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ABSTRACT From a software evolution perspective, more actors are integrating the in-vehicle software
development cycle. In this process, software deployment mechanisms must include more complex techniques
to meet the software verification and traceability levels required by industry safety and security constraints.
In this context, we propose Fenrir, a public inter-automaker blockchain-based application store framework
in which each automaker retains software installability control. This application store also aims to ensure
traceability and security, while also keeping the solution light in terms of both energy consumption and
computing requirements, to be used in constrained environments. We implemented Fenrir in a heterogeneous
architecture composed by both on-board (bearing an ARM Cortex-AS53 chipset, already deployed in cars)
and off-board (Amazon EC2) nodes for a realistic automotive use-case scenario, in which we evaluated
the performance and energy consumption. We demonstrate that the overheads added by our solution for an
entire software deployment pipeline—comprising both deployment and usage of already deployed software
packages—depends mainly on the verification mechanism, whose impact is not significant, i.e., 3.8% for
the worst-case scenario and 0.3% for a typical scenario.

INDEX TERMS Automotive, application store, blockchain, distributed systems, multi-provider, software
dependency management, software deployment.

I. INTRODUCTION mobile and interconnected cloud nodes, allowing passengers’

In recent decades, Information and Communication Tech-
nologies (ICT) have dominated the transformation of the
automotive world, progressively integrating it into Smart
City ecosystems. This transformation has considerably
increased vehicles’ connectivity, allowing new services
such as autonomous driving services, connected mobile
applications, and stolen vehicle tracking software to reach
the market. As a result of this trend, increasingly disruptive
innovations from many new actors will continue to appear
even more rapidly in the coming years, thus making embed-
ded software increasingly dynamic and varied. This trend
also motivates the progressive transformation of vehicles into
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services and data to follow them everywhere [1], [2], [3].

However, such a rapid pace of innovation pace has dan-
gerously increased system and software complexity, meaning
software development and integration errors are responsible
for 50% of all vehicle recalls [4]. These errors are mostly
caused by inter-services’ undetected incompatibilities, thus,
software version management, traceability, and maintenance
are now critical issues for the automotive sector [5], [6].

If these errors were patchable through simple software or
configuration modifications, this would enable remote Over-
the-Air (OTA) diagnosis and updates instead of traditional
manual garage updates, thereby saving millions of dollars,
minimizing repair delays, and reducing the environmental
impact of update campaigns [7]. Besides software patches,
this mechanism also provides new business opportunities,
making flexible software service pay-as-you-go subscriptions
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a reality for the automotive sector. Nevertheless, the security
and safety vulnerabilities of these fully autonomous software
deployment systems also pose significant risks to vehicle
safety and performance, potentially endangering their passen-
gers’. For example, the 2002 Volkswagen and 2015 FCA [§]
cases could have been easily prevented through more exhaus-
tive software integrity verification mechanisms. Similarly,
the 2005 BMW and 2020 Ford [9] issues could have been
resolved with fewer casualties with a proper software delivery
pipeline. These risks will be even greater considering the
near-future evolution toward more decentralized and collabo-
rative development environments with the constant inclusion
of new actors.

Although the scientific challenges of remotely updating or
installing software have been widely addressed in existing
literature [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], to the best of our knowledge, no studies have com-
bined remote software deployment, automotive constraints,
and the multi-provider characteristics of a multi-automaker
application store, nor have software inter-dependencies in
been considered in this context. In addition, the contributions
above have evaluated only the security and performance of
the proposed mechanisms, ignoring energy, computational,
and storage demands, which currently represent some of the
most challenging on-board constraints.

In this paper, we present Fenrir, a novel and highly secure
application store framework for vehicles. To the best of our
knowledge, while other state-of-the-art proposals focus on
updating on-board services in a mono-automaker environ-
ment, Fenrir is the first to address not only updates but
also distributing new applications in a highly-collaborative
multi-automaker application store. Our work enhances the
security of existing solutions via a hybrid public/private
blockchain-based mechanism to ensure software integrity
and authentication through the software deployment pro-
cess, either in standard Vehicle-to-Cloud(V2C) or Vehicle-
to-Vehicle(V2V) approaches. Thus, in this framework, all
new suppliers can publish their new applications, however,
control over which applications can be installed for a specific
vehicle model is preserved by the vehicle’s manufacturer
who, at least for now, remains accountable for problems
that software may cause in their vehicle’s fleet. Finally, Fen-
rir also contains a newly proposed mechanism to handle
inter-software dependencies before downloading them into
each vehicle to optimize the distribution pipeline and reduce
energy and computation costs. In summary, in this paper,
we exhaustively present Fenrir, a blockchain-based multi-
automaker application store framework with cloud-offloaded
dependency management, which includes the following sci-
entific contributions:

« A new model for privately managed public blockchains
for software storage and distribution for multiple
companies with heterogeneous hardware and software
constraints (§ V-A).

o Energy, computation, and storage optimization for
proofs, verification, and pruning mechanisms in highly
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participative private blockchains for safety-critical
software storage in highly constrained systems
(§ V-B, § V-C & § V-E).

e« A cloud-assisted distributed software dependency
management mechanism directly integrated into the
blockchain to optimize storage needs and maintain
an in-vehicle backup and up-to-date global software
image (§ V-D).

e A realistic system implementation and an industry-
inspired testbed to measure the solution’s performance
and viability for current OTA update traffic and future
V2V update campaigns (§ III & § VI).

The remainder of this paper is organized as follows:
Section II presents the study’s automotive sector context and
technological background. Subsequently, Section III details
the use case upon which the development of Fenrir was based.
After that, Section IV describes all the contributions noted
above through a detailed description of Fenrir, Section V
evaluates its performance and Section VI gives an extensive
discussion. Finally, Section VII surveys the existing state of
the art and Section VIII presents the conclusions of our results
and proposed future work.

Il. THEORETICAL BACKGROUND

A. AUTOMOTIVE SOFTWARE ARCHITECTURE

Electric and Electronic (E/E) architecture has evolved sig-
nificantly in recent years, marking a transition from a pre-
viously fully distributed architecture that was almost wholly
composed of mono-functional micro-controllers. These
micro-controllers were connected through methods such as
Controller Area Network (CAN), Local Interconnect Net-
work (LIN), FlexRay, and Universal Serial Bus (USB).
Newer approaches use actual domain vehicle architecture,
comprising fewer, more powerful microprocessors connected
primarily via Ethernet. Thus, considering recent technology
evolution, there is a clear tendency toward E/E architec-
ture [7] reconfiguring the older, highly constrained elec-
tronic control units (ECUs) into new, higher-end devices
with greater computational and storage capabilities. This
tendency has helped to reduce the price, weight, space, and
complexity of these systems. On this basis, systems will
most likely evolve to Central Computer Architectures (CCA)
or Zonal Architecture (ZoA), in which, respectively, one
or few higher-end ECUs encompass all the functions run-
ning in each sub-cluster or even the whole vehicle. These
new architectures, linked to virtualization and advances in
networking, will yield many possibilities for dynamically
allocated software, performant OTA update mechanisms,
and Service-Oriented Architecture conceptions [7], [20],
[21], [22]. Thus, we used these near-future architectures as
a basis for developing our proposed solution in this study.

B. AUTOMOTIVE SOFTWARE DEVELOPMENT CYCLE

The automotive industry is a highly heterogeneous and
participative environment in which automakers act as
integrators of different pieces of software developed by
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different suppliers. To facilitate software update delivery by
all the relevant actors, the automakers maintain an application
repository that hosts update packages. These updates can
then be downloaded by dealerships and installed through
OBD?2 in a garage setting or exclusively through telematics
and infotainment ECUs. Such updates can, either be directly
installed by cars remotely or installed by users via the USB
port. Furthermore, as shown in Fig. 1, Tier 1, 2, and 3 sup-
pliers often sell their solutions to other suppliers and multiple
automakers, who can then also deploy this software to some
vehicles in their fleets. Note that Tier 1 suppliers are direct
suppliers of automakers, Tier 2 are suppliers or subcontrac-
tors for Tier 1 suppliers and Tier 3 are suppliers or subcon-
tractors for Tier 2 suppliers. Furthermore, it is common for
Tier 3 suppliers to work closer to the hardware than Tier 2s
and Tier 1s. Thus, sharing a common distributed software hub
between all automakers and actors will help standardize and
secure both the software packages and the associated delivery
process.

Tier 3 supplier

Tier 2 supplier

Tier 1 supplier A Tier 1 supplier B

Vehicle 1

Vehicle 1 Vehicle 2

FIGURE 1. Automotive software ecosystem: Suppliers and relationships.

C. AUTOMOTIVE OTA UPDATE FRAMEWORKS

As the first OTA update frameworks reach the market, we can
identify the design patterns most automakers apply. These
frameworks are usually composed of four different services
distributed through the different high-end ECUs of the archi-
tecture. Fig. 2 shows an example of OTA update framework

M Vehicle

Telematic O
control unit

HPC / Gateway 4

B —

Authorization

Orchestrat Download Install
9% Orchestrator © Downloader A Installer -manager

FIGURE 2. OTA update framework service mapping over ZOA.
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mapping over ZoA reference architectures. These services
are: (1) the Downloader, responsible for retrieving the Vehi-
cle Software Package (VSP) containing the update from
the Cloud software storage platform, (2) the Orchestrator,
in charge of distributing updates to the node that will perform
the installation, (3) the Installer, responsible for installing
and testing each software component, and (4) the Authoriza-
tion Manager, in charge of verifying the authenticity of the
received package.

Furthermore, Fig. 2 shows the different kinds of in-vehicle
node profiles (i.e., Zonal ECUs, Standard ECUs, Actuators
and Sensors) and their network locations, with the Zonal
ECUs more central in the network and in charge of man-
aging a cluster of Standard ECUs, Actuators and Sensors.
These three node profiles do not only differ in their net-
work location, but also in the quantity of resources they
bear. Zonal and Standard ECUs are normally deployed using
MPUs. Zonal ECUs are however more resourceful than
Standards ECUD. Actuators and Sensors are normally con-
ceived using highly restrained MCUs. Thus, updates can
take many forms depending on their final target node and
purpose. Here, we highlight four. (1) Considering lighter
updates, the Application Configuration Updates Over-The-
Air (AOTA) are composed of, as indicated by their name, a set
of run-time/post-install parameter changes. These parame-
ters include examples such as driver profile changes, deep
learning algorithm optimizations, or parameter updates for
regulatory compliance. These updates strongly condition the
vehicle’s behavior without requiring any software change;
thus, these update types do not require the relevant soft-
ware components to shut down, only the vehicle to stop.
Another key update type is (2) Firmware updates Over-The-
Air (FOTA), which involves installing or updating the main
system software that controls the underlying hardware. Thus,
to achieve these updates, a complete restart and re-flash of
the ECU are required. After the update, the software must
be tested entirely and, if there are any errors, switched back
to the previous firmware version through techniques such
as dual banking. This form of updates will be used for
the Actuators and Sensors. A third update type is (3) Soft-
ware updates Over-The-Air (SOTA), involving the installa-
tion of application components. These updates can be whole
(e.g., a full software install) or partial, also known as
A software updates (ASOTA). Note that the size of the par-
tial updates is typically close to the aforementioned FOTA
packages. For both SOTA and ASOTA, the software install
process must be performed with the vehicle shut down; the
process must also be tested afterward and allowed to roll back
if the system does not operate properly following the update.
SOTA usually take place over Unix-like systems, typically
in infotainment or telematics ECUs. Finally, update type (4)
comprises Media file updates Over-The-Air (MOTA) pack-
ages, which include some multi-media files such as Global
Navigation Satellite Systems (GNSS) maps, custom images,
sounds, or videos for the In-Vehicle Infotainment (IVI).
These updates are considerably heavier than those described
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above, thus, they are presently not possible as OTA updates.
In this paper, we divide these files into chunks that can then
be reconstructed on board to preserve homogeneity through
the data structures. Note that these last three forms will be
used for updating the Zonal and Standard ECUs but not for
the Actuators and Sensors.

D. BLOCKCHAIN BASIC CONCEPTS AND OBJECTIVES

The essential concept behind blockchain technology emerged
in the late 1980s [23] with the introduction of Paxos [24],
which enabled an agreement to be reached over a result/the
state of a machine in a network of computers where the
computers or network itself may be unreliable. However,
the blockchain concept was not invented until 2008 when
Satoshi Nakamoto, alias of the anonymous creator, pub-
lished Bitcoin: A Peer-to-Peer Electronic Cash System [25].
In that paper, Nakamoto describes an alternative to the
existing banking system, proposing a calculus-based con-
sensus model allowing storage and distribution of a global
transaction book without requiring a centralized, cor-
ruptible management authority. Thus, blockchain is built
over Nakamoto’s three pillars: (1) Decentralization—the
blockchain shall be distributed between all the involved actors
and act autonomously, without a central governing unit,
(2) Transparency—the blockchain shall keep all anonymized
transactions public and accessible by anyone on the network,
and (3) Immutability—once a transaction has been published
to the blockchain, it can never be altered.

Block index: 1

Prev. Hash: None

Header

Hash: aaa...

Block data
payload

Block data
payload

Block data
payload

Block

FIGURE 3. Blockchain concept scheme.

In terms of the technical details of the blockchain’s stor-
age structure, as shown in Fig. 3, a blockchain is a type
of linked list including an extra mechanism to ensure its
immutability. Thus, the data structure of the list elements
comprises: (1) the block index, i.e., a number indicating the
block’s position in the chain, (2) the hash of the previous
block’s information, (3) the block data payload, and (4) the
hash of the current block. Note that the hashing mechanism,
which is a mathematical function allowing the mapping of
data of arbitrary size to unique fixed-size values, is the most
crucial part of the blockchain and allows the existence of an
incorruptible chain of unmodifiable data, since modifying the
input used to calculate the hash would not produce the same
hash result. Although the blockchain was originally invented
to eliminate the use of a central infrastructure manager, over
time, blockchain technology has also been applied to private
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networks to increase the security of their storage layers.
In addition, the hashing and integrity mechanisms, also
known as authentication proofs, have evolved to decrease
their computational and energy costs, with new options avail-
able to replace the classic computational Proofs-of-Work
such as the Proof-of-Stake (based on the participants’ inter-
est) or the Proof-of-Authority (based on the trustworthiness
of a set of nodes).

Ill. USE CASE SCENARIO

For the studied use case scenario, we base our design on a
realistic micro-service partitioning and inter-service depen-
dency use case for active driving monitoring and profiling,
as presented in [26]. Furthermore, we add a lower-level map-
ping to this previously presented model through the auto-
motive software development cycle (§ 1I-B) to illustrate the
complexity of the interactions between actors. Fig. 4 depicts
then the inter-software dependencies presented on this study
and the supplier ownership for each of the different services.

@8 Automaker @ Tier 3s

Insurapce Operating @8 Tier 2s @3 Tier 1s
tracking hours
Vehicle Interior light
leasing handler
Personalisa- Driver Detect Brightness
tion 1D driver provider
Raw
Driver Eye open / Picture
Monitoring close ]
Eye Gaze Gaze Detect]] fDetect Image Raw
HMI control directio eye face reprocessin, Plc;ure
Mirror Mirror
adjustment joystick

FIGURE 4. Micro-service partitioning, software inter-dependencies and
supplier ecosystem mapping scenario.

Thus, to fully illustrate all the different possibilities,

we provide four software ownership examples:

1) Raw pictures 1 & 2: An example of a software compo-
nent implemented close to the hardware and thus prob-
ably developed by the hardware manufacturer, which,
in this case, is the camera’s manufacturing company.

2) Insurance tracking: A high-level software application
developed by an upcoming actor through the applica-
tion store to add a new scenario of interest; in this
case, this scenario is real-time management of insur-
ance policies. This application must be proposed by
multiple insurance company competitors, thus offering
a wide selection of options for users, and be poten-
tially common to all automobile brands and software
architectures.

3) Image pre-processing: An example of software devel-
oped by different suppliers offering potentially dif-
ferent functionalities. These services must ensure
full compatibility with different vehicles and their
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underlying software to widen their selling possibilities
over the same service platform proposed by concurrent
suppliers. Thus, users and automakers can select which
services they wish to install based on criteria other than
the technical specifications, e.g., the service’s pricing,
preferences, or the quality of its interface.

4) Mirror adjustment: A software type mainly provided
by each of the different vehicle manufacturers due
to its close relationship with the vehicle’s design and
unsuitability for reuse by other automakers. Within a
manufacturer’s range, these applications may also be
model specific.

In our opinion, these examples illustrate the differ-
ent development profiles likely to be found in a new
multi-automaker application store. These use-cases also help
to underline the increasing diversity of applications and the
difficulty of ensuring compatibility between services without
implementing dependency management mechanisms. Addi-
tionally, these examples illustrate the need to develop a mech-
anism allowing the integrity and authenticity of software
originating from different developers to be preserved, as well
as a mechanism allowing automakers to protect their vehicles
from malicious, corrupted, or even incompatible applications,
despite user requests.

Note that, all these services were conceived in collabora-
tion with our industrial partners at STELLANTIS and follow
the example proposed in [26] at the 2022 Automotive Com-
puting Conference (ACC). For industrial property reasons,
we can not provide the legacy source codes. However, despite
the lack of details on the service implementations, all the
services meta-data (inter-dependencies, sizes, etc.) needed
by the different Fenrir sub-mechanisms are widely described
when necessary in the central section (cf. § V), the appendix
(ctf. § VIII) and discussed in the evaluation section (cf. § VI).

IV. RELATED WORKS

A. A STUDY OF SECURITY AND DATA AUTHENTICITY ON
THE OTA UPDATE FRAMEWORK PROPOSITIONS

In this subsection, we discuss different OTA update mecha-
nisms and classify them according to the tools used to ensure
update package security and authenticity.

The first group of solutions is those that guarantee the
authenticity of data using symmetric encryption, asymmet-
ric encryption, or both. In these solutions, the integrity of
the data is reliant upon decryption. Representative exam-
ples of only-symmetric key-based OTA frameworks include
Mahmud et al. [10] and Mansour et al. [11]. In both studies,
a secure software update framework is described based on
sharing an initial set of link keys among automakers, vehicles,
and software suppliers, which is then used for encrypting
both software and communications. In addition, they propose
other mechanisms to enhance security and complex transmis-
sion traceability, such as time-hopping randomization [10],
or detecting potential errors and malicious behavior, such as
remote diagnostic tooling [11]. However, even if the com-
puting requirements needed to perform the encryption are

VOLUME 10, 2022

low, as the set of keys is directly included in the vehicle
by the automakers, the impact of a key being compromised,
thus making it impossible to link a message to its sender
directly, poses a significant potential threat that does not
match the requirements of safety- and security-critical frame-
works. In addition, neither implements a content integrity
verification mechanism, thus making it impossible to detect
maliciously modified packages if an authorized key is
compromised.

Thus, to solve the problems linked to the risk of compro-
mising a static set of symmetric keys and to improve message
traceability, Steger et al. [12] propose a solution in which
an asymmetric key is used to secure unicast communication,
in addition to a symmetric multicast key from the service cen-
ter to several cars, thus enabling parallel updates. In this case,
the only keys that will be shared are the public keys, making
identity faking difficult. However, this solution is again at
potential risk of key compromise since action triggering is
centralized and there is no distributed network to ensure the
software package’s authenticity.

Similarly, the approach proposed by Mayilsamy et al. [15]
involves combining asymmetric encryption and a well-known
cryptography field, steganography. Their study proposes a
solution to integrate software files encrypted by an asymmet-
ric encryption algorithm (RSA in this case) hidden along the
edge region of the update’s cover image using steganography.
This self-verifiable stego-image would then be adequate for
safe storage and transmission. However, even though the
compromise of long RSA keys (2048 bit in this case) remains
an open challenge, and the costs and storage needs associated
with using stego-images are also unsuitable for the highly
restrained nodes of the automotive industry.

Further considering the integrity of package content
instead of heuristic solutions for security during the trans-
mission, we now discuss hash-based solutions. Based on this
technique, Nilsson et al. [13] propose a secure OTA firmware
update protocol for connected vehicles based on dividing
software and then hashing and encrypting each chunk. How-
ever, this division and hashing process appears inefficient in
terms of computing and energy consumption compared to
using software packages as a whole. Oka et al. [14] propose an
alternative infrastructure in which a trusted portal calculates
the hash of the whole software package and places it at the
end of the message so the receiver can check the message’s
veracity. However, in both of these approaches, having a
centralized authority in charge of distributing keys is highly
vulnerable to targeted, single point of failure, and identity
usurpation attacks. Within the same scope as [14], we can
consider the proposed approach of Karthik et al. [16]. This
solution secures key storage at a lower level by using Secure
Hardware Module technology to handle key management.
Their study also proposes an OTA framework that distributes
updated software to ECUs in the form of images (contain-
ing collections of code and data) and metadata (containing
image-related files such as the size of the file, the image
hash, creation date, author, etc.). In addition, Karthik et al.
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TABLE 1. Comparison of the Over-The-Air frameworks found in the state-of-the-art.

Integrity & For trust-less dynamic Resource - On-board
2 . . Traceability
authenticity environments consumption storage needs
S. Mahmud et al. [10] Very low No Very low Low No Very Low
Symmetric or K. Mansour et al. [11] Very low No Very low Low ~ Very Low
Asymmetric key
based (CA-like) M. Steger et al. [12] Very low No Low Low No Very Low
K. Mayilsamy et al. [15] Medium ~ Medium High ~ High
D. K. Nilsson et al. [13] Medium No Medium High ~ Medium
Hash-based D. Oka et al. [14] Medium No Medium Medium ~ Medium
T. K. Kuppusamy et al. [16] Medium ~ High Medium No Medium
M. Steger et al. [17] High Yes High Very High Yes Very High
E. N. Witanto et al. [19] High Yes Very High Very High Yes High
Blockchain-based
N. S. Mtetwa et al. [27] High Yes High Very High Yes High
Fenrir Very High Yes High Medium Yes Medium

~ : More or less compliant.

Note that this comparison is theoretical and done analyzing the papers and claims.

suggest introducing different keys introduced in the hardware
to verify the encryption of different files. However, this solu-
tion is vulnerable to rollback attacks due to a lack of proper
verification mechanisms during software update installation.
This system also suffers from the same issue as those in the
previously discussed approaches of being centralized rather
than distributed.

Through optimizing hashing solutions by adding dis-
tributed middleware and some new optimization mecha-
nisms, some studies propose blockchain-based solutions.
In the blockchain, software packages are linked to each other
immutably (cf. Fig. 3) and spread through the different nodes
integrating the system; in this case, it is always possible to
use a simple majority vote approach to detect malicious or
erratic introductions. Thus, this technology guarantees data
integrity, complete traceability, and higher consistency and
security than the aforementioned techniques. However, there
are also some drawbacks—for example, blockchain-based
solutions do not allow, or barely allow, modification of past
data, rely on the secrecy of the private user keys, require large
amounts of storage and significant computational resources
(for the Proof of Work and other cryptographic mechanisms),
and remain uncertain with relation to future legislation and
regulations. Nonetheless, in recent years, increasing efforts
have been expended to develop new techniques to reduce the
resource consumption of this solution and allow its deploy-
ment in the [oT world, such as pruning and new, less resource-
consuming proofs. In the automotive sector, multiple papers
have proposed blockchain-based OTA update frameworks.
However, most of these, such as Steger et al. [17], are
based on the Proof-of-Work mechanism, while others such as
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Witanto et al. [19] and Mtetwa et al. [27] focus on other
parts of the implementation such as peer-to-peer exchange or
the transmission details, respectively. However, the resource
consumption constraints of the embedded vehicle architec-
ture suggest that Proof-Of-Work algorithms are unsuitable for
such systems, thus indicating a key limitation of these propo-
sitions. Additionally, all the cited blockchain solutions follow
the classic public blockchain schemes, which we consider
unpractical in our software development context (cf. § II-B),
in which the blockchain publishers are companies that need
to use this chain as a means to sell their software.

Consequently, and as shown in Table 1, blockchains appear
to be the most appropriate solutions in terms of security
and data integrity preservation, for both distributed and cen-
tralized systems, despite the resource consumption increase.
This is mainly due to all the mechanisms added to ensure
the traceability and the immutability of the data. To the
best of our knowledge, no previous study has proposed
hybrid public/private blockchain networks, inter-automaker
collaborative stores, low-power-consumption authentication
proofs, or software versioning or dependency management
tools, which, in our view, would improve the resource
efficiency and security of the OTA update frameworks.
Therefore, the background study presented in this section
justifies the choices proposed in our study (cf. § V), which we
believe to offer an improved collaborative software deploy-
ment framework for the automotive context. Furthermore,
note that this migration through blockchain-based solutions
to enhance the system traceability and data integrity has also
started in other related sectors such as eHealth [28], [29] and
Industry 4.0 [30].
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B. A WALKTHROUGH OF THE DEPENDENCY
MANAGEMENT MECHANISMS

As software philosophy evolves from application-based to
service-based, software reuse and sharing will be enhanced.
However, as the volume of software in vehicles increases,
so too does the number of developers in the ecosystem. Thus,
managing the dependencies between these new software
packages is becoming increasingly complex and requires
careful attention. In this subsection, we will provide an
overview of different dependency management solutions and
classify them into two categories: (1) those focused on
service-library dependencies and (2) those aiming to deal
with inter-service dependencies.

The solutions dealing with software library dependencies
include [31] and [32]. The proposal in [31] aims to develop
a highly granular dependency network that goes beyond
library packages and generates a versioned ecosystem-level
call graph to maintain an actualized network and set of depen-
dencies. In contrast, the approach in [32] describes the depen-
dency management mechanism of Gradle, a well-known
build automation tool that works in a declarative fashion in
which the developer sets its dependencies and versioning; as
a result, there is no need to calculate dependencies between
libraries for higher compatible versions. These solutions are
not precisely focused on the same scope as that of the present
study as we aim to handle dependencies between pre-built
services and, thus, do not require an external library.

However, studies [33], [34], [35], [36] seek solutions to
the same problem presented in our study. Among these solu-
tions, [36] is notable for containing a fundamental definition
of software components, in which a component is equivalent
to a mono-functional service with a set of dependencies on
other components. In this solution, the dependency calcula-
tion mechanism requires a description of the system software
architecture, the resources of the system, and the software
components to generate a dependency set. This dependency
set comprises mandatory dependencies, firm require-
ments without which installation is impossible, optional
dependencies, and negative dependencies, indicating a con-
flict forbidding the software installation. In this solution,
the dependency calculation process comprises two phases,
as follows. (1) The installability phase: before authorizing the
installation of a component, checks are performed to ensure
it is not forbidden, the services it requires are available, and
it does not provide forbidden services. (2) The installation
phase: once the component is proved to be installable, the
effects of its installation on the system are calculated. These
effects comprise newly available services, new forbidden
services, new forbidden components, and new dependencies
(represented by a dependency graph).

Considering a similar scope, study [33] presents a
four-phase process composed of: (1) collecting historical
service network flow data set and pre-processing it, (2) com-
puting dependencies and constructing dependency matrices,
(3) compiling the constructed matrices into a graph database,
and (4) mining this graph database to identify service
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dependencies. In study [34], the authors use declarative con-
tracts to calculate the dependency graphs in a controlled
environment, while in [35], an implementation is proposed
for a dependency management mechanism for fully private
blockchains to track service logs and collaboratively calcu-
late unknown service dependencies. However, while these
solutions are close to our aims, the system constraints and
challenges they try to solve differ markedly. In our case,
the installation environment is managed by the different
automakers; there is no need to guess the dependencies
between software because the automakers must declare these
for the risk assessment analysis. Thus, our approach would be
closest to the one described in [36] but with a design adapted
to blockchain properties and additional cloud reinforce-
ment for the dependency calculation in pruned blockchains
(cf. § V-D & V-E).

V. FENRIR FRAMEWORK DESCRIPTION

Fenrir is a multi-automaker application store framework
built on a hybrid public/private blockchain-based application
storage layer. This framework focuses on software pack-
age authenticity and integrity throughout the entire update
pipeline (i.e., software transmission, storage, installation, and
configuration steps) and manages inter-service dependencies
between software packages before they are downloaded to the
on-board architecture via V2C or V2V approaches, with con-
stant consideration of the energy consumption and computing
and storage constraints of the embedded vehicle systems.

Fenrir implements the public/private characteristics of the
blockchain model by first defining roles for the different
mode types in the network. Different permissions levels are
then assigned to each role (§ V-B). This approach ensures
that the application store is public-to-publish, however, the
software eligibility control for each vehicle model remains
with its manufacturer since these manufacturers are legally
accountable for failures on their devices. The automaker’s
central node network contains a complementary distributed
application green-list layer that holds the authorizations for
each vehicle model (§ V-C). In addition, to reduce the
blockchain storage model’s energy consumption impacts,
Fenrir proposes a key-management layer and multi-stage
Proof-of-Authority mechanism to ensure software authentic-
ity. This can be achieved given that the system’s control is
based on a defined set of trusted nodes. This key-management
layer (§ V-B & V-E) is distributed among the different
automakers and manages the addition of new automakers and
actors following a democratic vote model that we describe
below.

In the remainder of this paper, we decompose the Fenrir
framework into four largely independent sub-features, as dis-
cussed in the following subsections:

« Identity/Role management: a service managing key dis-
tribution, role management, permissions, and the intro-
duction of new nodes in the system (§ V-B).

« Software package authentication: this mechanism is key
to ensuring software integrity and traceability through
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FIGURE 5. Fenrir high-level system architecture.
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the update process. This mechanism details the rela-
tionships between data structures and their behavior
throughout the software delivery process (§ V-C).

o Distributed inter-service dependency mgmt.: before
downloading software packages to the vehicle, either via
V2V or V2C, application version control is performed to
minimize redundant data transmission (§ V-D).

o Light and resilient Software Package Storage: consid-
ering automotive systems’ storage limitations, Fenrir
proposes a new three-level pruning and backup model to
ensure data recomposition at low energy/computational
cost (§ V-E).

Finally, we conclude this section by describing a typical

end-to-end software deployment cycle (§ V-F).

A. FENRIR BASICS

In Fenrir, we define the Software Application Package,
(SAPckg) as an ensemble of a Software Package Structure
(SPS) and its associated Software Transaction Block (STB)
published into the blockchain, whose formal definition is
illustrated in Fig. 8. This SAPckg is first submitted to the
Pending Submission Repository (PSR), a distributed tem-
porary repository in which application proposals are stored
until at least one automaker is interested. Once the tempo-
rary SAPckg has sufficient endorsers, it will be pushed into
the Main Storage Chain (MSC), its endorsements will be
assigned to the Distributed Green List Ledger (DGL), and the
software block can then be distributed to authorized vehicles.
More details about this process are presented in § V-C. As our
framework is initially conceived for an SOA/Micro-service
architecture, each SAPckg shall contain exactly one service
identified by a tuple (service identifier, version) and the list of
dependency relationships with the other services in the infras-
tructure described in the Requirements field of the STB. Thus,
each service will preserve its unique identifier irrespective of
its version and, once a tuple has been published, only tuples
with higher versions can be published so the system will never
contain two identical tuples.
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Considering the definition of inter-service compatibility in
Fenrir, two services are deemed compatible when they do not
have any declared mismatching dependencies between them
or any of their sub-dependencies, thus allowing them to safely
cohabitate in the same environment. Two versions of the same
software are always considered incompatible; in addition,
Fenrir’s STB-Req. field may contain not only the definition
of a given service’s dependencies but also the list of service
incompatibilities. The management of inter-service compati-
bility conflicts and prioritization when calculating the Global
Software Image (GSI) and Backup Software Image (BSI)
is described by the Distributed Inter-Service Dependency
Management Mechanism detailed in § V-D.

Having defined the software package structures and inter-
dependency model, we further expand on the architecture
definition. Fig. 5 shows the different actors participating in
the Fenrir software deployment cycle based on the role profile
definition in § V-B. Note that all the aforementioned control
structures (i.e., the PSR, DGL, and MSC) are fully hosted and
synchronized among the central nodes, which will guarantee
the access and propagation of different blocks to other nodes
depending on their roles and needs.

B. IDENTITY / ROLE MANAGEMENT

As shown in Fig. 5, Fenrir comprises three layers: (a) the
content providers, (b) the content consumers, and (c) the
central nodes. Each layer has different rights and interests;
Fig. 6 summarizes the rights of each role.

(a) Content providers. This first layer is the only one com-
posed simultaneously of workers from both the automakers
and suppliers (cf. § III). Thus, it is necessary to split it into
two different roles, as follows. (1) Internal Developers, whose
principal role is to integrate and test the incoming suppli-
ers’ proposed software and manage software installability
(i.e., the software authorization green list described
in § V-C). However, as there is also potentially an internal
software development department within each automaker,
this role also allows new software proposals to be produced
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FIGURE 6. Summary of Fenrir's roles and permissions.

and published in the chain. (2) External Developers, whose
role is exclusively to develop new software products for sale
either to automakers or to end users. While those from the first
role can access the source code of any software published, the
second role type will only have access rights to applications
developed by their company unless authorized by the other
concerned company.

(b) Content Consumers. This layer comprises all the vehi-
cles of the different automakers. As vehicles are the target
of the software deployment process, they will maintain a
partial copy of the blockchain, which is generated by the
central nodes per the dependency management mechanism
described in § V-D and the pruning mechanism in § V-E.
However, while new software applications must be always
retrieved from the blockchain’s central nodes for subscrip-
tion control, updates for already-installed software can be
retrieved directly from other vehicles to accelerate update
campaigns.

(c) Central nodes. This layer orchestrates the interactions
between all the previous roles. Additionally, it is responsi-
ble for maintaining a distributed and synchronized copy of
the main chain, SPS repository, software submission queue,
authorization management key repository, and the distributed
green list. These nodes also help to correct other corrupted
nodes, handle the distribution of different automakers’ green
lists, consider the dependencies between software blocks and
automakers’ preferences to generate the GSI and BSI, store
and propagate key-related requests, and control the update
submission process.

Henceforth, the ensemble of Internal Developers, Con-
tent Consumers, and Central nodes will be referred to as
automaker nodes. Thus, being the digital identity of all the
automaker nodes that can be matched to their real identity,
Fenrir bases their proof of authenticity on this, proposing an
identity and time-based key management mechanism. Fig. 7
illustrates the detailed key object structure description. The
key authorization manager service ensures these keys’ addi-
tion, verification, and replication; these steps are complete
on the central nodes and partial on those of the content
consumers. As these three processes are independent, we will
detail them separately in the following paragraphs.
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Key object definition

A key must be given to anyone wishing to participate in the Fenrir
network, whichever their role is. Keys are used for the proof of authority
that allows the software integrity to be verified.

Time-related fields

The administrative date upon which this key was
introduced in the system. Used to verify the
validity of the endorsers when adding the key.

Creation date

Start date Start effective date from which time the key
can be used.
Effective end date from which the key will no

longer be valid.

End date

Identity-related fields

The company ID to whom this
developer belongs. This attribute is null for any
non- automaker developer, since Fenrir aims to
maintain  the  free-to-submit  philosophy.
However, the company ID must be valid for any
non-external developer.

Company ID

This field can take a value from the four described
before; however, if the desired key does not have a
non-null correct Company ID, it cannot take any
role other than External Developer.

Real life data In this field, real life data are placed to allow

the real identity of the developer to be identified
and traced for legal purposes.

Application authentication fields

Public Key The key allowing to decryption of user signatures.

Key ID Reference number for administrative purposes.

Key authentication fields

Key Object Hash Hash of all the aforementioned parameters.

List containing the Key IDs of the request
validators and signature of the Key Object Hash
to ensure their veracity.

Endorser
signature list

FIGURE 7. Key object formal definition.

First, we highlight the cases in which a new key may need
to be added to the distributed key management service hosted
by the central nodes. For the automaker staff keys, there are
two distinct scenarios. Scenario (1) is when an automaker,
having already joined Fenrir, wants to add a new key or
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set of keys for its workers, and scenario (2) is when a new
Automaker wants to join Fenrir for the first time. For the
common use case, i.e., scenario (1), a key object must be gen-
erated. This request must then be endorsed by a set of workers
who have a registered key within the same company—five
such endorsers are required by default. However, whenever
a new automaker wishes to join the network, most of the
network must agree to this request. Therefore, the first key
generated for a new automaker must be endorsed by at least
half of the existing automakers in the network. Subsequently,
adding the first keys of this automaker (until it reaches
the five keys threshold) will exceptionally only require the
endorsement of its first key. However, this mechanism relies
on collaboration between automakers, thus, some automakers
may potentially deliberately not approve or slow down new
joiners to maintain exclusivity or prevent competitors from
gaining an advantage. To mitigate this problem, contractual
measures may need to be established from the outset of
the system. On the other hand, keys for external developers
will not be added to the key management service until an
automaker endorses their application. Note that Fenrir does
not require specific vehicle keys and will instead use those
assigned during the vehicle’s construction.

Whenever a new key is added to a central node or a
vehicle’s local storage, complete verification of the key object
structure is required. To do so, the authorization manager
will check the key’s chain-of-trust recursively until arriving
at an already-verified set of keys. To verify each key, it will
then match the creation dates, authorizations, and company
IDs and check the integrity of the signature match. Notably,
the key verification is not necessary for external develop-
ers, but the verification of the endorsements lists, since
their keys will only be stored once an automaker endorses
their application. The full endorsement process is detailed
in § V-C.

Finally, as Fenrir is conceived as a distributed system,
once a key is added to any central node, and before the
addition is made fully effective, the request will spread the
key to the other central nodes on a two-phase Paxos-like
consensus basis, comprising first a promise phase, in which
the key object is verified by all the nodes, and a commit
phase, in which the nodes agree to add the given key to their
internal key storage repository. It is only at this point that the
key addition is effective. Note that the spreading process is
the same for SAPckg addition, key addition, and green list
endorsement additions.

C. SOFTWARE PACKAGE AUTHENTICATION

In this subsection, we complete the SAPckg definition and
expand on its authenticity and integrity verification, which
are key aspects of using blockchain-based solutions to build
a software distribution framework (§ IV).

1) SAPckg FORMAT AND VERIFICATION MECHANISMS
As noted above, Fenrir’'s SAPckg is formed from an SPS
and its associated STB, mostly like a smart contract, which
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SAPckg Structure

A SAPckg (or Temp SAPckg) is composed by a Software Package
Structure (SPS) containing the code and the install and testing
instructions and a Software Transaction Block (STB) that ensures its
traceability, authenticity and integrity verification over the blockchain.
Software Package Structure definition:

Main SPS files:

Code folder A folder containing all the needed execution
binaries.

A folder containing all the needed installation
instructions and scripts.

A folder containing all the needed post-install

test scripts.

Install folder

Test folder

SPS metadata:
Application ID Unique application identifier formed by the
concatenation of the Creator ID (which is
unique) and the Application name. This limits
each creator to make their application name's
unique. If the Application ID is not unique the
submission will be rejected directly.

Version

Publish date
Requirements

Versioning number (Major. Minor. Hotfix).

The date in which the submission was done.

List of the inter-service incompatibilities and
needs.

Verification and linking data:

SAPckg ID The SAPckg ID is the link between SPS and
STB. It is formed by the concatenation of the
aforementioned 4 fields and the hashes of the
code, install and test folder, which are then

hashed all together and signed with the creator
private key.

Software Transaction Block definition:
Inherited to SPS:
Application ID, Version, Publish date, Requirements, SAPckg ID

(to fasten the chain queries)

Authenticity and smart contract verification fields:
STB ID Place of the block in the blockchain.

STB hash Hash of all the STB parameters concatenated
except for the signatures.
STB Previous Link to the previous block to ensure the chain

hash consistency.

List of endorsers and referencce to their
endorsment blocks that act as a link to the DGL
and the key management mechanism.

Endorser
automaker &
car version

Other fields:

Pruning status Status of the block with regards to the pruning

mechanism.

Tracking if the software is a part of either the
GSI and BSI.

Usage status

FIGURE 8. SAPckg formal definition.

is stored in the MSC. Fig. 8 provides a detailed defini-
tion of these structures. Note that the temporary SAPckg
data structure stored in the PSR waiting to be approved by
an Automaker is highly structurally similar to the classic
SAPCkg, changing only the STB ID to a temporary one and
removing the Authenticity and smart contract verification
fields. Thus, to verify the SAPckg authenticity and integrity,
Fenrir proposes a simple three-step verification process:
(1) STB validation, performed by comparing the hashes and
the validity of the signatures and green-list endorsements
(§ V-C2) from the precedent, actual and posterior STBs,
(2) ensuring that the SAPCkg ID link matches both the
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STB and SPS and (3) verifying the SAPCkg ID signature
consistency. However, to prevent truncated chain attacks, the
SAPckg will not be considered final and, thus, will not be
used unless its STB is at least six blocks deep, as in other
classic Blockchains, with at least three different additional
publishers between these last six blocks (i.e., the one from
the block being verified and at least three other publishers).

Fenrir also adds different verification levels (critical,
medium, or, none) to improve performance by reducing the
verification’s security level as required. Thus, critical verifi-
cation would check the whole ensemble of hashes, medium
verification all the hashes but the file hashes, and “none”
would verify only the links between the SPS and STB. Thus,
the first time a block is added, the verification level will be
critical, however, once inside the secure vault, the verification
level is reduced to medium to improve performance unless
the system suspects malicious behavior, in which case it will
switch back to critical verification.

2) THE DISTRIBUTED GREEN LIST LEDGER (DGL)

As a means to preserve automakers’ authorization control
over what can and cannot be installed in the vehicles individ-
ually, Fenrir benefits from the aforementioned identity-based
and role-based authority proofs to build an auxiliary soft-
ware authorization chain, the DGL. The DGL comprises an
authorization transaction graph in which the details of the
endorsements (whose structure is defined in Fig. 9) for a
given software package are stored. To keep the MSC clean,
Fenrir also uses the DGL and endorsements to regulate the

DGL Endorsement Structure

A DLG endorsement structure has all the needed data to classify it and
identify the automaker, vehicle model and application to whom it
applies.

SAPckg linking fields:
Application ID, Version, SAPckg ID, STB ID, STB hash

Verification fields:

Endorsement The date in which the DGL Endorsment was

date done. Needed to verify the signature, this
parameter is inchangeable and fulfilled by the
central node when receiving an endorsement
request.

Company ID to which the endorser belongs. This
ID has to be the same to the one in the
aforedetailed key object.

Company ID

Vehicle model for whom the endorsement is
valid.

Endorser ID to be linked to its public key, which
allows to verify the certificate.

Hash of all the aforementioned fields.

Model ID

Endroser ID

Endorsement

hash

Endorsement

Fignature of the hash with the endorser private
certificate key.

FIGURE 9. Endorsements formal definition.
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addition of SAPckgs to the definitive chain, from which they
will never be erased, requiring a temporary SAPckg endorsed
by at least one automaker to be added to the MSC. Endorse-
ments from other companies can also occur after adding the
block to the chain. However, even though these two options
appear to be the same process, their behavioral mechanisms
differ.

While endorsing a SAPckg already in the network only
requires generating some endorsements (five by default),
endorsing and adding an STB off the chain to the MSC
is slightly more complex. An automaker seeking to add a
temporary application proposition to the MSC must endorse
it (in addition to five further endorsements by default); they
must then prepare the final SAPckg including the missing
information and, once this is done, ask the development com-
pany to re-sign the final block. Even though this mechanism
might appear tedious, by including it, Fenrir can considerably
reduce the MSC size and decorrelate the installability of a
given service from its STB, which can then change with hot-
fixes, contract evolutions, or legislative changes, revoking
the previous endorsement if the automaker no longer wishes
to install this application. Note that if all endorsers stop
supporting a certain SAPckg, it will not be removed from
the final chain. A global overview of the entire pipeline is
presented in § V-F.

MSC DLG
£
(T -
59
|
Block 2 § A
g &
Model x 2
| =
Block 1 : ';
Appldl, 1 1 L appldl-version 2
Version 0.1
Endorser T ' E; 5
automaker & ¥— I | g _g;
: - | P -
car version . (complete) (pending) @ $
L J
Y
AM-A worker
endorsements

FIGURE 10. DGL interactions with the MSC.

Finally, as shown in Fig. 10, given the previously described
secure key-authorization and block verification mechanisms,
the integrity of the endorsement can be readily traced without
needing to link the endorsements. Thus, when verifying and
retrieving the software certificates, our approach is based on
the indexing patterns of the databases, with the DGL orga-
nized as a four-leveled graph instead of a classical list [37].
Furthermore, we simplified the indexing model by picking
a classic automotive semantic classification—automaker, car
model, and software block ID (cf. Fig. 10).
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D. DISTRIBUTED INTER-SERVICE DEPENDENCY
MANAGEMENT

To prevent software incompatibilities and given the high
computational, storage, and energy costs of transmitting an
update, Fenrir implements an inter-dependency calculation
mechanism. This mechanism is distributed through the Cen-
tral Nodes (or the updater vehicle in the case of V2V updates),
referred to hereafter as updater nodes. These nodes pre-
calculate the software dependencies before sending the global
software image to the vehicles to be updated, which are
hereafter referred to as receiver nodes.

To prevent software incompatibilities and considering the
high computational, storage, and energy costs of transmitting
an update, Fenrir implements an inter-dependency calculation
mechanism distributed through the Central Nodes (or the
updater vehicle in the case of V2V updates), referred to
hereafter as updater nodes, which pre-calculate the software
dependencies before sending the global software image to the
vehicles to be updated, hereafter referred to as receiver nodes.

This process takes place once the SAPckg is already in the
MSC and represents one of the last phases of the software
deployment process. Whenever a vehicle wishes to check for
new software availability, it will send its vehicle manifest, i.e.,
a file containing the vehicle’s identity and a list of currently
installed software, to check for updates and new desired soft-
ware. After receiving this manifest, the updater node will then
check inter-software dependencies and incompatibilities and
generate a global dependency graph to determine the order to
preserve when determining the different software versions.
Note that this first step is only performed whenever the
graph in the updater cache does not contain all the requested
software.

Gaze

Raw
Picture 2

Mirror
adjustment

<1,0>
e Mirror
joystick

FIGURE 11. Dependency calculation example based on the previously
presented use case figure.

® Dependency version selection order

As shown in Fig. 11, the global dependency graph algo-
rithm will consider all the inter-software dependencies on
the graph and generate a tuple < X,Y > for each of the
applications, in which X is the number of software packages
for which this software is a dependency and Y is the number
of dependencies of this software (e.g., < 2,1 > for Gaze
Direction or < 0,2 > for Mirror Adjustment in Fig. 11).
The algorithm will then calculate the global software image
to send to the vehicle with this list of tuples. This algorithm
is iterative and is performed as follows:

1) The algorithm selects the node (between those not

already selected before) with the lower X and
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higher Y and selects the most possibly updated version,
given that one version cannot be selected if it creates
dependency problems with other software in the graph
or if it contains a dependency to other software not
included in the graph.

2) The algorithm will select the most up-to-date version,
in case it is compatible with more than one, for all the
different dependencies, starting for thus with higher Y,
then X and, ultimately, alphabetic order. This process
will continue iteratively for the dependencies of the
dependencies until a point is reached at which there are
no further dependencies.

However, consider a scenario in which the process does not
allow for the creation of a fully compatible set that contains
all the software in the list. In that case, the algorithm will
then mark the software that has a compatibility issue and
treat it at the end. It will then continue the process with
the most updated version of the next package with lower X
and higher Y. If the algorithm reaches a point where all the
software packages have been tested unsuccessfully, it will
restart the process and select the second most up-to-date
version instead. This process will then be repeated until either
a stable version is found or all the software blocks are marked,
in which case the request will be impossible to resolve and no
global image will be sent to the vehicle. Instead, a message
will be provided in this case detailing the services creating
the incompatibilities. This process accompanies the software
compatibility definition described in § V-A.

E. LIGHT AND RESILIENT SOFTWARE PACKAGE STORAGE
Considering that vehicles have intermittent network access
and long inactivity periods and given that, most of the time,
vehicles are parked in underground facilities without network
access, being able to correctly boot from a previous soft-
ware version without needing to interact with the Cloud or
other Vehicles is mandatory. Thus, vehicles need to possess
a software image backup to boot without requesting extra
information in case of corruption. To generate this backup,
Fenrir first cleans up the chain and keeps the strictly necessary
information to verify and install the GSI and BSI; this process
is classically known as pruning.

Fenrir’s pruning mechanism begins by classifying all the
software in the chain into three categories: not pruned, soft-
pruned, and hard-pruned. As shown in Fig 12, not pruned
blocks are the software applications that the vehicle will use
for the GSI and BSI, soft-pruned are those used to verify
the usable blocks, and hard-pruned are those used to main-
tain the chain consistency. Then, to tag the chain blocks,
Fenrir starts defining those directly used, which will not be
pruned. Afterward, it will tag any block next to a not pruned
block as soft-pruned and the remainder as hard- pruned.
§ VI shows the advantages of pruning blocks to reduce
the chain storage needs, which is essential for the vehicles’
operation. After pruning, Fenrir proceeds by compressing
and saving the backup over the previous backup. However,
this process has a considerable impact and thus cannot be
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SAPckg 2

SAPckg 4

Soft-pruned: Full STB but
no SPS, to verify the next
SAPckg
used
Hard-pruned: No SPS and
reduced STB. Only used to
ensure chain consistency.

FIGURE 12. Pruning example.

performed each time a software package is added. A detailed
study of the overhead and optimal frequency of this process
is presented in § VL.

F. SOFTWARE AUTHENTICITY & TRACEABILITY
DISCUSSION

At this point, we have presented all the different mech-
anisms that allow authenticity to be preserved throughout
the software distribution pipeline, however, these must now
be connected. This process begins when an application’s
development is complete and a company wants to pub-
lish this application to Fenrir. The developer will start by
generating their application proposal, in which they cre-
ate a temporary SAPckg (as detailed in § V-C). As noted
above, this SAPckg is like the final SAPckg but without the
STB ID, hashes, or relation with the DGL. This package is
then submitted to the PSR. Once in the PSR, as presented
in § V-C2, the automaker can then endorse their submis-
sion request, generate the final SAPckg, and push it to the
MSC. Once in the MSC, other automakers can endorse the
SAPckg and authorize its installation into their vehicles.
Subsequently, whenever a vehicle requests new updates and
software packages, this block will form the vehicle’s GSI and
BSI (cf. § V-D). Once the software and set of keys allowing
the package to be verified are downloaded to the vehicle,
it will store them safely, update its backup, and prune redun-
dant information from its local chain (§ V-E).

Typically, blockchain-based solutions provide a high level
of anonymity for both users and their transactions, which
strengthens the traceability of malicious behaviors [38], [39],
[40]. However, in Fenrir, the migration from proof-of-work
to an identity-based proof-of-authority allows us to link a
software block to the identity of its producer and the identity
of its acceptors within each of the Automakers, as suggested
previously in the literature [41], [42]. In this way, we can
easily provide a method for tracing the accountability when-
ever a malicious behavior occurs. Furthermore, thanks to the
dependency-management mechanism, we can easily trace the
software subset installed, thereby helping debug teams to find
and correct threats.
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VI. EVALUATION

A. EXPERIMENTAL SETUP

To ensure that the simulations were as realistic as possible,
we implemented the central nodes in three automotive
cloud-like nodes in Amazon EC2 instances (t2.micro —
Ubuntu20.04) and the vehicles using two Raspberry Pi 3b
v1.2 units in order to be able to test both V2C and V2V
interactions. Note that we chose to use Raspberry Pi 3b
because of its proximity to the automotive solutions deployed
(such as NXP S32 G) with regards to its chipset ARM Cortex-
AS53. However, since the network between the nodes was not
representative of the vehicle characteristics, we elected to
remove the ping time between nodes from the results. Thus,
the results presented in this section purely evaluate the perfor-
mance of the mechanism itself rather than the communication
channel.

Furthermore, to improve the readability of the data,
as shown in Fig. 13a, we do not illustrate the whole data set
but only the best-fit second-degree polynomial trend lines.
Each data point was measured until its distribution followed
a normal law with a standard deviation lower than 5%,
allowing the mean for each to be considered a representative
summary.

B. ENERGY CONSUMPTION MODEL DESCRIPTION

As energy consumption is crucial in the automotive sector,
particularly for non-electric vehicles, we studied the energy
consumption of the Raspberry Pi 3b for the different mecha-
nisms in our proposed system. We started by measuring the
real consumption associated; however, given the proximity
of the first tests energy consumption measures to the con-
sumption model proposed by PowerPC [43], we chose to
simplify the test set-up by basing our work directly on this
model. In this model, the energy consumption is estimated
as:

Pya,if(W) = Pigie + Pcpu (1)

+ > Prwidie + Pyw.dijut.a(r) (1)
if

where u is the RPI %CPU, d is the data sent or received
(in MB/s), and if is the interface (Wi-Fi, Bluetooth, Ethernet,
etc.). In our case, all scenarios were tested with LTE-M
(which can be taken as 1.54 times the energy consumption of
Wi-Fi [44]), thus Pig. = 1.5778 W, Pcpy(u) = 0.181W - u,
PLtem,idle = 1.45068 W’ PLtem,download,d =1.54. (0057W +
4.813¢73 % d) and Premupioad.a = 1.54 % (0.064W +
4.813¢73 % d). Note that for the data volumes handled in
this work, we can neglect the variable part of the data trans-
mission and approximate Py em,download,d = 0, 08778 W and
Priemupload,da = 0,09856W. However, in this test session,
we assume that the connection between on- and off-board
components (or V2V) is direct and through LTE-M. Thus,
we do not consider all gateway to cloud energetic communi-
cation costs as these may change considerably depending on
the company’s implementation choices.
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FIGURE 13. Evaluation of the On-board key management mechanisms.

C. BENCHMARK SPECIFICATION JUSTIFICATION

The data set used in our experiments consist of a realistic
ensemble of keys (RSA-2048-based) and SAPckgs following
the inter-software dependenciesand characteristics described
in § III and detailed in appendix A (cf. § VIII). We test all
the different SAPckg profiles described (i.e., AOTA, FOTA,
SOTA, and MOTA), which limits the number of simultaneous
SAPCkgs to 200 the (limit imposed by the MOTA tests).
The size of these packages is around 1 kB for configuration
updates (AOTA), 1.133 MB for firmware or delta software
updates (FOTA or ASOTA), 10.531 MB for full software
package updates (SOTA), and 33.5 MB for media updates
(MOTA). However, to be able to explore the limits of the
solution and its behavior in unexpected situations (i.e., if all
the packages in the chain have the same size), we add -
when needed - unnecessary mock files to enlarge the package
size. Note that, even though nowadays some update packages
are commonly GB-scale, we assume that huge media update
packages such as GPS updates will be adapted to the system
constraints with more periodic, smaller OTA updates. Con-
sequently, we do not exceed 500 simultaneous keys as this
number is sufficient to verify 200 packages. These packages
and keys allow us to test the authenticity of the full software
deployment pipeline and evaluate the behavior and overheads
of each of the aforementioned mechanisms.

D. EVALUATION OF THE KEY MANAGEMENT MECHANISM
In this section, we investigate the performance of the key
management mechanisms to prove their adequacy for both
on-board vehicle systems and vehicular Cloud platforms, i.e.,
the off-board systems.

Fig. 13a and 14 show the result of the function execution
performance while adding and deleting keys, in addition to its
evolution with the number of keys already present in the vehi-
cle. The displayed performance values may appear slow given
current computational power (i.e., the time to add/delete a key
oscillates between 1.1 to 1.5 seconds on-board and between
0.75 to 0.875 seconds off-board). However, as noted above,
the key management mechanism is the layer that the security
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of our Proof-of-Authority mechanism relies upon. Modifica-
tion of the key set will only occur when a passenger chooses to
install a new application originating from an unknown devel-
oper, the impact is minimal given the security and traceability
advantages that it brings to our solution.

However, a comparison between block addition with and
without backup highlights that backups have a marked
impact. As shown in Fig. 13b and 13c, the backup update
increases the CPU load of the OTA master node to almost
75%, significantly impacting the node energy consumption.
However, the backup has less impact on the execution per-
formance, with an execution time increase consumption.
However, the backup has less impact on the execution per-
formance, with an execution time increase of 25% recorded
for 500 keys. As this layer is the center of the integrity and
authenticity control and, as noted in § V-F, this mecha-
nism will occur only when adding new updates and pieces
of software with previously unknown keys, which will not
occur frequently, the impact of this mechanism is negligible
compared to the run time of the full install mechanism, which
typically takes nowadays around 30 minutes in most of the
constructors. Thus, despite the performance overhead, the key
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FIGURE 15. Performance of the on-board block addition mechanisms. SMALL = 956 Bytes, MED = 1.133 MegaBytes, BIG = 10 MegaBytes, HUGE =
33.5 MegaBytes. (WBU = with backup update and NBU = No backup update).

backup update will always be performed after adding a set
of keys in a software deployment cycle. However, in terms
of backup generation in the off-board nodes, this mechanism
must be activated and performed each time a new key is
added as these resources are even more negligible at the
computational scale of cloud computing nodes.

E. EVALUATION OF THE SOFTWARE MANAGEMENT LAYER
1) ON-BOARD SOFTWARE VERIFICATION MECHANISM
EVALUATION

Before investigating the addition of blocks to the chain,
we first focus on the performance of the software verification
mechanism described in § V-C. Fig. 16 depicts the impact of
the update package size on the verification execution time.
As anticipated, increasing the package size also increases
the time to calculate the hashes and signatures needed to
verify the SAPckg. However, as shown in Fig. 16, the number
of blocks already inside the MSC does not influence the
verification mechanism performance.

5
—a— AOTA block
| | | —=— FOTA block
4T - |—— SOTA block
=~ | | |—e— MOTA block
E3) |
= | |
g
g2 1
%
5L |
1 |- —
O[] = = = ]
0 50 100 150 200

Number of packages already inside

FIGURE 16. Evaluation of the critical verification mechanism when
adding more blocks to the MSC.

We now consider the performance of the verification
mechanism in response to changing its verification level
(i.e., Critical, Medium, and none) as presented in § V-C,
Fig. 17 shows that the size of the SPS only impacts the
critical verification as this level is the only one in which
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the hash of the code files is calculated. It illustrates once
again that the impact of the blockchain mechanism itself is
negligible; all of the overhead is due to the hashing verifica-
tion itself, which is mandatory to preserve package integrity
irrespective of the underlying storage structure. In addition,
from Fig. 17, we can also confirm the system’s suitability for
real-time applications given the different verification levels
and package sizes. Thus, in a fully dynamic SOA embedded
architecture, AOTA, FOTA, SOTA, and MOTA verification
can be performed in real-time, with the services chosen at
will to match the user’s needs. However, for the addition
of new FOTA, SOTA, and MOTA packages to the MSC
for the first time, the vehicle will require a certain calcula-
tion time, adding a delay between the vehicle receiving the
package and when it will use it. This could potentially limit
future shared driving possibilities, as the services must be
pre-submitted to the MSC before using them. However, since
Fenrir is based on the concept of global software compat-
ible images that give the orchestrator a range of software
applications that it can use, any desired application will
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FIGURE 17. Evolution of the software verification mechanism with
different critical levels.
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already be in the GSI and, thus, already within the vehicle’s
local MSC.
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FIGURE 18. Performance of the off-board block addition mechanisms.

2) SOFTWARE ADDITION MECHANISM PERFORMANCE
EVALUATION

In terms of the performance of the software addition mecha-
nism, as shown in Fig. 15a and 18, the time to add a block of
any kind is within acceptable levels for any package type for
both off-board and on-board scenarios and does not increase
with the number of blocks already inside, as long as the block
backup is not updated after the addition. Thus, once again, the
backup will be generated once all the GSI software is stored
in the MSC rather than when the software is added to keep
the overhead low. However, in the central nodes, the backup
will be performed each time a new block is added to the MSC,
as the resources on the Cloud side are readily scalable, and the
MSC of the central nodes is the reference for all other nodes
in the infrastructure. Other techniques, such as creating the
backup from sub- backups, could be implemented to reduce
the impact of creating a full backup each time.

3) BLOCKCHAIN PRUNING MECHANISM EVALUATION
Blockchain pruning mechanism evaluation: In this
subsection, we study the impact of the pruning mechanism
on system performance depending on the number of nodes
to be preserved. Fig. 19 illustrates the impact of the number
of blocks to be saved on the backup generation. This study
also includes the pruning calculus, whose impact is negligi-
ble compared to the whole backup generation mechanism.
Fig. 19 shows that the impact on the backup generation is
significant (over 75% performance improvement on the 80%
pruned example). This mechanism will only become more
effective as the number of blocks in the chain increases. The
pruning mechanism also greatly impacts the package size,
reducing the SAPckg size to almost the size of the STBs
(a few kB) for the pruned blocks, representing an enormous
reduction for SOTA, MOTA, and even FOTA SAPckgs.

4) BLOCK RETRIEVAL MECHANISM EVALUATION

Finally, as the last block management-related mechanism,
we consider the time required to retrieve a block from the
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blockchain. Specifically, this is the time that another ECU,
usually the OTA orchestrator, will take to safely retrieve a
block from the MSC and for it to be ready to install. As shown
in Fig. 20, the time for this operation is low because the
verification level used whenever retrieving a block from the
local MSC is only medium instead of critical. In addition,
the communication impact is negligible as this action occurs
between two ECUs connected directly via Ethernet.

F. EVALUATION OF THE DEPENDENCY CALCULATION
MECHANISM

Fig. 21 presents the results of calculating a global software
image both on- and off-board. Vehicle or automaker software
limitations do not influence the generation time or the CPU
load (not presented in this paper but 0-5% for off-board
and 20-30% for on-board). However, while 1.7 seconds is
a relatively short time for executing a vehicle dependency
management algorithm, this time might be too high for V2V
updates on the road. Thus, to avoid overloading nearby
vehicles, this mechanism will only be performed when the
vehicle is stopped (traffic lights, traffic jams, parking lots,
etc.); in other cases, communication will occur directly to the
Cloud. However, even after updating from another vehicle,
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TABLE 2. Threat to validity analysis.

Threat Sub-property Analysis
The tests were repeated until a standard deviation of less than 2% was achieved. The test results followed a normal distribution
Statistical Validity N (u, 02), with p being the mean and o being the standard deviation, which allowed us to make use of the mean and trend lines as
good representatives of the functional behavior.
- . The test sessions were planned to test each isolated mechanism of Fenrir. This way, we could easily set aside the potential correlations
Statistical assumptions . .
between the test sessions/experiments.
Conclusion . The design and evaluation of Fenrir were iteratively discussed with experts from both our industrial partner and laboratory members,
Lack of expert evaluation X . . . . R . X
taking their concerns into consideration to re-adjust some aspects of the design and test sessions.
Reliability of the measures | The system was tested in multiple test sessions over several months, consistently achieving similar results.
Reliability of the test-sessions | The test set-up was the same for all the experiments (except for the times when we tested V2V instead of V2C).
. Once we analyzed the data from the first test sessions, we planned precise sessions to complete the missing data spots that could have
Lack of data pre-processing | . X
influenced our conclusions.
. The set-up was isolated from other machines and only turned on for the experiments. We did not observe any abnormal signs of
Deficiency of the set-up
network or hardware under-performance.
. The system was tested in multiple test sessions over several months, consistently achieving similar results. The results were
History . . "
normalized to decrease the influence of unrelated events.
The time-scale over which we conducted the experiments was too short to appreciate its influence on the hardware life-cycle.
Internal Maturation Furthermore, the test set-up was re-flashed for each test; this way the environment, was completely clean and isolated from past
and future experiments.
Testing The system was re-flashed before each experiment. In this way, there was no test correlation despite conducting it several times in a
row.
Treatment design The material chosen was selected to match the actual automotive—cloud environment, as stated in §VI-A.
. . The data set (cf. §VI-C) was chosen based in the literature and discussions with our industrial partner to cover future automotive
Subject / Sample selection . .
use-cases.
Incompleteness of data Further discussions with other automotive groups would be of interest to complete our data set with their specific use-cases.
Monooperation bias The study includes more than one independent variable and evaluates more than one mechanism.
Construct Monomethod bias The different mechanisms were evaluated according to multiple metrics (i.e., energy & network cons., CPU% , performance, etc.).
M . The measurement metrics were completely objective, measuring the CPU consumption and the end-to-end time directly from the
easurement metrics e . .
board. We also measured the energy footprint directly with a multimeter.
Representation of the The data set was chosen based on the literature and the discussion with our industrial partner to cover the future automotive OTA
population update use-cases.
External
The experiments were conducted over several months, between January and June, and at different times and locations, which
Context of the study o S
enhanced the generalizability of the findings.
G. EVALUATION OF THE SYSTEM OVERHEAD
2 N . .
5 & g 3 As described above, the Fenrir framework overhead can be
: q i — .. . . . . .

Al - Al — divided into two phases: a first phase involving adding the
> 15 8 incoming software blocks to the vehicle’s local chain and
2 = = = = a second phase whenever these blocks are used. However,
R = — — = | even though these two phases are entirely independent, their
) . . . .o .
= performance depends mainly on the integrity verification
Q N . . . . oy o
2 mechanism, which is described in detail in § VI-E1. From
&4] - . . . . . . .

0.5 this section, and considering the typical automotive industry

update cycle of around a dozen minutes per service update

0 L] L] L] L (value given on the discussion with industrial experts), the

T T T T overhead added by this verification mechanism can be esti-
Limitless 70% 0.55% 0.25%

mated as 0.579% both in terms of performance and energy

01 Off-board 10 On-board

FIGURE 21. Influence of the % of install limitations to calculate the
global software image.

a verification request is sent to the Cloud as soon as possible
to verify the hashes in the chain.
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consumed for the worst-case verification scenario (i.e. MOTA
package verification); thus, this overhead can be considered
negligible. Combining the definition of the block addition
mechanism presented in V-C, the results shown in § VI-E2,
and the key addition mechanism results in § VI-D, the over-
head of this mechanism can be estimated as 2.911% in a
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worst-case scenario in a MOTA SAPckg must be added to
a whole MOTA SAPckg chain and all the keys are needed to
verify this software. However, despite the increased overhead,
this value is still not significant in terms of the whole system
performance given the low frequency.

H. THREAT TO VALIDITY ANALYSIS

This section focuses on the threat-to-validity approach pre-
sented in [45] and [46] and, in particular, [47], which develop
on the verification of the validity of empirical software-based
experiments. In these papers, the authors propose four main
threats on which to focus when conducting a threat-to-validity
analysis: threat to conclusion validity, which leads to an
incorrect conclusion about a relationship in an observation;
threat to internal validity, which increases the difficulty of
finding causal links between variables and events; threat to
construct validity, which focuses on how well a test measures
the concept it is designed to evaluate; and, threats to external
validity, which refers to the generalization of the results.
However, from the sub-properties of each type we will not
focus on those that are not applicable to our experiment
(i.e., mortality, limitation of treatment, motivation, appropri-
ateness of data, interaction with different treatments, treat-
ment testing, hypothesis guessing, evaluation apprehension,
and representation of the setting) and others that we are
not in a position to objectively analyze (i.e., fishing for the
result, ignoring relevant factors, theory definition, experi-
menter bias, and experimenter expectations). However, the
goal of this experiment was to study how to strengthen the
data integrity of the current OTA software-deployment mech-
anisms without elevating the system overhead; neither we -
nor our partners - had a special interest in basing our solution
on the blockchain, which helped us to remain objective about
the advantages and flaws of our solution. Table 2 details the
precise analysis for each sub-property. Each sub-property is
extensively defined in [47].

VII. DISCUSSION

Despite the encouraging results, considerable progress is still
required in the automotive industry before being able to move
to Fenrir’s application store framework. Marked changes in
the development process need to occur, including addressing
the granularity of SAPckg packages [6], [48], which is cur-
rently at an application level and not at a service level, and the
frequency of updates, which remains relatively low compared
to IT systems. Additionally, significant effort must be put
into the entire standardization and software reuse process [49]
between different companies to reduce software development
and maintenance costs, thereby paving the way for new inno-
vative services. In addition, to improve the software instal-
lation process, hardware and software should be decoupled,
moving towards a higher-level business-oriented top-down
software conception. This way, the service behavior correct-
ness could be ensured since the development phase thanks
to tools such as sandboxing or shadow mode deployment,
thereby easing current on-board deployment constraints [50].
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In addition to the changes required in the automotive indus-
try, the development of Fenrir also requires some open issues
to be addressed that we did not discuss in this study. First,
the complete transformation of automotive software is chal-
lenging to achieve in the short term, so we must study how to
integrate legacy software into the proposed new deployment
pipelines during the transition stage. A promising approach
would be automatic parsing and wrapping mechanisms allow-
ing for adapting and standardizing legacy packages, such as
in [51]. Second, developer-declarative inter-software depen-
dency potentially poses a threat when increasing the number
of authorized services; thus, Fenrir will require some statisti-
cal model allowing potential failures that might be unnoticed
in the development phase to be traced and detected [33].
Finally, we still need to work on adapting Fenrir for shared
driving services and collaborative fleet management services,
whose dynamicity may represent a problem for the system
security, as well as for large multimedia files that could slow
down system performance considerably, effectively blocking
the blockchain agent.

VIil. CONCLUSION
Software is becoming increasingly important for the auto-
motive industry; thus, solving the ever-present software-
related problems remotely has become a critical aspect
and a great vulnerability threat for vehicles. In this paper,
we presented Fernir: an inter-automaker blockchain-based
application store framework where the instability control
is preserved by the automakers. Fenrir’s mechanisms allow
protection from critical security attacks in the most likely
scenario, in which the attackers can perform man-in-the-
middle attacks but have not compromised at least a certain
number of signing keys (which can vary depending on the
final implementation). To our knowledge, Fenrir is the first
proposed software deployment framework for automobiles
that addresses inter-service dependency management to opti-
mize resource and energy consumption through the deploy-
ment pipeline. Fenrir is also the only solution of its type to
address the challenge of the heterogeneity of the automotive
industry’s software development cycle by conceiving a hybrid
public/private approach in which multiple roles with multi-
ple permissions can handle the interactions between actors
and automakers without exposing the chain to malicious
publishers. Furthermore, Fenrir offers multiple verification
levels to address safety legislation while also keeping energy
consumption as low as possible. Finally, we also present an
evaluation of both the performance, computational demand,
and energy consumption of each of the mechanisms form-
ing Fenrir and demonstrate that the overhead added by our
solution for an entire software deployment pipeline (§ VI-G)
consisting of both deploying and using previously deployed
software depends mainly on the verification mechanism and
is not significant, i.e., 3.725% for a worst-case scenario and
0.2819% for a typical scenario.

In subsequent stages of the project, further work is required
on the user experience to identify the use cases and business
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TABLE 3. Use case scenario: software profile description.

3 = Communication Hardware . - q
Service profile pattern coupling Depends on Update frequency Reusability Supplier
Lo Low complexity service for . Medium
Interior light actuator Streaming Yes AOTA - FOTA None Yearly Automaker
passenger comfort (mono-company)
. Real-time, critical, low com- . Reduced .
Raw picture 1 & 2 plexity service for ADAS Streaming Yes AOTA - FOTA None Half Yearly (mono-hardware) Tier 3
Mirror joystick LO_“_’ complcxl}y service for DlSCl.'C[C / passenger Yes AOTA - FOTA None Yearly Medium Automaker
passenger comfort interaction (mono-company)
Brightness provider Low complexity service for Event-based No AOTA - (A)SOTA Raw Picture 1 Yearly High (multi-company) Automaker
passenger comfort
. Real-time, critical, high com- . . . . .
Image preprocessing plexity service for ADAS Streaming No AOTA - (A)SOTA Raw Picture 1 & 2 Half Yearly High (multi-company) Tier 2
. . Low complexity service for - Medium
Operating hours . Periodic ~ AOTA - (A)SOTA None Yearly Automaker
specific use case (mono-company)
Inerior light handler Low complexity service for Periodic / Yes AOTA - FOTA lnter_lor light actuator & Yearly Medium Automaker
passenger confort Event-based Brightness provider (mono-company)
Detect driver lI;Islegl;az:mplexlty for specific Streaming No AOTA - (A)SOTA Image pre-processing Quarterly High (multi-company) Tier 1
Real-time, critical, medium - ; et ; . A .
Detect face complexity service for ADAS Streaming No AOTA - (A)SOTA Image pre-processing Quarterly High (multi-company) Tier 2
Real-time, critical, medium . . . .
Detect eye complexity service for ADAS Streaming No AOTA - (A)SOTA Detect face Quarterly High (multi-company) Tier 2
Driver ID Med.“fm / High complexity for Periodic No AOTA - (A)SOTA Detect driver Quarterly High (multi-company) Automaker
specific use case
. Real-time, critical, medium - ; . . ; .
Eye open / close complexity service for ADAS Streaming No AOTA - (A)SOTA Detect Eye Quarterly High (multi-company) Tier 2
L Real-time, critical, medium . . . .
Gaze direction complexity service for ADAS Streaming No AOTA - (A)SOTA Detect Eye Quarterly High (multi-company) Tier 2
Insurance tracking Low/Mcdlum ‘complcxny ser Event-based No AOTA - (A)SOTA Opcral.lr{g hours & Monthly High (multi-company) Tier 1
vice for specific use case Driving ID
Vehicle leasing Low/Medium complexity ser- Event-based No AOTA - (A)SOTA Driving ID Monthly High (multi-company) Tier 1
vice for specific use case
- Medium complexity service . AOTA - (A)SOTA - . . .
Personalisation for passenger comfort Sporadic MOTA Driver ID Monthly High (multi-company) Automaker
. Lo Real-time, critical, medium R i . . .
Driver monitoring complexity service for ADAS Event-based No AOTA - (A)SOTA Eye open / close Quarterly High (multi-company) Tier 1
Eye Gaze HMI Control ‘l;lslf}cla;:mplexlty for specific Event-based No AOTA - (A)SOTA - Gaze direction Quarterly High (multi-company) Tier 1
Mirror adjustment Lo‘v&‘/ complexity service for DlSC]:E:le / passenger Yes AOTA - (A)SOTA Gaze dlrlectm.n & Mirror Yearly Medium (Within Automaker
passenger comfort interaction joystick company)

models in which Fenrir could be used. In addition, it is also
necessary to clearly state when and how V2V or V2C should
be chosen to retrieve software blocks. From a more techni-
cal perspective, now that Fenrir presents a wholly safe and
secure end-to-end software delivery pipeline, further work is
required in the service deployment phases (i.e., the applica-
tion orchestration and efficient installing) as well as on the
software architecture to allow dynamic adaption to deploy-
ment requirements, control of all relevant services, and life-
cycle management. Finally, setting up dynamic data-centered
communication reconfiguration between highly dynamic ser-
vices in this set of applications remains an exciting topic for
future research.

APPENDIX

USE-CASE SCENARIO DETAILED SOFTWARE PROFILES

In this appendix, we describe the test-bench services devel-
oped in close collaboration with STELLANTIS’ partners and
based on [26]. Thus, Table 3 expose details with regards
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to, in one hand, their profile, hardware coupling and com-
munication pattern, and, in the other hand, the service size,
dependencies, update dynamicity, targeted reusability and
developer accountability.
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