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ABSTRACT In this paper, the problem of consensus control is investigated for a kind of multi-agent
systems (MAS) in high-dimensional form. Both the nonlinear dynamics and norm-bound uncertainties
are taken into account, which makes the model more comprehensive than those in existing literature.
By employing the related error (between each agent and its neighbors) and considering the time-varying input
delay, the consensus protocol is constructed to force agents to close to the consensus dynamical function.
An augmented closed-loop system is established by taking use of properties of Laplacian matrix and the
state space decomposition method. A few of sufficient criteria are gained with the help of feasible solutions
for linear matrix inequalities. The asymptotical stability of error system is realized and the upper-bound is
obtained for the cost function consisting of both the consensus regulation performance and the control energy
consumption. An illustrative example and the corresponding simulations are given for verifying the validity
of our results.

INDEX TERMS Consensus control, guaranteed-cost function, input delay, multi-agent system, uncertainty.

I. INTRODUCTION
In last decades, the coordination problem of multi-agent
system (MAS) has attracted a large amount of research
attention owing to the wide practical utilizations in dis-
tributed cloud computing [1], spacecraft formation fly-
ing [2], adaptive dynamic programming [3], manipulators [4],
and cyber-physical energy networks [5]. Consensus control,
whose aim is to propose an appropriate control strategy to
render the position and velocity of all agents gradually con-
verge to a common value, has been considered as one of the
essential coordination behaviors for MAS [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15]. For example, the finite-time
consensus tracking control problem has been considered
in [12] for nonlinear multi-agent systems in which state
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variables are unmeasured and nonlinear functions are totally
unknown. In [13], an optimal consensus problem has been
studied for a set of integrator systems with dynamic uncer-
tainties. In [14], authors have investigated the observer-based
fully distributed containment control for multi-agent systems
subject to denial-of-service attacks. In practical application,
since the limited speed of information transmission and
processing among agents, MASs will inevitably encounter
time delay, which may dramatically influence the perfor-
mance of consensus [16], [17], [18]. Until now, a large
number of research results have already been reported to
address the issue of consensus control for MASs with var-
ious time delays [19], [20], [21], [22], [23]. For instance,
in [22], authors have concerned with the problem of con-
sensus of multiple agents with intrinsic nonlinear dynamics
and sampled-data information on the basis of a delayed-input
approach.
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To solve problems of control synthesis, it is often neces-
sary to give a control strategy which can not only realize
the required performance of closed-loop system but also
achieve a given level of cost performance. As such, the
guaranteed cost control plays an important role in controller
design [24], [25]. Recent years, a few of interesting works
have been reported to address the guaranteed cost consensus
of MASs (see [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], and references therein). For instance,
scholars have investigated the guaranteed cost consensus for
a class of discrete-time MAS with singularity and switching
topologies via event-triggered consensus protocol [30]. Tak-
ing use of the graph theory and the equivalent transformation
method for singular systems, some interesting conditions
have been derived in the form of the linear matrix inequalities
(LMIs) to realize guaranteed cost consensus of discrete-time
singular multi-agent systems. By changing variables, the
problem of guaranteed-cost consensus has been considered
in [31]. By constructing the consensus control protocol
with the related cost index, the guaranteed cost consensus
has ultimately realized for MAS with some constraints of
input.

Most of results mentioned above have been obtained by
supposing that all parameters of MASs are accurately known
in advance. In fact, the presence of uncertainties in most con-
trol plants is unavoidable because of sensor errors, actuator
failure, modeling inaccuracy, and so on [38]. For example,
air pollution measurement instruments in a sensor network
may give imperfect readings, or gas detection sensors may
fail to detect gases with a certain probability. That is to say,
the system uncertainties are ubiquitous when we take vari-
ous unmodeled systems dynamics or parameter drifting into
consideration. Therefore, it is more reliable to consider the
influence of uncertainties on the consensus performance of
MASs. Currently, considerable research attention have been
drawn on to the consensus control for MASs with various
uncertainties [39], [40], [41], [42], [43]. Specifically, the slid-
ing mode control has been exploited to deal with uncertain-
ties incurred by unknown time varying communication delay
and disturbance [40]. Based on the control technique and
Lyapunov stability theory on finite-time horizon, an adap-
tive fast finite-time consensus issue has been addressed for
second-order uncertain nonlinear MASs with external distur-
bances and unknown nonsymmetric dead-zone [42]. A fuzzy
adaptive control within event-triggered mechanism has been
designed for the control of a kind of nonlinear MASs with
input dead-zone and uncertainties [43].

On the other research horizon, a physical system in real
world might be governed by some nonlinear terms (such
as Lipschitz nonlinearity, stochastic nonlinearity, polynomial
nonlinearity and so on) due probably to the high maneu-
verability of the moving target, sudden parameter switching,
and environmental fluctuation. For example, the well-known
UAVs, which have been widely used for surveillance and
reconnaissance missions, is a complex nonlinear dynamic
model owing to the coupling of 6-DOF motion and the

nonlinear changes of aerodynamic force and torque with
flight. In this case, the state of systems are not only affected
by the interaction among neighboring agents, but also by
its own intrinsic nonlinear dynamics. It is worth noting that
Lipschitz nonlinearity, which is restricted by a linear form of
constraint, has aroused the most extensive research attention
in analysis for nonlinear systems. Particularly, in recent years,
an ever increasing number of studies have been devoted to the
filtering and control problems for dynamical systems with
Lipschitz nonlinearity. However, few results have emerged
to address the problem of guaranteed cost consensus for
MASs with both Lipschitz nonlinear dynamics and parameter
uncertainties. Thus, the first aim of this paper is to shorten
such a gap.

It is to be noted that most of above-mentioned results have
only considered the consensus regulation performance for
MASs. Generally speaking, the consumption of energy is also
fundamental for the control synthesis in practical applications
due mainly to the fact that the energy for control input is
always limited. Hence, in analyzing and implementing the
control of MAS, it is significantly important to design a
consensus protocol while considering both the control perfor-
mance and energy consumption. Recently, some preliminary
research work has been done to consider the guaranteed cost
consensus problem for MASs with input delays. However,
little effort has been devoted to dealing with the guaranteed
cost consensus problem for high-dimensional MASs with
both time delays and uncertainties, which forms the other
motivation of the current research.

Based on the above discussion, this paper is prepared to
study the issue of guaranteed cost consensus for a category
of high-dimensional MASs, which takes both the nonlinear
dynamics and norm-bound uncertainties into account. Two
constant matrices and a unsuspected matrix are introduced
to characterize the influence resulting from parameter uncer-
tainties. With the help of a Lipschitz constant, the con-
straint condition with linear form is adopted for the Lipschitz
nonlinear term such that the consensus performance is ulti-
mately investigated. The principle novelties of this paper
are summarized as follows: (1) The guaranteed cost consen-
sus problem is originally investigated for high-dimensional
MASs with uncertain parameter via a distributed control
with time-varying input delays. (2) The cost function is con-
structed to simultaneously evaluate a certain level of both
control performance and energy consumption. (3) The control
gain matrix are calculated by relying on the feasible solution
of LMIs so as to ensure all agents approach a consensus
function.

The rest of this paper is structured as follows: Section II
provides the graph theory and the problem formulation.
In Section III, sufficient conditions are derived to ensure
the consensus of MASs and determine the upper bound for
the guaranteed cost. In Section IV, the validity of theoretical
results is illustrated by calculating a numerical example and
simulating the dynamics. Finally, conclusions of this paper
are shown in Section V.
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Notation: The notations in this paper are standard.Rd is for
the d-dimensional real column vector space, and Rd×m stands
for the set of d × m dimensional real matrices. 1N ∈ RN

denotes an N -dimensional column vector with all compo-
nents 1. Let 0 be the matrix or vector of compatible size
with all components 0. IN ∈ RN×N represents the n-order
unit matrix. The Kronecker product of matrices is denoted
by ⊗. The symbol ∗ stands for the symmetric elements in a
symmetric matrix. P > 0 (or P < 0) means that the sym-
metric matrix P is positive definite (or negative definite). For
x ∈ RN , ||x|| represents the Euclidean norm of x. λmax(A) (or
λmin(A)) represents the maximum (or minimum) eigenvalue
of matrix A.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH TOPOLOGY
Let G = G(V,E,W) be an undirected graph consisting of
node set V = {v1, v2, · · · , vN }, edge set E = {(vi, vj) :
vi, vj ∈ V}, and adjacency matrix W = [ωij] ∈ RN×N with
ωij ≥ 0 for i 6= j and ωii = 0, where ωij > 0 if and only if
(vi, vj) ∈ E. The node index belongs to a finite index set IN =
{1, 2, · · · ,N }. The neighboring set of node vi is denoted by
Ni = {vj ∈ V : (vi, vj) ∈ E}. For graph G, the degree matrix
is defined as D = diag{degin(v1), degin(v2), · · · , degin(vN )}
in which degin(vi) =

∑
j∈Ni ωij. The Laplacian matrix asso-

ciated with G is L = D −W. In this paper, we assume G is
connected, namely, there is no isolated node in G.

The following properties of the Laplacian matrix are help-
ful to derive our result.
Lemma 1 [44]: If G is an undirected and connected graph

with Laplacian matrix L ∈ RN×N , then (i) all eigenvalues λi
(i ∈ IN ) of L are nonnegative scalars and satisfy 0 = λ1 <

λ2 ≤ · · · ≤ λN ; (ii) L1N = 0.

B. PROBLEM FORMULATION
Consider aMAS consisting ofN identical agents with param-
eter uncertainties and nonlinear dynamics, which aremodeled
as follows:

ẋi(t) = (A+1A)xi(t)+ f (xi(t))+ Bui(t) (1)

where i ∈ IN , A ∈ Rd×d and B ∈ Rd×m are known matrices.
xi(t) ∈ Rd and ui(t) ∈ Rm denote the state and input of agent i,
respectively.1A is for the uncertainties in parameter matrices
and satisfies

1A = DF(t)E (2)

with D and E are known matrices with appropriate dimen-
sions. F(t) is an unsuspected matrix function with condition

FT (t)F(t) ≤ I . (3)

The uncertainties1A is considered to be acceptable provided
that (2) and (3) are satisfied.
Remark 1: The dynamical system (1) is an uncertain

model described in state space. The constant matrices D and
E indicate the range of disturbance from the model uncertain-
ties which would be determined by engineering experience or

expert analysis in practice. This structure of the model uncer-
tainties has been widely employed in existing literature [39],
[40], [41], [42].
Assumption 1: The function f : Rd → Rd is Lipschitz

nonlinearity, namely, there is a positive constant γ such that
f fulfills

||f (y)− f (z)|| ≤ γ ||y− z||,

for any y, z ∈ Rd .
For notation simplicity, let x(t), u(t) and F(x(t)) be

x(t) = [xT1 (t), x
T
2 (t), · · · , x

T
N (t)]

T ,

u(t) = [uT1 (t), u
T
2 (t), · · · , u

T
N (t)]

T ,

F(x(t)) = [f T (x1(t)), f T (x2(t)), · · · , f T (xN (t))T ]T .

Then, the model (1) is rewritten to be a compact vector form

ẋ(t) = (IN ⊗ (A+1A))x(t)

+(IN ⊗ B)u(t)+ F(x(t)). (4)

Consider a consensus strategy with time-varying input
delay as follows

ui(t) = K
∑
j∈Ni

ωij(xj(t − τ (t))− xi(t − τ (t))),

in which i, j ∈ IN,K ∈ Rm×d is the gain matrix for controller.
Ni stands for the set of neighbors of agent i. ωij denotes the
weight strength of the edge between agent j and agent i. Let
τ (t) be the time-varying delay when the control information
is transmitted to the actuator, which satisfies 0 ≤ τ ≤ τmax
and |τ̇ (t)| ≤ l < 1 with τmax > 0 and l > 0. By following
from properties of Kronecker product and the definition of
Laplacian matrix, the control input is transformed to be

u(t) = −(L ⊗ K )x(t − τ (t)). (5)

Substituting (5) into (4) gives that

ẋ(t) = (IN ⊗ (A+1A))x(t)

−(L ⊗ BK )x(t − τ (t))+ F(x(t)). (6)

Without losing generality, we give the initial value to be
x(t) = x0 ∈ Rd , t ∈ [−τmax , 0].

In this paper, we employ the following cost function

JC = JCx + JCu (7)

in which

JCx =
∫
∞

0

N∑
i=1

N∑
j=1

ωij(xj(t)− xi(t))TQ(xj(t)− xi(t))dt,

JCu =
∫
∞

0

N∑
i=1

uTi (t)Rui(t)dt

with Q > 0 and R > 0. In general, JCx denotes the control
regulation performance of consensus and JCu stands for the
control energy consumption for MAS.
Remark 2: Recently, the problem of guarantee cost con-

sensus control for multi-agent systems has been considered
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in many papers [19], [20], [21], [26], [27]. It is worth noting
that in these papers the time delay and parameter uncertainty
have not been considered simultaneously. Furthermore, less
research effort has been devoted to the consensus control
of high-dimensional multi-agent systems with taking both
control regulation performance and the control energy con-
sumption into consideration. Based on these reasons, system
prepared in this paper is more comprehensive than those in
existing literature.

Next, we provide the following several definitions and
lemmas which will play a significant role in obtaining the
main results.
Definition 1: MAS (6) is said to realize the guaranteed

cost consensus provided that there exist a function c(t) and
a scalar J∗C > 0 such that

lim
t→∞

(x(t)− 1N ⊗ c(t)) = 0 and JC ≤ J∗C

in which c(t) is the function of consensus and J∗C is the
guaranteed cost.
Definition 2: MAS (4) is said to be guaranteed cost con-

sensualizable by control strategy (5) if there is a matrix K
render MAS (4) realize the guaranteed cost consensus.
Lemma 2 [45]: For vectors x, y ∈ Rd and matrices D, S ∈

Rd×d , we have

2xTDSy ≤ xTDDT x + yT ST Sy.
Lemma 3 [38]: Assume D, E are scalar matrices with

appropriate dimensions, and F(t) is an unsuspected matrix
function satisfying FT (t)F(t) 6 I . For any scalar ε1 > 0,
one has

DF(t)E + ETFT (t)DT ≤ ε−11 DDT + ε1ETE .
Lemma 4 [23]: Let k(t) ∈ Rd be a vector with first-order

continuous-derivative entries. For any matrices 41, 42 ∈

Rd×d , d-dimensionalmatrixH = HT > 0, and a nonnegative
function τ (t) ≥ 0, the following integral inequality holds

−

∫ t

t−τ (t)
k̇T (s)Hk̇(s)ds

≤ χT (t)4aχ (t)+ τmaxχT (t)4T
bH
−14bχ (t),

where

χ (t) =
[

k(t)
k(t − τ (t))

]
, 4a =

[
4T

1 +41 −4
T
1 +42

∗ −4T
2 −42

]
,

4b =
[
41 42

]
.

Lemma 5 Schur Complement Lemma: Let P and Z be real
symmetric matrices and Z be invertible. Then,[

P Y
∗ Z

]
< 0

if and only if

Z < 0,P− YZ−1Y T < 0.

III. MAIN RESULTS
For a Laplacian matrix L, it follows from Lemma 1 that the
eigenvalue λ1 = 0 possesses an associated eigenvector 1N
and λ1 ≤ λ2 ≤ · · · ≤ λN . Hence, there exists an orthogonal
matrix U = [u1, u2, · · · , uN ] with u1 = 1N /

√
N such that

UTLU = 3 = diag{λ1, λ2, · · · , λN }.

Let

k(t) = (UT
⊗ Id )x(t) = [kTc (t), k

T
r (t)]

T (8)

with kr (t) = [kTr2(t), k
T
r3(t), · · · , k

T
rN (t)]

T
∈ R(N−1)d and

kc(t) ∈ Rd .
Remark 3: According to the property that Laplacian

matrix has a zero eigenvalue, we derive the new virtual node
state kc(t) and kr (t) by using orthogonal linear transforma-
tion. Specifically, kc(t) can not be influenced or controlled by
coupling input u(t) because of the zero eigenvalue of Lapla-
cian matrix. Thus, kc(t) is usually employed to represent the
consistent performance with which other nodes need to fol-
low. Meanwhile, kr (t) stand for the state deviations between
all agent nodes and the consistent performance. Within the
consensus protocol u(t), kr (t) will finally tend to zero.

For any i ∈ IN , we denote by ei an N -dimensional column
vector with the i-th element 1 and 0 elsewhere. By rewriting

x(t) = (U ⊗ Id )k(t),

kc(t) = (eT1 ⊗ Id )(U
T
⊗ Id )x(t),

kri(t) = (eTi ⊗ Id )(U
T
⊗ Id )x(t),

we conclude that MAS (6) is rewritten as

k̇c(t) = (A+1A)kc(t)+ (
1N
√
N

T
⊗ Id )F(x(t)), (9)

k̇ri(t) = (A+1A)kri(t)− λiBKkri(t − τ (t))

+(eTi ⊗ Id )(U
T
⊗ Id )F(x(t)). (10)

By following the properties of Laplacian matrix L, we have

xT (t)Lx(t) =
1
2

N∑
i=1

N∑
j=1

wij(xi(t)− xj(t))T (xi(t)− xj(t)),

which, together with the form of cost function in (7), indicates
that

JCx =
∫
∞

0
xT (t)(2L ⊗ Q)x(t)dt,

JCu =
∫
∞

0
xT (t − τ (t))(L2 ⊗ KTRK )x(t − τ (t))dt.

Recalling λ1 = 0 and k(t) = (UT
⊗ Id )x(t), we get

JCx =
∫
∞

0

N∑
i=2

2λikTri (t)Qkri(t)dt,

JCu =
∫
∞

0

N∑
i=2

λ2i k
T
ri (t − τ (t))K

TRKkri(t − τ (t))dt.
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Thus, the cost function (7) is changed to be

JC =
N∑
i=2

∫
∞

0
2λikTri (t)Qkri(t)dt

+

N∑
i=2

∫
∞

0
λ2i k

T
ri (t − τ (t))K

TRKkri(t − τ (t))dt.

We are now in the position to present the main conclusion
by which the guaranteed cost consensus will be finally real-
ized for MAS (7).
Theorem 1: Given two positive numbers h1 < h2, the

MAS (6) achieves the guaranteed cost consensus if there exist
matrices 41, 42, positive definite matrices P > 0, W > 0,
diagonal matrix H > 0, and matrix K such that

h1Id < H < h2Id , (11)

�i =



�11 �12 PD P 4T
1 0 AT 0

∗ �22 0 0 4T
2 �26 �27 �28

∗ ∗ �33 0 0 0 0 0
∗ ∗ ∗ �44 0 0 0 0
∗ ∗ ∗ ∗ �55 0 0 0
∗ ∗ ∗ ∗ ∗ �66 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ �88


< 0, (12)

for i = 2 and N , in which

�11 = ATP+ PA+ εETE + γ 2Id +W

+2h2τmaxε−1ATDDTA

+2h2τmaxεETE + 2h2τmaxλmax(DTD)ETE

+2h2τmaxλiε−1ETE + 2h2τmaxγ 2Id +4T
1 +41

+2λiQ,

�12 = −4
T
1 +42 − λiPBK ,

�22 = (l − 1)W −4T
2 −42,

�26 = λiKTRT ,

�27 = −λiKTBT ,

�28 = KTBTD,

�33 = −ε
−1Id ,

�44 = −Id ,

�55 = −(h1τmax)−1Id ,

�66 = −R,

�77 = −(2h2τmax)−1Id ,

�88 = −(2h2τmaxλiε)−1Id .
Proof: For convenience, let

xc(t) = (U ⊗ Id )[kTc (t), 0]
T , (13)

xr (t) = (U ⊗ Id )[0, kTr (t)]
T , (14)

where kc(t) and kr (t) are defined in (8). It is readily seen
from (13) and (14) that xc(t) is linearly independent of xr (t)
because U is nonsingular. According to (8), one deduces

x(t) = xc(t)+ xr (t).

By (13), we obtain that

xc(t) =
1N
√
N
⊗ kc(t). (15)

Considering the structure of xc(t), we deduce that the
consensus of MAS (6) is equivalent to prove lim

t→∞
xr (t) = 0.

It means that the consensus problem of MAS (6) can be
transformed to the asymptotical stability of system (10) via
approach of state decomposition. That is to say, we need to
verify

lim
t→∞

kri(t) = 0, i = 2, 3, . . . ,N .

Construct a Lyapunov-Krasovskii functional as follows

V (t) = V1(t)+ V2(t)+ V3(t)

with

V1(t) =
N∑
i=2

kTri (t)Pkri(t),

V2(t) =
N∑
i=2

∫ t

t−τ (t)
kTri (s)Wkri(s)ds,

V3(t) =
N∑
i=2

∫ 0

−τmax

∫ t

t+θ
k̇ri

T (s)Hk̇ri(s)dsdθ.

A direct calculation for V̇1(t) along the trajectory of (10)
shows

V̇1(t) =
N∑
i=2

kTri (t)((A+1A)
TP+ P(A+1A))kri(t)

−2
N∑
i=2

λikTri (t)PBKkri(t − τ (t))

+2
N∑
i=2

kTri (t)P(u
T
i ⊗ Id )F(x(t))

, V̇11(t)+ V̇12(t)+ V̇13(t), (16)

where

V̇11(t) =
N∑
i=2

kTri (t)((A+1A)
TP+ P(A+1A))kri(t),

V̇12(t) = −2
N∑
i=2

λikTri (t)PBKkri(t − τ (t)),

V̇13(t) = 2
N∑
i=2

kTri (t)P(u
T
i ⊗ Id )F(x(t)).

It is obviously inferred from V̇11(t) that

V̇11(t) =
N∑
i=2

kTri (t)(A
TP+ PA)kri(t)

+

N∑
i=2

kTri (t)(1A
TP+ P1A)kri(t).
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By recalling Lemma 3, one gets
N∑
i=2

kTri (t)(1A
TP+ P1A)kri(t)

= 2
N∑
i=2

kTri (t)P1Akri(t)

= 2
N∑
i=2

kTri (t)PDF(t)Ekri(t)

≤

N∑
i=2

kTri (t)(ε
−1PDDTP+ εETE)kri(t).

Thus, it is observed that

V̇11(t) ≤
N∑
i=2

kTri (t)(A
TP+ PA)kri(t)

+

N∑
i=2

kTri (t)(ε
−1PDDTP+ εETE)kri(t). (17)

Taking use of Lemma 2, we calculate V̇13(t) and get

V̇13(t) ≤
N∑
i=2

kTri (t)PP
T kri(t)

+

N∑
i=2

FT (x(t))(ui ⊗ Id )(uTi ⊗ Id )F(x(t)). (18)

By letting Ū = [u2, u3, . . . , uN ] and noting UUT
= IN , one

derives

ŪŪT
=

N∑
i=2

uiuTi = IN −
1N1TN
N

.

As such, we further conclude that
N∑
i=2

FT (x(t))(ui ⊗ Id )(uTi ⊗ Id )F(x(t))

= FT (x(t))(ŪŪT
⊗ Id )F(x(t))

=
1
2N

N∑
i=1

N∑
j=1

∥∥f (xi(t))− f (xj(t))∥∥2 .
Bearing the Lipschitz condition of f in mind, one derives that

1
2N

N∑
i=1

N∑
j=1

∥∥f (xi(t)− f (xj(t))∥∥2
≤
γ 2

2N

N∑
i=1

N∑
j=1

∥∥xi(t)− (xj(t)
∥∥2

= γ 2xT (t)(ŪŪT
⊗ Id )x(t).

Noting that (eTi ⊗ Id )(UT
⊗ Id ) = (uTi ⊗ Id ) and kri(t) =

(eTi ⊗ Id )(U
T
⊗ Id )x(t), one has

N∑
i=2

FT (x(t))(ui ⊗ Id )(uTi ⊗ Id )F(x(t))

≤ γ 2xT (t)(ŪŪT
⊗ Id )x(t)

= γ 2xT (t)(Ū ⊗ Id )(ŪT
⊗ Id )x(t)

= γ 2
N∑
i=2

xT (t)(ui ⊗ Id )(uTi ⊗ Id )x(t)

= γ 2
N∑
i=2

kTri (t)kri(t). (19)

Substituting (19) into (18) yields that

V̇13(t) ≤
N∑
i=2

kTri (t)PP
T kri(t)+ γ 2

N∑
i=2

kTri (t)kri(t). (20)

Thus, it is concluded from (16), (17), and (20) that

V̇1(t) ≤
N∑
i=2

kTri (t)(A
TP+ PA)kri(t)

+

N∑
i=2

kTri (t)(ε
−1PDDTP+ εETE)kri(t)

−2λi
N∑
i=2

kTri (t)PBKkri(t − τ (t))

+

N∑
i=2

kTri (t)PPkri(t)+ γ
2

N∑
i=2

kTri (t)kri(t). (21)

By directly calculating V̇2(t) along the trajectory of (6),
we obtain that

V̇2(t) ≤
N∑
i=2

kTri (t)Wkri(t)

−(1− l)
N∑
i=2

kTri (t − τ (t))Wkri(t − τ (t)). (22)

It follows from V̇3(t) along the trajectory of (6) that

V̇3(t) =
N∑
i=2

τmax k̇Tri (t)Hk̇ri(t)

−

N∑
i=2

(
∫ t

t−τmax
k̇Tri (s)Hk̇ri(s)ds)

≤

N∑
i=2

τmax k̇Tri (t)Hk̇ri(t)

−

N∑
i=2

(
∫ t

t−τ (t)
k̇Tri (s)Hk̇ri(s)ds)

≤ h2τmax
N∑
i=2

k̇Tri (t)k̇ri(t)

−

N∑
i=2

(
∫ t

t−τ (t)
k̇Tri (s)Hk̇ri(s)ds)

, V̇31(t)+ V̇32(t).
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For the simplicity of notations, we denote χTi (t) =
[kTri (t), k

T
ri (t − τ (t))], Gi = [A + 1A,−λiBK ]. It is known

from Lemma 2, (10) and (19) that

V̇31(t) = h2τmax
N∑
i=2

(χTi (t)G
T
i Giχi(t)

+2FT (x(t))(ui ⊗ Id )Giχi(t)

+FT (x(t))(ui ⊗ Id )(uTi ⊗ Id )F(x(t)))

≤ h2τmax
N∑
i=2

(χTi (t)G
T
i Giχi(t)

+FT (x(t))(ui ⊗ Id )(uTi ⊗ Id )F(x(t))

+χTi (t)G
T
i Giχi(t)+ F

T (x(t))(ui ⊗ Id )

×(uTi ⊗ Id )F(x(t)))

= 2h2τmax
N∑
i=2

(χTi (t)G
T
i Giχi(t)

+FT (x(t))(ui ⊗ Id )(uTi ⊗ Id )F(x(t)))

≤ 2h2τmax
N∑
i=2

χTi (t)G
T
i Giχi(t)

+2h2τmax
N∑
i=2

γ 2kTri (t)kri(t).

By combining Lemma 2 with Lemma 3, we obtain

χTi (t)G
T
i Giχi(t) = kTri (t)(A+1A)

T (A+1A)kri(t)

+λ2i k
T
ri (t − τ (t))K

TBTBKkri(t − τ (t))

−2λikTri (t)(A+1A)
TBKkri(t − τ (t))

≤ kTri (t)A
TAkri(t)+ λiε−1kTriE

TEkri(t)

+λ2i k
T
ri (t − τ (t))K

TBTBKkri(t − τ (t))

−2λikTri (t)A
TBKkri(t − τ (t))

+kTri (t)(ε
−1ATDDTA+ εETE

+λmax(DTD)ETE)kri(t)

+λiεkTri (t − τ (t))K
TBTDDTBK

×kri(t − τ (t)),

which further implies that

V̇31(t) ≤ 2h2τmax
N∑
i=2

χTi (t)Mχi(t) (23)

where M = [Mij]4×4 with

M11 = ATA+ ε−1ATDDTA+ εETE

+λmax(DTD)ETE + λiε−1ETE + γ 2Id ,

M12 = MT
21 = −λiA

TBK ,

M22 = λ
2
i K

TBTBK + λiεKTBTDDTBK .

According to Lemma 4, one has

V̇32(t) ≤ −
N∑
i=2

∫ t

t−τ (t)
k̇Tri (s)Hk̇ri(s)ds

≤

N∑
i=2

(χTi (t)4aχi(t)+ h1τmaxχTi (t)4
T
b4bχi(t)).

which, together with (23), yields that

V̇3(t) ≤
N∑
i=2

χTi (t)(2h2τmaxM +4a

+h1τmax4T
b4b)χi(t). (24)

By taking (21), (22) and (24) into account, we conclude
that

V̇ (t) ≤
N∑
i=2

χTi (t)8̄iχi(t) (25)

in which

8̄i =

[
811 812
∗ 822

]
,

811 = ATP+ PA+ ε−1PDDTP+ εETE + PP+ γ 2Id
+W + 2h2τmaxATA+ 2h2τmaxε−1ATDDTA

+2h2τmaxεETE + 2h2τmaxλmax(DTD)ETE

+2h2τmaxλiε−1ETE + 2h2τmaxγ 2Id
+4T

1 +41 + h1τmax4T
141,

812 = −λiPBK − 2h2τmaxλiATBK −4T
1 +42

+h1τmax4T
142,

822 = (l − 1)W + 2h2τmaxλ2i K
TBTBK −4T

2 −42

+2h2τmaxλiεKTBTDDTBK + h1τmax4T
242.

Now, we present the following definition

ς̇ (t) = V̇ (t)+ J̄C (26)

where

J̄C =
N∑
i=2

(2λikTri (t)Qkri(t))

+

N∑
i=2

(λ2i k
T
ri (t − τ (t))K

TRKkri(t − τ (t))).

According to (25), one derives that

ς̇ (t) ≤
N∑
i=2

χTi (t)8̄iχi(t)+ J̄C =
N∑
i=2

χTi (t)8iχi(t)

in which 8i = 8̄i + Jxu, Jxu = diag{2λiQ, λ2i K
TRK }.

Considering LMIs possesses the convex property, it is
noted that for i = 2, 3, · · · ,N ,�i < 0 is derived from�i < 0
(i = 2, N ) in (12). Combining with the Schur complement
formula in Lemma 5, we have

8i =

[
�11 �12
∗ �22

]
−MZ−1MT < 0

in which

Z = diag{−εId ,−Id ,−(h1τmax)−1Id ,−R,

−(2h2τmax)−1Id ,−(2h2τmaxλiε)−1Id },
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M =
[
PD P 4T

1 0 AT 0
0 0 4T

2 λiK
TRT −λiKTBT KTBTD

]
.

Thus, it is observed that ς̇ (t) < 0, which together with
J̄C ≥ 0, further means that V̇ (t) ≤ 0. Therefore, system (10)
is asymptotically stable.

Furthermore, it can also be followed by (26) and
ς̇ (t) ≤ 0 that

J̄C ≤ −V̇ (t). (27)

It is worth noting that the asymptotic stability of system (10)
is followed by lim

t→∞
V (t) = 0. Let us integrate (27) from 0 to

+∞ and we derive that JC =
∫
∞

0 J̄Cdt ≤ V (0). Hence, the
proof of Theorem 1 is complete.
Theorem 2: Assume MAS (6) achieves the guaranteed

cost consensus. The consensus function c(t) is determined via

ċ(t) = (A+1A)c(t)+ f (c(t))

with initial value c(0) = 1
N

∑N
i=1 xi(0).

Proof: It is known from the proof of Theorem 1 the
guaranteed cost consensus for MAS indicates that

lim
t→∞

(x(t)−
1
√
N
1N ⊗ kc(t)) = 0. (28)

That is

lim
t→∞

(xi(t)−
1
√
N
kc(t)) = 0. (29)

From subsystem (9), one deduces that

1
√
N
k̇c(t) =

1
√
N
(A+1A)kc(t)+ (

1N
N

T
⊗ Id )F(x(t)).

It is obvious to derive that

(
1N
N

T
⊗ Id )F(x(t)) =

1
N

N∑
i=1

f (xi(t))). (30)

By combining (29) with (30), we have

lim
t→∞

((
1N
N

T
⊗ Id )F(x(t))−

1
N

N∑
i=1

f (xi(t)))

= lim
t→∞

((
1N
N

T
⊗ Id )F(x(t))−

1
N
Nf (

1
√
N
kc(t)))

= lim
t→∞

((
1N
N

T
⊗ Id )F(x(t))− f (

1
√
N
kc(t)))

= 0.

By recalling Definition 1, one notes that

lim
t→∞

(x(t)− 1N ⊗ c(t)) = 0

which together with (28), yields that

lim
t→∞

(c(t)−
1
√
N
kc(t)) = 0.

That is to say, 1
√
N
kc(t) can be the candidate for consensus

function introduced in (15). By letting c(t) = 1
√
N
kc(t) and

calculating the derivative of c(t), one has

˙c(t) = (A+1A)c(t)+ f (c(t)).

Furthermore, recalling the definition of kc(t) gives

kc(0) = (ei ⊗ Id )(UT
⊗ Id )x(0)

= (
1
√
N
1TN ⊗ Id )x(0)

=
1
√
N

N∑
i=1

xi(0),

which further implies

c(0) =
1
N

N∑
i=1

xi(0).

Then, we complete the proof.
Remark 4: It is obviously seen that Theorem 2 provides

an exact description for the dynamical evolution of the target
of consensus c(t) that is mainly governed by the isolate
dynamics rather than the distributed control input with delay
and the guaranteed cost performance. Moreover, Theorem 2
shows that when t → +∞, the state of MAS will converge
to the consensus function c(t) within any given initial value
x(0) and any upper bound τmax for time-varying input delay.
Theorem 3: For given positive numbers h1 < h2, if there

exist matrices 41, 42, K P > 0, W > 0, and diagonal
matrix H > 0 such that inequalities (11) and (12) hold, then
MAS (6) achieves the guaranteed cost consensus with cost
performance satisfying

JC ≤ J∗C = xT (0)(0 ⊗ (P+ τmaxW ))x(0)

with 0 = IN − 1N1TN /N .
Proof: Based on Theorem 1 and Definition 2, we know

that MAS achieves the guaranteed cost consensus with
JC ≤ V (0). According to the orthogonal matrix U =

[u1, u2, · · · , uN ] and u1 = 1N /
√
N , it is deduced that U can

be formulated as U =
[

1N√
N
Ū
]
with Ū = [u2, u3, · · · , uN ].

Bearing in mind UUT
= IN , one has ŪŪT

= IN −
1N 1TN
N .

By denoting 0 = IN − 1N1TN /N , it is clearly observed that

k(t) = (UT
⊗ Id )x(t) = [kTc (t), k

T
r (t)]

T ,

x(t) = (U ⊗ Id )k(t),

kri(t) = (eTi ⊗ Id )(U
T
⊗ Id )x(t).

According to V1(t) defined in Theorem 1, one gets

V1(t) =
N∑
i=2

kTri (t)Pkri(t)

=

N∑
i=2

kT (t)(ei ⊗ Id )P(eTi ⊗ Id )k(t)
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=

N∑
i=2

xT (t)(U ⊗ Id )(ei ⊗ Id )P(eTi ⊗ Id )(U
T
⊗ Id )x(t)

=

N∑
i=2

xT (t)(ui ⊗ Id )P(uTi ⊗ Id )x(t),

which, together with ŪŪT
=
∑N

i=2 uiu
T
i = IN −

1N 1TN
N = 0,

indicates that

V1(t) = xT (t)(0 ⊗ P)x(t).

Based on the same deduction line to V1(t), we get

V2(t) =
N∑
i=2

∫ t

t−τ (t)
kTri (s)Wkri(s)ds

=

∫ t

t−τ (t)
xT (s)(0 ⊗W )x(s)ds,

V3(t) =
N∑
i=2

∫ 0

−τmax

∫ t

t+θ
k̇ri

T (s)Hk̇ri(s)dsdθ

=

∫ 0

−τmax

∫ t

t+θ
ẋT (s)(0 ⊗ H )ẋ(s)dsdθ.

Noting that x(t) = x0 for t ∈ [−τmax , 0], it is readily con-
cluded that V1(0) = xT0 (0⊗P)x0, V2(0) ≤ τmaxx

T
0 (0⊗W )x0,

and V3(0) = 0. Therefore, we conclude that

V (0) ≤ xT0 ((0 ⊗ P)+ τmax(0 ⊗W ))x0,

which further indicates

JC ≤ xT0 (0 ⊗ (P+ τmaxW ))x0.

The proof is complete.
Remark 5: This paper is different from other articles in

the model and theorem contents. Reference [26] investigates
energy-constraint formation design and analysis problems for
multiagent systems with two types of switching interaction
topologies. In [26], a formation control protocol with switch-
ing interaction topologies is shown. The control protocol
and topologies is different with this paper. Minimum-energy
formation achievement problems for networked multiagent
systems are investigated in [27], where information networks
are randomly switching. But the difference between this
paper and [27] is information networks switching. And this
paper mainly investigates the no leader following multi-agent
systems.
Remark 6: For a given initial value x(0) and τmax ,

Theorem 3 provides an approach by which we can directly
conclude the upper boundedness for the performance of cost.
It is deduced that the guaranteed cost can be minimized by
looking for the optimization solution P and W in inequal-
ity (12).

Having dealt with the consensus analysis for MAS (7) and
the calculation for guaranteed cost, we are now analyzing
for the purpose of solving the design problem for the gain
matrix K . It should be noted that Theorem 1 is not convenient
to derive the gain K due to the presence of nonlinear terms

−λiPBK with unknown matrix variables P and K . In the
following, an improved sufficient condition is proposed for
ensuring the desired consensus performance and designing
the gain matrix K .
Theorem 4: Let two positive numbers h1 < h2 be given.

MAS (4) is said to be guaranteed cost consensualizable
through consensus strategy (5) provided that there are matri-
ces P̄ > 0, W̄ > 0 and K̄ such that for i = 2, N , the following
symmetric block matrix satisfies

ϒ(i) = [ϒij]10×10 < 0

with

ϒ11 = AP̄+ P̄AT − λiBK̄ − W̄ ,

ϒ12 = −λiBK̄ + P̄− W̄ ,

ϒ13 = D, ϒ14 = Id , ϒ16 = λiK̄TRT ,

ϒ17 = P̄AT − λiK̄TBT , ϒ18 = K̄TBTD,

ϒ19 = P̄, ϒ1,10 = W̄ , ϒ22 = −2W̄ ,

ϒ25 = Id , ϒ26 = λiK̄TRT , ϒ27 = −λiK̄TBT

ϒ28 = K̄TBTD, ϒ2,10 = W̄ , ϒ33 = −εId
ϒ44 = −Id , ϒ55 = −(h1τmax)−1Id , ϒ66 = −R

ϒ77 = −(2h2τmax)−1Id , ϒ88 = −(2h2τmaxλiε)−1Id
ϒ99 = −3̄

−1
11 , ϒ10,10 = −(l − 1)−1W̄

3̄11 = εETE + γ 2Id
+2h2τmaxε−1ATDDTA+ 2h2τmaxεETE

+2h2τmaxλmax(DTD)ETE + 2h2τmaxλiε−1ETE

+2h2τmaxγ 2Id + 2λiQ.

Moreover, the gain matrix is designed to be K = K̄W and the
upper boundedness for cost performance is obtained as

J∗C = xT0 (0 ⊗ (P̄−1 + τmaxW̄−1))x0

with 0 = IN − 1N1TN /N .
Proof: Recalling the proof of Theorem 1, we observe

that for i = 2 and i = N , �i < 0 is equivalent to[
�11 �12
∗ �22

]
−MZ−1MT < 0

in whichM and Z are given in Theorem 1.
For convenience of statement, we denote

Āi =
[
A −λiBK
Id −Id

]
, S =

[
P 0
41 42

]
,

3̄ =

[
3̄11 0
0 (l − 1)W

]
.

It is easy to deduce that

ST Āi + ĀTi S

=

[
ATP+ PA+41 +4

T
1 −λiPBK −4

T
1 +42

∗ −42 −4
T
2

]
,

which implies[
�11 �12
∗ �22

]
= ST Āi + ĀTi S + 3̄.
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By choosing 41 = −P and 42 = W , we derive that the
inverse of S equals

S−1 =
[
P−1 0
W−1 W−1

]
. (31)

Letting5T
= diag{(S−1)T , Id , Id , Id , Im, Id , Id } and using

a direct calculation, we derive ϒ̄(i) = 5T�i5 < 0. Taking
use of Schur complement lemma, one concludes that ϒ(i) <
0 if we set W̄ = W−1, P̄ = P−1 as well as K̄ = KW−1.
Then, according to Theorem 1,MAS (6) achieves the required
consensus performance with

J∗C = xT (0)(0 ⊗ (P̄−1 + τmaxW̄−1))x(0).

Moreover, the control gain matrix is designed to be K =
K̄ W̄−1. Therefore, the conclusion is finally verified.
Remark 7: Undoubtedly, it is a challenge task to strictly

prove the existence of feasible solution for a linear matrix
inequality from the theoretical point of view. In application,
the approximate solution for linear matrix inequality is usu-
ally derived by using the interior-point methods. Generally
speaking, if all diagonal blocks of the matrix0(i) are negative
definite, then the feasible solution will be easier to obtained.
Remark 8: In this paper, we consider the consensus con-

trol architecture with a centralized control center. Therefore,
it is necessary to understand the complete topology of the
entire agent network so as to design a suitable controller for
each agent. It should be pointed out that such a control archi-
tecture has been widely adopted in previous literature [1], [7],
[15]. Theorems 1 and 4 indicate that the guaranteed cost con-
sensus can be verified by some sufficient conditions which
are only dependent on the second smallest and the maximum
eigenvalues of all Laplacian matrices in the topology set.

IV. AN ILLUSTRATIVE EXAMPLE AND SIMULATIONS
In the current section, we consider a MAS consisting of eight
agents in which the graph of communication is described in
Figure 1. The model of MAS is formulated as

ẋi(t) = (A+1A)xi(t)+ BK
∑
j∈Ni

ωij(xj(t − τ (t))

−xi(t − τ (t)))+ f (xi(t))

in which i = 1, 2, · · · , 8, γ = 0.3, xi = [xi1, xi2]T , and

A =
[
−0.005 −0.005
−1 −0.9

]
,B =

[
0.8
0.6

]
,

f (xi) =
[

0
−γ sin(xi2)

]
.

For the simulation of uncertainty 1A, we choose 1A =
DF(t)E with

D =
[
0.01 0
0 0.02

]
,E =

[
0.01 0
0 0.02

]
,

F(t) =
[
sin t 0
0 cos t

]
.

We select the function of delay to be τ (t) = 0.04 +
0.03sin(t) with τmax = 0.07. The matrix parameters for cost

FIGURE 1. Interaction topology G.

function are selected to be Q = 0.05I2, R = 0.04. In general,
we take all weights of the communication topology as 1.
Therefore, it isn’t difficult to derive the Laplacian matrix as
follows

L =



3 −1 −1 0 0 0 0 −1
−1 3 0 −1 0 0 0 −1
−1 0 3 −1 −1 0 0 0
0 −1 −1 4 0 −1 −1 0
0 0 −1 0 1 0 0 0
0 0 0 −1 0 2 −1 0
0 0 0 −1 0 −1 2 0
−1 −1 0 0 0 0 0 2


.

By a direct calculation, one has the eigenvalue λ2 =
0.5858 and λ8 = 5.6017 for the Laplacian matrix L. For the
aim of simulation, let the time step be T = 0.01s and positive
numbers h1 = 0.1 and h2 = 10.
In order to show the effect of the controller clearly, we com-

pared the two situation that absence controller and presence
controller, respectively.

Case 1: Consider the situation of controller absence, the
simulation for dynamical evolution of MAS are presented in
Figs. 2 and Fig. 3.

Obviously, the states of the multi-agents didn’t achieve the
consensus.

Case 2: Let us introduce the consensus control (5).With the
help of Matlab toolbox, we obtain a set of feasible solutions
for Theorem 4 as follows:

P =
[
35.1526 −3.8447
−3.8447 3.0037

]
,W =

[
6.1992 0.0226
0.0226 6.4020

]
,

K = [0.3414, 0.0969].

According to Theorem 4, MAS achieves the desired guaran-
teed cost consensus and J∗C = 9.0796 × 103. The simula-
tion for dynamical evolution of MAS with control input are
presented in Figure 4-Figure 6. Specifically, it is shown that
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FIGURE 2. State trajectories of xi1(t)(i = 1, 2, · · · , 8).

FIGURE 3. State trajectories of xi2(t)(i = 1, 2, · · · , 8).

FIGURE 4. State trajectories of xi1(t)(i = 1, 2, · · · , 8).

the state trajectories of MAS are depicted in 4 and Figure 5
from which we see all states of MAS will eventually tend to
the consensus function. Figure 6 shows that as time goes to
the infinity, the cost function JC gradually increase from zero
while never exceeding a finite upper bound J∗C .

In order to minimize the upper bound of the cost function,
we consider the optimization problem as follows:

min xT (0)(0 ⊗ (P+ τmaxW ))x(0)

s.t. ϒ(i) < 0.

FIGURE 5. State trajectories of xi2(t)(i = 1, 2, · · · , 8).

FIGURE 6. Evolution of the cost function.

With the help of LMI toolbox, the optimal solutions for P and
W are obtained to be

P =
[
27.8746 1.2994
1.2994 2.6942

]
,W =

[
6.2575 −0.2825
−0.2825 5.2022

]
,

In such a case, we deduce that J∗1 = 5.6799× 103. By com-
pared with J∗C = 9.0796 × 103, it is easy to observe that the
guaranteed cost performance is further improved by perform-
ing this computations tasks.

V. CONCLUSION
Within a certain level of cost performance, this paper has
investigated the consensus problem for a type of MASs
with nonlinearity dynamics and norm-bound uncertainty.
By employing the related error between each agent and its
neighbors and introducing the time-varying input delay, a dis-
tributed consensus protocol has been constructed in order
to force MAS to approach the common consensus function.
In addition, an explicit function has been proposed as the
consensus function so as to take both the control performance
and the energy consumption into account. By employing
the properties of Laplacian matrix and Lyapunov-Krasovskii
functional, several criteria have been derived for ensuring the
expected performance of closed-loop system. Furthermore,
the gain matrix for the consensus protocol have been calcu-
lated by resorting to the feasible solution of LMIs. Future
more, wewill consider using only themaximumormini-mum
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eigenvalues to derive design conditions in Theorem 4 accord-
ing to [14]. It is worth noting that the methodology used in
this paper is applicable to the consensus analysis for MASs
subject to some communication constraints, which would be
our next research topic. In addition, the heterogeneity and
the switching-topology would be another interesting research
horizon in the consensus control of MAS with directed topol-
ogy, which also be our topics in near future.
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