rail-
way ticket reservation systems [2]. Ensuring the correctness
and safety of such software is crucial since software failures
may lead to significant financial losses and affect people’s
well-being [3]. As an example, the OpenSSL library had a
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Heartbleed1 vulnerability that allows a remote attacker to get
access to sensitive information.

Despite the significant resources invested into software
testing, much of existing software still features security
vulnerabilities [4]. This is because the different possible
threads’ interleavings cause the program execution to be non-
deterministic, thus making the process of testing and verify-
ing concurrent programs an inherently difficult task [5] (e.g.,
some bugs may occur only for a specific threads order, mak-
ing them harder to detect). Furthermore, there exists a wide
variety of unwanted concurrent behaviors. On the one hand,
the non-determinism of the thread interleavings introduces
concurrency bugs such as data races, deadlocks, thread leaks,
and resource starvation [4], which may cause the program
to produce abnormal results or unforeseen hangs. On the
other hand, specific program inputs and thread interleavings
may lead to memory corruption and security violations (e.g.,
access out of bounds) [6].

Due to this complexity, manual testing of concurrent soft-
ware is not always adequate, and so automated verification
and testing are often employed. In this respect, there is a
myriad of different automated techniques such as control
engineering [7], abstract interpretation [8], and data-flow
analysis [9] for detecting bugs and vulnerabilities in concur-
rent programs [10], [11]. Among those, two methods have
seen significant development in recent years: BoundedModel
Checking (BMC) and fuzzing [12].

BMC [13] searches for violations in bounded executions
(up to some given depth k) of the given program. If no prop-
erty violation is detected, then k is increased until a bug is
found, the verification problem becomes intractable, or a pre-
set upper bound is reached. Although many industrial-grade
boundedmodel checkers [14], [15], [16], [17], [18] have been
successfully used for software verification, BMC has sev-
eral fundamental drawbacks in general. Namely, BMC often
experiences difficulties with achieving high path coverage
(especially for multi-threaded programs) and reaching deep
statements within the code because of state-space explosion
and its dependency on Boolean Satisfiability (SAT) [19] or
Satisfiability Modulo Theories (SMT) solvers [20].

Fuzzing [11] is an automated software testing technique
that involves the repeated generation of inputs (based on
some initial guess – seed value) to a Program Under Test
(PUT). The PUT is then executed for each given sequence
of input values; its behavior is checked for abnormalities,
such as crashes or failures [21]. The main advantages of
fuzzing include relative ease of integration with the existing
testing frameworks, high scalability, and most importantly,
exploring the deep execution paths is not as costly as in
BMC. However, fuzzing often suffers from low branch cov-
erage since the input generation is based on random muta-
tions [22]. Typically this occurs when a program features
conditional statements with complex conditions (e.g., input
validation functions). As a result, providing a good initial

1https://heartbleed.com/

seed for the fuzzing process is crucial. Moreover, fuzzing
techniques face challenges detecting vulnerabilities in multi-
threaded programs [23] since existing fuzzing techniques
do not focus on thread interleavings that affect execution
states.

Efforts toward developing a combined verification tech-
nique harnessing the strengths of both BMC and fuzzing have
beenmade in the past. For example, Ognawala et al. [24] com-
bine symbolic execution and fuzzing and apply it to general-
purpose software. Alshmrany et al. [25] use BMC to guide a
fuzzer in the analysis of sequential C programs. Chowdhury
et al. [26] improve the seeding of gray-box fuzzing (GBF)
by using BMC as a constraint solver to find execution paths
through complex blocks of code. Nevertheless, given the cur-
rent knowledge in software verification, there are no tech-
niques that harness both BMC and fuzzing for verification
of concurrent programs, and the question of whether com-
bining BMC and fuzzing improves bug finding in concurrent
programs remains open.
The challenge in answering this fundamental question is

twofold. First, while there are many available BMC tools in
the literature, all existing concurrency fuzzers are (at least
partially) closed source. As a result, employing any of these
concurrency fuzzers requires a major reproducibility effort.
Second, combining BMC and fuzzing for concurrency is not
straightforward. Given the lack of existing baselines, we take
inspiration from portfolios [27], [28], the practice of running
an ensemble of similar tools in parallel and picking the best
result. At the same time, BMC and fuzzing are very dissimilar
approaches, thus their cooperation inside the ensemble has to
be carefully coordinated.

This paper addresses these challenges and makes the fol-
lowing original contributions:

1) We develop OpenGBF – a new open-source state-of-
the-art concurrency-aware gray-box fuzzer [29]. Our
main technique is instrumenting the PUT with ran-
dom delays obtained from a random number generator
whose seed value is controlled by the fuzzer. In this
way, we can discover different thread interleavings and
explore deep execution paths. Furthermore, our fuzzer
is capable of generating crash reports containing the
full program execution path.

2) We introduce EBF – Ensembles of Bounded Model
Checking with Fuzzing. This technique combines
the strengths of BMC in resolving complex condi-
tional guards with the flexibility of our concurrency-
aware gray-box fuzzer. EBF incorporates a result
decision matrix for coping with the potentially con-
flicting verdicts produced by the tools in the ensemble.
Furthermore, EBF efficiently distributes the available
computational resources between the tools to enhance
its bug-finding capabilities.

3) We demonstrate that the combination of BMC and
fuzzing improves verification outcomes compared to
either technique applied separately. More specifi-
cally, EBF improves the bug-finding abilities of all
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state-of-the-art concurrent BMC tools considered in
this work by up to 14.9%. Similarly, EBF can find
24.2% of the vulnerabilities in our evaluation suite,
whereas the state-of-the-art gray-box fuzzer AFL++
can only find 0.55%.

4) We apply EBF to the wolfMQTT open-source library
that implements theMQTTmessaging protocol, and we
discover the presence of a data race bug. We reported
the bug to the developers of thewolfMQTT library, who
fixed it in June 2021. Also, EBF successfully repro-
duced known bugs in several real-world concurrent
programs (i.e., pfscan [30], bzip2smp [31], and swarm
1.1 [32]). This demonstrates the real-world capabilities
of EBF.

5) We report that the bug-finding capabilities of EBF
are stable across a wide range of parameter values.
In detail, we run a comparison experiment along
three different axis: time allocation between the BMC
tool and OpenGBF, maximum delay inserted by
OpenGBF and maximum number of threads allowed
by OpenGBF. Our results show a large sweet spot of
parameter values that allows EBF to find nearly 50-fold
more bugs than the worst setting.

The remainder of the paper is structured as follows:
Section II contains the preliminaries on concurrent programs,
bounded model checking and fuzzing, while Section III states
the main research question of this work. Section IV dis-
cusses the main design choices and implementation details
of OpenGBF, our state-of-the-art fuzzer for concurrent pro-
grams. Section V presents EBF, our ensemble verification
technique. SectionVI presents the experimental results, while
Section VII lists the related work, and Section VIII draws the
final conclusions.

II. PRELIMINARIES
A. COMMON SOFTWARE VULNERABILITIES
Concurrent programs feature multiple processes or threads
simultaneously operating on shared computing resources [33].
As a result, such programs can feature vulnerabilities spe-
cific to sequential problems (e.g., invalid memory accesses,
memory leaks [34]) as well as types of bugs that only occur
in concurrent programs (e.g., data races, deadlocks, thread
leaks [35]). Some software vulnerabilities are considered
more dangerous than others. For example, writing out of
bounds (a type of invalid memory access) is ranked num-
ber 1 in the top 25 MITRE ranking in 2022,2 while data races
are in the 22nd place.

Invalid memory accesses comprise a vast family of
memory safety violations. They include accessing mem-
ory outside the bounds of the intended buffer for either
reading (potentially revealing some sensitive data to the
attacker) or writing (causing memory corruptions or injec-
tions of executable code), accessing previously freedmemory
(aka ‘‘use-after-free’’), and dereferencing of invalid pointers

2https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

FIGURE 1. Concurrency bugs.

or NULL pointers (causing the program to crash or exit
unexpectedly).

Data race is a condition when the program execution
results in an undesired behavior due to a particular sequence
and/or timing of the instructions executed by each thread. For
instance, when a thread modifies the shared memory with-
out acquiring a lock first, causing memory corruption when
another thread tries to update the same memory location (see
Figure 1a).

Deadlock occurs when the program is not in the terminal
state and it cannot progress to any other state. For instance,
when a thread does not release a lock after accessing the
shared memory, therefore, denying memory access for any
other thread (see Figure 1b).

Thread leak is a vulnerability specific to multi-threaded
programs that happens when a terminated thread never joins
the calling thread, thus never releasing the occupied resources
(see Figure 1c).

Similarly, memory leaks are caused by repeated memory
allocations which are never released during the program’s
execution. This may lead to memory exhaustion resulting in
the system hanging or crashing.

B. BOUNDED MODEL CHECKING
Bounded model checking is a verification technique that has
been successfully applied to software and hardware verifica-
tion over the past decades [13]. BMC works with the under-
lying program’s mathematical model (represented as a finite
state transition system). It explores the model’s evolution up
to some finite positive bound k and determines whether the
given safety property (e.g., absence of deadlocks, data races,
buffer overflows, assertion violations, etc.) holds. In short,
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BMC symbolically executes the given program up to the
given bound k and encodes all the obtained traces C together
with the given propertyP as a SAT/SMT [36] formulaC∧¬P.
A decision procedure (often referred to as automated theo-
rem prover or solver) then checks the obtained formula and
returns the satisfiability verdict. If the formula is satisfiable,
then it means that the safety property is violated, and awitness
(counter-example) is produced. Otherwise, a proof can be
obtained that the program is safe up to the given bound k .

Several drawbacks of BMC include state-space explosion
as the verification depth grows, which becomes even more
challenging for multi-threaded programs since it is required
to explore the combined search space of thread interleavings
and program states. Moreover, the verification of logical for-
mulae consumes more CPU time and computer memory as
the size of the formulae grows with the increasing verification
depth. Finally, since BMC works with a symbolic abstrac-
tion (over-approximation) of the underlying program, it may
report incorrect results when the devised model does not pre-
cisely represent the given program. For example, this can be
caused by external libraries whose implementation in the lan-
guage supported by the given BMC tool does not exist. Con-
sequently, their behavior must be modelled (approximated)
inside the BMC tool.

Thus, existing BMC tools like ESBMC [37], CBMC [38],
and Cseq [39] differ mainly in their choices of program
encoding and symbolic abstractions. We provide more details
on their strategies to deal with concurrent programs in
Section VII.

C. GRAY-BOX FUZZING
Fuzzing is an automated testing technique that discov-
ers vulnerabilities by repeatedly executing a program with
randomly-generated inputs [40]. Since most inputs generated
this way are invalid, state-of-the-art fuzzers let users specify
a small set of valid program inputs (the seeds) and employ
a mutation-based strategy to generate new ones. Gray-box
fuzzing improves on this idea by guiding the mutation pro-
cess with program-specific metrics. To do so, the program
under test must be instrumented with some additional code
that tracks the required metric (e.g., code coverage) during
execution.

Algorithm 1 [23], [41] shows the standard workflow of a
gray-box fuzzer. It takes a target PUT and initial seeds M
as inputs. Then, it instruments the PUT (line 1) by inserting
some additional code that allows the fuzzer to collect code
coverage statistics in the PUT. At every iteration of the main
fuzzing loop (line 4), it selects a seed t (line 5) and chooses
a random number N of mutations (line 6). Then, the fuzzer
repeatedly executes the instrumented program Pf (line 9)
with different mutated seed t ′ (line 8) as input and obtains the
execution statistics. If t ′ triggers a crash in the instrumented
programPf (line 10), it is added to the set of vulnerable inputs
(line 11). Otherwise, if t ′ does not cause a crash but covers
a new branch in the PUT (line 12), it is added to the seed
queue QS (line 13). This may help the fuzzer discover more

Algorithm 1 Gray-Box Fuzzing
Input: PUT – program under test, M – corpus of initial
seeds.
Output: QS – seed queue, SI – crash inputs
found
1: Pf ← instrument(PUT ) {instrument the PUT}
2: QS ← M {initialize the seed queue}
3: SI = ∅
4: while not timeout do
5: t ← select_next_seed(QS ) {pick seed from queue}
6: N ← get_mutation_chance(Pf , t)
7: for all i ∈ 1 . . .N do
8: t ′← mutate_input(t) {mutate the seed}
9: rep← run(Pf , t ′,Mc) {execute the PUT}
10: if is_crash(rep) then
11: SI ← SI ∪ t ′ {new vulnerable input found!}
12: else if covers_new_trace(t ′, rep) then
13: QS ← QS ⊕ t ′ {add promising seeds to queue}
14: end if
15: end for
16: end while

vulnerabilities in the subsequent iterations. Finally, the exe-
cution of the main fuzzing loop continues until the predefined
timeout is reached.

Multiple attempts have been made to detect security vul-
nerabilities in concurrent programs with fuzzing [23], [34],
[42], [43], [44]. Here, we organize these past efforts accord-
ing to five categories in the taxonomy of Table 1. The
first three categories concern the usability of each fuzzer:
whether they apply to user programs or operating system code
(Scope), which type of bugs they are able to detect (Vulner-
abilities), and whether their code is easily accessible (Open
Source). In this regard, none of the existing state-of-the-art
fuzzers satisfy our research requirements. That is, there is no
fully open-source fuzzer that can detect multiple concurrency
vulnerabilities in user programs.We address this gap by intro-
ducing our own concurrency-aware fuzzer in Section IV.
The last two categories concern the fuzzing techniques

themselves. Specifically, the general fuzzing strategy in
Algorithm 1 requires some adaptations to produce good
results on concurrent programs. First and foremost, a mech-
anism to force the execution of a large number of differ-
ent interleaving is required (Interleaving Control). Existing
fuzzers like MUZZ [23] and ConAFL [34] manipulate the
thread priorities at assembly level, others like Krace [44]
inject sleep instruction to force a context switch, while
AutoInter-fuzzing [42] and Conzzer [45] instrument the
code with explicit synchronization barriers or thread locks.
Alternatively, the interleaving exploration can be left to
the natural non-determinism of the operating system like
in ConFuzz [43]. Lastly, some authors propose to change
the feedback to the input mutation engine in an attempt
to guide the fuzzer towards more interesting interleavings
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TABLE 1. Taxonomy of existing state-of-the-art concurrency-aware gray-box fuzzers.

(Mutation Feedback). We mark such attempts as Thread-
Aware as opposed to the default Branch Coverage metrics
used in sequential fuzzing. We provide more information on
these state-of-the-art fuzzers in Section VII-B.

III. PROBLEM STATEMENT
In general, BMC and GBF tackle the problem of finding vul-
nerabilities in fundamentally different ways. Consequently,
it is natural to ask whether combining the two techniques can
lead to better coverage of the search space. More precisely,
in this study, we ask the following research question:

Research Question. Does an ensemble of bounded model
checkers and gray-box fuzzers discover more concurrency
vulnerabilities and do it faster than either approach on their
own?

In addressing this question, we are confronted with many
practical design challenges, the solution of which is central
in the remainder of our paper:

• Concurrency-aware gray-box fuzzer. As detailed in
Section II-C, there are some recent existing efforts to
fuzz concurrent programs, but no mature open-source
tool exists. Consequently, designing such a tool is an
important step towards answering our research question.
In doing so, we aim to draw from the lessons learned
in the literature and implement OpenGBF, a tool that
is representative of state-of-the-art concurrency-aware
GBF. We do so in Section IV.

• Aggregating BMC and GBF results. By creating an
ensemble of different tools, we run into the risk of
them returning conflicting results. The main reason is
that BMC relies on abstractions of the program execu-
tion states and symbolic execution (see Section II-B),
whereas GBF tests concrete inputs and execution sched-
ules. When the two approaches disagree, we have an
opportunity to make an informed choice about the ver-
ification outcome. We propose to do so via a decision
matrix, as detailed in Section V.

• Resource allocation trade-off. The main drawback of
using an ensemble of different tools is that they all com-
pete for the same computational resources. We must
choose how many resources to allocate to each tool for
applications with limited time, memory, or computa-
tional power. In general, our decisions depend not only

on the problem at hand but also on the partial results
we obtain from the tools in the ensemble. We discuss
strategies to optimize our ensembles in Section V.

Note that the design challenges listed above are not orthog-
onal. We clarify when our choices impact multiple of them
in Sections IV and V. Furthermore, we mention reasonable
alternatives; these are left as future work.

IV. DESIGNING A STATE-OF-THE-ART CONCURRENCY
GRAY-BOX FUZZER
This section describes the main design challenges we address
in implementing our concurrency-aware gray-box fuzzer
OpenGBF. Namely, we discuss how we control the thread
interleavings (Section IV-B) and how we generate witness
information when a violation is found (Section IV-C). Both of
these goals require the instrumentation of the PUT as detailed
in Sections IV-A and IV-D.
Note that our GBF is based on established techniques:

fuzzer-controlled delay injection to force interleaving explo-
ration and branch coverage to guide the fuzzer mutation
engine (see Table 1). At the same time, we believe that
our design is worth reporting for two reasons. On the one
hand, our GBF is the only user-space concurrency fuzzer
that is currently available as fully open-source software; thus
the present section is a useful reference for future users.
On the other hand, our GBF is a transparent effort to repro-
duce the claims of the existing literature, which are cur-
rently impossible to confirm given the lack of open-source
codebases.

A. CUSTOM LLVM PASS INSTRUMENTATION
We build our concurrency-aware fuzzer on top of the widely
used gray-box fuzzer AFL++ [46], which is designed to find
vulnerabilities in sequential programs. AFL++ minimizes
the fuzzing overhead by instrumenting the PUT via an LLVM
pass [47]. The LLVM pass is an essential framework of the
LLVMcompiler. It works with the program translated into the
LLVM intermediate representation (IR) language and adds
additional code to monitor the program behavior [48].

We combine the standard LLVM pass of AFL++ with
our custom independent LLVM pass to make our fuzzer
aware of concurrent execution (see Algorithm 2). More
specifically, we inject five different function calls: a delay
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Algorithm 2 LLVM Pass Instrumentation
Input: PUT – program under test.
Output:M – instrumented program.
Shorthands:
λd − _delay_function();
λa − pthread_add();
λj − pthread_release();
λe − EBF_add_store_pointer();
λl − EBF_alloca();
1: M ← PUT
2: for all Function F ∈ PUT do
3: for Instruction I in F do
4: M ← instrument (λd , I ,M ) {insert

a call to _delay_function() (Algorithm 3) after each
instruction to run a delay at run-time}

5: if I == pthread_create() then
6: M ← instrument (λa, I ,M ) {insert a call to

pthread_add() (Algorithm 4) to increase the
active threads counter at run-time}

7: else if I == pthread_join() then
8: M ← instrument (λj, I ,M ) {insert a call to

pthread_release() (Algorithm 5) to decrease the
active threads counter at run-time}

9: else if I is DECLARATION then
10: M ← instrument (λl, I ,M ) {insert a call to

EBF_alloca() function (Algorithm 6) to record
a pair of the name and address of the variable
declaration.}

11: else if I is STORE then
12: M ← instrument (λe, I ,M ) {insert a call to

EBF_add_store_pointer() (Algorithm 7) func-
tion to record the assignment information for wit-
ness generation}

13: end if
14: end for
15: end for
16: return M

function (see line 4), two thread-monitoring functions (see
lines 6 and 8) and two information-collecting functions (see
lines 10 and 12). The first function controls the interleav-
ing schedule, and we explain its implementation details in
Section IV-B. The second and the third functions monitor the
number of active threads (see Section IV-C) in the PUT during
run-time by tracking when the functions pthread_create and
pthread_join are called. The last two functions record the
information required to generate a witness file containing the
execution trace. We present a full example of instrumented
code in Section IV-D.
We bundle these five instrumentation functions in a run-

time library.We compile and link both the runtime library and
the instrumented PUT using the AFL++ clang wrapper. The
resulting executable can be fuzzed to detect reachability and
memory corruption bugs in the default setting. Optionally, the

ThreadSanitizer flag can be enabled for finding concurrency
bugs.

B. CONTROLLING THE THREAD INTERLEAVING
As previously mentioned in Section I, our main algorithmic
idea is to introduce random delays in the PUT to force context
switches between threads. However, there are several major
corner cases that OpenGBF needs to take care of.

First, if the program features many active threads, we need
to limit their number during the PUT execution. Limiting the
number of threads is an unfortunate but necessary approxima-
tion of the PUT run-time behavior. Increasing the number of
active threads slows down the PUT execution and consumes
more compute resources during fuzzing. Furthermore, the
PUT may attempt to create an ‘‘infinite’’ number of threads,
which can either be an undefined behavior or just undecid-
able to solve. We limit the number of threads by assuming
that interleavings that create more threads than a pre-defined
threshold are safe and start a new run with different interleav-
ings.We discuss the effect of different threshold values on the
bug-finding capabilities of our fuzzer in Section VI-B5.

Secondly, deadlocks in the PUT may cause the current
interleaving to be stuck during execution. To avoid this prob-
lem, we force the fuzzer to terminate non-deterministically
by introducing a probability p of exiting at every instruction.

Thirdly, in EBF we provide a mechanism for defining
atomic blocks (viaEBF_atomic_begin andEBF_atomic_end
functions) within the PUT. They can be used to ensure that
all instructions inside these blocks are executed atomically.3

To this end, our delay function will force all other threads to
wait until the atomic block has finished. We achieve this by
initializing a global mutex (i.e.,EBF_mutex) which the active
thread can lock. If the global mutex is locked and the current
interleaving does not own the global mutex, then we wait for
the mutex owner to finish its execution. Additionally, EBF
will not insert delays inside the atomic blocks (thus, improv-
ing the performance of the instrumented program) since no
thread interleavings can take place within these blocks.

Finally, we force different interleavings by changing the
amount of delay (in milliseconds) inserted after each instruc-
tion. The delay values are drawn uniformly at random from
a pre-set range. More specifically, we let AFL++ produce
a seed value for the random number generator providing the
delay values. We explore the impact of different delay ranges
on the bug-finding ability of our fuzzer in Section VI-B5.

The above design choices have been incorporated into the
implementation of function _delay_function, whose defini-
tion is illustrated in Algorithm 3. In lines 2-4 we imple-
ment our strategy for limiting the number of active threads.
If the number of active threads TN is greater than the given
threshold TT or we extract 1 from a Bernoulli distribution
with success probability p, then the fuzzer exits this analysis
normally (see line 3) and starts a new run with different inter-

3This is useful since not all versions of C language provide the means for
defining atomic instructions.
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Algorithm 3 Function _delay_function()
Global: TT – thread threshold, TN – number of threads
running, p – probability of exiting, TC – current thread,
EBF_mutex – global mutex.
1: Function _delay_function()
2: if TN > TT or Bernoulli(p) == 1 then
3: exit {exit this analysis normally}
4: end if
5: if TC == EBF_mutex then
6: run_instruction {run the current instruction}
7: return
8: end if
9: φ← wait_for_timeout {wait until EBF_mutex is

released}
10: if φ is timeout then
11: exit {exit this analysis normally}
12: end if
13: sleep(∗) {run a delay for * nanoseconds}
14: EndFunction

Algorithm 4 Function pthread_add()
Global: Mutex_lock , TN - active threads
counter.
1: Function pthread_add()
2: lock thread← Mutex_lock
3: TN ++
4: unlock thread← Mutex_lock
5: EndFunction

leavings (i.e., different delay values). Otherwise, we check
whether the current thread owns the global mutex (line 5),
and if so, we let it finish its execution and release the mutex
(lines 6 and 7). If the global mutex is not released before the
timeout (line 9), we also allow the fuzzer to exit this analysis
normally (line 11). This is done to prevent deadlocks if the
global mutex is never released. Finally, the delay is executed
by running a sleep function for the duration value produced
by the fuzzing engine (line 13).
Additionally, the number of active threads in the

PUT is monitored by the functions pthread_add and
pthread_release, whose definitions are shown in Algo-
rithms 4 and 5, respectively. The former (the latter) incre-
ments (decrements) the active threads counter TN (see
line 3) atomically by locking the current thread (see line 2)
before changing the value of TN and unlocking it afterwards
(see line 4).

C. WITNESS GENERATION
If OpenGBF finds a violation, we need to support the
users and tools in reproducing the identified bug. To do so,
we generate a crash report file with all the necessary infor-
mation to reproduce the property violation. We use func-
tions EBF_alloca and EBF_add_store_pointer to record all
the information needed for automated witness generation:

Algorithm 5 Function pthread_release()
Global: Mutex_lock , TN - active thread
counter.
1: Function pthread_release()
2: lock thread← Mutex_lock
3: TN - -
4: unlock thread← Mutex_lock
5: EndFunction

Algorithm 6 Function EBF_alloca()
Inputs: a – variable name, f – function name, &a – variable
address.
Global:Mutex_lock ,witnessInfoAFLpid – witness file for the
process with ID = pid .
1: Function EBF_alloca(a, f ,&a)
2: lock thread← Mutex_lock
3: witnessInfoAFLpid ← write(a, f ,&a)
4: unlock thread← Mutex_lock
5: EndFunction

assumption values, thread ID, variable names, and function
names as shown in Algorithms 6 and 7.

As the fuzzing process begins, we run an initialization
function before the main method is called in the PUT. This
function creates a witness file uniquely identified by the cur-
rent process ID (i.e.,witnessInfoAFLpid ) and sets the environ-
ment (i.e., initializes the global mutex EBF_mutex, getting
process id (pid)). Then, our custom LLVM pass inserts a
function call to EBF_alloca (see line 10 in Algorithm 2) after
each declaration instruction in the PUT, and a function call to
EBF_pointer_add_store_pointer (see line 12 in Algorithm 2)
after each loading store instruction.

Algorithms 6 and 7 demonstrate the definitions of func-
tionsEBF_alloca andEBF_add_store_pointer , respectively.
The former records the declared variable’s name, its address,
and the name of the function where it has been declared in the
PUT (see line 3). The latter records the assigned variable’s
address, the assigned value, the name of the function and the
line of code where the assignment takes place in the PUT (see
line 3). Both functions record information atomically – the
thread is locked (see line 2) before the writing occurs and
unlocked afterwards (see line 4). If the fuzzing run finishes

Algorithm 7 Function EBF_add_store_pointer()
Inputs: &a - variable address, l - line number in the code, f
- function name, v - variable value.
Global:Mutex_lock ,witnessInfoAFLpid – witness file for the
process with ID = pid .
1: Function EBF_add_store_pointer(&a, l, f , v)
2: lock thread← Mutex_lock
3: witnessInfoAFLpid ← write(&a, l, f , v)
4: unlock thread← Mutex_lock
5: EndFunction
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LISTING 1. Original multi-threaded C code.

normally (i.e., a timeout is reached or the process finishes
with the exit code 0), we delete the created witness files in
a destructor function [49]. If the fuzzer causes a crash in
one of the PUT executions, we save the ID of the process
that has crashed and generate a crash report by extracting
the data from the witness file associated with this process
ID. The resulting crash report contains the exact sequence of
operations (i.e., memory accesses) that led to the PUT’s crash
(see Appendix B for more details).

D. FULL ILLUSTRATIVE EXAMPLE
To tie all these design choices together, we present an illustra-
tive example. Assume that we have a concurrent PUT that has
one reachability bug, as illustrated in Listing 1. The program
contains two threads calling the same function foo (see line
3), which contains a loop of 5 iterations. At the end of the
execution, the value of a should be 10: Line 18 consists of a
conditional statement that checks whether this is not the case,
and reports an error (property violation). This error can only
be reached when the reads and writes over a are not correctly
synchronized between the two threads.

Figure 2a illustrates an interleaving that causes a violation:
thread 1 (T1) reads the variable a = 0 which is initialized to
0 in line 2, then thread two (T2) reads a = 0 before T1writes
a = 1 (see line 7). This pattern repeats until the end, when
the value of a will be 5 rather than the expected 10.

Ideally, each thread will read the content of variable a
and increment it without interference from the other thread.
Figure 2b, illustrates an interleaving scenario where the two
threads are synchronized: thread 1 (T1) reads a = 0 and
writes the new value a = 1, then thread two (T2) reads the
updated value a = 1 and increments it to a = 2. This pattern
yields a final value of a = 10, which makes the property hold.
When we verify the code in Listing 1 with EBF, we find

two different bugs. Namely, OpenGBF reports the data race,
whereas all BMC tools we tested report a reachability bug at
Line 18.

Let us now present an example of our instrumentation.
Recall that we instrument the PUT at the LLVM-IR level.

LISTING 2. Fragment of the corresponding IR before instrumentation.

LISTING 3. Fragment of the corresponding IR after instrumentation 1
define.

For our example of Listing 1, we report the LLVM-IR encod-
ing for function foo in Listing 2. Listing 3 illustrates the
IR after the instrumentation. In lines 7 and 20, we call
the function EBF_add_store_pointer, which is inserted after
each load instruction and saves both the variable name and
its value in a file to use it for generating the witness file.

121372 VOLUME 10, 2022



F. K. Aljaafari et al.: Combining BMC and Fuzzing Techniques for Finding Software Vulnerabilities in Concurrent Programs

FIGURE 2. Visualization of the memory accesses on variable a in Listing 1 for two different interleavings. In Figure 2a, the accesses are not synchronized:
both T1 and T2 read a before simultaneously incrementing it to a = 1. This pattern continues until the end, where the final value will be a = 5.
Conversely, Figure 2b depicts synchronized accesses: T1 reads a and increments it to a = 1, then T2 reads a and increments it to a = 2. In the end, the
final value will be a = 10.

In lines 10, 13 and 16, we call a function called EBF_alloca,
which stores themetadata of any variable declared in the PUT.
This information is also used to generate the witness file.
In lines 11, 14, 17 and 22, we inserting a function call to the
_delay_function(), as we describe in Algorithm 3.

V. EBF: ENSEMBLES OF BMC AND FUZZING
Thanks to our OpenGBF, we now have access to both state-
of-the-art BMC and GBF tools. This section explains how
we combine them in EBF and maximize their effectiveness
in finding vulnerabilities in concurrent software.

We remark that types of software vulnerabilities that
can be detected by EBF solely depend on the capabil-
ities of each individual tool used in the ensemble. For
example, most BMC tools can detect most types of ille-
gal memory accesses (e.g., buffer overflows, use-after-free,
invalid pointer dereference) and memory leaks, as well as
some BMC tools, can detect concurrency bugs (i.e., thread
leaks, data races, and deadlocks). Regarding OpenGBF,
its main function is exploring different executions of the
program by sampling different thread schedules and dif-
ferent program inputs. In order to evaluate whether each
such execution leads to a bug, OpenGBF relies on the
bug-detecting capabilities of sanitizers. They perform some
additional instrumentation to the PUT, making it crash when
a vulnerability has been detected. Namely, AddressSani-
tizer [50]is capable of identifying memory-related vulnera-
bilities, while ThreadSanitizer [51] can identify concurrency
bugs.

We present a high-level overview of the structure of our
ensembles in Figure 3. Overall, the ensemble executes both
BMC and GBF tools on the PUT. The execution of these two
tools is not fully independent like it would be in a portfo-
lio [27], [28]. In fact, the result of the BMC tool run can be
used to seed the GBF tool under specific conditions. We elab-
orate on this in Section V-A.

Furthermore, our ensemble structure in Figure 3 requires
addressing the two main challenges outlined in Section III.

FIGURE 3. High-level overview of EBF.

First, the results of the BMC and GBF runs must be aggre-
gated in a coherent assessment of the safety of the PUT.
Second, the BMC and GBF tools in the ensemble compete
for the same computational resources, whichmight reduce the
ability of each tool to find violations. We present our solution
to these challenges in Sections V-B and V-C.

A. SEEDING
Before discussing our solution to the two problems of aggre-
gation and resource sharing, let us propose a further optimiza-
tion of the ensemble. Specifically, if sequential execution of
the ensemble is possible, we can improve the GBF seeds
by initializing them with the counterexample produced by
BMC. This is only possible when the BMC tool reports a
failed verification outcome. These seeds are concrete values
that cause an assertion to fail. It is important to mention that
despite the BMC tools providing thread scheduling infor-
mation in their bug reports, it is not always straightforward
which delay values must be applied for replicating these bug-
inducing schedules. In general, it is impossible to guarantee
a particular thread order by only injecting time delays and
without an explicit scheduling algorithm or another lock-
ing technique. This is because the effect of the introduced
delays on the thread order depends on the implementation
of multi-threading in the corresponding operating system and
its current workload (e.g., sometimes, the same delay values
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may lead to the execution of different thread schedules). As a
result, OpenGBF uses only the bug-inducing inputs and not
the thread schedule information as the seed. On the one hand,
this means that OpenGBF cannot reproduce every bug pro-
duced by the BMC tool since it might not be able to sample
the sequence of delays replicating the bug-inducing thread
schedule. On the other hand, this allowsOpenGBF to explore
other randomly generated schedules that may lead to other
bugs.

However, if the BMC engine timeouts, proves (partial) cor-
rectness or produces Unknown, then we generate the fuzzer
seed with pseudo-random integer numbers ranging between
0 to 5000. We determined experimentally that this range pro-
vides a good trade-off between functionality and efficiency
since larger numbers (e.g., more than 5000) lead the fuzzer
to generate a lot of inputs that do not result in triggering a
bug. Note that these values are not directly used inside the
delay function. The delays are produced by a different ran-
dom number generator that is seeded from one of the inputs
given by the fuzzer.

B. AGGREGATION
After running all ensemble members, we need to aggregate
their outcomes. This is especially challenging since BMC and
GBF may disagree on the safety of the PUT (cf. Section III).
We summarize our aggregation rule in the decision matrix
in Table 2. Some decisions are straightforward: we must
trust the other when either method cannot conclude. Accord-
ingly, whenGBF reportsUnknown, our decisionmatrix aligns
with the outcome of BMC. Vice versa, when BMC cannot
prove or disprove the PUT’s safety, we trust the bugs found
by GBF. A more interesting scenario happens when there
is a conflict in the ensemble: BMC can declare a PUT as
Safe, but GBF may still be able to find a Bug. In general,
we report such instances as Conflict. This can be caused by
the over-approximations in the computational models used
by the BMC tool or by the bugs from the code instrumen-
tations introduced by the GBF tool. Each such Conflict may
be resolved by analyzing the witness file produced by the
GBF.

We remark that the decision matrix proposed in Table 2
was motivated by the SV-COMP [52] competition rules
where interactive verification is not available, while incor-
rect answers are punished by deducting competition points
(see Section VI-B3 for more details). However, verification
of more complex software systems can benefit from a more
descriptive decision matrix. For example, it may be useful to
distinguish between different Unsafe outcomes in Table 2.

C. CPU TIME ALLOCATION
CPU time allocation is another important design choice
in optimizing the performance of EBF. More specifically,
we need to split the available CPU time between the two
components of the ensemble in order to increase the search
space coverage as much as possible for each of them.

TABLE 2. EBF declares a program Safe, Unknown, Unsafe or reports a
Conflict by aggregating the outputs of BMC and GBF.

In Section VI-B5, we discuss how different CPU time dis-
tribution strategies affect the overall EBF performance.

VI. EXPERIMENTAL EVALUATION
In this section, we demonstrate the effectiveness of BMC and
GBF ensembles in a diverse set of scenarios. We will reiter-
ate our experimental objectives before detailing the deployed
benchmarks and our results.

A. OBJECTIVES
The present experimental evaluation has the following goals:

EG1 - Detection of violations in concurrent programs
Demonstrate that EBF can detect more violations
in concurrent programs than state-of-the-art BMC
tools on their own.

EG2 - Real-world performance of OpenGBF
Demonstrate that the concurrency-aware GBF we
implement in EBF can find violations in real-world
programs.

EG3 - Parameter trade-offs in our concurrency-
aware fuzzer
Demonstrate that EBF produces consistent results
across a wide range of parameter settings.

Note that the latter two objectives EG2 and EG3 are ori-
ented towards demonstrating that OpenGBF (see Section IV)
is representative of state-of-the-art gray-box fuzzing
techniques.

B. RESULTS
We gathered our experimental results over a substantial
period, beginning in February 2021. During this period,
the design of EBF has evolved and improved. To avoid
confusion, we report our results separately for each ver-
sion of EBF. Namely, we start with the participation of
EBF 2.3 in the Concurrency Safety category of SV-COMP
2022 (see Section VI-B1). This EBF version was based on
CBMC v5.43 and a more rudimentary implementation of our
concurrency-aware fuzzer. For comparison, we also report the
performance of our latest version EBF 4.0 on the same set of
benchmarks (see Section VI-B2). EBF 4.0 includes the full
implementation of OpenGBF described in Section IV, and
a large number of different BMC tools. Then, we demon-
strate the ability of our fuzzer to find a data race in the
wolffMQTT cryptographic library (see Section VI-B3). His-
torically, we first found this bug in February 2021 with an
earlier version of our fuzzer. Here, we repeat our previous
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TABLE 3. The results demonstrated by EBF 2.3 and CBMC 5.43 in the
Concurrency Safety category of SV-COMP 2022.

experiment with the latest version of OpenGBF included in
EBF 4.0. Finally, we run an extensive comparison of the
performance of EBF 4.0 across a wide range of parameter
settings (see Section VI-B5).

1) EBF 2.3 PARTICIPATION IN SV-COMP 2022
EBF 2.3 took part in SV-COMP 2022 in the Concurrency
Safety category [53]. This category features a set of 763 con-
current C programs, 398 of which are safe. The bugs in the
remaining 365 programs are formulated in terms of reacha-
bility conditions: the program is deemed unsafe if a prede-
fined error function is reachable within the given program,
and safe otherwise. These programs contain a number of
intrinsic functions [52]. We explain how we model them in
Appendix A.

In the SV-COMP 2022 Concurrency Safety category, each
participating tool is asked to produce one of the following six
verification outcomes for a given concurrent benchmark (see
the first column in Table 3):

• Correct True. The tool correctly confirms that the pro-
gram is safe.

• Correct False. The tool correctly confirms the presence
of a bug.

• Correct False Unconfirmed. The tool correctly con-
firms the presence of a bug, but the associated counterex-
ample cannot be reproduced by the witness validator
tool developed by the competition organizers.

• Incorrect True. The tool confirms that a program is safe
when it contains a bug.

• Incorrect False. The tool confirms that the program
contains a bug when it is, in fact, safe.

• Unknown. The tool cannot conclude within the given
CPU time and memory limit.

Every verification outcome is assigned a score value (see
the fourth column in Table 3), which strongly discourages
incorrect results. The resulting score for each tool is com-
prised of the sum of the scores obtained for all benchmarks.

The competition took place on the SV-COMP servers fea-
turing 8 CPUs (Intel Xeon E3-1230 v5 @ 3.40 GHz) and 33
GB of RAM. Each benchmark verification task was limited
to 15 minutes of CPU time and 15 GB of RAM.

The version of our tool that we submitted to the com-
petition, EBF 2.3, is based on CBMC v5.43 as a BMC

engine and an earlier implementation of OpenGBF. Namely,
we selected CBMC as it is a state-of-the-art BMC tool that
has consistently been achieving high rankings in the con-
currency category of SV-COMP over the past decade. Also,
the implementation of OpenGBF we used in EBF 2.3 was
more rudimentary. Namely, it had no limit on the number of
threads, no probability of terminating early, and no mecha-
nism to avoid injecting delays inside atomic blocks.
EBF 2.3 reached 7th place out of 20 participants in

SV-COMP 2022, by scoring a total of 496 points. Crucially,
EBF 2.3 outperformed CBMC 5.43, which finished 10th with
460 points. We report the official SV-COMP 2022 results
of these two tools in Table 3. Note that CBMC achieved a
higher score than EBF in predicting programs safety (148 vs
139, respectively). This is an expected outcome, since EBF
dedicates only 6 minutes out of 15 minutes to BMC, and the
rest are used by OpenGBF, which cannot prove whether a
program is safe. At the same time,EBFwas better thanCBMC
at detecting bugs that could be confirmed by the witness val-
idator (234 vs 212), thus scoring extra points.

Moreover, EBF reported only one Incorrect False out-
come, while CBMC produced 3 incorrect verdicts resulting
in 48 penalty points. Interestingly, EBF avoided reproduc-
ing the latter three incorrect outcomes (returning Unknown
instead) since CBMC did not have enough time to wrongly
detect these bugs running as a part of the ensemble (report-
ing Unknown as the result), while OpenGBF also could not
find any bugs in these benchmarks within the remaining time
(hence, another set ofUnknown’s). In contrast, the only incor-
rect outcome (different from the three false positives obtained
by CBMC) produced by EBF was caused by a bug inside
OpenGBF, which made it generate a spurious counterexam-
ple. This issue has been resolved in our most recent EBF
4.0 version.

Overall, EBF 2.3 improved the competition result of
CBMC 5.43 by ∼ 7.8%. In addition, EBF could detect and
confirm a property violation in one benchmark, which could
not be detected by any other dynamic tool in the competition.
These results are a first positive answer to goal EG1; we
present further experimental evidence in Section VI-B2.

2) EBF 4.0 WITH DIFFERENT STATE-OF-THE-ART BMC TOOLS
After the participation of EBF in SV-COMP 2022,
we improved OpenGBF following the algorithmic ideas we
describe in Section IV. Here, we present the results of further
experiments that test whether any BMC tool can be improved
by adding our latest version of OpenGBF on top of it (goal
EG1). To avoid confusion, we refer to the latest implementa-
tion of our ensemble technique as EBF 4.0.

In our evaluation, we run EBF 4.0 over the same bench-
marks from the SV-COMP2022Concurrency Safety category
(see Section VI-B1). However, we omit the SV-COMP aggre-
gate scoring system (see Table 3), since its different weights
can obfuscate the advantages of each verification technique.
Instead, we focus on analyzing the trade-off between proving
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safety4 (BMC only) and bug-finding abilities (both BMC and
GBF) from the raw results.

Furthermore, we consider three additional BMC tools in
our experiments (see Table 4), rather than just CBMC [38].
Namely, ESBMC [37] is a powerful BMC tool that has been
successfully participating in SV-COMP over the past decade.
Similarly, Deagle [54] and Cseq [39] achieved 1st and 2nd
place, respectively, in the Concurrency Safety category at
SV-COMP 2022.

We conduct all our experiments on a virtual machine run-
ning Ubuntu 20.04 LTS with 160 GB RAM and 25 CPU
cores of Intel Core Processor (Broadwell, IBRS) @ 2.1 GHz.
Moreover, we run EBF 4.0 with the following parameters:
maximum thread threshold 5, delay range from 0 [µs] to
105 [µs]. Additionally, we distribute the available runtime in
the following way: we allocate 6 minutes to the BMC engine,
5 minutes toOpenGBF, and 4 minutes for the seeding, aggre-
gation, and witness file generation. These parameter setting
is optimal for the SV-COMP 2022 benchmark we are using,
as we discuss in Section VI-B5. Note that the user can specify
the time distribution between the tools in the ensemble inEBF
via command-line arguments.

Table 4 reports a pair-wise comparison between EBF
4.0 and the four different BMC tools on their own. The
results demonstrate that EBF finds more bugs than all four
BMC engines on their own while reducing the number of
Unknown instances. More in detail, EBF achieves the best
improvement concerning ESBMC, by finding∼ 14.9% more
bugs and correcting one wrong outcome while reducing the
number of safety proofs by only ∼ 7.6%. Similarly, the abil-
ity to double-check any counterexample produced by BMC
allows EBF to correct all three erroneous outcomes produced
by CBMC while showing a marginal difference between the
improvement in bug-finding (∼ 5.6%) and the degradation in
safety proof (∼ 5%). In contrast, when compared to Deagle,
EBF shows no decrease in theCorrect True outcomes, but can
increase the number of discovered bugs by ∼ 5.3%. As for
Cseq, the number of safety proofs produced by EBF declines
by only ∼ 2.9%, while the number of Correct False results
rises by ∼ 6.3%.

Overall, EBF provides a better trade-off between
bug-finding and safety proving than each BMC engine.
On average, EBF finds over 8%more concurrency bugs while
reducing the number of programs declared safe by only 3.8%.
Hence, this evaluation achieves our first experimental goal
(EG1).

3) DETECTING A DATA RACE IN wolfMQTT
We evaluate EBF 4.0 on the wolfMQTT library [55]. MQTT
(Message Queuing Telemetry Transport) is a lightweight
messaging protocol developed for constrained environments
like the Internet of Things (IoT). It employs the publish-

4The term ‘‘prove safety’’ means that the BMC procedure could verify all
reachable states and could not find an execution path that violates the safety
property.

subscribemessaging pattern of publishing messages and sub-
scribing to topics. The wolfMQTT library is a client imple-
mentation of the MQTT protocol written in C for embedded
devices. We use its API to verify the concurrent part of the
protocol implementation.
OpenGBF detects a data race5 in wolfMQTT after run-

ning for 15 minutes and consuming 24 MB of RAM.
In detail, MQTT contains 4 packet structures (i.e., Con-
nect, Publish, Subscribe and Unsubscribe). The Subscribe
function accepts an acknowledgment from the server (i.e.,
broker). This acknowledgment was received through an
unprotected pointer due to the data race detected in function
MqttClient_WaitType, which can lead to an information leak
or data corruption. This issue has been successfully replicated
and consequently fixed6 by the wolfMQTT developers.

Our setup for the experiment is the following. We run
EBF 4.0 on an Intel Core i7 2.7Ghz machine with 8 GB
of RAM running Ubuntu 18.04.5 LTS. We use a Mosquito
server for the communication with the wolfMQTT client [56].
We enable ThreadSanitizer on top of OpenGBF for detecting
the concurrency bugs that are not formulated explicitly in
terms of reaching a predefined error function (i.e., like it is
done in the SV-COMP 2022 concurrency benchmarks) or
violating a safety assertion. Finally, we run our fuzzer with
a thread threshold of Th = 5 and a delay range from 0 [µs] to
105 [µs].

Other tools fail to discover the same vulnerability. More
specifically, both bounded model checkers CBMC v5.43 and
ESBMC v6.8 are unable to detect the data race within the
given time limit. Moreover, the BMC toolDeagle v1.3 cannot
parse the program correctly, since it is using an outdated
version of C parser. Similarly, Cseq v3.0 does not support
programs featuring multiple source files. Finally, neither the
fuzzer AFL nor AFL++ can detect this bug in wolfMQTT.

As a result of this experiment, we can conclude that our
second evaluation goal (EG2) has been achieved.

4) DETECTING MEMORY VIOLATIONS IN REAL WORLD
CONCURRENT PROGRAMS
To show scalability and robustness of EBF, we evaluate it
on several real-world concurrent programs using the same
machine as in Section VI-B3. We consider three multi-
threaded real-world programs: pfscan [30], a multi-threaded
file scanner; bzip2smp [31], a parallel implementation of
bzip2 compressor; swarm1.1 [32], a library that provides
a framework for parallel programming on multi-core sys-
tems. Table 5 presents the number of lines of code (LOC)
for each PUT, the number (NN ) and types of vulnerabilities
detected by EBF, and the median time EBF takes to find
these bugs. We give more detailed information on the latter in
Section VI-B6.
Both tools in EBF detect a NULL pointer deference in

pfscan that is caused by a malloc instruction whose result

5https://github.com/wolfSSL/wolfMQTT/issues/198
6https://github.com/wolfSSL/wolfMQTT/pull/209
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TABLE 4. Pair-wise comparison of the verification outcomes for EBF 4.0 with different BMC tools ‘‘plugged in’’ against their individual performance on
the benchmarks from the Concurrency Safety category of SV-COMP 2022.

is not checked for successful memory allocation leading to a
crash due to writing to a NULL pointer. As for bzip2smp,EBF
finds two bugs. The BMC engine detects a vulnerability in the
BZ2_bzclose() function, which receives a pointer that
can be NULL. Meanwhile, OpenGBF finds a memory leak
in the writerThread() function of bzip2smp. Regarding
swarm 1.1, EBF (in particular, the fuzzer) finds an invalid
pointer dereference caused by an incorrect thread initializa-
tion (i.e., calling the pthread_create function with a
NULL pointer as an argument).

5) OPTIMIZING EBF’s SETTINGS
In the following experiments, we explore different settings
for EBF andOpenGBF. For the first two experiments, we run
EBF with the BMC engine switched off, allowing the fuzzer
to run for 11 minutes. While for the third evaluation, we run
EBF with both engines enabled but with a different amount
of time allotted (out of total 11 minutes) to each of them.

a: MAXIMUM NUMBER OF THREADS IN OpenGBF
Figure 4 shows the result of choosing different values for
the thread threshold on the number of bugs (i.e., the num-
ber of Correct False outcomes) discovered by OpenGBF.
We ran this experiment with the delay range from 0 [µs] to
105 [µs] and probability of exiting p = 0.01%. It can be
seen that the most optimal value lies in the region around
Th = 5, and raising the threshold value leads to fewer bugs
being detected due to the increase in the number of computer
resources required to maintain a more significant number of
active threads. Perhaps, we can suggest that many bugs can
be discovered without considering a large number of threads,
which was also demonstrated by thewolfMQTT data race that
was discoveredwith Th = 5. However, drawing amore robust
conclusion applicable to any concurrent program requires
a more extensive evaluation of our GBF on a larger set of
benchmarks.

b: MAXIMUM AMOUNT OF DELAY IN OpenGBF
Figure 5 illustrates the effect of the amount of delay we
insert to force scheduling in OpenGBF. We use a logarithmic
scale to compare different delay ranges inOpenGBF. Similar
to the evaluations of different thread thresholds, we use the
number ofCorrect False to assess the efficacy of a given delay
bound. We set the thread threshold to 5 active threads in this

FIGURE 4. Number of bugs (i.e., Correct False outcomes) discovered by
OpenGBF in EBF 4.0 for different values of threshold on the maximum
number of active threads.

experiment. We change the upper bound of the delay’s range
from 0 [µs] (i.e., no delay) to 107 [µs] (i.e., 10 seconds). The
results show that increasing the delay upper bound from 0 to
105 [µs] gradually improves the bug-finding capabilities of
OpenGBF from 68 to 88 benchmarks. When we set a large
upper bound on the delay value, we increase the time range
for a thread to stay inactive before it is rescheduled again,
which increases the number of threads interleavings that our
GBF explores. At the same time, choosing a larger upper
bound (e.g., 106 or 107) leads to a decrease in the number
of bugs found due to a higher number of timeouts. This is
expected, as with larger delays the fuzzer spends the majority
of the time waiting rather than executing the code. In general,
we believe that finding the correct trade-off in delay range is
benchmark-dependent.

c: COMPARISON WITH THE ‘‘NON-INSTRUMENTING’’ GBF
As a sanity check, we compare our GBF implementation
against the ‘‘non-instrumenting’’ version of the fuzzer, which
does not feature the PUT instrumentation stage described in
Algorithm 2. We run this experiment with the optimal set of
parameters reported above: i.e., Th = 5, p = 0.01% and the
random delay upper bound of 105 [µs]. The results show a
nearly 50-fold increase in the number of detected bugs. More
specifically, OpenGBF detects 88 out of 365 vulnerabilities
(i.e., 24.2% of the total), while the ‘‘non-instrumenting’’ GBF
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TABLE 5. Evaluation of EBF on real-world concurrent programs. For each program we present its size in terms of the number of lines of code (LOC), the
number of vulnerabilities detected by EBF (NN ), types of corresponding vulnerabilities (NT ), the median time (in seconds) of 20 EBF re-runs, and which
EBF engine (i.e., ESBMC or OpenGBF) detects the corresponding vulnerability.

FIGURE 5. Number of bugs (i.e., Correct False outcomes) discovered by
OpenGBF in EBF 4.0 for different upper bounds of the distributions for
the random delay.

detects only 2 out of 365 (0.55%). This highlights the neces-
sity of using concurrency-aware fuzzers in our EBF.

d: CPU TIME ALLOCATION INSIDE EBF
In this experiment we compare different ways of distributing
the total verification time (11 minutes overall) between the
fuzzer and the BMC engines in EBF. The results demonstrate
a relatively wide range of values (between 3 and 8 min-
utes per engine) within which EBF 4.0 produces identical
results detecting 320 bugs out of 365. At the same time,
when the entire 11 minutes are allocated to the BMC engine,
the number of detected bugs drops by ∼ 5% to 303 out of
365. Conversely, the overall bug-finding performance of EBF
4.0 decreases drastically by over 72.5% when all 11 minutes
are devoted to OpenGBF. On the whole, this result confirms
that BMC tools are better than our GBF tool when used in
isolation. However, combining them both in an ensemble is
going to yield better results across a very different time allo-
cation choices.

e: EARLY THREAD TERMINATION IN OpenGBF
Recall that our GBF fuzzer terminates the execution of each
thread with probability p (see Section IV-B). This imple-
mentation detail is crucial for avoiding potential deadlocks
in the PUT. Figure 7 shows the impact of different values
of p on the bug-finding performance of our GBF on the

FIGURE 6. Number of bugs (i.e., Correct False outcomes) discovered by
EBF 4.0 for different time allocations between the fuzzer and the BMC.

SV-COMP 2022 concurrency benchmark suite. For compari-
son, we implemented an alternative mechanism, which deter-
ministically terminates the execution of each thread after n
instructions. Note that both termination mechanisms are local
to each thread; thus, they do not introduce any synchroniza-
tion overhead. Furthermore, we align the plots according to
each thread’s average number of instructions, which is the
mean 1/p of an exponential distribution.

The results in Figure 7 show that the performance of our
fuzzer is stable across a wide range of values of p. Inter-
estingly, removing the termination mechanism altogether
causes only minimal degradation in the fuzzer performance.
Moreover, there is no significant difference between the
probabilistic and deterministic termination mechanisms as
the average number of instructions per thread increases.
However, the performance of the probabilistic mechanism
degrades more slowly as the average number of instruc-
tion decrease. We speculate that the probabilistic termination
mechanism allows our GBF to explore a large number of
shallow paths and a few deeper ones, thus slightly increas-
ing the chance of finding a bug for a low average number
of instructions. Finally, we select the best parameter setting
p = 0.01% for the rest of our experiments.

6) ANALYZING THE NON-DETERMINISM OF OUR FUZZER
Fuzzers are fundamentally non-deterministic programs.
As such, the performance of EBF may vary across different
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FIGURE 7. Number of bugs (i.e., Correct False outcomes) discovered by
OpenGBF in EBF 4.0 for different early thread termination strategies.

runs. We show the effects of non-determinism by re-running
our GBF 20 times on the benchmarks of the present experi-
mental section.

a: NON-DETERMINISM ON SV-COMP 2022 SUITE
We run our GBF 20 times with the same optimal settings
described in VI-B5. In the worst case, our fuzzer finds only
82 bugs, whereas in the best case, it finds 89. Given that
there are 365 bugs in the SV-COMP 2022 suite, we expect the
distribution to be approximately Gaussian, with an empirical
mean 85.2 and standard deviation 2.0. Given that the variance
in the total number of bugs is small, we can trust the results of
Figures 4, 5, 6 and 7 to give us robust values for the optimal
EBF setting.
Furthermore, we inspect the impact of fuzzer non-

determinism on each individual file in the SV-COMP
2022 benchmark suite. Specifically, there are 74 files for
which our fuzzer always finds a bug across the 20 indepen-
dent runs. Among those, we select the ones with the smallest,
median, and largest variance. We plot the performance of our
GBF in these three representative cases in Figure 8. Note that
the violin shows the extremes of the distributions, together
with their median and kernel density estimation. Since these
distributions are highly non-Gaussian, we omit the mean.

b: NON-DETERMINISM ON wolfMQTT AND REAL-WORLD
PROGRAMS
We re-run our GBF 20 times on thewolfMQTT library and the
three real-world programs listed in Table 5. The results are
shown in the violin plot of Figure 8. In the case of pfscan and
bzip2smp, our GBF is able to find bugs almost instantly (see
also Table 5). In contrast, we can observe more variance on
wolfMQTT and swarm 1.1. In the former case, the distribution
is fairly compact in its support [10.6s, 66.8s]. In the latter
case, the distribution has a long tail. More specifically, the
median time is 9.5s, 75% of the runs find a bug in less than
40s, but there are also occasional outliers where the first bug
is reported after 300s.

FIGURE 8. Non-determinism of OpenGBF across 20 re-runs of the
SV-COMP’22 benchmark suite, wolfMQTT and the real-world programs
from Table 5.

C. LIMITATIONS
We identify several possible limitations to our current work.

1) INCOMPLETENESS OF FUZZING FOR PROVING SAFETY
Fuzzing works by executing the program along many con-
crete paths, hoping to find the one that leads to vulnerability
detection. Consequently, it cannot formally guarantee that we
can exhaustively explore the entire state-space of the pro-
gram. As a result, by design, EBF prioritizes bug-finding over
proving a program’s safety.

2) SOURCES OF INCORRECT VERDICTS IN EBF
AlthoughEBF does not produce conflicting verdicts using the
aggregation matrix from Table 2, the correctness of EBF’s
verification verdicts largely depends on the implementation
of the tools used in the assembly. For example, if the BMC
engine produces a wrong Safe outcome while the GBF cannot
find any violations within the given time limit (thus returning
Unknown) the final verification verdict becomes Safe. Sim-
ilarly, our GBF may become a source of an incorrect Bug
verdict when BMC reports Unknown and the GBF crashes
because of an internal bug within the GBF’s implementation
rather than an actual vulnerability inside the PUT. Fortu-
nately, this is not critical since EBF generates a witness file
that can be further evaluated using witness validators (see
Appendix B).

3) CHOICE OF PARAMETER SETTINGS IN EBF
Although we conduct our evaluations over a set of more
than 700 multi-threaded C programs (see description in
Section VI-B1), this benchmark might not represent the
real-world picture of concurrent software. Thus, the optimal
parameter settings for our GBF are likely to differ on another
set of multi-threaded benchmarks. Nevertheless, we expect
that the parameter tuning procedure on a different set of
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benchmarks will follow similar patterns to the ones shown
in Figures 4 and 5.

VII. RELATED WORK
Throughout our paper, we describe various existing stud-
ies that cover relevant tools and techniques. In this section,
we collate and expand on these references. Our goal here is
to clarify the context in which our research occurs.

A. BOUNDED MODEL CHECKING (BMC)
Bounded model checking has been successfully applied to
the verification of concurrent C programs over the past
years [57]. There exist several state-of-the-art boundedmodel
checkers, such as ESBMC [14] and CBMC [15] that can
handle both sequential and multi-threaded C programs and
detect concurrency bugs (e.g., data races, deadlocks, etc.)
and other vulnerabilities (e.g., buffer overflows, dangling
pointers, etc.). In particular, ESBMC handles concurrency by
performing a depth-first search through all possible thread
interleavings, up to the given maximum number of context
switches [58]. In contrast, CBMC encodes each concurrent
execution unit separately and joins them with partial order
formulae [59].

Many other BMC tools demonstrate their efficacy in the
verification of concurrent programs at the annual SV-COMP
software verification competition [60]. For example,
Lazy-CSeq [18], [61] - one of the leaders in the concurrency
category at SV-COMP over the past decade - works by trans-
lating a multi-threaded C program into a non-deterministic
sequential program that considers all round-robin schedules
up to a given number of rounds. Then the obtained sequen-
tial program is verified using a bounded model checker for
sequential programs (e.g., CBMC, ESBMC). Similarly, Dea-
gle - the winner in the concurrency category in SV-COMP
2022 [62] - introduces a novel ordering consistency theory
for multi-threaded programs [17], and implements a more
efficient solver for this theory on top of CBMC (front-end)
and MathSAT [63] (back-end).

B. FUZZING
Traditional techniques for fuzzing sequential programs do
not translate well for concurrent programs since they let the
fuzzer control only the input of the program and not the
scheduling of its threads [23]. Existing proposals towards
concurrency-aware fuzzing attempt to rectify this issue (see
Table 1 for an overview).
ConAFL [34] is a gray-box fuzzer that specializes on user-

space multi-threaded programs.ConAFL employs static anal-
ysis to locate sensitive concurrent operations to determine the
execution order, focusing on three types of invalid memory
access vulnerabilities: buffer-overflow, double-free, or use-
after-free. The thread interleavings are controlled indirectly
by changing the execution priority of each thread at assembly
level. As an alternative, the authors mention the possibility
of injecting sleep commands at the code level, but they do
not test it. Finally, the authors rely on the default mutation

feedback of the sequential fuzzer AFL [64], which is based
on branch coverage. Due to its heavy thread-aware static and
dynamic analysis, ConAFL cannot scale to large programs.
Furthermore, the authors’ static analysis tool is not publicly
available [65].

Similarly, the gray-box fuzzer MUZZ [23] employs static
analysis to identify blocks of code that have a higher chance
of triggering a concurrency vulnerability. When the code is
instrumented, such blocks receive heavier instrumentation
which helps the fuzzer dynamically track the execution of
different schedules. To encourage the exploration of a large
number of interleavings, MUZZ manipulates the execution
order by assigning random priorities to the threads at assem-
bly level. Despite the promising experimental results,MUZZ
is not yet publicly available.

A simpler approach is implemented in the tool Con-
Fuzz [43], which lets the natural non-determinism of the oper-
ating system guide the exploration of different interleavings
by random chance. To compensate for that,ConFuzzmodifies
the standard branch coverage feedback of themutation engine
by measuring how far each block of code is from a thread-
related instruction. Seeds that execute blocks of code closer
to such instructions have a higher chance of survival at each
mutation. Unfortunately, theConFuzz tool [43] is not publicly
available.

Recently, another concurrency-aware gray-box fuzzer has
been proposed in [42]. This tool, called AutoInter-fuzzing,
uses static analysis to identify instruction pairs that access
the same memory location but are executed by different
threads. Then, the program code is instrumented with syn-
chronization barriers that control the order of execution of
the instruction in each pair. Every time one such pair is
encountered during regular fuzzing, the program is re-run,
forcing the opposite execution order of the pair. Unfor-
tunately, this strategy for exploring interleavings makes
AutoInter-fuzzing suffer from low path coverage compared
to other fuzzers. In line with most of the fuzzers listed
in the present section, AutoInter-fuzzing is not publicly
available.
Conzzer [45] improves upon the ideas ofAutoInter-fuzzing.

More specifically, the instruction pairs are obtained at run-
time and contain information about the execution trace. The
authors argue that the fuzzer can be used to explore different
interleavings for a critical region by being context-aware.
They also implemented their own mutation algorithm, result-
ing in the fuzzer being able to explore more interleaving than
AutoInter-fuzzing.

On a different note, Krace [44] is a fuzzer for kernel file
systems that specializes in finding data races. We mention it
here because it also employs the interleaving control strat-
egy of injecting delays in the program code. Furthermore,
it augments the standard branch coverage metrics by explic-
itly tracking the order of execution of any pair of instructions
that access the same memory location. This feedback induces
the mutation engine to explore a larger number of thread
interleavings. The source code of [44] is available but cannot
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be used in our research as it targets data races in the kernel
space.
OpenGBF (see Section IV) implements many of these

ideas, including instrumenting the code with sleep instruc-
tions, forcing the exploration of random interleavings
and letting the fuzzer control the randomness through
its mutation engine. In the future, if the aforementioned
concurrency-aware fuzzers become open source [29], it will
be possible to test their efficacy when paired with BMC tools,
as we do here with our GBF tool.

C. HYBRID TECHNIQUES
Recently, several efforts have combined fuzzing with various
forms of symbolic execution and static analysis [66]. The
rationale behind these efforts is that fuzzing alone struggles
to find ‘‘deep’’ bugs and vulnerabilities because the random
mutations introduced in the input have a low probability of
hitting complex paths in the program. In contrast, if the fuzzer
is given a set of input seeds that are already close to the
correct target, the evolutionary algorithm has a higher chance
of exposing the bugs and vulnerabilities.

To this end, Ognawala et al. [24] propose to increase the
coverage of fuzzing by augmenting the set of input seeds with
a round of concolic execution.With it, the code coverage rises
significantly. There are other examples of tools employing
concolic execution, such asDriller [67] andQSYM [68]. Sim-
ilarly, Chowdhury et al. [26] are concerned with the inability
of off-the-shelf fuzzers to discover inputs that pass complex
blocks of program logic. Their solution is using a bounded
model checker to solve the corresponding reachability prob-
lem and produce concrete input seeds that satisfy the complex
conditions of the program under analysis. The fuzzer is then
free to explore the search space beyond that. On a different
note, Alshmrany et al. [25] employs a selective fuzzer if the
model checker of theirFuSeBMC tool fails to find all vulnera-
bilities. Such fuzzer uses the statistics collected by the model
checker to create a particular set of input seeds.
EBF is similar to these hybrid tools in the sense that

it exploits the combined advantages of fuzzing and model
checking. However, the aforementioned hybrid tools are built
around a close integration between the two techniques, often
requiring specific assumptions about the verification task at
hand. In contrast, our ensembles are more flexible and allow
virtually any existing tool to be combined together. Finally,
none of the existing hybrid approaches can verify concurrent
programs.

D. OTHER TECHNIQUES
Other techniques for finding vulnerabilities in concurrent
programs have been proposed. Wen et al. [69] propose a con-
trolled concurrency testing technique called Period, which
uses a periodical execution to model the execution of con-
current programs. They feed the periodical executor with a
key point slice of the target program and apply an analyzer
to collect feedback on runtime information. In contrast, Pea-
hen [70] is an approach to combine context-sensitive and

context-insensitive static techniques, namely context reduc-
tion. This context reduction consists of filtering vulnerabil-
ities found by a context-insensitive technique with a path
feasibility check. Afterward, a context-sensitive approach is
used to validate the vulnerability. Finally, QL [71] is a tool
that employs reinforcement learning to guide the exploration
of interleavings. This tool uses an explicit scheduler.

On a different note, there are a few methods that improve
on classic verification techniques. For example, in dynamic
analysis, some works focus on improving soundness and
completeness [72], [73], while other works focus on creating
a new value flow analysis for interprocedural data flow that
detects concurrency issues [74]. At the same time, there are
techniques that employ a different flavor of Model Check-
ing, specifically stateless model checking (SMC) [75].The
method was born from the intuition that caching states in
Model Checking was not as effective as a stateless approach.
For example, RCMC [76] and GenMC [77] rely on having a
code interpreter that is able to compute a reachability graph
over the program, and use system calls during the analysis to
provide more accurate results.

VIII. CONCLUSION
Discovering vulnerabilities in concurrent programs remains
a challenging problem due to the extreme explosion of the
search space in the number of possible interleavings. In this
paper we focus on two existing approaches to this problem:
Bounded Model Checking (BMC) and Gray-Box Fuzzing
(GBF). When used on their own, each approach can only find
a subset of the vulnerabilities present in state-of-the-art con-
current benchmarks. Our contribution is building ensembles
comprising both BMC and GBF tools, thus exploiting the
complementary advantages of these two approaches. We call
such ensembles EBF.

A major hindrance to the use of EBF ensembles is the
current lack of mature open-source GBF tools that support
concurrent testing. For this reason, we first propose our
own implementation of state-of-the-art concurrency-aware
fuzzing techniques, and make OpenGBF publicly available.
Then, we combine it with a large variety of state-of-the-art
BMC tools, and show that the EBF ensembles so created can
find up to 14.9% more concurrency vulnerabilities than the
BMC tools on their own. Furthermore, thanks to OpenGBF,
we are able to discover a data race vulnerability in the
open-source wolfMqtt library.

Overall, we demonstrate that EBF is an effective technique
for finding vulnerabilities in concurrent programs. Still, the
capability of each ensemble is directly related to the com-
plementary qualities of its BMC and GBF building blocks.
As a consequence, we believe that improving and specializing
each of the two ensemble components is the most promising
direction for future works. More in detail, we need faster
BMC tools that rely on rougher approximations of the pro-
gram under test, in order to produce a larger number of
meaningful counterexamples that the GBF tool can exploit
as seeds.
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APPENDIX A
HARNESSING FUNCTION
Evaluating the SV-COMP 2022 benchmarks [52] requires
specific functions that must be supported by every tool
participating in the competition. As a result, we model
some functions for non-determinism and synchronization.
The non-determinism is used to get the value of the input
from the fuzzer. The synchronization is implemented using
a set of functions that guarantee atomicity (i.e., to ensure
no thread interleavings during a block of instructions).
In order to make AFL++ understand the SV-COMP spe-
cific semantics, we implement these functions as a run-time
C library and link it with the benchmark at compilation
time. We make the non-deterministic input functions to read
the values from stdin (i.e., standard input) when AFL++
fuzzes the PUT. To support atomicity, we rely on func-
tions EBF_atomic_begin and EBF_atomic_end described in
Section IV-B.

APPENDIX B
COUNTER EXAMPLE EXTRACTION
EBF needs to convert the crash reports discussed in
Section IV-C into GraphML-based format to allow automatic
witness checkers to validate the produced witness by tracking
the execution path leading to the reported bug [78]. This
feature of EBF is utilized in two cases: 1) when OpenGBF
reports a bug, and/or 2) when the BMC engine produces a
counterexample.
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