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ABSTRACT In urban scenarios, network planning requires awareness of the notoriously complex prop-
agation environment by accounting for blocking, diffraction, and reflection on buildings. To this end,
deep learning-based signal-strength prediction directly operating on environmental data has recently gained
attention, mainly as a computationally efficient alternative to ray-tracing. Our work combines RSRP mea-
surements from an extensive drive-test campaign in a live 4G network with a 3D city model for the largest
real-world assessment of such data-driven schemes to date. We compare three different encodings of the
propagation environment and find that a neural network operating on a full 3D representation of the surround-
ings performs best with an RMSE of 7.06 dB. It is followed by a model using only the direct path profile with
7.78 dB and a reference neural network utilizing a binary line of sight indicator achieving 8.76 dB. The large
size of our data set allows us to address several open questions regarding the inner workings of these black
box approaches. In particular, we elaborate on different evaluation strategies, highlighting the importance of
spatial separation of train and test areas, as the rich environmental data implicitly provides a spatial reference.
Through model explainability, we further identify the area along the direct path between the user equipment
and the transmitter as the input region with the highest feature importance — questioning the common
practice of including large buffer areas. Evaluating the models in scenarios with artificially placed base
stations reveals that the measurement campaign offers a sufficient basis for a prototypical network planner.
The trained models, which we make publicly available, exhibit the dominant propagation mechanisms in
urban areas and generate spatially consistent and physically sound signal-strength maps.

INDEX TERMS 5G, 6G, cellular network planning, deep learning, drive-test, LTE, machine learning, model
explainability, pathloss prediction, propagation modeling, signal-strength maps.

I. INTRODUCTION
The efficient planning of cellular networks, seen as a key
stepping stone toward greener networks [1], requires accurate
and reliable propagation modeling. For this task, mobile net-
work operators (MNOs) have long relied on empirical models
based on extensive measurement campaigns [2], which only
demand minimal computational resources. By design, these
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models can only partially account for the particular geometry
of an environment, but use rather high-level features such as
the average building height or street width in the considered
area [3]. Especially in urban regions, with their notoriously
complex propagation environments, ray-tracing can be an
alternative that natively accounts for blocking, diffraction
and reflection effects induced by the urban geometry [4].
However, ray-tracing comes with a high computational cost,
which can be an unbearable constraint when considering the
highly heterogeneous and possibly non-static network layouts
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expected for 6G — specifically, the ongoing trend towards
unmanned aerial vehicle (UAV) communications [5], [6].
To this end, there has been increased interest in using deep
learning methods for pathloss prediction, moving the main
computational burden to training and thus promising efficient
operation during inference [7].While the main focus has been
on approximating ray-tracers, [8], models trained on mea-
surement data have outperformed them in some real-world
scenarios [9]. Considering the tendency toward predictive
maintenance and digital network twins [10], we can envi-
sion such data-driven propagation schemes deployed in an
online fashion, together with machine learning based network
optimization [11], [12]. Clearly, classical offline system-level
simulations can also benefit from more efficient, data-driven
propagation modeling derived from real-world measurement
campaigns [13]. Even though this area has seen extensive
research [14], we still identify several open questions pre-
venting the use in real-world applications. In particular, the
black box nature of such approaches makes it hard to assess
the propagation mechanisms learned from the measurements.
Partially, this is due to the majority of existing studies being
based on ray-tracing data, where it is straightforward to
provide an unbiased and extensive training set covering all
relevant scenarios [4]. In contrast, existing real-world assess-
ments are often limited to relatively small data sets [15], con-
sisting of only a few base stations (BSs) [9], [16]. Similarly,
model explainability [17] has, to the author’s best knowledge,
not been applied to the environmental data acting as the input,
such that the role it plays in the prediction is still unclear.
Due to the rich spatial information provided, we also see a
high risk of overfitting on small data sets — thus requiring
consistent model evaluation procedures to properly assess the
generalization to unseen areas [7]. In our work, we aim to
address these open questions. In particular, we:

i) conduct the largest evaluation of deep learning-based
signal-strength prediction schemes to date, using ≈ 630 000
reference signal received power (RSRP) measurements from
a live 4G network collected in an extensive drive-test cam-
paign in Vienna, Austria — see Fig. 1.
ii) Moreover, we utilize a high-resolution 3D model con-

sisting of the building outlines together with their respective
height, further enrichedwith terrain elevation data.We deploy
convolutional neural networks (CNNs) to process these data
together with the raw measurements.

iii) Unlike existing work, we put our main emphasis on
the generalization capabilities by examining different model
evaluation procedures. To our best knowledge, we are the first
to apply model explainability methods to identify the most
important input regions.

Finally, we assess the learned propagation mechanisms by
generating high-resolution signal-strength maps in realistic
network planning scenarios. These scenarios, together with
the trained model instances, are publicly available.1

1https://squid.nt.tuwien.ac.at/gitlab/leller/ieee_access_deep_learning_
network_planner

FIGURE 1. Route of the drive-test campaign covering 95 km of dense,
inner-city streets of Vienna, Austria.

The remainder of the paper is organized as follows. After
the related work in Sec. II, we detail the measurement data
and city model in Sec. III — also introducing the empirical
3GPP urban macro (UMa) baseline. Then, Sec. IV elabo-
rates on the deep learning formulation before the performance
metrics are presented in Sec. V. We close with the model
explainability results and comprehensive network planning
scenarios in Sec. VI. Final remarks are drawn in Sec. VII.

II. RELATED WORK
In general, we identify two broad categories for data-driven
signal-strength prediction: i) geospatial interpolation and ii)
supervised machine learning. For interpolation, sparse mea-
surement locations act as anchor points to construct dense
signal-strength maps in the immediate surroundings [18],
[19], [20], [21]. While well suited for performance estimates
in existing networks [19], these approaches are of limited use
for network planning, as adaptations can only be studied after
deployment. Moreover, they can, with rare exceptions [21],
not natively account for the propagation environment. For the
second broad category of supervised machine learning [22],
we also find approaches focusing on the generation of local
performance maps [23], where the inclusion of absolute
coordinates or cell-identifiers omits any cross-area gener-
alization. Other supervised schemes limiting themselves to
area-independent features, such as the distance between user
equipment (UE) and BS, can, in principle, enable generaliza-
tion to unseen areas and different network deployments [24],
[25], [26]. However, in many cases, the error reductions can
mainly be attributed to fitting to the distribution of a specific
measurement campaign rather than improving upon classical
methods on a larger scale [3], [27].

Overall, we thus see the real promise of machine learn-
ing methods in the native inclusion of environmental fea-
tures, which are often unfeasible to process with classical
approaches. Starting from relatively high-level input param-
eters such as average building height or land-use types
in [28], [29], research has moved on to extensive feature
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FIGURE 2. We combine building and terrain elevation data to obtain a local representation of the 3D city model.

engineering describing the path from BS to UE in great detail
in the simulations in [30] and [31]. Meanwhile, deep learning
methods can completely omit the abstractions introduced by
the feature generation process by directly operating on raw
environmental data. As such, CNNs have been shown capa-
ble of extracting pathloss distributions and their respective
exponents from satellite images in ray-tracing scenarios [32],
[33]. In this context also U-Nets have gained traction, uti-
lizing two or three-dimensional blockage maps to generate
a dense pixel-like output of the signal-strength in the area
of interest [8], [34]. Instead of describing the surroundings
through high-level features, the environment input is often
even directly enriched with suitable system parameters to
abstain from any abstractions [35]. While we are unaware of
any measurement-based evaluation of U-Nets, most empir-
ical validations follow a UE centered environment encod-
ing, processing one measurement at a time. In [9], such a
model using squared satellite images centered around the UE
location significantly outperformed the ray-tracing baseline.
Similar results were achieved with two-dimensional build-
ing outlines in [36], or for the mmWave drive-test evalua-
tion in [15] using environmental data from Google Maps.
An extension to three dimensions can be achieved by directly
incorporating the building height or elevation into the CNN
input channel [37]. In this context, also the fusion of different
input modalities has been studied extensively [38]. The most
prominent aspect here is the careful encoding of the direct
path to relate it to the height of the 3D blockages [16], [39].
In [39], the authors propose the concept of the Fresnel height,
which is further extended through side-view encodings of the
propagation path in [16].

Even though an extensive body of research exists, we miss
extensive empirical validation onmeasurement data—which
is especially rare for 3D inputs. To our knowledge, the extent
of the drive-test campaign used in this work even makes it
the largest real-world evaluation to date. Unlike other studies,
we do not solely focus on achievable error reductions but
use the large size of our data set to target a better under-
standing of the propagation mechanisms facilitated by such
data-driven approaches. Hereby, we purposefully limit our-
selves to CNNs representative of the current state of the
art [9], [16] and do not cover recently proposed transformer

architectures [40], [41]. Likewise, we also abstain from fea-
ture engineering, which has already been extensively studied
in [30] and [31], but focus on the direct processing of raw
environmental data through deep learning methods. Here, the
role the rich environmental inputs play for prediction is still
unclear, compared to the well-known attributions for high-
level features in [30] and [31]. In addition to the first appli-
cation of model explainability methods on CNNs trained on
real-world measurements, we also assess different evaluation
scenarios, so that we can fairly attribute the generalization
to unseen areas. Ultimately, we want to clarify whether the
drive-test campaign from Fig. 1 provides a sufficient basis to
derive a prototypical network planning tool exhibiting phys-
ically sound propagation mechanisms.

III. PROBLEM STATEMENT
Overall, we want to learn a neural network (NN) parametriza-
tion θnn to accurately predict the RSRP at unseen locations

ŷdB = gnn ([Eloc,m] ; θnn) , (1)

using a suitable representation of the local propagation envi-
ronment Eloc and additional metadata m as the input. Before
elaborating on the selected model architecture and environ-
mental encoding, we first describe the data sets providing
the foundation for the considered use case. In particular,
the extensive drive-test campaign acting as training data and
ground-truth, and the 3D city model describing the propaga-
tion environment. These data will also be the basis for the
3GPP UMa pathloss model which we deploy for reference.
Note, that Tab. 1 in the Appendix summarizes the notation
used throughout this work.

A. 3D BUILDING MODEL WITH ELEVATION DATA
For our evaluation, we utilize 3D environmental data pro-
vided by the city of Vienna, Austria. As sketched in Fig. 2,
we combine the official 3D building model with a detailed
elevation map2 to obtain a comprehensive 3D city model
in the area surrounding the UE location xUE. The building

2The data is publicly available under https://www.wien.gv.at/
stadtentwicklung/stadtvermessung/geodaten/bkm/ and https://www.wien.
gv.at/stadtentwicklung/stadtvermessung/geodaten/dgm/
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FIGURE 3. Measured RSRP over distance to BS.

model in Fig. 2a represents buildings as prisms3 together
with their respective heights. In contrast, the elevation data
in Fig. 2b is encoded in a raster format. Using rasterio [43],
we combine the two data sources through rasterization of
the building model and subsequent addition, such that we
obtain a function Fenv(·) = Felevation(·) + Fbuildings(·), offer-
ing a complete height profile with a resolution of 1 m. The
final model thus covers the individual buildings and terrain
features such as river beds or railway viaducts, offering a
comprehensive description of the static propagation features.
For a given measurement i, we can apply an affine trans-
formation followed by masking to describe the environment
through f (i)env (d, s) , acting as a local representation of Fenv(·)
centered around xUE and aligned towards the BS position xBS.
As indicated in Fig. 2c, d and s represent the local coordinates
parallel and perpendicular to the direct path, such that (0, 0)
describes the UE location. It follows, that the BS position is
given by (d (i)h , 0), where dh is the horizontal distance between
xUE and xBS. Throughout this work, we will further assume
that f (i)env (d, s) is constructed such that the elevation at xUE is
set to zero.

B. DATA FROM VIENNA DRIVE-TEST CAMPAIGN
The measurements acting as the basis for our machine learn-
ing model stem from an extensive drive-test campaign con-
ducted along the route shown in Fig. 1, covering over 95 km in
a dense, urban environment. Using aPCTELMXflex scanning
receiver with omnidirectional antennas mounted onto the
drive-test vehicle, we collected ≈ 750 000 RSRP measure-
ments in a live 4G network. We provide a detailed description
of the measurement equipment and potential uncertainties in
Appendix VII-B. The passive scanner avoids exclusive BS
assignment, such that we receive measurements from multi-
ple BSs, sector antennas and frequencies at a single location.
Overall, our data set includes 159 distinct eNodeBs (eNBs),
covering 793 sectors among three carriers. We compensate
for global positioning system (GPS) noise in a two-step

3The level of detail is LOD1.3, discarding overpasses for our purpose [42].

FIGURE 4. Characteristics of drive-test measurements.

procedure: First, we map each of the measurement locations
onto the route traveled by the vehicle.4 In the second step,
we filter for measurements with projection errors below 5 m
and remove static measurements which can confound the data
set [44]. This leaves us with a total of 629 624 measurements,
209 673 in the 800 MHz and 191 006 and 228 945 for the two
distinct carrier frequencies in the 1800 MHz band. Through
the cell identifiers, we can relate our measurements to net-
work infrastructure data validated by the respective MNO.
The resulting RSRP over the horizontal distance to the BS dh
is provided in Fig. 3 — as expected, the pathloss is higher
for 1800 MHz as compared to 800 MHz. In Fig. 4, more
detailed characteristics of the measurement campaign are
provided in the form of boxenplots [45]. Through the operator
data we can compute dv = (hBS+eBS)−(hUE+eUE), the ver-
tical distance to the BS derived from the BS and UE5 heights
hBS and hUE, and the respective elevations eBS and eUE from
Felevation(·). Due to elevation differences, the resulting statis-
tic also reports negative dv in rare cases. In Fig. 4, we also
assess the small-scale variance of the measurements by bin-
ning the data in a 5 by 5 m raster and reporting the standard
deviation for individual sectors within each bin. We further
provide the number of measurements for each of these bins,
validating the absence of static measurements confounding
the data set.

C. 3GPP URBAN MACRO BASELINE
Given detailed knowledge of the network infrastructure in the
area of interest, we can utilize the empirical UMa channel
model from 3GPP as a reference and baseline approach [3].

Based on features consisting of dh, dv, the transmitter fre-
quency f , the horizontal φ′′h and vertical φ′′v alignment offset

4Due to the drive-test setup, we only consider outdoor measurements.
5We use hUE = 1.5 m throughout this work.
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FIGURE 5. Obtained LOS indicators for exemplary cells from the drive-test data set, with indicated horizontal sector orientation.

with the sector antenna, as well as the transmit power Ptx,ref,
UMa provides an estimate of the received signal-strength.
We collect all of these features in the vector muma and pro-
vide a detailed description of the overall modeling procedure
and the selected parameters in Appendix VII-A. This also
involves the high-level environmental features which we set
to values representative of the city of Vienna. Besides these
high-level features, 3GPP UMa only distinguishes the line of
sight (LOS) and non line of sight (NLOS) case, resulting in
the estimate:

ŷ(i)dB = l(i)ind · glos
(
m(i)

uma

)
+

(
1− l(i)ind

)
· gnlos

(
m(i)

uma

)
. (2)

Here, we introduce the LOS indicator lind ∈ {0, 1}, which can
be determined geometrically from the 3D city model:

l(i)geo =

{
1, f (i)env (d, 0) < f (i)los (d) for d ∈ (0, d (i)h ]
0, else

. (3)

According to (3), a measurement location is in LOS if flos(d),
the direct LOS propagation path from BS to UE

flos(d) = dv/dh · d + hUE, (4)

is above the blockages fenv(d, 0) for the entire distance d ∈
(0, dh] — see Fig. 8b. For reference, we also consider an
oracle lrsrp, which sets the LOS indicator such that the error
between prediction and measurement is minimized:

l(i)rsrp = argmin
l(i)ind∈{0,1}

{∣∣∣ŷ(i)dB − y(i)dB∣∣∣} . (5)

Clearly, such an oracle indicator is not available prior to
conducting the measurements and can thus only act as a
reference.

Ideally, the geometry-based indicator lgeo and the RSRP
oracle indicator lrsrp agree for all measurements. However, the
confusion matrix in Fig. 6 shows that this is only true for 77%
of all measurements in our drive-test data set. In particular,
we find that lrsrp = 1 while lgeom = 0 is the case for 19%
of all measurements, indicating that the gnlos(·) model reg-
ularly underestimates the RSRP. Presumably, it undervalues
diffraction effects and over the rooftop propagation, which
can only partially be accounted for through a simple binary

FIGURE 6. Confusion matrix for the LOS indicators.

FIGURE 7. NN with Eloc and m as input.

indicator and high-level environmental features. This effect
is also apparent for the exemplary cells shown in Fig. 5,
where the indicators agree qualitatively but still show several
mismatches, especially in areas transitioning from NLOS to
LOS. In the performance evaluation in Sec. V, we will show
that this mismatch indeed results in a significant error.

IV. DEEP LEARNING FORMULATION
The preliminary results for the UMa model in Sec. III-C
already highlight the difficulty of capturing a complex prop-
agation environment through a single high-level indicator.
For the deep learning formulation we directly operate on
the available environmental data without introducing any
abstractions. Given the black box nature of these approaches,
this not only requires a careful encoding of the propagation
environment, but also demands a suitable evaluation strategy
which we will discuss in Sec. IV-B.

Generally, we follow the basic layout sketched in Fig. 7,
such that the model receives two distinct inputs per mea-
surement location, consisting of the tensor Eloc repre-
senting the local propagation environment as well as the

122186 VOLUME 10, 2022



L. Eller et al.: Deep Learning Network Planner: Propagation Modeling Using Real-World Measurements and a 3D City Model

FIGURE 8. The Eloc tensor encodes the full environment for ConvNet FS and the blockages along the direct path for ConvNet DP.

metadata vectorm:

m =
[
dh, dv, f , lgeo, ŷlos, ŷnlos, φ′′h , φ

′′
v
]
. (6)

For consistency, the features inm essentially mimic the input
to the UMa model from Sec. III-C. However, to ensure gen-
eralization, we purposefully abstain from including features
that can implicitly act as cell identifiers, such as the transmit
power or the absolute antenna orientation.We instead pass the
UMa predictions ŷlos = glos(·) and ŷnlos = gnlos(·) from (2),
which hide these absolute quantities but incorporate all the
information. At the same time, this step also separates the
influence of the antenna parameters from the processing of
the blockages. As shown in Fig. 7, we concatenate this meta-
data vector m with the output of a convolutional network
gcnn(·) processing the environmental encoding Eloc, before
a dense network gdense(·) generates the final RSRP estimate
ŷdB.

A. ENCODING THE ENVIRONMENT
In our case, the input tensor Eloc is a fixed-sized represen-
tation of the propagation environment centered around the
UE location with a consistent encoding of the BS position.
Additionally, we guide the NN towards the physically rele-
vant aspects by including a representation of the direct LOS
path from BS to UE, relating it to the 3D blockages. Overall,
we consider three different encoding variants termedConvNet
Full Surroundings (ConvNet FS), ConvNet Direct Path (Con-
vNet DP) and RefNet Metadata (RefNet MD).

i) The ConvNet FS variant operates on the full 3D envi-
ronmental data in the surrounding of the UE. For an exem-
plary measurement with the local environment shown in
Fig. 8a, we construct the four channel tensor Eloc visualized
in the upper part of Fig. 8b. In the first channel Eloc[d, s, 0],
we directly collect the local environment fenv(d, s), sampled
in a 1 m resolution along d ∈ [−50 m, 500 m] and s ∈
[−50 m, 50 m].6 Hence, we cover up to 500 m of the path
fromUE toBS. In the second channelEloc[d, s, 1], we encode

6We prioritize the path from BS to UE over the perpendicular buffer zone.

the direct LOS path flos(d) from (4), such that the network
can immediately relate it to the respective blockages. Here,
we also indicate the BS position by setting the entries to
−1 for d /∈ (0, dh]. Inspired by [16], the remaining two
channels Eloc[d, s, 2] and Eloc[d, s, 3] act as a linear encod-
ing of the UE position in the interval [0, 1] and also address
the inability of CNNs to learn translation dependencies [46].
In summary, the gcnn(·) input for this variant thus consists of
the four image like inputs shown in Fig. 8b collected in the
tensor Eloc, which is combined with m from (6) following
Fig. 7.
ii) For ConvNet DP, we follow the same principle as

above, but only pass the environment along the direct path
given by s = 0 to the model — see Fig. 8a. As indicated
in the lower part of Fig. 8b, the environmental representa-
tion in Eloc[d, 0] is now the sequence obtained by sampling
fenv(d, 0) along d ∈ [−50 m, 500 m]. The same is true for
the second channel Eloc[d, 1], again consisting of the profile
of the direct LOS path flos(d) from (4) with the BS posi-
tion incorporated through the −1 entries. We also include
the linear UE position encoding along the d coordinate in a
third channelEloc[d, 2]. Overall, this variant thus receives the
three channel sequence input Eloc together with the metadata
vector m.

iii) As a reference, we also include theRefNetMD network,
which completely omits the CNN input in Fig. 7 and only
operates on the metadata vector m. Hence, this reference
network only receives environmental information through the
binary indicator lgeo and can thus be seen as a machine learn-
ing equivalent to the UMa baseline. However, it allows us to
differentiate the contribution of the full scale Eloc inputs for
ConvNet FS and ConvNet DP from error reductions achieved
by simply fitting to the measurement distribution through the
information in the metadata vectorm.

Overall, we see these environmental representations as a
natural 3D extension of the UE centered images from the
literature. Meanwhile, the different encodings help us to bet-
ter understand how the environmental data is processed. This
aspect will also be at the center of Sec. VI, where we compare
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FIGURE 9. Resulting T (j )
train and T (j )

test folds for Prediction Mode, using dgrid = 500 m and dbuffer = 100 m.

the three variants based on the propagation mechanisms they
display. Similarly, we will also study how the rich spatial data
relates to the risk of overfitting, when evaluated without the
necessary caution.

B. APPROPRIATE EVALUATION STRATEGY
As discussed in Sec. I, many works in the literature evalu-
ate comparable signal-strength predictors on relatively small
data sets with only a hand full of BSs [9], [16]. Frequently,
also the assignment of measurements to the training and test
sets is done randomly [16], [37]. While this can be valid
for certain scenarios, we see the risk of a biased evaluation
with drastically exaggerated performance, especially when
considering the implicit spatial reference provided by the
rich environmental data. We find that an evaluation without
dedicated spatial separation does not clearly distinguish the
performance in a local interpolation use case from genuine
cross-area generalization. To study this effect, we assess our
models in two different evaluation scenarios, one forcing the
models to operate in a Prediction Mode, while the other one
does not explicitly rule out error reductions by mimicking
local Interpolation.

i) The Interpolation scenario essentially mimics a random
split of the measurement campaign as commonly found in the
literature. To address repeated measurements, we bin the data
sets following a rectangular spatial grid with a grid-distance
of dgrid = 5 m, such that each bin covers an area of 5 by
5 m. We then randomly assign each of the bins either to
the train Ttrain or test Ttest sets, not enforcing any additional
spatial separation. Hence, the Interpolation scenario allows
us to quantify the risk of a biased evaluation due to the spa-
tial reference provided by the environmental data. ii) The
data set for the Prediction Mode, in contrast, is constructed
with dgrid = 500 m and additionally incorporates a buffer
distance of dbuffer = 100 m around Ttest samples bordering
Ttrain areas. As apparent in Fig. 9, this buffer further sepa-
rates neighboring train and test locations by a minimum dis-
tance of dbuffer. Hence, local interpolation is unfeasible in this
scenario, allowing us to study the generalization capabilities
required for network planning.

As shown for the Prediction Mode scenario in Fig. 9,
we additionally utilize cross-validation for both evaluation
designs, splitting the binned data set into three subsets D =
D(0)
∪D(1)

∪D(2). With the individual procedures from above,
we obtain three different train T (j)

train =
⋃

j′ 6=jD(j′) and test

T (j)
test = D(j) data sets each. Appendix VII-C details the char-

acteristics of all individual folds for both the Interpolation
and the Prediction Mode evaluation.

C. MODEL CONFIGURATION & TRAINING
We implement our models in Tensorflow and use Keras-
Tuner for hyperparameter optimization [47], [48]. In general,
we keep the same network layout from Fig. 7 for each of the
three variants but adapt it to the requirements of the individ-
ual input encodings. While we completely omit the gcnn(·)
block for RefNet MD, we construct it from 2D convolutional
layers for ConvNet FS and from 1D convolutional layers for
ConvNet DP. Similarly, we use the same basic blocks for
gdense(·) across all scenarios. Note that for ease of readability,
we move the detailed description of the particular model con-
figurations to Appendix VII-C. Starting from the same basic
blocks, we still adapt the individual hyperparameters — such
that the number of neurons and filters, the kernel size, as well
as the selected dropout values in gdense(·) and gcnn(·) reflect
the level of regularization required for each of the three vari-
ants. Note, that this optimization is conducted individually
for Interpolation and Prediction Mode. To ensure a proper
evaluation, we use a consistent hyperparameter configuration
for all three folds. For training, we rely on the well-known
Adam optimizer with a mean squared error (MSE) loss func-
tion, a batch size of 32, a learning rate of 5 × 10−4 and
further utilize EarlyStopping. During training, we conduct
data augmentation for ConvNet FS by randomly flipping Eloc
along the d axis. In contrast to continuous rotations from the
literature [9], [36], this does not disrupt the inputs but rather
exploits their inherent symmetry.

V. PERFORMANCE EVALUATION & RESULTS
We first evaluate the performance at the unseen test positions
in Prediction Mode mode before we compare the results to
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FIGURE 10. Performance in Prediction Mode, computed over all test folds T (j )
test with j ∈ {0,1,2}.

FIGURE 11. Error ECDF for Prediction Mode.

the Interpolation scenario, studying the random training and
test split commonly found in the literature.

A. FAIR EVALUATION IN PREDICTION MODE
Fig. 10 summarizes the error for the considered models in the
Prediction Mode evaluation. Here, Fig. 10a provides mean
absolute error (MAE) and root mean squared error (RMSE),
while Fig. 10b relates the error to the variance through the
R2-score — the error ECDF is further shown in Fig. 11.
Across all these metrics, we observe a consistent error reduc-
tion with an increasing degree of environmental data pro-
vided. As such, ConvNet FS is the best performing variant,
with a MAE of 5.59 dB and an RMSE of 7.06 dB. It is
followed by ConvNet DP, only considering the direct path
between UE and BS, achieving an MAE of 6.12 dB and an
RMSE of 7.78 dB. Interestingly, the RefNet MD model with
6.88 dB MAE and 8.76 dB RMSE outperforms the 3GPP
UMa baseline from Sec. III-C with 9.77 and 12.50 dB respec-
tively, even though it does not have access to any additional
environmental information. This gap between empirical mod-
els and the RefNet MD showcases the ability of deep learning
methods to adapt to the characteristics of a specific measure-
ment campaign — which do not necessarily generalize to
other data sets. However, the RefNet MD performance pro-
vides a machine learning baseline allowing for fair attribution
of the error reduction achieved through the environmental
encodings. In particular, we observe an RMSE reduction

of around 1 dB for ConvNet DP over RefNet MD, which
we can attribute to the environmental data along the direct
path from UE to BS. A subsequent improvement of 0.70 dB
can then be achieved for ConvNet FS, processing the com-
plete three-dimensional environment in the area surround-
ing the propagation path. Meanwhile, the poor performance
of the UMa Geometric Indicator is not surprising, consider-
ing the findings in Sec. III-C. We have seen that capturing the
environment only through a simple binary indicator can not
sufficiently account for diffraction and reflection effects —
inducing significant errors for the 23% indicator mismatch
with the oracle model. While RefNet MD can compensate for
that by fitting to the distribution of the measurements, the
network planning scenarios in Sec. VI-B will show that it too
provides inherently binary signal-strength maps with discrete
jumps fromNLOS to LOS. In contrast, the results show a con-
sistent error reduction achieved by processing environmental
data directly through the deep learning framework. While a
significant error floor remains, we attribute it mainly to mate-
rial properties and non-static blockages not being accounted
for.

B. EFFECT OF INSUFFICIENT SPATIAL SEPARATION
Before we assess the propagation mechanisms also qualita-
tively in Sec. VI, we first examine the performance under the
Interpolation scenario obtained through a random assignment
of measurements into Ttrain and Ttest.

In Sec. IV-B, we discussed the problem that environmental
data could implicitly expose a spatial reference, allowing the
NNs to potentially learn a local interpolation setup instead of
the underlying propagation mechanisms. To study this effect,
we first quantify the error for the worst-case scenario, assum-
ing the networks can perfectly recover the spatial reference.
For this, we consider a K-Nearest-Neighbor (kNN) scheme
with k = 1, which, for each sample in Ttest, simply reports
the RSRP value of the closest measurement from the same
sector in Ttrain [49]. Fig. 12 highlights the apparent differ-
ence between the Interpolation and the Prediction Mode sce-
narios with regards to the potential error reductions through
interpolation they provide. We conclude that the Prediction
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FIGURE 12. kNN performance for Interpolation and Prediction.

Mode does indeed prohibit the use of an absolute spatial ref-
erence — with an MAE of 13.68 dB and a negative R2-score
of−0.95. For the Interpolation scenario, the error reductions
of kNN compared to Prediction Mode are significant, with an
MAE of 3.27 dB and an R2-score of 0.86. If the networks can
exploit the spatial reference in the environmental data to tap
into this potential, the reported performance metrics will be
substantially exaggerated for network planning scenarios.

Fig. 13, suggest, that this is indeed the case forConvNet FS
which comes very close to the kNN performance in the Inter-
polation scenario. Clearly, these reductions are not caused by
different baseline errors, as the UMa results only marginally
differ from Prediction Mode. While we also observe an error
reduction for the RefNet MD model, presumably due to a
closer match of training and test distributions, the environ-
mental data seems to play a significant role. Apparently, the
local encoding acts not only as a model of the propagation
environment but also as an implicit spatial reference. Hence,
ConvNet FS benefits disproportionately from the Interpola-
tion scenario, with a substantial improvement of 2.03 and
2.43 dB over the Prediction Mode metrics for MAE and
RMSE respectively. Of course, we can not completely distin-
guish this effect from a closer match of the training and test
distributions. Still, the significant performance increase for
Interpolation, which does not translate to Prediction Mode,
already rules out such a random train and test split to assess
the generalization capabilities. Only in a suitable Prediction
scenario with spatial separation can we isolate the influence
of the spatial reference on the performance metrics and cor-
rectly assess the role of the environmental data for propaga-
tion modeling.

VI. MODEL EXPLAINABILITY & PLANNING SCENARIOS
With the errors quantified in Sec. V, we now take a closer
look at the trained models in Prediction Mode. In particular,
we apply explainability methods to better understand how the
environmental data is processed and then assess the learned
propagation mechanisms in network planning scenarios.

A. INPUT REGIONS MOST SENSITIVE TO BLOCKAGES
We have seen in Sec. V that the role the environment plays
for prediction is not always apparent. Often in the literature,
the environmental data is also not limited to the input regions
most relevant for propagation modeling, but included within

FIGURE 13. Error under Interpolation evaluation, with reductions 1
computed from the Prediction Mode baseline.

FIGURE 14. Attributions for trained models, revealing the input regions
most sensitive to blockages.

large square buffer areas [9], [36], [50]. In our encoding, see
Fig. 8a, we prioritize the environment along the direct prop-
agation path, where a physically sound model should exhibit
the highest feature importance. By applying integrated gradi-
ents (IG) [17] to our trained models, we can identify relevant
input regions, i.e., the areas of Eloc where blockages have the
highest effect on the predicted RSRP. This not only validates
our input region selection, but offers first insights into the
learned propagation mechanisms.

In particular, we obtain an attribution matrix Aenv for each
d and s value in Eloc[d, s, 0], representing the propagation
environment for ConvNet FS. Following [17], this requires
the definition of a suitable baseline, which we select as the
all zero tensor E′loc[d, s, 0] representing a flat terrain and the
absence of blockages. Aenv is then obtained by integrating
the gradients from the baseline E′loc to the original input Eloc.
In practice, we use a Riemann approximation withM steps:

Aenv[d, s]

=
(
Eloc[d, s, 0]− E′loc[d, s, 0]

)
+

M∑
m=1

∂ gnn
([
E′loc +

m
M · (Eloc − E′loc),m

])
∂Eloc[d, s, 0]

. (7)
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FIGURE 15. Comparison of RSRP maps for different encoding variants in unseen areas with artificially placed BSs, [dBm].

Similarly, we can also retrieve the attribution vector aenv[d]
for ConvNet DP, describing the influence of blockages along
Eloc[d, 0]. To obtain representative results, we then aver-
age the individual attributions over a subset of all measure-
ments [51]. This way, we generate Fig. 14, displaying the
normalized attributions Aenv[d, s] and aenv[d] for ConvNet
FS and ConvNet DP respectively. Both variants were trained
on T (0)

train under the Prediction Mode evaluation strategy, with
the attributions averaged over a random subset of 5 000 mea-
surements from T (0)

test . We further used M = 100 for the
Riemman approximation in (7).

It is apparent from Fig. 14a, that the feature importance
Aenv[d, s] for ConvNet FS is highly concentrated along the
direct path with s = 0. As such, the buildings block-
ing the direct propagation path also have the highest effect
on the predicted RSRP — a first sign that the trained mod-
els exhibit physically sound propagation mechanisms. Mean-
while, the buildings perpendicular to the direct path are of
limited relevance, which questions the common practise of
including the large square buffer areas commonly found in
the literature. For ConvNet DP in Fig. 14b, aenv[d] follows
a similar characteristic as Aenv[d, s] when evaluated along
s = 0. Both display only limited feature importance in the
area behind the measurement, while the peaks are reached a
few meters along the direct path followed by an exponential
decrease. It seems reasonable, that the first buildings along

the direct path have the highest effect on average. Interest-
ingly, we also identify a wobble effect in Figs. 14a and 14b,
which could be caused by the consistent pattern of the street
widths in our data set. Likewise, we explain the zero attribu-
tion around the UE position by the absence of buildings on
the streets where the measurements were collected. Besides
these training data artifacts, the IG results illustrate attribu-
tions expected from physically sound propagation models —
focusing on the direct path between UE and BS.

B. GENERATING DENSE SIGNAL-STRENGTH MAPS
With the IG analysis providing basic model explainability,
we now want to assess the propagation mechanisms the mod-
els exhibit in realistic network planning scenarios. As such,
we generate dense signal-strength maps in unseen areas of
Vienna, with artificially placed BSs. Fig. 15, shows the
obtained RSRP predictions of the three considered encod-
ing variants for two artificial BS placed on buildings in the
city center of Vienna. To generate these plots, we queried
the trained models7 from Sec. V in the 400 by 400 m area
surrounding the BS — in particular for every location not
covered by a building on a grid with 1m resolution. To better
visualize the effect of the blockages, we further use a flat

7We use the model trained on T (1)
train throughout the following evaluation

because it offers a larger choice of unseen areas in the city-center.
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FIGURE 16. Exemplary generated RSRP maps for ConvNet FS in unseen areas with artificially placed BSs, [dBm].

terrain and, for now, consider a uniform antenna pattern by
fixing φ′′h = 0, as indicated by the white circle in Fig. 15.
We moreover select hBS = 30 m, f = 1800 MHz, a transmit
power of Ptx,ref = 15 dBm and consider a vertical tilt φsec,v of
zero, such that the antenna is aligned parallel to the ground.
Note also that we abstain from prediction when dh < 10 m,
to adhere to the valid input range for UMa.

The resulting plots in Fig. 15 clearly reveal the inner
workings of the three individual approaches. We observe
that the RefNet MD model in Figs. 15a and 15d, which can
only account for the environment through the lgeo indicator,
reports sharp transition between the LOS and NLOS cases.
We argue that this behavior also explains the frequent mis-
matches between the LOS indicators in Fig. 6, where the
UMa model underrates the RSRP for NLOS cases. In con-
trast, the ConvNet DP model in Figs. 15b and 15e correctly
identify diffraction over rooftops as one of the key propa-
gation mechanisms in urban areas — leading to a smooth
transition from NLOS to LOS. Still, it is apparent from the
above results that the profile of the direct path alone is insuf-
ficient to learn diffraction effects along the horizontal plane.
While the predictions for ConvNet DP are spatially consis-
tent along the radial path from the BS position, we observe
sharp transitions perpendicular to it. This is in stark con-
trast with the ConvNet FS model shown in Figs. 15c and
15f, which also incorporates the environment surrounding the

direct path. Apparently, this facilitates learning of horizontal
diffraction effects — while ConvNet DP predicts a drop of
the RSRP behind the single tall tower acting as a blockage
in the upper left part of Fig. 15b, the ConvNet FS model in
Fig. 15c accounts for the small width of the object, such that
the drop is compensated by diffraction. Together with the
performance evaluation in Fig. 10a, we thus conclude that the
horizontal component is relevant and using only a side-view
representation is inadequate.

Further network planning scenarios8 for ConvNet FS are
provided in Fig. 16, again indicating a physically sound prop-
agation model accounting for blockages in a reasonable way.
It is apparent that the model can generalize the propaga-
tion mechanisms learned from a street-centric measurement
campaign to unfamiliar surroundings such as courtyards.
Again, it provides RSRP estimates within an adequate range
of −110 to −70 dBm across all scenarios. Unsurprisingly,
we can still observe some artifacts of our measurement cam-
paign, in particular, the samewobble effect in Fig. 16c already
observed in the attributions in Figs. 14b and 14a. While
it is hard to draw concrete conclusions, we again explain
this by a dominant street pattern in our data set. Overall,
we are confident that such artifacts will average out for
larger and more balanced data sets. Finally, we show that

8We again use the same scenario configuration as in Fig. 15.
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the signal-strength map generation is not limited to specific
BS configurations but can also be used to study the effect
of different antenna heights or horizontal and vertical sec-
tor orientations. An example of this is shown in Figs. 16d,
16e and 16f, where the same scenario is evaluated for an
omnidirectional and two directional antenna configurations
with different horizontal alignments φsec,h. Again we obtain
qualitatively reasonable predictions, with signal-strength esti-
mates significantly lower in the areas opposed to the sector
antenna. At the same time, the predictions facing the sector
antenna are consistent with Fig. 16d.While we can not expect
generalization too far beyond the configurations in our data
set, we see these results as a promising stepping stone toward
future data-driven network optimization schemes.

VII. CONCLUSION
In this work, we combined measurements from an exten-
sive drive-test campaign with a detailed 3D city model to
derive a purely data-driven prototypical network planner. The
large size of our data sets allows us to address several open
questions, unveiling the inner workings of these black box
approaches. Our results suggest that random train and test
splits commonly found in the literature exhibit a high risk for
a biased evaluation due to the rich spatial reference provided
through the environmental data. In contrast, we find that a
spatially separated training and test set enables a meaning-
ful assessment of the generalization capabilities required for
network planning. At the same time, our model explainabil-
ity results also question the common practice of including
large buffer areas around the UE location — which seem
unnecessary given the highly concentrated feature impor-
tance along the direct path. In the surroundings of this path,
a complete 3D representation is still beneficial, enabling the
most comprehensive propagation model among the trained
networks. In contrast, the RefNet Metadata model using a
simple LOS indicator also generates inherently binary signal-
strength maps, while the ConvNet Direct Path network can
not account for diffraction in the horizontal plane. The 3D
ConvNet Full Surroundings model also achieves the lowest
prediction error with an RMSE of 7.06 dB for unseen loca-
tions. It is followed by the ConvNet Direct Path with 7.78 dB
and the RefNet Metadata with 8.76 dB, both already sig-
nificantly outperforming the UMa baseline. Overall we find
the obtained results promising, considering that the trained
ConvNet Full Surroundings was able to learn the dominant
propagation mechanisms from a single drive-test campaign
alone. Even though we can still observe some artifacts of
our measurements, it generates spatially consistent and phys-
ically sound signal-strength maps, which proved suitable for
a prototypical network planner. Considering the vast amounts
of network traces and channel information already available
for existing networks, we could imagine a prominent role for
such data-driven schemes in the future. Deployed in an online
fashion, they could effectively bridge the gap from passive
monitoring and facilitate active, possibly dynamic network
optimization.

APPENDIX
Tab. 1 summarizes the notation used throughout this work.

TABLE 1. Overview of used notation.

A. PARAMETERS FOR UMa PATHLOSS MODEL
Following model components from [3], we can expand the
prediction of UMa from (2) for a given measurement i as:

ŷ(i)dB = P(i)tx,ref + Poffset

+Apat,h(φ′′
(i)

h )+ Apat,v(φ′′
(i)

v )

−PLUMa

(
d (i)h , hue, h

(i)
bs, f

(i), l(i)ind
)
, (8)

where we get the reference signal transmit power Ptx,ref, the
horizontal φsec,h and vertical φsec,v antenna orientations and
other parameters directly from the operator. From φsec,h and
φsec,v, we can then account for the antenna characteristics.
For the vertical pattern we directly use the model from [3],
such that

Apat,v
(
φ′′v
)
= −min

{
12
(
φ′′v

φ3dB

)2

,Amax

}
, (9)

with the default values of φ3dB = 65◦ and Amax = 30 dB.
We select a flatter pattern using φ3dB = 110◦ and Amax =

20 dB for the horizontal characteristics which better matches
our measurements and thus reduces the prediction error. For
the pathloss component PLUMa in (8), we further set an aver-
age street width of 10 m and the average building height of
25 m — representative of the drive-test area. We also intro-
duce a small constant offset term through a line search

Poffset = argmin
Poffset

1
N

N∑
i=1

|ŷ(i) − y(i)|, (10)

minimizing the absolute error assuming l(i)ind = l(i)rsrp. The
inclusion of Poffset = 2 dB accounts for our measurement
equipment as well as potential model mismatches, and thus
reduces the prediction error for UMa.
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FIGURE 17. Drive-test vehicle with measurement antennas.

FIGURE 18. ECDF of measured RSRP.

TABLE 2. ConvNet FS for Prediction and Interpolation.

B. DRIVE-TEST MEASUREMENT EQUIPMENT
Our measurements were conducted with a PCTEL MXflex
scanning receiver [52], with two omnidirectional Panorama
Antennas LGAMM-BC3G-26-3SP9 mounted onto the roof of
the drive-test vehicle in Fig. 17. We further used an external
EVK-M8U - U-blox10 GPS receiver to record the drive-test
route. The MXflex is specifically designed for benchmarking
use cases and allows us to collect RSRP measurements from
up to 16 physical cell ids (PCIs) in parallel with a mini-
mum RSRP detection level of −140 dBm and an accuracy of
±1 dB [52]. In our data set we measured a minimum RSRP
of −131.3 dBm, see Fig. 18 for the complete distribution.
Before conducting the drive-test campaign we calibrated our
measurement equipment by directly wiring the MXflex to a
reference eNB through tunable attenuators — the consid-
ered lab environment is described in detail in [53, p. 138].
Throughout this validation the combined error introduced by
the BS transmit power instability and the MXflex scanning

9https://www.panorama-antennas.com/site/LP[G]AMM?search=LGAM
M-BC3G-26-3SP&description=1

10https://www.u-blox.com/en/product/evk-8evk-m8

TABLE 3. ConvNet DP for Prediction and Interpolation.

TABLE 4. Refnet MD for Prediction and Interpolation.

TABLE 5. Folds for Prediction and Interpolation.

receiver uncertainty was below 1 dB. Similar to the inherent
fluctuations from the non-static drive-test scenario, we can
safely assume that these deviations are zero mean and thus
average out over the complete data set given the high num-
ber of measurements and the diverse set of BSs considered.
We thus have no reason to believe that the NNs are able
to compensate for these errors under our spatially separated
evaluation strategy. Instead, the identified fluctuations will
inherently be part of the reported prediction error of the NNs
and the UMa baseline alike.

C. NEURAL NETWORK PARAMETERS AND TRAINING
We follow the same basic architecture for the individual
blocks from Fig. 7 with all models implemented in Tensor-
flow [47]. gdense(·) consists of two consecutive Dense layers
with Relu activation functions, each followed by BatchNor-
malization and Dropout. Meanwhile, gcnn(·) contains three
consecutive Convolutional layers again with Relu activation
functions, each followed by Spatial Dropout, 2×2MaxPool-
ing and BatchNormalization. We then arbitrarily select the
first fold T (0)

train and T
(0)
test to conduct hyperparameter optimiza-

tion of the individual layer configurations usingKeras-Tuner.
The final layer configurations for the different encoding vari-
ants and evaluation scenarios are provided in Tabs. 2, 3 and 4.
It is apparent, that the Interpolation scenario requires higher
capacity models, while the main challenge for the Prediction
Mode is sufficient regularization. Thus, we also observed
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longer training processes of around 50 epochs in Interpo-
lation mode, while 20 epochs where typically sufficient for
Prediction. The sizes of Ttrain, Ttest for the individual folds
are further provided in Tab. 5. Note that Ntrain is smaller for
Prediction due to the buffer area introduced in Sec. IV-B.
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