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ABSTRACT Metaheuristic algorithms are becoming powerful methods for solving continuous global
optimization and engineering problems due to their flexible implementation on the given problem. Most
of these algorithms draw their inspiration from the collective intelligence and hunting behavior of animals in
nature. This paper proposes a novel metaheuristic algorithm called the Giant Trevally Optimizer (GTO).
In nature, giant trevally feeds on many animals, including fish, cephalopods, and seabirds (sooty terns).
In this work, the unique strategies of giant trevally when hunting seabirds are mathematically modeled
and are divided into three main steps. In the first step, the foraging movement patterns of giant trevallies
are simulated. In the second step, the giant trevallies choose the appropriate area in terms of food where
they can hunt for prey. In the last step, the trevally starts to chase the seabird (prey). When the prey is
close enough to the trevally, the trevally jumps out of the water and attacks the prey in the air or even
snatches the prey from the water surface. The performance of GTO is compared against state-of-the-art
metaheuristics for global optimization on a set of forty benchmark functions with different characteristics
and five complex engineering problems. The comparative study, scalability analysis, statistical analysis based
on the Wilcoxon rank sum test, and the findings suggest that the proposed GTO is an efficient optimizer for
global optimization.

INDEX TERMS Giant trevally optimizer (GTO), optimization, metaheuristics, exploration, exploitation,
benchmark functions, constrained benchmark functions.

I. INTRODUCTION
The aim of optimization is to define the best possible solution
for the system parameters so that the design can be completed
at the lowest possible cost. Real-world optimization tasks
tend to be discrete or unrestrained by any particular con-
straints [1], [2]. Consequently, it is difficult to obtain optimal
solutions using conventional mathematical-based program-
ming methods. Hence, optimization techniques have been
developed in recent years and can be found in almost all
scientific domains to promote the performance of various
systems and minimize their computational costs [3]. There
are some drawbacks and limits to conventional optimization
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approaches, such as unknown solution space and the potential
to become stuck at a local optimum; indeed, they also have
only a single solution [4].

There have been numerous novel Metaheuristic Algo-
rithms (MAs) proposed in recent years to resolve these
concerns. These algorithms have been used in a number
of contexts, which is because of how simple they are and
how easy it is to use them [5], [6]. Also, the main parts
of these methods do not depend on gradient information or
the mathematical properties of the objective landscape [7].
However, the problem with most MAs, though, is that they
are often very sensitive to the way that user-defined param-
eters are tuned. Another drawback is that there is no guar-
antee of finding the global best solution due to its stochastic
nature [8].

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121615

https://orcid.org/0000-0002-0998-876X
https://orcid.org/0000-0002-5181-8713


H. T. Sadeeq, A. M. Abdulazeez: GTO: A Novel Metaheuristic Algorithm for Global Optimization

For the most part, MAs fall into one of two categories:
single-solution based, and population-based. In the first cate-
gory, anMAmay employ a single solution or agent to perform
the optimization process. This is referred to as trajectory
methods. Tabu Search [9] and Simulated Annealing [10] are
two examples of these methods. On the other hand, the major-
ity of modern MAs are population-based or multi-agent,
as they traverse search space using a set of points or individ-
uals. The Firefly algorithm [11], the Cuttlefish optimization
algorithm [12], and the Lion optimization algorithm [13] are
examples of this approach. This strategy is appropriate for
global searching since it allows for both global exploration
and local exploitation until stopping criteria are met.

No matter how different MAs are, they all have one com-
mon trait: the searching steps have two phases: exploration
(diversification) and exploitation (intensification) [14]. Dur-
ing the exploration phase, the algorithm should maximize
and promote the use of its randomized operators in order
to exhaustively investigate various regions of the search
space. As a result, during the initial stages of the searching
process, the exploratory behaviors of a well-designed algo-
rithm should have an enriched-enough random character to
effectively distribute more randomly-generated solutions to
diverse areas of the problem topography [15]. The exploita-
tion phase typically follows the exploration phase. During this
phase, the algorithm makes an effort to concentrate on the
neighborhood of higher-quality solutions inside the feature
space. An efficient algorithm ought to be able to make a
decent balance between exploration and exploitation. Conse-
quently, the chance of becoming locked in local optima and
the disadvantages of premature convergence rises [16].

As so many MAs have already been developed, the main
question is whether or not there is still a need for more.
The answer to this critical question is the No Free Lunch
(NFL) theorem [17]. When it comes to solving optimization
problems, some algorithms are more effective than others.
The NFL theorem explains this fact because each real-world
problem has its own unique characteristics and mathematical
model. Therefore, there is no guarantee that a certainMAwill
solve all optimization problems in an efficient manner.

Another important concern in the procedure for optimality-
seeking is the randomness facility of the search space, which
may not always produce an adequate optimal solution. As a
result, many MAs have been developed by researchers to
provide acceptable optimal solutions, or at least as optimal
as possible. Based on the foregoing, the authors of this study
were inspired to propose a novel optimizationmethod that can
yield satisfactory results for a wide variety of optimization
tasks.

The novelty and contribution of this research are in the
design of a new MA called the Giant Trevally Optimizer
(GTO), which is based on the behavior and strategies of giant
trevallies during hunting seabirds. Each step of the proposed
GTO is outlined, and a mathematical model is provided.
Forty objective functions of unimodal and multimodal types
with different characteristics have been utilized to evaluate

the effectiveness of the proposed GTO in optimization. Fur-
thermore, GTO is applied to five complex engineering prob-
lems. Finally, the GTO’s performance is compared with other
well-known optimization algorithms: Differential Evolution
(DE) [18], Gravitational Search Algorithm (GSA) [19], Gray
Wolf Optimization (GWO) [20], Moth Flame Optimization
(MFO) [21], Particle Swarm Optimization (PSO) [22], and
Whale Optimization Algorithm (WOA) [23].

The paper is organized as follows: section 2 describes the
relatedworks; section 3 explains the behavior of giant trevally
with the proposed algorithm; section 4 presents the proposed
flow chart and the pseudo code; and section 5 presents the
results. Finally, section 6 discusses the main conclusions and
findings.

II. RELATED WORKS
In general, metaheuristics can be classified into four different
categories:

A. EVOLUTIONARY ALGORITHMS (EA)
EAs are based on the principles of species evolution theory.
The Genetic Algorithm (GA) is one of numerous EAs that
fall within this group [24]. The concept of GA stems from
Darwin’s idea of natural selection. The main components of
this algorithm are: selection, crossover, and mutation, which
are used to produce new generations. Differential Evolution
(DE) [18] is another method inspired by natural evolution.
The DE algorithm consists of four basic steps: random ini-
tialization of the population, mutation, recombination, and
finally selection. The main difference between the GA and
the DE algorithm is in the selection process for generating
the next generation.

Inspired by the geographical dispersal of species, including
patterns of movement and extinction, based on this occur-
rence, [25] came up with the Biogeography-based optimizer
(BBO) algorithm, which is a population-based metaheuris-
tic for global optimization. The Black Widow Optimization
Algorithm (BWO) [26] is another evolutionary algorithm
inspired by the evolution process of a spider population. Can-
nibalism is an essential part of this approach. Convergence
occurs early in this stage because species with poor fitness
are excluded.

B. SWARM INTELLIGENCE (SI) ALGORITHMS
SI refers to developing algorithms that are inspired by the
collective behavior of diverse animal species. The most well-
known of these algorithms is Particle Swarm Optimization
(PSO) [22]. The individual search agent is called a particle.
Each particle has a velocity and a position vector allocated to
it based on its social and individual experience.

The foraging activity of real ants acts as the inspiration
for Ant Colony Optimization (ACO) [27]. Ants conduct a
random search for food in the direct proximity of their nest.
Ants carry some of their food back to the nest as soon as they
identify a food source that meets their needs. The ant leaves
behind a chemical pheromone trail as it makes its way back.
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Depending on the amount and quality of food, the amount of
pheromone deposited will lead other ants to the food source.

It is worthmentioning here that the GTO that is proposed in
this paper falls into this category, which mimics the hunting
strategies of giant trevally marine fish.

C. HUMAN-BASED-ALGORITHMS (HA)
This category includes algorithms that are based on human
behavior. Walking, talking, and others, as well as mental pro-
cesses, are all incorporated into the algorithms. An example
of this class of algorithms is the Gaining Sharing Knowledge
based algorithm (GSK) [28], which mimics the process of
gaining and sharing knowledge during the human life span.
To accomplish optimization, GSK uses two mathematical
models: a junior gaining and sharing phase and a senior
gaining and sharing phase. Another important algorithm
for this category is Teaching–Learning-Based Optimization
(TLBO) [29]. TLBO takes its inspiration from the natural
teaching-learning phenomenon of a classroom and is divided
into two parts. The first part consists of the ‘Teacher Phase’
and the second part consists of the ‘Learner Phase’.

D. SCIENCE-BASED-ALGORITHMS (SCA)
Modeling physical occurrences or chemical rules is the focus
of science-based algorithms (e.g., ion motion, gravity, elec-
trical charges, etc.). Simulated annealing (SA) [10], Charged
System Search (CSS) [30], gravitational search algorithm
(GSA) [19], Galaxy-based Search Algorithm (GbSA) [31],
heat transfer search (HTS) [32], Curved Space Optimiza-
tion (CSO) [33], Gases Brownian Motion Optimization
(GBMO) [34], and Central Force Optimization (CFO) [35]
are regarded as the most popular SCAs. It is worth noting
here, that Table 1 summarizes several recent MAs.

III. GIANT TREVALLY OPTIMIZER (GTO)
This section provides a description of the proposed MA,
which derives its inspiration from nature and is called the
Giant Trevally Optimizer (GTO).

A. INSPIRATION AND BEHAVIOR OF GIANT
TREVALLY DURING HUNTING
The giant trevally (Caranx ignobilis) is a large marine preda-
tor in the jack family. It is also called the giant kingfish. They
are abundant in the Indian and Pacific oceans, such as in areas
around Australia and New Zealand. They are also found off
the East Africa and around the Hawaiian Islands [36].

Giant trevally is usually silver with some dark spots. It can
be recognized by its sharp head, strong tail scutes, and numer-
ous additional anatomical details. Their height can reach up
to 170 cm and 80 kg of weight. Their daily diet consists of
fish, cephalopods, crustaceans, and seabirds [37].

Literature investigated the movement of giant trevallies
within their ecosystems and between habitats as the search
space expands. Some data suggests that adult giant trevallies
make daily and seasonal movements of up to 9 kilometers

within their roaming range [38]. Juveniles can migrate up to
70 kilometers from their home atolls and reefs [39].

In most of its habitats, the giant trevally is a top predator
and uses intelligent ways to hunt. The giant trevally is known
to hunt alone and in groups (schools). According to [40],
grouped (schooled) predators are most effective at capturing
schooled prey. The most effective member of a group or
school at capturing prey is the leader, or first predator.

During the dry season, over half a million terns crowd onto
one of the remote atolls in the Indian Ocean. It was reported
that about fifty giant trevallies come from neighboring reefs,
attracted by this abundance of potential prey, where the juve-
nile terns start learning to fly. After specifying the hunting
area, the giant trevally starts to stalk (chase) its prey, then
jumps out of the water and attacks the prey (seabird).

These novel hunting strategies of foraging moving pat-
terns, choosing the appropriate area in terms of quantity of
food, and jumping out of water to attack and catch the prey
were the main inspiration in the design of the GTO.

B. INITIALIZATION
Similar to other population-based MAs, GTO starts the opti-
mization process by randomly generating initialization solu-
tions called giant trevallies. In GTO, each giant trevally is a
feasible or a candidate solution to the optimization problem.
From a mathematical perspective, each member of the popu-
lation is a vector, and these vectors constitute the population
matrix of the algorithm. The GTO population members are
modeled according to (1):

X =



X1
...

Xi
...

XN


N×Dim

=



x1,1 . . . x1,j . . . x1,Dim
...

. . .
... . .

. ...

xi,1 . . . xi,j . . . xi,Dim
... . .

. ...
. . .

...

xN ,1 . . . xN ,j . . . xN ,Dim


N×Dim

(1)

where, X is the candidate solution of GTO, Xi is the ith candi-
date solution of GTO,Dim is the number of decision variables
of given problem,N is the number of GTOmembers, xi,j is the
value of the jth variable specified by the ith candidate solution.

Once the number of population and number of dimensions
have been selected, they will remain the same for the duration
of the experiment. It is necessary to randomly assign positions
to each trevally in the problem’s solution space before they
can begin to function. This random assignment must cover
all feasible regions in the N ×Dim search space, as shown in
the following equation:

Xi,j = Minimumj + (Maximumj −Minimumj)× R (2)
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TABLE 1. Some recent MAs.

where i = 1, 2, . . . ,N and j = 1, 2, . . . ,Dim, R is a random
number in the interval [0, 1].Maximumj,Minimumj represent
the restrictions on the defined problem for the jth dimension
i.e., the maximum and minimum value that a population
member can have.

As previously stated, each population member in the sug-
gested GTO is a candidate solution to the presented problem.
As a result, the objective function of the given problem can
be assessed using each of the candidate solutions. Accord-
ing to (3), a vector is used to represent the set of these
values:

F =



F1
...

Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN )


N×1

(3)

where Fi denotes the ith member’s value of the objective
function, and F indicates the collection of these values as the
objective function vector.

C. MATHEMATICAL MODEL OF THE PROPOSED GTO
The proposed GTO algorithm mimics the behavior of giant
trevallies during hunting seabirds. Consequently, the opti-
mization procedures of the proposed GTO algorithm are
represented in three steps: extensive search using Levy flight,
choosing area step to determine the hunting area, and chasing
and attacking the prey by jumping out of the water. Hence,
the exploration phase of the GTO is represented in the first
two steps, and the third one represents the exploitation phase
of the GTO. The giant trevally when hunting in the nature is
shown in Fig.1.

1) STEP 1: EXTENSIVE SEARCH
If we consider the nature of giant trevallies and, as mentioned
earlier, giant trevallies can travel long distances for their daily

121618 VOLUME 10, 2022



H. T. Sadeeq, A. M. Abdulazeez: GTO: A Novel Metaheuristic Algorithm for Global Optimization

FIGURE 1. Giant trevally jumping out of the water and attacking the sooty
tern.

diet. Hence, in this step, foraging movement patterns of giant
trevallies are simulated using (4):

X (t + 1) = BestP × R+ ((Maximm−Minimum)

×R+Minimum)× Levy(Dim) (4)

where X (t + 1) is the next-iteration giant trevally position
vector, BestP indicates the current search space chosen by
giant trevallies based on the best position determined during
their last search, R is a random number that takes a value
between 0 and 1. Levy(Dim) is the Levy flight, which is a
special class of non-Gaussian stochastic process whose step
sizes are determined by the so-called Levy distribution [41].
The ability of the algorithm to perform a global search is
aided by the occasional large steps it takes. Furthermore,
the main advantages of using Levy flight are the avoidance
of local optima and the improvement of the convergence
rate [42].

In this regard, it is worth mentioning that numerous studies
have shown that the behavior of Levy flight is exhibited
by a wide variety of animals, including marine predators
[43], [44]. Levy(Dim) be calculated using (5):

Levy(Dim) = step×
u× σ

|v|
1/β

(5)

where step is the step size, which is fixed to 0.01, β is the
index of the Levy flight distribution function which can take
values ranging from 0 to 2 and has been set to 1.5 in this
paper, u and v are random numbers normally distributed in
the range (0, 1). σ is calculated by using (6):

σ =

 0(1+ β)× sine
(
πβ
2

)
0
(
1+β
2

)
× β × 2

(
β−1
2

)
 (6)

2) STEP 2: CHOOSING AREA
In the choosing area step, giant trevallies identify and select
the best area in terms of the amount of food (seabirds)
within the selected search space where they can hunt for prey.
Equation (7) simulates this behavior mathematically.

X (t + 1)=BestP×A×R+Mean_Info− Xi (t)×R (7)

where X (t + 1) is the position vector of giant trevallies in the
next iteration t ,A is a position-change-controlling parameter
with a range from 0.3 to 0.4. Xi (t) is the location of the giant
trevally i, at time t (current iteration). Meanwhile,Mean_Info
which refers to the mean, indicates that these giant trevallies
have used up all the available information from the previous
points and can be calculated using (8).

Mean_Info =
1
N

∑N

i=1
Xi(t) (8)

The effectiveness of the choosing area step, i.e., (7), has been
evaluated using the Sphere function with 10 solutions (search
agents) and five iterations. Fig. 2 illustrates that using the
best points and the mean as a basis for the choosing area step
enhances the quality of all solutions. Fig. 2f shows that all the
search agents are located near the best point.

3) STEP 3: ATTACKING
In the previous step and after specifying the best area for
hunting. In this step, which represents the exploitation (inten-
sification) phase of the GTO, the trevally starts to chase the
bird (prey). Here, and finally, the trevally attacks the bird
when it gets close enough to the bird by making an acrobatic
jump out of the water and catching the bird.

In order to simulate the behavior of a giant trevally during
chasing and attacking the prey, it was assumed in GTO that
trevallies are affected by visual distortion, which is mainly
caused by the refraction of light. Refraction of light is the
deflection of the trajectory of a light wave as it traverses the
interface between two media, such as water, glass, and air.
As shown in Fig. 3, light from point A in the 1st medium
enters the 2nd medium through the intersection point S, hence
the refraction occurs, and arrives point B at last. It should be
mentioned here that when light moves from a rarer medium
like air to a denser medium like water, it bends toward the
normal as it enters the denser medium of water. According to
Snell’s law [45], both the incident ray and the refracted ray
must form an angle with the normal to the surface at the point
of refraction. The medium that the light rays are traveling
through also plays a significant role. Snell’s Law makes this
connection clear with the use of refractive indices, which are
fixed values for certain medium.

In GTO, as indicated in Fig. 4, the bird is behaving as an
object, and the giant trevally is acting as an observer. The
visual distortion is represented by the dashed line in Fig. 4,
which indicates the apparent (false) height of the bird, which
is always seen to be higher than its actual height due to the
refraction of the light.

Here, if we know the angle of incidence, it is possible to
predict what the angle of refraction will be, and likewise,
if we know the angle of refraction, it is possible to pre-
dict the angle of incidence. The Snell’s law is demonstrated
below in (9).

η1 sin θ1 = η2 sin θ2 (9)
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FIGURE 2. a) Random population of 10 solutions. b) Choosing area after one iteration. c) Choosing area after two iterations. d) Choosing area
after three iterations. e) Choosing area after four iterations. f) Choosing area after five iterations.

where η1 = 1.00029 and η2 = 1.33 represents the absolute
refractive index of air and water, respectively, whereas θ1 and
θ2 represents the angle of incidence and angle of refraction
respectively. θ2 is a random number in the interval [0, 360].
From (9), θ1 can be calculated using below (10):

sin θ1 =
η2

η1
sin θ2 (10)

Then, the visual distortion V can be calculated using (11):

V = sin(θ◦1 )×D (11)

where sin is the sine of variable in degrees, D is the distance
between the prey and the attacker, and can be calculated
using (12):

D = |(BestP − Xi (t))| (12)
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FIGURE 3. Principle of light refraction.

where BestP is the best-obtained solution so far; it represents
the location of the prey.

Then the behavior of giant trevally when chasing and jump-
ing out of the water is mathematically simulated using (13).

X (t + 1) = L+ V +H (13)

whereX (t + 1) is the solution of the next iteration of t , which
is generated by the attacking step, L represents the launch
speed to simulate chasing the bird and can be calculated
using (14):

L = Xi (t)× sin(θ
◦

2 )× F_obj(Xi (t)) (14)

where F_obj(Xi (t)) refer to the fitness value of X at the
current iteration t .

The last term H in (13) specifies the jumping slope
function that enables the algorithm to adaptively perform
an appropriate transition from the exploration phase to the
exploitation phase and can be calculated using (15):

H =R× (2− t ×
2
T
) (15)

where t and T refer to the current iteration and the maximum
number of iterations respectively, R is a random number and
here refer to different motion sense of the giant trevally during
exploitation step.

It is worth mentioning that H has a decreasing trend
from 2 to 0 during the course of iterations and the algorithm

FIGURE 4. Visual distortion in GTO.

try to exploit the neighborhood of the solutions during the
exploitation step.

IV. PROPOSED FLOW CHART AND
PSEUDO-CODE OF GTO
In this section, the flowchart of GTO is illustrated in
Fig. 5, Moreover, the pseudo-code of GTO is demonstrated
in Algorithm 1.

V. EXPERIMENTAL ANALYSIS AND RESULTS
To appropriately validate the performance of the GTO algo-
rithm, two sets of experiments are conducted, and the exper-
imental results provided by GTO are assessed and compared
to those provided by other algorithms.
Case 1: The first experiment evaluates the performance of

algorithms frommultiple perspectives using forty benchmark
test functions with various types of characteristics.
Case 2: The effectiveness of the GTO algorithm is

evaluated in the second experiment using five challenging
engineering design optimization problems.

A. CASE 1: BENCHMARK TEST FUNCTIONS
Forty benchmark functions, which are presented in Appendix
A and fully described in [46], [47], are used in this exper-
iment. The two main classes of functions are represented in
this sizeable test suite: unimodal functions with separable and
non-separable characteristics; and multimodal functions also
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FIGURE 5. The flowchart of GTO algorithm.

with separable and non-separable characteristics. Since uni-
modal functions only have a single global optimum, they are
well-suited for evaluating the exploitative (intensification)
capabilities of algorithms, whereas multimodal functions,
which can have many different solutions, can be used to test
the algorithms’ abilities to explore (diverse) and avoid local
optimums.

The separable property demonstrates that the variables can
be decomposed into a product of functions of each variable,
whereas the non-separable property does not allow for this
decomposition due to the interdependence of the variables.
The non-separable property makes it more challenging to
identify the global optimum. It is worth noting here that of the
40 functions used in the case 1 experiment, 16 functions are
unimodal, 4 of them are separable, the rest are non-separable,
and 24 functions are multimodal, 6 functions are separable,
and 18 of them are non-separable.

Algorithm 1 Giant Trevally Optimizer
1. Begin
2. Set value for A parameter
3. Specify the No. of giant trevallies: N
4. Specify termination criteria, Max No. of iterations (T )
5. Randomly generate population of giant trevally (X )

using (2)
6. for t = 1 : T
7. Calculate objective function for each search agent f (X )
8. Sort the population
9. Determine the global best solution (BestG)

10. Determine BestP as the location of prey (best location)
11. for i = 1 : N
12. Extensive Search Step:
13. Calculate Levy flight distribution function Levy

using (5) and (6)
14. Calculate new best position BestNP using (4)
15. if f (BestNP) < f (X (i, :))
16. X (i, :) = BestNP
17. if f (BestNP) < f (BestP)
18. BestG = BestNP
19. End if
20. End if
21. Choosing area step:
22. Calculate mean of X using (8)
23. Calculate BestNP using (7)
24. Repeat steps 15 to 20
25. Attacking step:
26. Calculate visual distortion V using (11)
27. Calculate launch speed L using (14)
28. Calculate BestNP using (13)
29. Switch from exploration to exploitation using (15)
30. Repeat steps 15 to 20
31. End for
32. Postprocess best solution and visualization
33. End

TABLE 2. Parameter settings for each algorithm.

The performance of GTO is compared with those of six dif-
ferent meta-heuristic algorithms, including DE, GSA, GWO,
MFO, PSO, and WOA. Each optimizer is run 30 times for
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TABLE 3. Comparison of optimization results obtained for the unimodal, separable, and non-separable benchmark functions.

each function, and the population size and number of itera-
tions are each set to 30 and 1000, respectively. Table 2 lists
the parameters used by each algorithm.

In this experiment, we compare all of the candidate algo-
rithms based on two criteria, the mean ‘‘Mean’’ and the
standard deviations ‘‘Std’’ of the best solutions:

Mean =
1
Run

∑R

i=1
BestG (16)

Std =

√
1
Run

(BestG −Mean)2 (17)

where BestG is the global solution, Mean is the average
solution obtained in the ith independent run and Run is the
number of independent runs. It is evident that the algorithm
can come up with more reliable and stable solutions when the
values of the two evaluation criteria are smaller.

Based on the data in Table 3, it is clear that the GTO
algorithm is the most effective optimizer and produces the
best results in terms of mean of objective functions and

standard deviation. It was the most efficient optimizer for
8 out of 16 benchmark functions (4, 8, 11, 12, 13, 14, 15,
and 16) and provided the best results with at least one of the
competitive algorithms in five functions (1, 2, 3, 6, and 7). For
the remaining three functions, GTO came in second place,
with slightly different results. Consequently, the proposed
GTO algorithm is sufficient to produce excellent exploitation.
Note that throughout all the comparison tables in this paper,
the bold type indicates the best results.

When evaluating the exploration capability of an optimiza-
tion algorithm, multimodal functions prove to be extremely
helpful. Optimization of these types of functions (i.e., sepa-
rable and non-separable multimodal functions) is extremely
difficult because local optima can only be avoided through an
adequate balance between diversification and intensification.

GTO has a very good exploration capability, according to
the results for functions 17–40 reported in Table 4. In fact, the
proposed algorithm consistently ranks first or second in the
vast majority of test problems. This is as a result of integrated
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TABLE 4. Comparison of optimization results obtained for the multimodal, separable, and non-separable benchmark functions.
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TABLE 4. (Continued.) Comparison of optimization results obtained for the multimodal, separable, and non-separable benchmark functions.

exploration mechanisms in the proposed GTO that guide this
algorithm in the direction of the optimum global.

Fig. 6 displays the comparison of convergence rate changes
on several benchmark functions, which demonstrates that
GTO was able to find the optimal solution faster than the
other algorithms in the early stages of the course of iteration.
To explain this, thanks to the second step of GTO, which
guides the search agents to the near global solutions as was
demonstrated earlier, also the adaptive parameter in the third
step of the algorithm, make it possible for the search agents
to exploit in an efficient manner.

1) SCALABILITY ANALYSIS
As the number of dimensions used in an algorithm increase,
the algorithm’s performance is subject to fluctuations, mak-
ing scalability an essential criterion to observe. Previous
section experimental results show that GTO converges well
to low-dimensional benchmark functions. Unfortunately,
many algorithms struggle to deal with the complex high-
dimensional optimization problems that are common in
real-world applications. The GTO is then used to solve
16 benchmark functions F1-F16 in dimensions (100, 500,
and 1000) to further validate the efficacy of the proposed
method for high dimensional optimization. Tables 5, 6, and 7
detail the outcomes of each of the seven algorithms, with the
same parameter settings as the previous experiments.

The results of GTO are considerably better than those of
the other six algorithms when dealing with high-dimensional
functions. For functions: 1, 2, 3, 6, 7, 9, 10, 11, and 12, it was
noticed that GTO always produces the global optima regard-
less of the number of dimensions. These findings demon-
strate that GTO is not affected by the so-called ‘‘curse of
dimensionality.’’

The main reasons behind this stable performance and these
outstanding results are the proper balance between explo-
ration and exploitation. Additionally, the extensive search

step plays an important role in these kinds of problems and
ensures that new feasible points are found in order to prevent
stagnation in local optima.

2) STATISTICAL ANALYSIS
Reporting optimization results of objective functions with
mean and standard deviation indices allows for meaning-
ful comparison and evaluation of optimization algorithms.
However, it is still possible for one algorithm to be randomly
superior to several others, even after several separate execu-
tions. Hence, a Wilcoxon sum rank test [48] is presented in
this section to statistically demonstrate the GTO’s superiority
over six competing algorithms. Two samples can be com-
pared for their similarity using the Wilcoxon sum rank test,
a non-parametric statistical test. This test establishes whether
or not the difference between two samples is statistically
significant.

This analysis uses a metric known as p-value to determine
if the corresponding algorithm is significantly better than
the other. The results of the simulation test comparing the
proposedGTO to all other competing algorithms are shown in
Table 8. If the p-value< 0.05, the proposedGTOoutperforms
the competing algorithm for that set of objectives. As it is
clear from Table 8, GTO outperforms all other algorithms
according to the obtained pairwise p-value.

The p-value obtained when comparing GTO to other state-
of-the-art algorithms with various dimensionality scales,
as shown in Table 9, is another confirmation of the significant
superiority of GTO.

3) QUALITATIVE AND QUANTITATIVE ASSESSMENT
We have so far addressed the performance and the results
in terms of exploration (diversification) and exploitation
(intensification). Even though these results demonstrate infer-
entially that the GTO algorithm converges to a point in a
problem space and enhances initial solutions, we investigate
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TABLE 5. Results of benchmark functions (F1–F16), with 100 dimensions.

the convergence of the proposed optimizer in more detail in
the following sections. Hence, four metrics are calculated and
discussed to confirm the convergence of the GTO algorithm:
• Search space history
• Trajectory of the first giant trevally in its first dimension
• Average fitness of all giant trevallies
• Convergence rate

The tests are repeated using 10 giant trevallies over
100 iterations on some of the benchmark functions.
Fig. 7 presents the findings.

The first criterion is a qualitative indicator of change over
time in the sampled points. In Fig. 7. The black dots rep-
resent the optimization samples. The giant trevallies appear
to follow a similar pattern across all test functions, probing
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TABLE 6. Results of benchmark functions (F1–F16), with 500 dimensions.

promising areas of the search space and exploiting with high
precision close to global optimums. These outcomes demon-
strate the effectiveness of the GTO algorithm in estimating
global optimums of optimization problems.

The second metric displays the evolution of the initial
giant trevally’s first dimension over the course of iterations;
it is also a qualitative metric. With the help of this met-
ric, we can see if the first giant trevally (as a stand-in for
all giant trevallies) undergoes unpredictable changes in the
early iterations and smoother changes in the later iterations.
In addition, the fluctuations are seen to decrease over the
course of iteration, a behavior that ensures a smooth transition
between diversification and intensification.

The third metric is a quantitative average of all giant treval-
lies’ fitness over the class of the iterative process. Certainly,
the average fitness should enhance as the number of itera-
tions progresses if the algorithm is successful in improving
its candidate solutions. Based on the average fitness curves
depicted in Fig. 7, it appears that the GTO algorithm has
decreased fitness across the board for the test functions.

The search agents get better and better over time, as evi-
denced by the decreasing average fitness curves, which is
another fact worth mentioning here. Since the GTO algorithm
adaptively switches between exploration and exploitation, the
giant trevallies tend to converge with an increasing number
of iterations. Also, this behavior is enabled by the powerful
mechanism in the choosing area step of the proposed GTO.

The convergence rate of the GTO algorithm is the final
quantitative comparison criterion presented here. After each
iteration, we record the fitness of the leading giant trevally
and plot their convergence curves in Fig. 7. Consistently
decreasing fitness indicates that the GTO algorithm is con-
vergent. It is also important to note that the accelerated degra-
dation can also be observed in convergence curves, due to the
previously mentioned reason.

In conclusion, this section provided experimental proof
that the GTO algorithm achieves competitive results, and
in most cases, even better performance, compared to other
metaheuristic algorithms. Furthermore, two qualitative and
two quantitative indicators were used to experimentally
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TABLE 7. Results of benchmark functions (F1–F16), with 1000 dimensions.

TABLE 8. p-values obtained from Wilcoxon sum rank test on
Table 3, and 4 benchmark functions.

demonstrate the GTO algorithm’s convergence. Therefore,
it can be stated that the suggested GTO method will be
effective in tackling real-world problems.

B. CASE 2: ENGINEERING DESIGN OPTIMIZATION
PROBLEMS (EDOP)
To further investigate the applicability of GTO, five engineer-
ing design optimization problems (EDOPs), which employ

TABLE 9. p-values obtained from Wilcoxon sum rank test on scalability
analysis with dimensions 100, 500, and 1000.

a wide variety of challenges, are implemented, and the
findings are discussed here. Metaheuristic algorithms are
not designed to solve constraint optimization problems

121628 VOLUME 10, 2022



H. T. Sadeeq, A. M. Abdulazeez: GTO: A Novel Metaheuristic Algorithm for Global Optimization

FIGURE 6. Convergence curve change rate of GTO with other algorithms in a number of benchmark test functions.
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FIGURE 7. Search history, trajectory of 1st GTO, mean fitness of all GTO, convergence analysis.
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FIGURE 7. (Continued.) Search history, trajectory of 1st GTO, mean fitness of all GTO, convergence analysis.
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FIGURE 7. (Continued.) Search history, trajectory of 1st GTO, mean fitness of all GTO, convergence analysis.

directly [49], so this paper uses the straightforward death
penalty technique to transform the original problems from
their constrained to their unconstrained form.

It is worth mentioning here that the number of population
sizes is set to 30 and the maximum number of iterations is
set to 3000. All algorithms are executed for 30 independent
runs for all EDOPs. All DEOPs are described mathematically
in Appendix B.

1) CANTILEVER BEAM
This challenging problem is an illustration of the optimization
of the mass of a cantilever beam with a square cross section,
and it arises in the field of structural engineering [50]. As can
be seen in Fig. 8, the beam is stably supported at one end, and
a vertical force is exerted at the cantilever’s free node. The
beam is made up of five cubes with a fixed thickness (2/3) in
this case. Thus, the objective of this design is to minimize the
weight of the beam.

Table 10 presents the best solutions to this problem,
as determined by the GTO and other meta-heuristic algo-
rithms. We can see that the GTO yields a superior solution
compared to the alternatives. In addition, Table 11 compares
the statistical results of the GTO algorithmwith those of other
methods, demonstrating that the GTO yields a more precise

FIGURE 8. Cantilever beam.

result based on the best, mean, and the standard deviation
indicators.

2) THREE-BAR TRUSS
Minimizing the weight of a statically loaded three-bar truss is
the goal of this practical example. The areas of bars 1 and 3
and the area of bar 2 are the two parameters of interest,
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TABLE 10. Comparison of the best results of the cantilever beam design.

TABLE 11. Comparison of statistical results of the cantilever beam design.

FIGURE 9. Three-bar truss.

TABLE 12. Comparison of the best results of the three-bar truss design.

as shown in Fig. 9. In addition, there are multiple constraints
placed on this design problem by deflection, stresses, and
buckling [51].

TABLE 13. Comparison of statistical results of the three-bar truss design.

TABLE 14. Comparison of the best results of the gear train design.

TABLE 15. Comparison of statistical results of the gear train design.

Table 12 displays GTO’s best performance in compari-
son to other algorithms. Also, Table 13 shows the statistical
findings obtained using these methods. It is clear that the
GTO offers slightly better results than competing optimizers.
The findings demonstrate that the GTO can perform well in
a constrained environment.

3) GEAR TRAIN DESIGN
The goal of this engineering design is to minimize the ratio
cost of the gear train [52] depicted in Fig. 10. The design
variables are the numbers of teeth on the gears, specifically
nA(= x1), nB(= x2), nC(= x3), and nD(= x4).
Table 14 shows that the proposed GTO finds a new optimal

design cost for this problem. From Table 15, GTO obtains
the best results in terms of best, mean, std, and even the worst
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FIGURE 10. Gear train design.

FIGURE 11. Pressure vessel design.

TABLE 16. Comparison of the best results of the pressure vessel design.

TABLE 17. Comparison of statistical results of the pressure vessel design.

result obtained by GTO is better than the best results obtained
by all other optimizers. This proves that GTO can be effective
in solving discrete problems as well.

FIGURE 12. Piston lever design.

TABLE 18. Comparison of the best results of the piston lever design.

4) PRESSURE VESSEL DESIGN
The purpose of this problem is tominimize themanufacturing
costs, including the material, forming, and welding of the
cylindrical pressure vessel, whose schematic is shown in
Fig. 11. The vessel has caps on both ends, and the head
is hemispherical in shape. This design problem has four
constraints and four variables, including the thickness of the
shell Ts(= x1), the thickness of the head Th(= x2), the inner
radius R(= x3), and the length of the cylindrical section, not
including the head L(= x4) [53].

Table 16 displays the results of the competitive optimizers
in terms of optimal values and optimal variables. Accord-
ing to the findings, GTO discovers a remarkably different
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TABLE 19. Comparison of statistical results of the piston lever design.

structure than those found by other methods, which can lead
to the lowest possible fabrication cost. Table 17 verifies the
robustness of the proposed algorithm, showing that the best
statistical indicators are provided by the GTO.

5) PISTON LEVER DESIGN
The basic purpose of piston lever design is to specify the
location of the piston elements: H (= x1), B(= x2), D(= x3),
and X (= x4) by setting the volume of oil to a minimum
while the piston lever is raised from 0◦ to 45◦ as depicted
in Fig. 12 [54].

The best results for competitive algorithms are shown in
Table 18, which indicates a very close optimal solution has
been provided by all the methods. Looking at Table 19, again,
we can see that GTO is able to provide the best average result
and superior results compared to other methods.

VI. CONCLUSION AND FUTURE WORK
This paper presents a novel swarm-based metaheuristic algo-
rithm inspired by the hunting behavior of giant trevallies.
The proposed algorithm (named as GTO, Giant Trevally
Optimizer) included three steps to simulate the behavior of
giant trevallies. The steps are: extensive search (exploration),
choosing area (exploration), chasing and attacking the prey
(exploitation).

To investigate the exploration and exploitation capabili-
ties of the proposed algorithm, two different sets of experi-
ments were employed. The first experiment consisted of forty
benchmark functions with a wide variety of characteristics,
such as unimodal, multimodal, separable, and non-separable.
The obtained results are compared with some other well-
known MAs, and it was observed that the proposed GTO
provides better results according to the mean, the standard
deviation values, and the Wilcoxon sum rank test, which
has been made to ensure that the results are not gained by
chance. Furthermore, qualitative and quantitative assessment
of the results using extra indicators has been presented in this
paper to check and confirm the convergence of the proposed
optimizer in more detail.

The second experiment consists of five challenging engi-
neering design optimization problems, to check the validity

of the GTO to be applied to real-world problems. The prob-
lems were cantilever beam design, three-bar truss design,
gear train design, pressure vessel design, and piston lever
design. It is worth mentioning here that GTO showed very
powerful and reliable performance when compared to other
well-known MAs.

Finally, several research directions can be suggested for
the future. Firstly, a multi-objective version of GTO to deal
with NP-hard problems such as travelling salesman person.
Secondly, GTO can be applied to tackle further challenging
real-world problems and a diverse range of applications, such
as feature selection, real-time applications, image processing,
and COVID-19 modeling. Last, but not least, is the proposal
for the binary version of the GTO.

APPENDIX A
See Tables 20 and 21.

APPENDIX B
This appendix presents the formulation of all EDOPs used in
this paper.

A. CANTILEVER BEAM

Minimize: f (X) = 0.0624 (x1 + x2 + x3 + x4 + x5) ,

Subject to: g (X) =
61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
− 1 ≤ 0,

Variable range: 0.01 ≤ (x1, .., x5) ≤ 100

B. THREE-BAR TRUSS

Minimize: f (X) = 2
√
2 x1 + x2 × l,

Subject to: g1 (X) =

√
2 x1 + x2

√
2 x21 + 2x1x2

P− σ ≤ 0,

g2 (X) =
x2

√
2 x21 + 2x1x2

P− σ ≤ 0,

g3 (X) =
x2

√
2 x2 + x1

P− σ ≤ 0,

where

l = 100cm,

P = 2kN/cm3,

σ = 2kN/cm3,

Variable range: 0 ≤ x1 ≤ 0, 1 ≤ x2 ≤ 1

C. GEAR TRAIN DESIGN

Minimize: f (X) =
(

1
6.931

−
x3x2
x1x4

)2

Subject to: 12 ≤ (x1, .., x4) ≤ 60,
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TABLE 20. Benchmark functions used in Tables 3, 5, 6, and 7.

D. PRESSURE VESSEL DESIGN

Minimize: f (X) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3,

Subject to: g1 (X) = −x1 + 0.0193x3 ≤ 0,
g2 (X) = −x2 + 0.00954x3 ≤ 0,

g3 (X) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0,

g4 (X) = x4 − 240 ≤ 0,

Variable range: 0.0625 ≤ x1, x2 ≤ 99,

10 ≤ x3, x4 ≤ 200
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TABLE 21. Benchmark functions used in Table 4.
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TABLE 21. (Continued.) Benchmark functions used in Table 4.

E. PISTON LEVER DESIGN

Minimize: f (X) =
1
4
πx23 (L2 − L1) ,

Subject to: g1 (X) = QLcosθ − R× F ≤ 0,

g2 (X) = Q (L − x4)−Mmax ≤ 0,

g3 (X) = 1.2 (L2 − L1)− L1 ≤ 0,

g4 (X) =
x3
3
− x2 ≤ 0,

where

R =
|−x4 (x4sinθ + x1)+ x1(x2 − x4cosθ )|√

(x4 − x2)2 + x21

,

F =
πPx23
4

,

L1 =
√
(x4 − x2)2 + x21 ,

L2 =
√
(x4sinθ + x1)2 + (x2 − x4cosθ )2,

θ = 45◦,

Q = 10000 lbs,

L = 240 in,

Mmax = 1.8× 106 lbs in,

P = 1500psi,

Variable range:

0.05 ≤ x1, x2, x3 ≤ 500,

0.05 ≤ x3 ≤ 120
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