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ABSTRACT Vehicular communications are an important focus of studies for 5G applications and beyond.
However, in a scenario with doubly-selective and highly variable channel characteristics, tracking the
wireless channel to ensure communication reliability is one of the main goals to provide communication
efficiency. Moreover, multicarrier modulation schemes usually employed in these scenarios are susceptible
to nonlinear distortions caused by high power amplifiers (HPA) at the transmitter, impairing the channel
estimation and detection capability of the receivers. In view of these requirements and challenges, in the
present work we propose a low complexity estimator based on the long short-term memory (LSTM)
network, followed by a neural network (NN) in order to improve the data-pilot aided (DPA) estimation.
In addition, we propose a new technique to exploit the characteristics of the vehicular channel, by sampling
the subcarriers used at the input of the LSTM. Thus, besides tracking the variations of the wireless channel,
the LSTM network is also used to interpolate the channel estimates for all subcarriers. The simulation results
show the superiority of the proposed scheme in comparison with other state-of-the-art schemes, especially
in high signal-to-noise ratio (SNR) regimes. Furthermore, the proposed scheme significantly reduces the
computational complexity due to the subcarrier sampling procedure.

INDEX TERMS Channel estimation, HPA distortions, LSTM, machine learning, vehicular communication.

I. INTRODUCTION
Vehicular communications are part of a broader 5G ecosys-
tem that is continuously evolving, being crucial to enable
connected vehicles and road infrastructure [1]. The related
applications and functionalities are considered to have a
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major impact on modern society, and expected to pose even
more challenging scenarios on the road to 6G systems,
shaping the future of connected vehicles. In this scenario,
one of the biggest challenges is the time-varying and
complex communication environment itself, once accurate
channel estimation may be arduous and, therefore, jeopardize
reliable communication. The IEEE 802.11p [2] standard,
for instance, defines the physical layer specifications for
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vehicular communication based on the orthogonal frequency
division multiplexing (OFDM) scheme, with channel estima-
tion supported by pilot subcarriers.

Due to the limited number of data pilots, several methods
in the literature have been proposed to improve the channel
estimation in vehicular networks. Most methods for IEEE
802.11p networks are based on the data-pilot aided (DPA)
scheme, which exploits the demapped data symbols in order
to improve the channel estimation, thus providing a low
computational complexity solution [3], [4], [5]. However,
the performance of these schemes is heavily influenced by
the data pilots’ reliability, which tends to degrade given the
harsh dynamic of vehicular channels. In addition, classical
DPA-based methods incur error propagation during the
frames, a problem that is even more significant in high-order
modulation schemes and high-mobility [6].

In view of the challenges of vehicular communication
networks, deep neural network (DNN)-based schemes have
been successfully employed recently to improve the channel
estimation for vehicular channels. For instance, an auto-
encoder (AE)-DNN was proposed by [7] in order to
improve the DPA method. The DPA-DNN scheme trains
a DNN offline, aiming at reducing the error propagation
by correcting the errors between the initial DPA estimation
and the perfect channel. Convolutional neural networks
(CNNs) have also been considered as a solution for vehicular
scenarios [8], [9]. The TS-ChannelNet estimator introduced
by [8], e.g., suffers from high computational complexity,
since it considers integrating both LSTM and CNN networks
to achieve the final channel estimates. The authors in [9]
present an estimator based on weighted adaptive interpo-
lation, which is able to reduce the complexity and at the
same time outperforms TS-ChannelNet, given a modification
considered in the IEEE 802.11p standard to allocate the
pilots within each transmitted frame, adapting the scheme
according to the mobility condition. However, by considering
frame-by-frame solutions, both CNN-based receivers require
reception of the whole frame before starting the channel
estimation, thus increasing the latency and limiting its
performance for real-time applications [10].

Moreover, other recent studies have considered more
advanced deep learning (DL) algorithms to explore the
correlation between OFDM symbols. As it was shown in [11]
and [12], DL is able to capture more features of the vehicular
channel and to improve the estimation performance compared
to conventional methods. In this sense, a promising approach
relies on the long short-term memory (LSTM) network,
which was introduced by [13] as a neural network with feed-
back connections, capable of handling sequential information
where there is correlation over time. Thus, the LSTM can
be a robust and efficient DL solution to track the vehicular
channel, especially in high mobility scenarios. Nevertheless,
the LSTM architecture still poses a significant challenge
related to its high complexity. For instance, the authors in [11]
combined the DPA estimation with an LSTM layer followed
by a multilayer perceptron (MLP) network. The proposed

LSTM-NN-DPA estimator outperforms previous DNN-based
estimators in terms of channel estimation. However, such
performance gain is attained at the cost of huge computational
complexity. Reducing part of the LSTM complexity was
addressed by [12], where the proposed channel estimation
scheme uses only one LSTM layer within the DPA, while
the residual estimation noise is alleviated using a temporal
averaging (TA) post-procedure.

A common aspect of the works in [3], [4], [5], [7], [9], [11],
and [12] is the consideration of a linear communication envi-
ronment, assuming an ideal radio frequency (RF) interface.
In spite of the OFDM advantages, this modulation introduces
challenges related to its high peak-to-average power ratio
(PAPR) [14], leading to nonlinear distortions at the high
power amplifier (HPA) output signal at the transmitter.
Many different compensation techniques have been proposed
aiming to reduce the effect of these imperfections. At the
transmitter side, a digital pre-distortion (DPD) block is
commonly adopted in order to linearize the output signal [15].
However, such linearization task is not trivial to be optimally
performed, while occurring at a complexity cost. As an
alternative, the HPA nonlinearity can also be compensated
at the receiver side, where it may be possible to reduce the
power consumption [16].

DL-based processing has been shown to be an efficient
tool to compensate HPA nonlinear effects at the receiver,
given the nonlinear nature of the DL architectures and thanks
to their generalization properties [17], [18]. In this context,
we have compared in [19] different conventional vehicular
channel estimators and DL-based methods, with the effect
of the nonlinear amplification of OFDM signals based on
the polynomial distortion model developed by [20] and [21].
Results show that DL-based receivers are intrinsically
more robust to the HPA-induced nonlinearities, providing
reliable channel estimates even in high-mobility scenarios.
Nevertheless, the effort in [19] only highlights the robustness
of hybrid estimators that combine DNNs with conventional
methods, inspiring this work toward designing novel receiver
architectures.

Furthermore, another key characteristic of vehicular com-
munication channels is related to a certain smoothness in the
frequency domain, which can be exploited to reduce com-
plexity of the channel estimation at the receiver. For instance,
the authors in [22] propose a CNN-based channel estimation
and phase noise compensation scheme for doubly-selective
channels (in time and frequency) by considering only part of
the pilots from the channel. The channel estimation process is
treated as an image completion problem, so that the proposed
solution is shown to be robust enough to track the channel
variation in both frequency and time domains. In addition, the
work in [23] also exploits the frequency response smoothness
to perform channel estimation. The proposed scheme is
based on a truncated discrete Fourier transform interpolation,
which uses only the dominant channel taps from the channel
delay profile to perform estimation. As their main result, the
proposed estimator outperforms conventional methods that
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employ all data subcarriers to obtain the channel estimation,
while also having a decreased computational complexity.
An overview of the literature for IEEE 802.11p channel
estimators and their respective techniques is presented in
Table 1.

In this paper, we propose a novel receiver for vehic-
ular communications subject to HPA-induced distortions,
exploiting the features of the channel in the frequency
domain. It is worth pointing out that both nonlinear and the
relative smoothness in the frequency domain characteristics
of the wireless channel are crucial for practical vehicular
communications scenarios, and have not been well explored
in the literature yet. In our proposedmethod, a first estimation
given by the DPAmethod is fed to an LSTM layer, which will
track the channel variation and learn the channel correlation
in the time domain. The LSTM is then followed by a shallow
neural network (NN) in order to enhance the denoising
capability. Such combination of the DPA, the LSTM layer
and the NN is key to dealing with the HPA distortions at
the receiver. Therefore, we denote our proposed scheme
by DPA-LSTM-NN. In addition and unlike previous works,
we exploit the channel response in the frequency domain
in order to reduce the LSTM size. To that end, we employ
a subcarrier sampling at the input of the LSTM, so that
the interpolation of the missing subcarriers’ information is
performed by the LSTM itself. The main contributions of this
paper are summarized as follows:
• The proposed DPA-LSTM-NN estimator exhibits robust
performance in the presence of HPA-induced nonlinear-
ities. The numerical results show that the DPA-LSTM-
NN proposal outperforms DPA-DNN [7], LSTM-NN-
DPA [11] and LSTM-DPA-TA [12] schemes both in
terms of bit error rate (BER) and normalized mean
square error (NMSE). For instance, we show that a
BER of 10−4 can be achieved only with the proposed
scheme in some situations, depending on the employed
modulation order and velocity.

• The obtained results show that the DPA-LSTM-NN
scheme outperforms other methods from the literature
regardless of the velocity level. In addition, only a
slight performance degradation of the DPA-LSTM-NN
is observed in very high-mobility scenarios (up to
200 km/h).

• A significant reduction of the computational complexity
is obtained by sampling the subcarriers at the input of
the LSTM layer. Our proposed DPA-LSTM-NN scheme
is the least complex scheme, measured in terms of the
number of required real-valued operations, compared
to [7], [11], and [12].

The remainder of this paper is organized as follows.
The system model is presented in Section II, including
the main characteristics of the HPA nonlinear distortion
model and the vehicular channel model. The proposed DPA-
LSTM-NN channel estimator with subcarrier sampling is
detailed in Section III, while other benchmark DL-based
channel estimation schemes are described in Section IV.

FIGURE 1. IEEE 802.11p packet structure [2].

Results and discussions are presented in Section V and
Section VI concludes the paper. Finally, for convenience, the
acronyms and symbols adopted in this work are summarized
in Tables 2 and 3, respectively.

II. SYSTEM MODEL
Let us consider the IEEE 802.11p standard [2] as the basis
for our analysis, which employs an OFDM modulation
in order to enable vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication. As illustrated by
Figure 1, each transmitted packet consists of a preamble,
a signal field, which carries the physical layer information,
and a data field. The preamble includes short and long
training symbols, known by the receiver in order to conduct
the channel synchronization. In addition, the long training
symbols are divided into two predefined sequences tp,1 and
tp,2, used for channel estimation. Moreover, a cyclic prefix
(CP) is used to absorb the inter-symbol-interference (ISI)
caused by the multi-path propagation.

We denote Kon as the set of active subcarriers, where
Kon = |Kon| is the cardinality of the set. Then, for each
active subcarrier k ∈ Kon within the i-th OFDM symbol, the
demodulated OFDM frame in the frequency domain can be
expressed as

Y[k, i] = H[k, i]U[k, i]+ N[k, i], (1)

where H[k, i] represents the time variant frequency response
of the channel for the k-th subcarrier within the i-th OFDM
symbol, U[k, i] is the transmitted OFDM symbol affected by
the HPA distortion and N[k, i] is the additive white Gaussian
noise (AWGN), with power

η0 =
εp

ξ · K
, (2)

where εp is the preamble power per sample, ξ the average
signal-to-noise ratio (SNR) at the receiver and K is the
total number of subcarriers employed within each OFDM
symbol (note that K > Kon). The coefficients of the channel
response H[k, i] are modeled according to a Rayleigh fading
distribution with Jakes’ Doppler spectrum and a Doppler
frequency given by [25]

fD =
ν

c
fc, (3)

where ν is the velocity of the vehicle in m/s, c is the speed of
light in m/s and fc is the carrier frequency. In order to lighten
the notation considered hereafter, we rewrite (1) to represent
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TABLE 1. Literature overview for IEEE 802.11p channel estimators.

TABLE 2. List of acronyms adopted in this work.

the received OFDM symbols for the k-th subcarrier in the i-th
transmitted data symbol as

yi[k] = hi[k]ui[k]+ ni[k], (4)

where ui[k] denotes the k-th subcarrier in the i-th transmitted
OFDM data symbol at the output of the HPA, subjected to
nonlinear distortions, as follows.

A. HIGH POWER AMPLIFIER DISTORTION MODEL
Tomodel ui[k], let us denote the signal at the input of the HPA
as xi[k], so that we have a non-compensated HPA output ũi[k]
given by

ũi[k] = γ0xi[k]+ δi[k], (5)

where δi[k] is a nonlinear distortion with zero mean and
variance σδ

2 that is uncorrelated with the input, while
γ0 is a complex gain. Then, in order to model the HPA
nonlinear distortions in (5) we follow [20], focusing on a
memoryless HPA. The advantage of such model is that it
characterizes both amplitude to amplitude (AM/AM) and
amplitude to phase (AM/PM) distortions, while it fits a
commercial evaluation of a HPA from the 3GPP [26] into a
polynomial.

This model shows that the HPA response is usually
constant over the useful signal frequency band, allowing us
to neglect the memory effect of the HPA on the channel.
In addition, phase compensation can be assumed to be
perfectly done at the receiver, as the standard in several works
in the literature [27], [28]. Furthermore, the key component
in this analysis is the Bussgang’s Theorem [29], which states
that if the input signal at the HPA has a Gaussian distribution,
as the case of an OFDM symbol with a sufficiently large
number of subcarriers, the output signal of the HPA can be
written as (5). Furthermore, the accuracy of the considered
model has been validated in the literature [20], [21].

In practice, in order to reduce the effects of the nonlinear-
ities, the HPA operates at a given input back-off (IBO) from
the 1 dB compression point, which refers to the input power
level where the characteristics of the amplifier have dropped
by 1 dB from the ideal linear characteristics [30]. Therefore,
the input signal xi[k] is scaled by the gain % before being
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TABLE 3. List of symbols adopted in this work.

amplified by the HPA to ensure the desired IBO, given by

% =

√
τ1dB

10
IBO
10 τxi[k]

, (6)

where τ1dB is the input power at 1 dB compression point, τxi[k]
is the mean power of the input signal, and the IBO is given
in dBs.

FIGURE 2. Transmission system model.

Therefore, the relationship between ũi[k] and xi[k] can be
expressed as

ũi[k] = φa (ρ[k]) exp
[
j(φp (ρ[k])+ ϕ[k]

)
]

= ς (ρ[k]) exp (jϕ[k]), (7)

where ρ[k] = % · |xi[k]| is the input signal modulus,
ϕ[k] = 6 xi[k] is the input signal phase, φa (ρ[k]) and
φp (ρ[k]) represent the AM/AM and AM/PM characteristics
of the HPA, while the complex soft envelope of the amplified
output signal ũi[k] is given by

ς (ρ[k]) = φa (ρ[k]) exp [jφp (ρ[k])]. (8)

In our work we consider that the soft envelope of the
amplified signal is approximated by

ς (ρ[k]) ≈
Po∑
l=1

alρ[k]l, (9)

in which al denotes the complex coefficients from the
Po-order polynomial used to approximate the HPA model,
obtained with the least square (LS) method [20].

As a consequence, the input/output relationship of the HPA
is approximated by

ũi[k] ≈

( Po∑
l=1

alρ[k]l
)

exp (jϕ[k]). (10)

Finally, we assume perfect estimation and compensation
of γ0. Thus, we can write the output of the HPA as ui[k] =
ũi[k]/γ0, which usually yields a BER floor at the receiver
due to the residual nonlinear distortion of the HPA. Figure 2
illustrates the transmission system modeled in the presence
of the nonlinear HPA.

B. VEHICULAR CHANNEL MODEL
We consider the vehicular channel model described in [31],
where the authors provide the Doppler-delay characteristics
of different environments. The characterization is based on
real measurements with one or two vehicles moving under
different velocities, which models V2I and V2V scenarios,
respectively. The channel models are considered with a
tapped-delay line, where each tap is statistically described by
a Rayleigh fading distribution with a Doppler power spectral
density. Throughout this paper, we consider the urban canyon
(UC) model with two vehicles communicating with each
other, i.e., the V2V-UC channel model.

Table 4 describes the power delay profile (PDP) of the
employed V2V-UC channel, while Figure 3 illustrates its
channel frequency response for a velocity v = 48 km/h. From
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FIGURE 3. Channel frequency response of a V2V-UC channel.

the figure we can observe that V2V-UC channel presents a
smooth variation in the frequency domain. This characteristic
will be exploited to down-sample the subcarriers at the input
of the LSTM layer in our proposed method in Section III.

III. PROPOSED DPA-LSTM-NN CHANNEL ESTIMATOR
WITH SUBCARRIER SAMPLING
In this section, we propose a novel learning-based archi-
tecture for the receiver exploiting the vehicular channel
characteristics. Using DPA, the proposed DPA-LSTM-NN
scheme performs first a coarse channel estimation that is
used as the input of an LSTM layer. Since the LSTM is a
powerful tool to track the channel variation and learn the
channel correlation in the time domain, we favored the use
of the DPA method instead of more complex estimators,
such as the spectral temporal averaging (STA) [3] or the
time domain reliable test frequency domain interpolation
(TRFI) [5]. The LSTM is then followed by a NN in order
to mitigate the remaining noise from the hybrid estimator,
refining the channel estimation. Such a combination of the
DPA, LSTM and NN provides robustness with respect to the
HPA distortions at the receiver.

Furthermore, given the smooth variation of the channel
response in the frequency domain observed in Section II-B,
we exploit such characteristic in order to reduce the LSTM
input size. It is worth noticing that the LSTM layer usually
requires a high computational cost. Consequently, reducing
the size of its input is of paramount importance to address
such high complexity issue.

A. DPA INITIAL ESTIMATION
As illustrated in Figure 4, for a given subcarrier k ∈ Kon the
DPA method combines at its input the i-th received OFDM
symbol (yi[k]) and the channel estimate of the previous
symbol (ĥDPAi−1[k]). The first DPA estimate is obtained via
LS method, so that

ĥDPA0 [k] = ĥLS[k] =
yp,1[k]+ yp,2[k]

2p[k]
, (11)

FIGURE 4. Block diagram of the DPA method.

where yp,1[k] and yp,2[k] are the frequency domain symbols
for each k-th subcarrier, obtained by the demodulation of the
sequences tp,1 and tp,2 from the OFDM preamble. Moreover,
p[k] is a predefined preamble sequence in the frequency
domain. Then, the equalization step produces

ŷeqi [k] =
yi[k]

ĥDPAi−1[k]
, (12)

so that ŷeqi [k] is further demapped to the nearest constellation
symbol to result in di[k]. Finally, the DPA channel estimate
is obtained as

ĥDPAi [k] =
yi[k]
di[k]

. (13)

Note that, in contrast to the LS estimation exhibiting
significant degradation due to the time variation, the DPA
enhances the performance by exploiting the correlation
characteristics between adjacent symbols in the OFDM
transmission.

B. LSTM LAYER
Although DPA improves the performance when compared to
the LS estimator, a relevant performance loss is observed in
communication scenarios with high mobility. In these cases,
the demapping error increases since the correlation between
symbols, explored by the DPA, decreases [24]. In order to
deal with this issue, we design an LSTM layer after the DPA
initial estimation. It is based on recurrent units to process and
learn from a sequence of data [13]. This is done by internal
gate units capable of storing the memory content of the data,
while employing structures capable of deciding when to keep,
or override, information of these memory cells. Therefore,
such advanced processing characteristics of the LSTM make
it able to learn the channel correlation over time and adapt the
channel estimates accordingly.

Figure 5 illustrates the classical LSTM unit used in our
approach. Internally, there are three inputs per LSTM unit: lt ,
ot−1 and ct−1, denoting respectively the input of the current
time step t , the output of the hidden state and the memory
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TABLE 4. V2V-UC channel model characteristics.

FIGURE 5. Structure of the employed LSTM unit.

at the previous time step (t − 1). The operations with the
inputs are illustrated by the activation function σ and the
hyperbolic tangent tanh, following [13]. These operations
define which information is overridden and which is kept
memorized in the current cell state. As outputs, the LSTM
unit produces ct , the memory cell state at the time step t ,
and the output ot . The loop continues until the end of the
sequential information, so that ot of the last unit is the output
of the LSTM network. In the context of channel estimation,
a number U of LSTM inputs must be used, which is related
to the number of active subcarriers. In addition, each LSTM
network has P hidden states, dictating the number of steps t
for recurrent operations.

C. SUBCARRIER SAMPLING
The small maximum delay spread of the considered channel
leads to a weak frequency selectivity, i.e., h[k] ≈ h[k ± 1].
Therefore, given the set of nonlinear forward and feedback
operations performed by the LSTM layer, it may be possible
to exploit this local flat fading in the frequency domain and
operate with a reduced subset of subcarriers, resulting in
a reduced size of the LSTM layer. This will considerably
decrease the computational complexity, at the cost of a slight
degradation of the channel estimation performance.

Thus, we define a subset S ⊂ Kon, so that only the
DPA estimates ĥDPAi [s], ∀s ∈ S, are selected as inputs of
the LSTM layer. Moreover, we also define Kp as the set
containing the Kp pilot subcarriers, while Kd is the set of the
Kd data subcarriers, so that Kon = Kp ∪Kd. As an example,
let us consider a slice of Figure 3 for an arbitrary symbol
index, plotting the magnitude of the V2V-UC channel as a

FIGURE 6. Subcarrier sampling procedure.

function of the subcarrier index. Figure 6a shows all active
subcarriers for a given symbol index, with pilot subcarriers
illustrated with dashed lines and data subcarriers are in solid
lines. In this example, the scenario follows the IEEE 802.11p
standard, where there are Kon = 52 active subcarriers, out
of which Kp = 4 subcarriers are pilots and the remaining
Kd = 48 subcarriers carry the data.
Notice that the inclusion of the set Kp in S is mandatory

since it carries the OFDM pilots, so that Kp ⊂ S. Therefore,
we sample only among the subcarriers in Kd. Figure 7b
illustrates a 1/2 sampling rate, where the Kp = 4 pilot
subcarriers are included, while 24 out of the Kd = 48 data
subcarriers are chosen. The selected subcarriers are taken
using a simple down-sampling pattern. In this manner,
the size of the LSTM layer can be adjusted according to
the cardinality of S, reducing complexity in the channel
estimation.

Finally, it is worth noting that the input of the LSTM
layer has size 2 |S|, while its output has size 2 |Kon|, related
to the real and imaginary parts from the complex-valued
channel estimations. The interpolation to produce the channel
estimates for all active subcarriers is intrinsically performed
by the LSTM, by means of training.

D. NN POST-PROCESSING AND TRAINING
The output from the LSTM layer is then processed by a
shallow NN with N1 neurons to reduce the noise and provide
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FIGURE 7. Proposed DPA-LSTM-NN channel estimator with subcarrier sampling.

TABLE 5. Parameters for training the proposed estimator.

the final channel estimation, denoted as ĥDPA−LSTM−NNi [k].
Furthermore, we follow [32] to define the parameters related
to the training and testing stages of our method. The number
of samples used for the training and testing phases is defined
by splitting 10000 different realizations of the vehicular
channel into sets with 80% and 20% of the total, respectively.
The batch size is set to be sufficiently smaller than the size of
the training dataset, thus speeding up its generalization and
the training process, while the number of training epochs is
set large enough to ensure the convergence of the model. For
the optimizer, we favored the adaptive moment estimation
(ADAM) with ReLU activation function to minimize the
loss between the perfect channel and the estimates from the
proposed DPA-LSTM-NN. This choice is motivated by its
fast computing time, a small number of parameters to tune,
and its well-known ability to solve optimization problems.
Finally, as suggested in [32], the learning rate is set as 0.001,
which is automatically adapted by the ADAM during its
progress, until the method converges. Table 5 summarizes the
DL architecture and parameters used in the training phase
from our proposed scheme. Finally, Figure 7 presents the
block diagram of the proposed DPA-LSTM-NN architecture.

IV. BENCHMARK CHANNEL ESTIMATION SCHEMES
In this section we briefly describe three state-of-the-art DL-
based channel estimators that will be compared with our
method. Specifically, we consider the DPA-DNN [7], the
LSTM-NN-DPA [11] and the LSTM-DPA-TA [12] schemes.
These designs have been chosen from Table 1 since they also
combine DPA estimation with DL techniques for vehicular
channels, with the last two also employing LSTM units.

FIGURE 8. Block diagram of the DPA-DNN estimator [7].

A. DPA-DNN CHANNEL ESTIMATOR
The DPA-DNN scheme was proposed in [7] in order to
improve the DPA method using an AE-DNN. Their receiver
considers an initial DPA estimation that is followed by
an offline trained AE with three hidden layers, consisting
respectively of 40, 20 and 40 neurons. Figure 8 illustrates
their approach, in which the goal of the DNN is to update
the estimation initially obtained with the DPA, by learning to
correct the estimation errors between ĥDPAi [k] and the perfect
channel. The output is denoted by ĥDPA−DNNi [k], which is the
DPA-DNN channel estimation.

The authors in [7] show that the trained DNN is capable
of learning the channel frequency domain characteristics,
preventing the error propagation typical of the DPA method.
In addition, although only a V2V communication scenario
free of the HPA nonlinear distortions has been considered
in [7], we have shown in [19] that DNN-based methods
implicitly have some robustness against these nonlinearities.
This is different from the case of using only conventional
channel estimators, without DNNs, for which the perfor-
mance is considerably degraded by the HPA distortions.
As our numerical results will show, the DPA-DNN also
has interesting performance in the presence of the HPA
nonlinearities, but still is outperformed by our proposed
approach.

B. LSTM-NN-DPA CHANNEL ESTIMATOR
LSTM networks have been recently employed in the context
of vehicular channel estimation. For example, the LSTM-
NN-DPA scheme has been proposed in [11], which employs
an LSTM network allied with a NN in order to reconstruct the
channel as close as possible to the ideal channel response.
The authors consider that the input of the LSTM receives
the LS of the Kp pilot subcarriers, in two consecutive
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FIGURE 9. Block diagram of the LSTM-NN-DPA [11] scheme.

OFDM symbols, denoted by ĥLSi,p [k] and ĥLSi−1,p[k], and the
previous estimated channel ĥLSTM−NN−DPAi−1,d [k] for the Kd
subcarriers. Then, the estimate after the NN is denoted by
ĥLSTM-NNi [k], which is further used as the input of the DPA
method, providing the final estimation ĥLSTM-NN-DPAi [k],
∀k ∈ Kon.

The block diagram of the LSTM-NN-DPA scheme is
shown in Figure 9, while numerical results in [11] show
that this method is able to learn the time and frequency
characteristics of the channel, tracking its variation and
mitigating noise. Thus, significant performance improvement
in comparison to previous DNN-based receivers has been
achieved.

C. LSTM-DPA-TA CHANNEL ESTIMATOR
Another LSTM-based receiver has been proposed by [12],
where the LSTM estimates are directly fed to the DPA
method, producing ĥLSTM-DPAi [k] as an output. Then, noise
mitigation is achieved by means of a TA scheme, defined as

ĥLSTM-DPA-TAi [k] =
(
1−

1
α

)
ĥLSTM-DPA-TAi−1[k]

+
1
α
ĥLSTM-DPAi [k], (14)

where α defines the fixed time averaging weight.
Figure 10 illustrates the block diagram of the LSTM-

DPA-TA scheme. Furthermore, this estimator exhibits a
lower computational complexity when compared to LSTM-
NN-DPA, while achieving similar performance in different
mobility scenarios. Nevertheless, both LSTM-NN-DPA and
LSTM-DPA-TA still require a large number of neurons to
perform the operations in the LSTM units, since all active
subcarriers are used.

V. SIMULATION RESULTS
In our simulations we use the IEEE 802.11p standard as
basis, with a 10 MHz bandwidth and carrier frequency
fc = 5.9 GHz. Each transmitted OFDM frame consists of
L = 50 symbols. Moreover, a total of K = 64 subcarriers

FIGURE 10. Block diagram of the LSTM-DPA-TA [12] scheme.

TABLE 6. Simulation parameters.

are employed within each OFDM symbol, in which only
Kon = 52 are active, while the remainder Kn = 12
subcarriers are used as a guard band (inactive). In addition,
Kp = 4 out of the Kon subcarriers are allocated as pilots,
while the remainingKd = 48 active subcarriers carry the data.
We also assume perfect synchronization at the receiver, with
constantly updated channel estimation. Table 6 summarizes
the considered simulation parameters, including the IEEE
802.11p standard physical layer specifications, recalling that
we denote Kon, Kp and Kd as the set of Kon, Kp and Kd
subcarriers, respectively.

The performance evaluation of the proposed DPA-LSTM-
NN scheme is done in terms of BER, NMSE and com-
putational complexity, and compared with DPA-DNN [7],
LSTM-NN-DPA [11] and LSTM-DPA-TA [12] schemes.
Following [33], the training for all the estimators is performed
at the highest expected SNR value, ξ = 30 dB, in order to
reduce the impact of the noise and better learn the channel
variations. In addition, in order to have a fair comparison
between the solutions in terms of complexity, we considered
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FIGURE 11. BER performance of the proposed DPA-LSTM-NN scheme for
different sets of sampled subcarriers, with |S| ∈ {52,36,28,20,16},
v = 48 km/h, 16-QAM modulation and IBO = 4 dB.

P = 52 hidden states for the LSTM networks in
both LSTM-NN-DPA and LSTM-DPA-TA estimators, while
N1 = 15 neurons are considered at the hidden layer for
LSTM-NN-DPA and our proposed DPA-LSTM-NN scheme.

Furthermore, we consider the V2V-UC vehicular channel
model, with two vehicles moving in opposite directions at
v = 48 km/h (low mobility scenario), v = 100 km/h
(high mobility scenario) and v = 200 km/h (very high
mobility scenario). We also considered 16-QAM and QPSK
modulation techniques, aiming to cover both lower and
higher modulation order aspects in the analysis, while the
impact of the HPA nonlinearities has been considered for
IBO = 4 dB for the highermodulation order and, since QPSK
is considerably more robust with respect to the nonlinearities,
we extend our analysis to higher effects of HPA-induced
nonlinearities, employing IBO = 2 dB in this case.

A. BER AND NMSE PERFORMANCE
First, we investigate the impact of the subcarrier down-
sampling factor on the BER performance of the proposed
DPA-LSTM-NN scheme. Figure 11 plots the BER as a
function of the SNR of the DPA-LSTM-NN estimator for the
low mobility scenario (v = 48 km/h), 16-QAM modulation
with an IBO = 4 dB. Notice that we indicate the size of
the LSTM unit and the number of neurons of the NN in the
legend. For instance, (52-15) indicates an LSTM unit with
size P = 52 hidden states and N1 = 15 neurons. Then,
we have considered different sets of sampled subcarriers with
P = |S| ∈ {52, 36, 28, 20, 16}. Since the Kp = 4 pilot
subcarriers are always included in S, we illustrate the cases
of sampling the data subcarriers with rates 1/1, 2/3, 1/2,
1/3 and 1/4, respectively. We observe that it is possible to
reduce the input size of the LSTM U and the number of P
hidden states considerably with a slight degradation in the
BER performance. Consequently, the LSTM demonstrated
to be capable to interpolate the information of the missing

subcarriers even with P = 28. Therefore, in the sequel we
only consider the DPA-LSTM-NN scheme with P = |S| =
28 hidden states and an LSTM input U = 2 |S| = 56.
Figure 12 compares the BER performance of the esti-

mation schemes using 16-QAM modulation and IBO =

4 dB. As illustrated in Figure 12 for the low mobility
scenario, LSTM-NN-DPA [11] and LSTM-DPA-TA [12]
perform better than our proposed scheme at low SNR. This
is due to the demapping error of the DPA method, which
increases in low SNR. Thus, since [11], [12] use the LSTM
layer before the DPA, they achieve increased performance.
However, when the SNR increases the DPA method provides
a cleaner information to the LSTM layer, compared to
LS used in [11] and [12]. Then, we observe that the
DPA-LSTM-NN scheme outperforms all other benchmark
methods when ξ ≥ 22 dB. Note also that such SNR level
is crucial to achieve BER lower than 10−3, required by
many practical applications. Furthermore, for high and very
high mobility scenarios, respectively in Figures 12b and 12c,
we observe a higher advantage for the proposed DPA-LSTM-
NN estimator, outperforming the other solutions regardless of
the SNR. It is also important to highlight that the proposed
method is the sole estimator to achieve BER in the order of
10−4 for high and very highmobility. In addition, considering
a BER of 10−3, the proposed scheme has 4 dB of SNR gain
compared to the LSTM-DPA-TA method in Figure 12b, and
2 dB of SNR gain compared to the LSTM-NN-DPA method
in Figure 12c.

The performance improvement of the proposed estimator
with respect to LSTM-NN-DPA and LSTM-DPA-TA is
illustrated in Figure 13 in terms of the NMSE gap.
We calculate the NMSE for fixed SNR ξ = 30 dB, 16-QAM
modulation, IBO = 4 dB, for different velocities. Comparing
DPA-LSTM-NN and LSTM-NN-DPA, we observe that the
NMSE gap is always higher than 40% regardless of v.
Comparing DPA-LSTM-NN and LSTM-DPA-TA the NMSE
gap is always higher than 20%, increasing with v. This result
shows that the proposed DPA-LSTM-NN performs better in
minimizing the error between the perfect channel and its
channel estimates in high SNR, being a better choice for
tracking the channel in presence of nonlinear distortions.

In order to focus on the effects of the HPA-induced
nonlinearities, the error rate performance is evaluated with
IBO = 2 dB1 in Figure 14. Low, high and very high mobility
scenarios are considered with QPSK modulation. Similarly
to the results considering 16-QAM modulation, we observe
that the proposed DPA-LSTM-NN scheme outperforms other
methods, except in the low mobility scenario at low SNR.
Nevertheless, we can notice here that both LSTM-NN-DPA
and LSTM-DPA-TA estimators present an error floor at high
SNR. This is mainly due to the low IBO, since the LS
estimation used as the input of the LSTM layers in [11]
and [12] is highly degraded by the HPA nonlinear distortions.

1Note that a smaller IBO value implies in higher nonlinear distortions at
the HPA.
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FIGURE 12. BER performance of the DPA-DNN [7], LSTM-NN-DPA [11], LSTM-DPA-TA [12] and DPA-LSTM-NN (proposal) using 16-QAM modulation and
IBO = 4 dB.

FIGURE 13. NMSE gap between the proposed DPA-LSTM-NN and
LSTM-NN-DPA/LSTM-DPA-TA, with ξ = 30 dB, 16-QAM modulation,
IBO = 4 dB and v ∈ {48,100,150,200} km/h.

In addition, the performance gap between the LSTM-NN-
DPA, LSTM-DPA-TA and our proposed method increases
with the SNR, since the DPA method provides more reliable
channel estimates in this case. Figure 15 corroborates such
analysis, by showing the NMSE gap between ours and the
benchmark LSTM-based estimators in the same scenario
of Figure 14. Similar conclusions as in Figure 13 can be
obtained, with the DPA-LSTM-NN method outperforming
other schemes by at least 53%. Interestingly, the gap is higher
in low mobility scenarios, while it slightly decreases with v.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
In order to compare the computational complexity of the
schemes, we calculate the number of real-valued oper-
ations in terms of multiplications/divisions and summa-
tions/subtractions, required to estimate the channel from a
received OFDM symbol.

The computational complexity of the DPA-DNN estimator
has been detailed in [24]. The initial DPA estimation

requires 18Kon multiplications/divisions and 8Kon summa-
tions/subtractions, while the total number of multiplications
and summations of the DNN depends on the number
of neurons at each layer. Following [24], the number of
multiplications and summations of the DNN is given by

CMult
DNN = CSum

DNN =

ι+1∑
l=1

ND
l−1 N

D
l , (15)

where ι is the number of hidden layers of the DNN, and ND
l

is the number of neurons at the l-th hidden layer. In addition,
ND
0 denotes the number of neurons of the input layer of the

DNN, while ND
ι+1 is the number of neurons of the output

layer. The DPA-DNN has been designed in [7] with ι =
3 hidden layers, respectively with ND

1 = 40, ND
2 = 20 and

ND
3 = 40 neurons. In addition, both input and output layers

depend on the number of active subcarriers multiplied by
two in order to handle real and imaginary parts, so that
ND
0 = ND

4 = 2Kon. Hence, the DPA-DNN requires
178Kon + 1600 multiplications/divisions and 168Kon +

1600 summations/subtractions.
The shallow NN, by its turn, has a single hidden layer,

so that it computational complexity is given by

CMult
NN = CSum

NN = N0 N1 + N1 N2, (16)

while the computational complexity of the LSTM unit has
been detailed in [12], which depends on the input size of
the LSTM unit U and on the size of its hidden states P.
Following [12], the overall number of real-valued operations
of the LSTM unit is given by

CMult
LSTM = 4P2 + 4PU + 3P, (17)

CSum
LSTM = 13P+ 4U − 8. (18)

The LSTM-NN-DPA estimator considers U = 2 (Kon +

Kp) = 112 inputs for the LSTM, where the multiplication
by two takes both real and imaginary parts into account, and
P = Kon = 52 hidden states. In addition, the input size of the
NNmatches the size of the LSTMoutput, as well as its output,
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FIGURE 14. BER performance of the DPA-DNN [7], LSTM-NN-DPA [11], LSTM-DPA-TA [12] and DPA-LSTM-NN (proposal) using QPSK modulation and
IBO = 2 dB.

TABLE 7. Real-valued operations for the considered channel estimators.

FIGURE 15. NMSE gap between the proposed DPA-LSTM-NN and
LSTM-NN-DPA/LSTM-DPA-TA, with ξ = 30 dB, QPSK modulation,
IBO = 2 dB and v ∈ {48,100,150,200} km/h.

that is related to the number of subcarriers, so that N0 =

N2 = 2Kon = 104. Also, N1 = 15 has been considered for
all schemes in this paper. Thus, combining the computational
complexity of the LSTM, the NN and the DPA corresponds
to 12Kon

2
+ 81Kon+ 8Kon Kp multiplications/divisions and

89Kon + 8Kp − 8 summations/subtractions.
In addition, the LSTM unit of the LSTM-DPA-TA scheme

has U = 2 Kon = 104 inputs and P = Kon = 52
hidden states, while the TA technique requires 2Kon
multiplications/divisions and 2Kon summations/subtractions.

FIGURE 16. Computational complexity in terms of real-valued operations
with Kon = 52 subcarriers and Kp = 4 pilots.

Thus, combining the complexity of the LSTM, DPA and
TA leads to 12Kon

2
+ 23Kon multiplications/divisions and

31Kon − 8 summations/subtractions.
By its turn, the proposed DPA-LSTM-NN estimator with

subcarrier sampling employs the DPA initial estimation,
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FIGURE 17. BER performance of the proposed DPA-LSTM-NN scheme with QPSK modulation, v = 100 km/h and IBO = 2 dB, using Ensemble Modeling.

followed by the LSTM unit with P = Kon+Kp
2 = 28 hidden

states and U = Kon+Kp = 56 inputs, with an additional NN
layer with N0 = N2 = 2 Kon = 104 and N1 = 15 neurons.
We obtain, thus, the complexity as

CMult
DPA−LSTM−NN = 3Kon

2
+ 3Kp

2
+ 6Kon Kp

+
159
2

Kon +
3
2
Kp (19)

and

CSum
DPA−LSTM−NN =

157
2 Kon +

21
2 Kp − 8. (20)

Table 7 summarizes the real-valued operations required
by the channel estimation schemes, as a function of the
number of active subcarriers. As we observe, the proposed
DPA-LSTM-NN scheme has the smallest coefficients for the
most significant factors associated to Kon in the operations
of multiplications and divisions, consisting in the most
impactful in the complexity of the considered estimators. This
is relevant in the case, e.g., of a different communication
standard employing a different number of active and pilots
subcarriers, so that our solution would still present a lower
complexity compared to other LSTM-based solutions in the
literature. In addition, Figure 16 illustrates the computational
complexity of the schemes in the case ofKon = 52 subcarriers
and Kp = 4 pilots. We observe that the proposed DPA-
LSTM-NN estimator with subcarrier sampling has at least
49.9% less real-valued operations than other LSTM-based
solutions, and 16.7% less real-valued operations than the
DPA-DNN scheme, while also improving the BER at the
same time.

C. PRACTICAL ASPECTS
An important remark to the practical usage of DNN-based
estimators is that their performance depends closely on the
training stage of the network. In terms of the robustness of
the training, a few observations arise from our investigation.

First, we observe that there is a generalization aspect of the
methods trained for highermodulation orders when applied to
lower modulation orders. For instance, the QPSKmodulation
can be seen as a part of the 16-QAM modulation, so DNNs
trained with 16-QAM work well when QPSK modulation
is employed in the testing stage. In addition, DNNs trained
for high velocity are able to achieve very good performance
in lower velocities. For example, if a DNN trained for v =
200 km/h is used when v = 48 km/h, the results are very
similar than if the DNN was trained with v = 48 km/h.
However, the opposite is not valid and yields significant
performance degradation.

Furthermore, it is quite useful for the DNN-based solu-
tion to be robust against changes in the channel model,
opening opportunities for generalized learning architectures
to estimate vehicular channels under different conditions.
Throughout this paper, we considered the V2V-UC channel
model, while other V2V channel models also exist [31].
One of the existing methods to generalize the solution is the
Ensemble Modeling (EM) [34], which is able to combine
different neural networks, e.g., each for a different vehicle
velocity or power delay profile, to improve prediction in a
general case. A recent approach has been performed by [35],
where EM is used to combine individual LSTM models for
a particular optimization problem. This process is done by
combining distinct models built for specific datasets, in order
to generate a generalized prediction, robust to parameter
variations, using a match of the prediction of each of its
components. Our choice for the EM solution here ismotivated
by the fact that no complexity is added to the operation of the
DNN-based estimator. The EM technique only modifies the
training stage of the DNN; thus, without any impact on the
complexity analysis performed in Section V-B.

As an example, we have implemented EM in our
scenario, where we train eight models with datasets
deployed in both V2V-UC and V2V Same Direction With
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FIGURE 18. Radar chart comparing the robustness do nonlinearities, SNR for optimized performance,
modulation order for optimized performance, complexity, and effect of high mobility of the channel
estimation scheme. We compare the proposed DPA-LSTM-NN scheme with DPA-DNN [7],
LSTM-NN-DPA [11] and LSTM-DPA-TA [12] schemes.

Wall (V2V-SDWW2) [31], with different velocities v =
{48, 100, 150, 200} km/h. Then, we assign equal weights
to the models to obtain the EM in an average approach.
This method integrates the different offline trained models
building a single DNN, which combines the learning of the
different training datasets.

Figure 17 plots the BER as a function of the SNR for
v = 100 km/h, QPSK modulation and IBO = 2 dB.
Figure 17a considers the V2V-UC channel, while V2V-
SDWW is considered in Figure 17b. In addition, we compare
in each figure the proposed DPA-LSTM-NN estimator
trained specifically for a given channel model and velocity
and its EM version integrating models trained for v =
{48, 100, 150, 200} km/h and both channel models (denoted
as DPA-LSTM-NN EM). As we observe, the DPA-LSTM-
NN trained for one channel model and tested in a different
model exhibits a performance loss. On the other hand, the
EM-based solution works very well, exhibiting a very similar
performance to the case when DPA-LSTM-NN is trained and
tested in the same channel model.

D. SUMMARY OF THE ANALYSIS
Finally, the diagram illustrated in Figure 18 summarizes
the main analysis of the results, and highlights the most
appropriate application scenarios for each of the receivers
compared in this work. Here, we emphasize the advantages

2We have considered the V2V-SDWW channel model since it has a bigger
difference in terms of maximum Doppler shift and path delays compared to
the V2V-UC model [31].

from our proposed DPA-LSTM-NN as an estimator with low
complexity compared to the benchmark estimators, capable
of dealing with both effects of mobility and nonlinearities of
the HPA, mostly when it is possible to operate in high SNR
regime.

VI. CONCLUSION
In this work, we proposed a novel LSTM-NN-based
estimator, with complexity reduction in exploiting the
doubly-selective channel with a nonlinear scenario deployed
by the IEEE 802.11p standard for vehicular communications.
The simulation results evidence that is possible to increase
the error compensation when comparing our solution to other
LSTM-based estimators from the literature, by considering
the DPA method as input to the LSTM layer, showing
that this strategy presents more correlation aspects to this
nonlinear post-procedure, especially in high SNR scenarios.
Also, in sampling the subcarrier information used in the
training and reducing the size from the LSTM layer, we show
that is possible to reduce the complexity of the DPA-
LSTM-NN receiver, recording at least 49.9% less real-valued
operations when compared to the recently proposed LSTM-
NN-DPA and LSTM-DPA-TA schemes. We also explored
an example of a generalized approach, which modifies the
training state of the DNN so that the final solution covers
different channel models and vehicle velocities, providing
robustness and general learning architectures to the vehicular
communication scenarios. As future works, we aim to extend
our studies by proposing alternatives for the pilots limitation
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imposed by the IEEE 802.11p standard, in order to increase
the performance gain in employing the LSTM solutions,
mostly when considering high mobility aspects. In addition,
we also highlight the opportunity to extend the generalized
DNN approach, applying other methods to design more
robust and general learning architectures to these vehicular
scenarios.
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