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ABSTRACT The wood industry is a basic industry supplying primary materials to produce a wide range of
products. The wood processing in sawmills bridges the transformation flow of rawmaterials to final products
using machinery. Over the last decade, the global market for wood products has become highly competitive.
As a result, sawmills are continually striving to improve their efficiency throughout their production process.
Recent advances in automation systems and manufacturing technologies provide traditional sawmills with
an unprecedented opportunity to be transformed into automated manufacturing plants to increase their
efficiency. This opportunity motivates sawmill planners to adopt decision optimization technologies for
enhancing their production yields. This transformation will support sawmills to remain resilient in cur-
rent and future competitive markets. Although there is a vast amount of literature on decision-making in
wood manufacturing in sawmills, a comprehensive overview of related approaches and findings with a
special focus on optimization of decision processes is still lacking. The review firstly focuses on exploring
opportunities provided by optimizing decision-making processes in the wood manufacturing along with
associated roadblocks and challenges. Then, we exploremethodologies adopted in the literature when aiming
for the design and implementation of optimal decision-making systems. Finally, we provide references and
guidelines for researchers and manufacturers interested in the topic, as well as formulate research gaps and
recommendations for future research directions.

INDEX TERMS Autonomous production machines, automated wood processing, decision-making, decision
support systems, optimization.

I. INTRODUCTION
The forest industry plays a substantial role in the economic
and social development of many countries, both at national
and regional levels [1]. This industry provides a large set
of base products for supporting the downstream value chain
of different businesses such as pulp and paper, furniture,
and construction [2], [3]. Wood products such as lumbers
and plywood, and wood by-products and residues such as
wood chips and sawdust, are among major products of forest
industry accounting for a large portion of total exports of
countries around the world, such as Argentina [4], [5], [6],
Chile [7], [8], [9], Sweden [10], [11], [12], Canada [13],
[14], [15], the United States [16], [17], [18], [19], and

The associate editor coordinating the review of this manuscript and

approving it for publication was Justin Zhang .

New Zealand [20], [21]. Despite an active participation in the
value added to the industry of countries, poor or inaccurate
decision-making processes over different steps of forestry
planning, production and trade may lead to high production
and transportation costs, losses, and eco-inefficiency. Conse-
quently, this may critically affect the competitiveness of this
sector [22].

In general, decision-making processes in the forest indus-
try may include different aspects of wood-flow and deliv-
ery such as planting, harvesting, transportation, product
processing, and marketing [23]. Hence, various decision sup-
port systems have been developed for forest supply chain
management to improve decision processes [9]. Accord-
ing to spatial and temporal scales of decision activi-
ties, three decision-making levels can be generally defined
in the forest industry, namely strategic, tactical, and
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operational [1], [24]. Strategic decisions generally refer to
those decisions that should be made with long-term horizons
(e.g., several decades), such as forest landscapes, biodiversity
risks, preservation of species and the forest ecosystem, aim-
ing at generating sustainable forestry, yields, and returns [25].
Some related examples include planting, long-term harvest-
ing plans, facility locations and road design [26]. Instead, tac-
tical decisions should be made with medium-term horizons
(e.g., several months to few years) [25]. Decisions about har-
vesting equipment, bucking instructions, medium-term har-
vesting planning, and production logistics are some examples
of tactical decisions [27]. Rather, the operational decisions
consist in short-time horizons (e.g., real-time, daily, weekly,
or up to one month), and are often highly detailed [24].
The decisions about sawmill production planning, produc-
tion schedule, operation time, sawing strategy, manufactur-
ing machines and corresponding controller design fall into
this category [28]. Figure 1 illustrates the categories of deci-
sion tasks involved in the forest supply chain management.
Although these three decision-making categories are inter-
twined (often hierarchically), their focus typically differs,
in particular, in relation to beneficiaries [8], [24]. In fact,
strategic decisions (and often tactical decisions) are usu-
ally made at the higher level, i.e., they are planned depend-
ing on regional and national policies, and usually take into
account the interests of governments, forest owners, land
managers, and transportation companies [29]. While such
decisions are essential for maximizing sustained harvesting
volumes, the increasing costs of production (including log
prices, energy costs, etc.) along with the development of com-
petitive wood product markets requires a special attention
to the optimization of operational decisions at the sawmill
level [1], [28]. In fact, in some cases, the beneficiaries’ prefer-
ences can be incompatible. For instance, government regula-
tions for reducing greenhouse gas emissions could negatively
affect the benefits of private sawmills seeking their maximum
profit, as such regulations may limit the sawmills’ produc-
tion capacities [30]. In addition, a sole focus on improving
upstream decisions without considering downstream benefi-
ciaries may result in missed opportunities to use the great
potential of the production sector for contributing to the over-
all improvement of the forest supply chain management [5].

Responding to these needs, the concept of sawmill oper-
ation optimization targeting the optimization of operational
decisions to be taken at the sawmill level is promoted. In this
regard, optimization tools are widely used to support efficient
and robust decisions in the manufacturing systems. By math-
ematically modeling the decision processes according to
performance criteria and constraints, and by implementing
optimization algorithms, decision makers in sawmills can
improve their productivity while reducing costs and address-
ing uncertainty. In fact, the recent revolution in automation
systems, industrial robots, and information and communica-
tion technologies along with advances in optimization and
numerical analysis pave the way for supporting automated
decisions on the wood processing in sawmills [11].

FIGURE 1. Three main categories of decision-making in forest supply
chain management; (operational decisions: the focus of this survey).

In general, the manufacturing process includes log sorting,
sawing procedure, production schedule, as well as lumber
drying, grading, and storing [2]. Figure 2 shows the partic-
ipating sectors contributing to the wood-flow in the forest
industry, beginning at the harvest area in forests, while trans-
ferring to the sawmill through a forwarder company at the
first transportation phase. After completing production pro-
cesses, the final products should be distributed to the different
available markets such as domestic or international markets
through a transportation company. Focusing on the wood pro-
cessing part in the sawmill (see Fig. 2), the logs received
from the harvester are firstly scanned and sorted, and then
stored in sheds, containers or warehouses. The logs data (e.g.,
diameter, length and quality) on the available log resources
saved in an inventory database is provided to the decision-
maker.

The decision process in sawmills is generally based on
the expected market demand, mill capacity, and the avail-
ability of raw materials (e.g., logs) and stored products (e.g.,
stored lumbers) [31]. Indeed, according to the updated order
information received from the customer, and the log and
lumber inventory databases, the decision-maker can decide
about the selection of required log characteristics for sawing,
and controlling the sawing strategy over the sawing line [4].
The decision-maker should also decide about drying, trim-
ming, and packaging procedures for the final products (e.g.,
lumbers, plywood, etc.), while storing the extra products if
existed. Thanks to recent advancements in automation, con-
trol, and information technologies, most wood processing
steps in sawmills can be performed in an automated fashion.
Within our research context, we refer to automation as a
variety of technologies supporting the wood production pro-
cess automatically, such as computer-aided design and man-
ufacturing systems, industrial robots, flexible manufacturing
systems, computer numerical control machines, and decision
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FIGURE 2. The wood-flow in wood products manufacturing from forests to markets, and the wood
processing steps in sawmill level (wood processing in sawmills: the focus of this survey).

support tools [12]. In fact, in a modern sawmill, the concept
of automation allows the decision-maker to apply intelligent
strategies to the production processes for enhancing the final
production yields in terms of production quality, quantity
and cost [19]. As raw material costs generally represent the
biggest portion of the total production costs in sawmills,
maximizing the product yields from the sawing process is
the core topic of relevant literature [20], [32]. Hence, finding
an optimal sawing pattern which can maximize the produc-
tion yields, while is feasible and computationally efficient
is the main concern of sawmills’ decision-makers to obtain
the production objectives. In this regard, a general definition
provided in [20] states the problem of finding an optimal
sawing pattern as ‘‘to saw a log with certain parameters
(log profile and defect core) into timber assortments so as
to give a maximum return, given a table of timber assort-
ments, their dimensions, and the prices for the various grades
(or any other value for which the log has to be optimized,
e.g. volume)’’. In order to obtain maximum return or yield
while fully meeting the product dimension and quality crite-
ria, novel decision-making systems are expected to become
the backbone of a more intelligent and sustainable wood pro-
cessing system. Accordingly, significant research has been
devoted to the design and implementation of such advanced
decision-making approaches, with particular focus on finding
optimal sawing patterns which can be implemented through
smart machines and industrial robots. However, a review of
the extensive body of studies on decision-making approaches
for smart and automated wood processing is still lacking.
We therefore perform a thorough exploration of this timely
and relevant topic, with an emphasis on the potential oppor-
tunities and possible challenges, along with related method-
ologies for an efficient and holistic design of an automated
wood processing system. This can spotlight future paths for
researchers and practitioners.

A. PAPER OBJECTIVE AND CONTRIBUTION
A limited number of review papers are available in the lit-
erature discussing decision-making approaches for the forest
industrymanagement and their classification. Themajority of
existing reviews focuses on literature of high-level decision-
making processes in forestry, mainly concerning strategic
decisions. For instance, the study in [3] reviews the literature
of forestry decision-making problems with a detailed look at
the forest resource planning, including topics ranging from
harvest scheduling to forest biodiversity conservation, sus-
tainability, and related national/regional plans. Instead, the
work in [33] presents a survey on forest management with a
focus on potential impacts of risks and uncertainties implied
by climate changes to decision-making processes. On the
same line, a more recent review is presented in [23] on a set
of forest management case studies where high-level decision-
making techniques are applied in practice.

Some other aspects of decision-making in the forest sup-
ply chain management are further considered as topics of
several earlier review efforts. A well-studied relevant area
for instance is the optimization of transportation planning
and logistics management in the wood supply and forestry
industry. For example, the authors in [34] review exist-
ing transportation optimization methods for forest products
considering decisions related to product flow, storage, pre-
processing, as well as routing and scheduling of vehicles.
A review presented in [30] analyzes different transportation
methods for wood products to sawmills, focusing on a partic-
ular approach, namely discrete-event simulation.

Almost all the mentioned reviews point out that the
decision-making processes involved in different steps of the
forest products industry are constantly becoming more com-
plicated due to the inter-dependency of different stakehold-
ers and multiple conflicting criteria in the forest supply
chain. Accordingly, realizing efficient decisions should not
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only be pursued through optimizing high-level decisions, but
should also be obtained through applying novel strategies to
production process decisions at the sawmill level. Indeed,
over the recent years, forestry research has been increas-
ingly focused on effective resource use, optimal planning,
and high productivity during production processes. An inter-
esting literature review on the applications of digital twins
and simulation tools to the production planning and control
of sawmills is presented in [35]. Some of the opportuni-
ties and associated challenges are discussed, and a limited
number of methods are reviewed. Another promising review
of operational decision-support systems is provided in [36],
focusing on increasing volume recovery from the wood saw-
ing process in sawmills. Wherein, the authors present a
short review followed by a mathematical formulation of the
wood sawing process considering physical saw design fac-
tors (e.g., saw blade kerf) for improving lumber volume
recovery and minimizing sawing errors. In [22], the review
instead focuses on the challenges associated with simula-
tion and optimization techniques for decision-making at the
sawmill level (e.g., transportation and logistics domain), with
a particular focus on artificial intelligence based optimization
techniques.

As indicated before, the previous review papers mostly
focus on high-level decision-making processes in forest prod-
ucts industry. When it comes to low-level decisions such
as optimal operation of sawmills, research studies focus
either only on specific aspects (e.g., as in [34] and [36]),
or on specific approaches (e.g., as in [22] and [35]). Hence,
there is an evident lack of a comprehensive survey on
decision-making approaches designed for optimal opera-
tion of sawmills during material processing and product
production steps.

This paper aims to fill this gap by reviewing key char-
acteristics of existing decision-making approaches to obtain
more flexible and smart sawmills. Firstly, the review cat-
egorizes and analyzes related literature by recognizing the
prime opportunities and corresponding challenges ahead of
automating decision-making processes in sawmills. More
specifically, the first part of the review presented in Section II
explores the actions that have been taken or have the poten-
tial to be considered within this context. After that, the sec-
ond part of the review presented in Section III examines
widely-explored methodologies that are applied to wood pro-
duction systems to seize the opportunities while confronting
challenges. Table 1 summarizes the contributions of this sur-
vey compared to some existing relevant surveys. We note
that without losing overall coherence, one only interested
in reviewing the presented methodological aspects can skip
Section II and readily focus on Section III, and vice versa.

B. LITERATURE SELECTION CRITERIA AND REVIEW
METHODOLOGY
In order to develop a comprehensive overview of the
research topic, we employ a systematic search strategy based
on some critical steps for finding the most relevant and

TABLE 1. Foci of existing survey papers in the field versus foci of this
paper.

principal research publications. We begin by selecting a set
of keywords and keyphrases to search for relevant litera-
ture including some more general keyphrases to the smart
production such as ‘‘automation in manufacturing’’, ‘‘pro-
duction planning’’, and ‘‘autonomous production machines’’,
and some specific keyphrases to the wood processing such
as ‘‘automated wood processing’’ and ‘‘smart sawing sys-
tems’’, alongside the keywords ‘‘decision-making’’, ‘‘plan-
ning’’, ‘‘optimization’’ and ‘‘control’’. Accordingly, we select
a large sample of related publications from important sci-
entific databases, in particular Scopus-indexed journal and
conference papers, books and chapters from Science Direct,
Springer, IEEE Xplore, and Taylor & Francis databases.
Then, for the resulting papers, we define three sub-frames
associated with a time/citation filter as: ‘‘f.1’’ including the
papers published during the last five years from 2017 to 2022,
‘‘f.2’’ including the papers published from 2011 to the end
of 2016 and cited at least 5 times, and ‘‘f.3’’ representing
the papers published before 2011 and cited at least 10 times.
Accordingly, the review covers a wide range of related litera-
ture with threshold criteria referring to being up to date and/or
being highly cited. In total, we review 119 publications (with
the exception of review papers and fundamental sources),
of which 36.9% were placed within frame f.1, 23.7% within
frame f.2, and the remaining 39.4% within frame f.3. Figure 3
shows a statistical report of the literature surveyed in this
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review clustered by publication years and/or the number of
citations that they have received.

C. PAPER STRUCTURE
To date, many research works have been published examin-
ing the use of simulation and optimization tools to support
decision-making processes in the forest industry. Based on
the extracted and filtered publications in the search and selec-
tion step, we focus on two major perspectives: (A) opportu-
nities and challenges and (B) methodologies.
On the one hand, in terms of the opportunities regarded,

all the surveyed works are grouped into three main
categories: (Ao1) economic profits (including production
efficiency improvement, energy cost saving, and space
saving), (Ao2) technical achievements (including product
quality improvement and process quality improvement),
and (Ao3) environmental incentives and penalty avoidance
(including manufacturing waste management and environ-
mental footprint reduction). In addition, the possible related
challenges that are tackled in the literature are grouped
into four main categories: (Ac1) financial limitations,
(Ac2) technical feasibility, (Ac3) customer satisfaction, and
(Ac4) uncertainty.

On the other hand, we categorize all the selected research
works in terms of the methodologies applied to the decision-
making systems, namely: (B1) Model-based mathematical
programming, (B2) Search algorithms, and (B3) Artificial
intelligence approaches.

With respect to the two superordinate categories described
above, the remainder of this paper is structured to fol-
low a logical and coherent outline. The readers are
firstly introduced to the main opportunities of automated
decision-making in wood processing and the relevant chal-
lenges discussed in existing literature in Section II. The
readers are then presented with the methodological dis-
cussion of the decision-making approaches in Section III.
Section IV discusses two use cases to illustrate how to model
and implement different decision-making processes in real
sawmill production systems by relating them to opportuni-
ties and challenges (Section II) as well as decision-making
approaches (Section III). Section V concludes the review
with research gaps and recommendations on future research
directions.

II. OPPORTUNITIES AND CHALLENGES
There are several studies confirming that most sawmills
worldwide undergo inefficient operations with high amount
of raw material wastage [37]. For instance, according to the
study presented in [38], in 2002, there were only 7% of
sawmills operating efficiently in British Columbia, Canada.
Similarly, a study conducted in [39] states that only around
30% of sawmills in Norway were operating efficiently
from 1974 to 1991. More recently, a number of sawmills
have invested in innovative production technologies relying
on automated sawing systems to increase their productiv-
ity. However, they often focus on improving some limited

FIGURE 3. Statistical distribution of reviewed papers in terms of year of
publications (a) and number of citations (b).

aspects such as economic profits obtained by new sawmilling
machinery [4], [9], [10]. However, for a highly efficient oper-
ation of the whole production process, various factors need
to be considered in order to meet increasingly complicated
market demands using limited and variable raw material
resources [37]. In fact, the prime step towards the renovation
of traditional production

infrastructures into advanced automation systems through
digitalization of production processes and developing corre-
sponding automated decision support systems is to recognize
potential benefits that such renovation can bring to sawmills
and the entire forest supply chain [11]. Furthermore, for a
successful implementation of an automated decision-making
system forwood processing, various challenges such as finan-
cial limitations, technical requirements of machinery, market
demands, and the presence of uncertainty should be tack-
led [40]. Such challenges may increase the size and the
complexity of the decision-making problem significantly.
Besides, recognizing opportunities and challenges of process
automation and identifying which opportunities to pursue
are key steps for sawmills for a better estimation of their
return on investment for achieving a sustainable manufac-
turing [12]. By investigating the selected literature, in this
section, we aim at answering the following research ques-
tions:Q1) What potential opportunities can be identified as a
result of implementing automated decision-making systems in
the wood production process?, Q2)What are the challenges to
be addressed for seizing these opportunities?We investigate
Q1 in Section II-A while discussing Q2 in Section II-B.

A. IDENTIFYING OPPORTUNITIES OF AUTOMATED
DECISION-MAKING IN WOOD PROCESSING
In this study, we refer to opportunities as the ability to turn
investment costs incurred in the use of automated systems and
employing automated decision-making approaches into ben-
efits for wood processing companies [41]. We identify three
main views of opportunities in the selected papers includ-
ing: (Ao1) economic profits, (Ao2) technical achievements,
and (Ao3) environmental incentives and penalty avoidance.
Figure 4 shows the classification of the different types of
opportunities and possible actions to obtain them accord-
ing to the selected papers reviewed. It is worthwhile noting
that automating decisions in manufacturing environments by
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FIGURE 4. An overview on the state-of-the-art opportunities of automated decision-making in wood processing systems.

implementing automated machines and smart controls often
allows sawmills to seize multiple opportunities across differ-
ent categories with a single strategic investment, consider-
ing that a variety of the decision areas are interlinked [12].
In fact, an efficient decision-making strategy can result in
obtaining overlapping benefits from different categories (see
the Venn diagram presented in Fig. 5). For this reason,
sawmills are encouraged to identify their potential develop-
ment directions in order to maximize their profitability from
all economic, technical, and environmental standpoints [11].
For instance, when a sawmill invests on an optimal energy
management system, it enjoys benefits from both reduced
energy costs which belongs to the economic profits as well
as lower carbon emissions regarding the environmental bene-
fits. By increasing the awareness of sawmill planners regard-
ing such potential benefits, they are encouraged to open
up various opportunities through carrying out sufficient pri-
mary investigations before any investment in production ren-
ovations. As a result, they can be able to ensure a more
efficient decision-making system over the whole production
process. The aim of this section is to provide researchers
and stakeholders with insight into these opportunities through
an in-depth literature review. The classification of related
literature to each group of opportunities is presented in
Fig. 6.

1) ECONOMIC PROFITS
The process of turning logs into lumbers as the main prod-
uct of wood processing has traditionally a very low conver-
sion efficiency of about 35% [42]. This is while up to 80%
of total production costs are attributed to the cost of logs,
making it the most important cost factor of production plan-
ning in sawmills [18], [43]. On the other hand, as fuel and

FIGURE 5. Venn diagram showing the overlaps between main groups of
opportunities towards a profitable and sustainable wood manufacturing
industry.

electricity prices increase, sawmills face increased opera-
tional costs [16]. These rising expenses, accompanied by
other costs such as the need of more spaces for new produc-
tion lines, facilities, storage, and parking lots when sawmills’
business grows, cause sawmills to be financially challenged.
The analysis of novel decision-making approaches that can
contribute to a reduction of cost from different perspectives
is therefore at the forefront of relevant studies [12].

The selected studies exploring the economic profits of
optimal decision-making processes can be generally divided
into three groups: production efficiency improvement [16],
[18], [19], [20], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62],
[63], [64], [65], [66], [67], [68], [69], [70], energy cost sav-
ings [71], [72], [73], [74], [75], [76], [77], [78], [79], [80],
[81], and space savings [53], [56], [82], [83], [84], [85], [86],
[87].
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a: PRODUCTION EFFICIENCY IMPROVEMENT
First and foremost, over the past few decades, there has been
a constant effort to discover economic profits by improving
production efficiency of sawmills through maximizing their
output product yields (i.e., the amounts of final lumber vol-
umes or values) through the use of automated and comput-
erized systems [16]. The earliest studies in the 1960s started
with examining the effect of some sawing factors such as saw-
line placement and kerf width on lumber yield improvement
to increase economic profitability [44], [45]. These studies
mostly focused on developing alternative sawing strategies
relying on simple computer simulation models or mathemat-
ical programming for production output and profit improve-
ments. For instance, an interesting effort in [45] examines
several sawing methods on a unique log to investigate lumber
yield improvement for reducing production cost.

Later, along the same line, studies such as [46] considered
more sawing factors including the orientation of the first
opening face in each log to evaluate their effects on the final
volume or value yields and consequently, corresponding cost
savings achieved. Despite providing sawmill managers with
insights into the relationship between various sawing factors
and economic value added due to process improvement, most
of these approaches were difficult to implement and their
produced data were not easily understandable by machine
operators.

In response to the need for an efficient, feasible, fast,
and flexible method to model log sawing, researchers there-
after developed a number of general and more user-friendly
computerized models to simulate the log sawing process,
including the Best Opening Face (BOF) simulator which is
a computer simulation model for recovering lumbers with
different dimensions from small and straight logs [46], [47].
Although some of these simulationmodels are interesting and
relatively practical, they have significant limitations and a
large percentage of the logs is still wasted [16].

As a step towards developing more advanced models to
automate the decision-making process at sawing level while
focusing on economic profitability, studies such as [48]
and [50] considered more realistic models assuming that
logs may have non-ideal characteristics such as truncated
conical shapes and surface defects, i.e., knots, splits, decay,
holes, etc. Accordingly, they introduced computer simula-
tions with increased model accuracy to maximize yields and
consequently, to gain more economic profits. A group of
researchers, for instance the authors of [51] and [52], devel-
oped a graphic log sawing simulator as an analytical tool for
automated log sawing. In their experiments, logs are mod-
eled as cylinders or truncated cones. Using a programming
model, the intersection of the log and cutter representations
was calculated with the aim of maximizing logs’ recovery
yields.

Several research works consistently report that the produc-
tion yield strongly depends on the method chosen for the log
recovery [10]. On this basis, some studies such as [16], [20],
[53], [54], [55], and [56] classify the output product yields

of wood processing according to the increase of either logs’
volume recovery or value recovery (grade recovery).Whereas
the focus of the former is on increasing the mean cubic recov-
ery of lumber volume from a gross log volume processed, the
latter aims at maximizing the value of the lumber products
by incorporating quality [56]. It is imperative to consider log
shapes when the focus is on increasing the volume recovery,
and defects when the aim is to enhance value recovery of the
logs [53]. While a sole focus on volume-optimized solutions
can be mostly found in older research, recent studies tend to
consider the value of final products and producing lumbers
with higher quality grades to increase economic profits and
to avoid over-production of unnecessary products [57].

Recently, with the aim of maximizing profitability, also
combinations have been explored by researchers. For exam-
ple, the possibility of improving final profits by using a com-
bination of volume and value recovery methods [53], [55],
[58] were studied.

More specifically, the work in [53] presents a hybrid
volume-value recovery method by integrating different
phases of the sawing process, namely a primary sawing phase
during which logs are cut into flitches, and a secondary saw-
ing phase in which flitches are cut into final lumbers. Their
method maximizes the product volume in the primary saw-
ing phase and the product value in the secondary sawing
phase. The authors report that the hybrid sawing method can
establish a compromise between the volume recovery and the
value recovery, resulting in significant lower overall losses
and costs.

Instead, the authors in [57] and [58] present a hybrid
volume-value recovery method which is capable of consider-
ing customer demands dynamically to match customer orders
of lumbers with different volumes and grades with a given
supply of logs.

Whereas quality-based value-optimized solutions are more
explored recently than volume-optimized solutions, they
typically require a thorough knowledge of log’s internal
defects [57]. In practical implementations, this requires a
scanning system based on computerized tomography (CT) or
magnetic resonance imaging (MRI) technologies [18]. How-
ever, as many sawmills act as independent small andmedium-
sized enterprises, it can be extremely expensive for them to
afford the costs of these advanced scanners. Thus, economic
alternatives should be explored to allow smaller production
companies taking advantage of economic opportunities.

One of these solutions is to continue focusing on sawing
methods based on external scanning, while implementing
novel optimal control strategies. For instance, by incorporat-
ing online control strategies that consider the dynamics of the
system in an online manner, even without having knowledge
of the logs’ internal defects, methods are capable of observing
the condition of the log after each cut, and depending upon its
health, can decide about the next cut [19]. Another solution
is to separate the sawing phases, so that there is no internal
scanning performed in the primary sawing phase, but instead
defect detection is performed in the secondary sawing phase
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FIGURE 6. Assignment of related literature to each group of
opportunities.

by simpler scanning systems [53], [88]. Nevertheless, each
of these methods has its own limitations in terms of control
complexity, computation time, and the need for appropriate
sawing equipment. So far, existing studies do not provide
comprehensive and effective solutions to address these issues.
Filling these gaps requires further research.

b: ENERGY COST SAVINGS
Further economic opportunities can be opened up via more
efficient decision strategies that have potential to change the
sawmills’ energy usage. In fact, the wood processing industry
is an energy-intensive sector which has a promising potential
to achieve energy savings by implementing energy manage-
ment programs [71], [72]. In general, electricity is the most
commonly used energy source in sawmills (e.g., for sawing,
lighting, saw sharpening, maintenance activities), however,
there are also uses of natural gas, wood waste, and even fuel
oil and diesel (e.g., for the drying process) [73]. In the past,
since the energy cost accounted for only a small portion of
the total production cost of sawmills, the energy management
was not seen as a top priority in this sector. However, due
to the significant increase in the cost of energy in recent
years, energy management programs have attracted greater
attention [71].

In the context of energy management, there are basically
two strategies to seize the relevant economic opportunities
(i.e., energy cost minimization), namely energy effi-
ciency/conservation and energy scheduling. The energy effi-
ciency/conservation refers to those technological/behavioral
developments to ‘‘reduce’’ overall energy usage [89].

The primary goal of applying an energy efficiency/conser-
vation program to sawmills is to reduce the energy consump-
tion of the production process [71]. A number of studies
examine applications of energy efficiency/conservation pro-
grams to sawmills’ operation in terms of cost saving and
profitability enhancement [71], [73], [74], [75]. In this regard,
the set of actions can involve the use of energy-efficient

motors, compact design of multi-level sawings, the use of
efficient lighting systems, shutting off unnecessary loads such
as idling motors, the use of air-drying before kiln-drying
to save energy in the lumber drying process, and insulating
kiln surfaces [75]. Although developing these methods and
upgrading traditional facilities to more energy-efficient ones
can be an effective solution to increase the economic effi-
ciency of sawmills, the costs associated with such renovations
typically also require significant investments. Furthermore,
as sawmills expand their production lines while their business
grows, their energy consumption inevitably increases and,
as a result, they may need to pay higher tariffs due to their
higher energy consumption during ‘‘peak-demand periods’’.
Therefore, relying solely on energy efficiency/conservation
programs cannot fully prevent imposing excessive energy
costs. It is therefore necessary to develop complementary
solutions that can ensure the cost-effective use of existing
facilities in relation to the energy consumption.

To this end, researchers are recently looking at design-
ing and implementing smart energy scheduling programs for
sawmills’ production processes [76], [77], [78], [79]. The
energy scheduling refers to the ‘‘shift’’ of energy usage from
normal consumption periods to off-peak-demand periods in
response to variations in energy prices [89]. The major focus
of the relevant studies is on establishing the automatic oper-
ation of some high-consuming production phases (such as
the drying process in batch kilns) to be done during off-peak
hours (i.e., mainly during night or early morning) [76], [77],
and the use of renewable energy sources and energy storage
devices to support their internal energy required [78], [79].
The future perspective of energy scheduling implementation
in sawmills seems promising due to the growth of open elec-
tricity markets, the expansion of smart energy tariff rates, and
interesting incentives offered by utilities to industrial manu-
facturers for shifting their energy usage patterns and the use
of renewable energy sources. However, the design of the cor-
responding automated systems and efficient decision-making
and control mechanisms are very challenging, as the system
should be efficient and secure, and should preserve the pro-
duction level and lead time despite the change in the normal
operating hours of the sawmill.

Aside from the application of energy efficiency/conserva-
tion and energy scheduling programs, modern sawmills,
which produce large quantities of biomass based on unsawn
logs and wood residues, have the opportunity not only to use
their biomass for internal use, but also to sell their surplus on
the energy market [77], [80]. As a result of exploiting these
opportunities, sawmills not only can gain economic benefits,
but can also become an active player on the energy market.
More research on this aspect is needed to mature the topic.

c: SPACE SAVINGS
Finally, another class of opportunities that automated
decision-making strategies can provide to the sawmill opera-
tion planning is the possibility to optimize the floor space and
storage utilization [82]. Since floor space is usually a limited
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resource for companies, it is important to use the minimum
amount of space possible to accomplish a given production
task. Indeed, relocating or expanding a manufacturing facility
requires significant effort and cost. In a case where products
demand increases and consequently, the need for a higher
production capacity becomes essential, the problem of lack
of space can become a serious challenge for sawmills [83].
Although this topic has been less focused on in related studies
so far, rising land prices, limitations on the company’s phys-
ical expansion, and the high cost of relocating and structural
changes of the companymake it an important aspect for ongo-
ing studies.

Recently, some researchers are addressing this issue by
offering alternative solutions which permit enormous savings
in terms of costs such as a more compact design of machin-
ery [53], streamlining equipment and processes [84], smart
log selection and sorting [85], inventory control [86], [87],
and smart manufacturing for avoiding over-production [56].

2) TECHNICAL ACHIEVEMENTS
Sawmills are typically characterized by continuous produc-
tion processes that run at all times with very large quantities
of material continuously flowing through the process [11],
[22]. It is therefore essential for every company to technically
improve the operation of production processes – from log
scanning to sawing, trimming and drying phases – in order to
effectively use the company’s equipment and to increase its
productivity and efficiency, as well as its final product qual-
ity and diversity [11]. In this regard, automating decisions
in manufacturing environments by implementing automated
machines, manufacturing lines, and robot-supported systems
with smart controls can greatly assist sawmills to handle tech-
nical challenges in their production processes [90].We identi-
fied two main categories where smart systematic decisions in
using semi-automated or fully-automated production systems
can benefit sawmills, namely process quality improvement
and product quality improvement.

a: PROCESS QUALITY IMPROVEMENT
A large number of steps in the production process of tra-
ditional sawmills relies heavily on manual decisions made
by human operators [16]. Technical decisions in sawmills
mainly include the control of debarking machines, the mea-
surement and sorting of logs, the control of positioning of
logs in the sawing line, the selection of sawing patterns, the
control of parameters for drying batches, the final sorting of
sawn lumbers, the selection of final product sorting, and the
use of measured information in later production phases [83].
In the case of missing expertise, fatigue, or carelessness of
operators, these experience-based decisions can result in poor
performance or malfunctioning of the system and equip-
ment. The most common issues are machine failures, pro-
cess losses, low production speed, low lumber yields and
increased energy losses [16], [54].

Hence, rather than relying on human intervention, the
adoption of smart autonomous and computerized systems for
the process improvement of sawmills can lead to a more
efficient wood product industry, as it can offer sawmills con-
siderable technical advantages such as higher accuracy and
reliability of measurements, control, and cutting [11], higher
production and energy efficiency during sawing and drying
phases [74], [91], [92], faster production processes [4], [37],
and higher productivity and compliance [17], [57]. This pro-
cess improvement usually centers around some critical steps:
(a) an efficient selection and design of automated equipment
such as robot-assisted sawing systems, scanning devices,
automatic positioning systems for the log face, and conveyor
belts, (b) monitoring the state of the process steadily, (c) the
coordination between different stages of the process, and
(d) continuous process quality measurement by analyzing
input and output data [2], [11].

b: PRODUCT QUALITY IMPROVEMENT
Technical achievements can also be assessed from the per-
spective of customer needs and product quality. Having in
mind the competitive wood product market, significant atten-
tion has recently been directed to this aspect in order to
increase customer satisfactions [57], [58], [93]. Considering
that the wood processing is practically a destructive and,
therefore, irreversible process, the focus of many studies is
on the use of advanced scanning and detection systems for
obtaining more accurate external and internal log character-
istics for a quality-based sawing, [94], sawing machines with
flexible sawing pattern to achieve the highest-grade products
from logs [10], [16], [17], [53], and production of lumbers
with different dimensions and irregular shapes (not just the
cubic lumbers) to satisfy a wider range of customers from dif-
ferent dependent industries [19], [95], [96]. All these poten-
tial technical values can be attributed to the use of automated
decision-making processes supported by advanced manufac-
turing technologies.

3) ENVIRONMENTAL INCENTIVES AND PENALTY
AVOIDANCE
The forestry sector accounts for up to 17% of the world’s total
greenhouse gas emissions [97]. Throughout the supply chain
of wood industry, the wood production process may cause
different types of environmental impacts from harvesting to
disposal [98]. Deforestation caused by removing trees, green-
house gas emissions during the production process, wood
wastage, toxic chemicals used in manufacturing, and indus-
trial waste disposal pollution are a number of the known
environmental impacts sourced by the wood production
process [99].

Due to the fact that wood production is directly tied
to forest resources, and the wood processing involves
various stages of using industrial machinery and dry-
ing kilns that are energy-intensive and polluting, sawmills
are usually subject to special government regulations and
supervisions [99], [100].
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To date, regulations have been enacted by governments
to limit industrial producers’ environmental impacts [100].
More than 40 countries around the world implement manda-
tory legal controls and measures to prevent industries from
negatively affecting the environment. They carry out this
process either by incentivizing companies using environmen-
tal subsidies and tax deduction/exemption or by penalizing
companies that violate environmental laws using monetary
fines [101], [102]. As an example, the Mississippi’s Depart-
ment of Environment Quality imposed a $2.5 million fine on
a wood product manufacturer after breaking environmental
regulations, which is the largest known penalty against such
a facility in an industry.

On the other hand, sawmills can create significant environ-
mental opportunities by adopting measures and innovations
to increase their ‘‘eco-efficiency’’ [103]. In fact, advanced
technologies and process changes which reduce resource use
and environmental impacts through process improvements
allow sawmills to avoid being fined, to receive subsidies,
and to greatly contribute to the environmental sustainabil-
ity [102]. In general, the use of automated decision-making
systems and smart machines throughout the production pro-
cess of sawmills can provide themwith many promising envi-
ronmental opportunities, which can be generally grouped into
environmental footprint reduction and manufacturing waste
management.

a: ENVIRONMENTAL FOOTPRINT REDUCTION
The environmental footprint reduction encompasses all the
measures taken to limit a company’s emission impacts on
land, air, and water qualities. Environmental hazard reduc-
tion, eco-friendly chemicals usage, eco-friendly production
process (the use of efficient and energy/performance opti-
mized processing strategies) should all be parts of these mea-
sures [101]. In this regards, energy-efficient processing and
kiln drying systems (leading to a lower degree of unwanted
carbon dioxide emission), the use of less toxic and more envi-
ronmentally friendly lumber preservatives, the development
of renewable energy resources for sawmills’ internal energy
uses, and the implementation of energy management pro-
grams (e.g., energy scheduling) can significantly reduce the
total amount of sawmills’ produced greenhouse gases [103].

b: MANUFACTURING WASTE MANAGEMENT
Efficient decision processes targeting manufacturing waste
minimization including raw materials and industrial waste
disposals can be another critical action towards a cleaner pro-
duction [104]. On the one hand, the use of improved and new
processing and control machinery instead of outdated equip-
ment can minimize raw material wastes by improving saw-
ing efficiency [101]. On the other hand, reusing, recycling,
or refurbishing manufacturing wastes rather than disposing
them can reduce the burden of transportation to landfills,
the amount of toxic waste created from disposal of syn-
thetic materials, and the requirement for new waste disposal
sites [102]. As a result, these actions can make a significant

contribution to the reduction of greenhouse emissions pro-
duced by sawmills and to the elimination of environmental
pollution [98].

Nevertheless, in most cases, obtaining potential environ-
mental benefits is not viewed as an independent objec-
tive from economic and technical profits, as actions taken
within those categories can significantly affect environmen-
tal achievements [105]. Hence, environmental objectives are
rarely studied independently when relating to the design of
automated decision-making at the sawmill level. Rather, they
are often viewed as an element of sawmill operation opti-
mization, alongside economic and technical objectives [84].
Still, relevant research studies report that even in that case,
this dependant consideration of environmental objectives has
a significant impact on improving environmentally-friendly
sawmill production [98], [99], [105].

However, in the future, governments may need to provide
more attractive incentive policies to persuade sawmills to
devote special space to environmental opportunities and to
improve their environmental sustainability. Besides, as some
of the main barriers for a rapid development of eco-friendly
production activities in sawmills are a lack of knowledge on
the existing environmental incentives and insufficient infras-
tructure and budget for running industrial waste and energy
management programs. Presenting a range of informative
and attractive financing mechanisms by governments (such
as grants, loans and government-sponsored initiatives) can
support the realization of environmental policies.

B. CHALLENGES OF AUTOMATED DECISION-MAKING
In this study, we refer to challenges as difficulties, limitations,
constraints, and feasibility issues related to the development
of smart systems and the use of automated decision-making
approaches for the wood production process in sawmills [41].

Despite of the potential of automation to simplify and opti-
mize decision-making processes in wood production systems
and, therefore, to open up new opportunities for improving
companies’ profitability and competitiveness, many compa-
nies are still reluctant to start such automation deployment
due to their concerns about the associated challenges [15].
Based on our study of selected papers, we generally rec-
ognize four major categories of challenges for the smart
automation of sawmills’ production processes, namely (Ac1)
financial limitations, (Ac2) technical feasibility, (Ac3) cus-
tomer satisfaction, and (Ac4) uncertainty, see Fig. 7. Litera-
ture assignment to each group of challenges is presented in
Fig. 8.

1) FINANCIAL LIMITATIONS
The decision to invest in automated manufacturing, and the
operation and maintenance of its corresponding smart tech-
nologies can be very costly for a sawmill as they require a
large capital investment [106]. The cost of outlining, build-
ing, and installing a fully automated wood processing system
may range from thousands to millions of Euros depending
on the automation level and type [12]. Hence, automated
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FIGURE 7. An overview on the state-of-the-art challenges of automated decision-making in wood processing systems.

solutions for the production process of a sawmill may
primarily be hindered by companies’ financial limita-
tions [86]. In fact, a sawmill should take into account both
initial investment costs for upgrading their machinery and
equipment, and running costs that incorporate operation and
maintenance expenses.

a: INVESTMENT COSTS
A substantial amount of initial investment costs is typically
attributed to the purchase of new equipment, machinery, and
facilities, such as modern industrial robots (e.g. automated
cutting, sawing, and trimming machines), advanced scanning
systems (e.g., CT and MRI scanners), smart sensors, new
information and communication systems, and computer pro-
cessing and image analysis systems [20], [106]. Nevertheless,
raising enough funds to purchase such equipment can be a
significant challenge, especially for small and medium-sized
businesses which are critical suppliers for meeting local
demands [16].

Equipping a sawmill with advanced scanners allows for a
non-destructive method of wood quality analysis and grad-
ing based on detailed information on log’s quality and
internal features prior to processing. This technology has
been regarded a hot topic, culminating in a revolutionary
innovation for increasing wood processing efficiency and
quality [18], [107], [108].

For many sawmills, however, acquiring such internal scan-
ners are unaffordable due to their high costs. Still, the
development of these new technologies can hugely affect the
competitive wood market environment in favor of a limited
number of powerful companies which can afford to invest in
such expensive technologies.

Few studies have examined how traditional companies
can survive in competitive market environments and address
financial challenges under the implications of changing tech-
nological conditions [2], [16]. Scholars report that it is
very essential for sawmills to base dynamic and optimal
investment decisions on a reasonable investment calculation.
The calculations of this sort are often unique to corporate
finance and are dependent on a number of company and even
country-specific factors [2]. To assess the financial challenges
and the effects of technological upgrades on a production pro-
cess, the economic output in terms of the investment amount,
the net present value, and the payback period should be esti-
mated using efficient simulation models in a pre-investigation
phase [2], [10], [11], [43], [94]. For a company with a limited
budget, this step can reveal the fastest way to recover the
investment and the most cost-effective upgrade. An interest-
ing example of such an assessment is provided in [2], where
a simulation model is developed for various scenarios to
evaluate the profitability and the rate of investment recovery
regarding the use of a CT scanner in the production process
of a sawmill.

On the whole, the topic of developing more creative meth-
ods that can increase production efficiency with a company’s
limited capital and resources is not well established, and
thus, should be prioritised in future studies. For example,
an innovative alternative to the expensive CT/MRI scanning-
based models can be the development of dynamic, online
methods that optimize production tasks by updating the
log data after each cut only by the use of cheaper optic
scanners [17], [85], [88]. Another promising solution is
to focus on building semi-automated processes based on
human-robot interaction, which may require some human
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interventions at certain points. From a financial perspective,
semi-automated systems can be a better fit for medium and
small sawmills to meet their production goals with low-risk
investments [90], [96].

b: RUNNING COSTS
Another group of financial challenges is attributed to the costs
of operating and maintaining automation equipment [85].
Automated tools usually require more maintenance ser-
vices than those for traditional ones. Many studies focus
on developing new decision-making approaches by automat-
ing production lines without taking into account the associ-
ated running costs. In practice, estimating running costs is
a more challenging task than the one for investment costs,
since it involves many technical considerations and knowl-
edge that may not be within the scope of a sawmill techni-
cian’s expertise [106]. In most cases, third-party company’s
technicians handle repairs and inspections of installed auto-
mated systems. An occurrence of any problem, even small,
can sometimes cause a disruption in the operation of the entire
production system of a sawmill, causing delays in the orders
delivery process and resulting economic losses [56].

In addition, some findings in the relevant literature further
demonstrate that since most automated machines and equip-
ment are powered by electricity, changes in energy rates can
directly impact the final price of the products [84]. Keeping
track of these costs requires updating the revenue projections
and calculations over time, which is a complex process that
demands a greater amount of knowledge and investigations.

2) TECHNICAL FEASIBILITY
Following the decision to invest and the consideration of
financial concerns, the next category of challenges to be
evaluated in the process of automating and smartening wood
production are technical feasibility issues in the design
and implementation of automation systems and flexible
machines. In general, sawmills receive orders from customers
based on required dimensions, volume, species, and grade
of lumbers [32]. To satisfy these customer requirements,
a sawmill decision-maker needs to choose the type of logs to
process, determine the sawing procedures to be applied, man-
age raw material and product inventories, and schedule pro-
duction in a cost-effective and punctual manner [28]. In order
to automate such tasks in a smart production environment,
a large number of technical challenges need to be addressed,
of which the most critical ones prioritized by the literature
are physical sawing system constraints, optimization and con-
trol complexity of automated machines, material variability,
scanning technology limits, and storage limits and inventory
management.

a: PHYSICAL SAWING SYSTEM CONSTRAINTS
First of all, the core of a wood production system is the
wood sawing machine. Hence, the most essential phase
in automating a sawmill’s operation process is the design
of an efficient, fast, and flexible sawing system [11].

However, optimal planning and high-performance operation
of a sawing machine for obtaining an effective utilization
of resources, minimum wood loss and maximum produc-
tivity are very challenging to sawmills due to the presence
of different technical and operational constraints [25], [31],
[32]. The design of sawing systems is mainly concerned
with the development of software and hardware technolo-
gies to optimize and control sawing operations [13]. Dur-
ing recent decades, the literature presented innovative ideas
towards stating and solving sawing optimization and con-
trol problems while meeting a variety of sawing feasibil-
ity constraints [17], [109]. A group of technical challenges
is with regard to physical and geometrical sawing features
(e.g., sawblade material, tooth geometry and tool sharpen-
ing) [82], [83], [101] the position of sawing planes (e.g.,
vertical or horizontal sawing) [17], [95], [96], and sawing
types (e.g., band saw or circular saw) [101], [110]. These
features are primarily considered and customized according
to the sawmills’ requirements, including the dimensions and
types of final products as well as the characteristics and
species of raw materials [7]. In most cases, constrained prob-
lems can easily incorporate such physical limitations and
features.

b: OPTIMIZATION AND CONTROL COMPLEXITY OF
AUTOMATED MACHINES
The automation of wood processing systems entails more
complex technical considerations. In fact, the problem of cut-
ting different pieces from stock materials in order to maxi-
mize volumes or values of the pieces is referred in literature
as the cutting stock problem [111]. The problem of sawing
a log and cutting it into predefined pieces with the aim of
maximizing the output yields is a variant of the cutting stock
problem, which is referred as the sawing problem.

There are several factors affecting the difficulty of solving
the specific sawing problem, including geometric complexity
associated with cutting rectangular pieces from circular sur-
faces [109], [112]. In this case, the circular geometry of the
patterns can impose non-linearities to the sawing optimiza-
tion problem [32], [112]. Hence, an increase in the number
of orders and the duration of the planning period may lead to
a significant increase in the complexity of the problem and
the computational effort involved [7], [16], [56], [64], [65].

c: MATERIAL VARIABILITY
A further complexity that deserves special attention arises
from material variability, which needs to be reflected in the
physical modeling of a log. Indeed, a log can have a variety
of cross-sectional areas because of differences in diameter
throughout the trunk [110]. However, in the existing liter-
ature, a log is usually treated as a regular cylinder whose
diameter equals the minimum diameter of the real log [7],
[16]. Logs, moreover, are seldom cylindrical, and instead are
irregular and of random form, neither straight nor round. As a
result, the optimal solution generated by such methods is
no longer valid once any part of the log deviates from the
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FIGURE 8. Assignment of related literature to each group of challenges.

cylindrical definition [95]. Hence, this sort of assumptions
is inaccurate and can waste a large amount of the potential
yield as the sawing process creates low-price by-products
or sawdust. In addition, in order to improve sawmill pro-
ductivity, log quality assessment and defect detection are of
major importance prior to sawing process as the price of final
lumbers is influenced not only by their dimensions but also
directly by their quality of the wood [113], [114].

d: SCANNING TECHNOLOGY
Typically, the sawing patterns are either generated manually
or with the support of scanners. In the former, by selecting
a subset of manually generated patterns, the number of logs
of each type can be determined. Alternatively, the latter uses
scanner technology to provide a three-dimensional view of
the logwithin a software tool that supports the operator to find
optimal sawing patterns in a shorter amount of time [112].

The performance of the scanning process, and conse-
quently the accuracy of log modeling and optimization, is a
hotly debated topic in related studies, as it can distinguish log
feature variations according to their shape and dimensions,
as well as their internal and external quality levels for running
a superior grading task [107], [108]. In fact, a proper scanning
is a proven method of capturing one of the biggest obsta-
cles to an efficient sawmill design, namely material variabil-
ity [9], [85], [87]. The detection of out-of-shape logs using
three-dimensional outer scanning (e.g., optical/laser, CT, and
MRI scanners) and defective logs using inner scanning (e.g.,
CT and MRI scanners) allows the optimization tools to flexi-
bly adapt the problem constraints and feasible solution spaces
to the realistic model, thereby increasing sawing yields sig-
nificantly [19], [28], [115]. In addition, extracting logs’ fea-
tures enable the sawmill decision-maker to select which log
mix should be sawn to fulfill the yield targets [17], [85].

To this end, however, the issues associated with the accu-
racy of object identification [116], defect detection perfor-
mances [16], and the significant price of inner scanners [115]
should be adequately addressed.

Improving sawing efficiency through advanced scanning
systems and enhanced sawing strategies can prevent overpro-
duction and large wastes and can allow sawmills for smart
production in accordance with customer orders (i.e., match-
ing demand points with supply points) [34], which conse-
quently reduces the challenges for managing raw materials
and final products storage facilities [114].

e: STORAGE LIMITS AND INVENTORY MANAGEMENT
Sawmills also face challenges related to material and product
inventories, so that the inventory management of sawmills
is currently a subject of a large set of research works [5],
[28], [31], [34], [85]. In this context, the sawmill’s inven-
tory management is often carried out related to the capacity
considerations appearing in the sawing optimization problem
as problem constraints, such as the maximum production
capacity of a sawmill (in terms of machinery and physical
constraints) [15], [117], the maximum amount of logs that
can be purchased per month [8], initial inventory andmonthly
log inventory capacity [85], logs and lumbers transportation
capacity [34], [117], and market capacity [28], which are all
expressed in terms of the limits and capabilities of machines
and limits in adequate company’s infrastructure [8]. In short,
towards more flexible operations with a better control of raw
materials and finished products, technical challenges are by
far the most popular topics of discussion in research works
within the scope, and probably, this trend will continue in
the future due to the extreme importance of processing speed
and response accuracy in future advanced automated wood
processing systems.

3) CUSTOMER SATISFACTION
As the wood industry is facing a competitive market, a key
concern of sawmills for their processing renovation is to keep,
and even to strengthen, their customer-centric environment
in terms of product quality [32], [50], [82], [106], [118],
[119], product diversity [9], [40], [41], [83], and order lead
times [5], [14], [41]. In fact, for an automated sawmill, having
a trade-off between maintaining a high level of services and
being efficient with respect to the company’s financial targets
is very essential [9]. Hence, customer satisfaction is often
regarded as a hard constraint in sawmill planning due to the
risk of consequent losses of market share [5], [9].

It is well discussed in the literature that understanding
competitionmarkets and identifying customer values creation
through the use of intelligent and automated systems is a pre-
requisite for sawmills to automate their production processes
while preserving their profit margins [41]. In this regard,
moving towards automating wood production and processing
systems may initially raise concerns for sawmill managers
about changing traditional routine manufacturing in connec-
tion with the demand fulfilment. A sawmill may hesitate
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about automating its production process given the limits in the
possibility of manipulation in the automated processes, man-
ufacturing speed limitations, insufficient training experience
on the system operation, unknown long-term performance of
the automated system in producing high-quality products, and
possible hardware and software failures or interruptions that
may cause delivery delays. Due to that, the sawmill man-
agers need to be adequately convinced that implementing an
advanced intelligent production system can ensure efficiency,
security and reliability of production planning and positively
impact customer satisfaction while increasing flexibility of
production and final product characteristics, thereby facili-
tating product customization and responding to dynamic cus-
tomer demands. Hence, the company’s competitive profits
can be considerably enhanced.

The majority of wood producers, in the past, focused
on producing lumbers with a limited number of predeter-
mined dimensions [40]. Therefore, customers mostly had to
choose and register their orders according to the available
options. Nowadays, however, many customers prefer cus-
tomizing their orders [41]. It is estimated that as few as
10% of wood producers can offer wood products with a high
degree of customization [106]. In the traditional production
system, supplying customized orders to increase a company’s
competitive manufacturing advantage requires extra human
resources with expertise to accomplish such tasks. In con-
trast, even though the production of customized products with
desired dimensions is still a challenge for automatic sawing
machines, recent research is moving rapidly towards improv-
ing the flexibility and efficiency of cutting systems, so as to
produce wood products of arbitrary sizes and grades to satisfy
customer special orders with no need for expertise of human
resources.

4) UNCERTAINTY
Wood product manufacturers commonly face the challenge
of making decisions on the basis of unreliable or incomplete
information, leading to a large amount of uncertainty in the
decision-making model [85]. In the case of assuming simpli-
fied deterministic models for the wood production planning,
ignoring uncertainty can result in non-optimal sawing, unnec-
essarily high inventories of products with inferior quality and
lower prices, and consequently, obtaining low yields [120].
Thus, the consideration of uncertainty is essential to ensure
that the decisions based on the results of the model are feasi-
ble and near-optimal with respect to the actual data [9]. While
a significant number of decisions in wood processing are
affected by uncertainties, the most critical uncertain factors
are product demands, biological features of raw materials -
which affects sawing yields-, as well as the prices of logs and
lumbers [8], [85], [87].
At one hand, scholars argue that more detailed and accurate

information can contribute to more efficient production and
marketing performance [24]. On the other hand, flexibility
and agility in manufacturing are vital for managing differ-
ent sources of uncertainties [41]. Nevertheless, for sawmills

to become agile, advanced processes and technologies
should be established to detect and respond to unexpected
variations [85].

A number of research has been conducted on how to deal
with the uncertainty in the wood production management.
Most of these studies focus on the random characteristics
of raw materials which are classified based on some log’s
attributes such as diameter class, species, length, taper, and
defects [7], [8], [15], [87], [120]. The main reason for impos-
ing this uncertainty is that logs, required to plan the next
sawing patterns, are not always available to be scanned in
sawmills before planning, or advanced scanning systems are
unavailable [87]. A group of studies further address another
common sources of uncertainty involved in predicting final
demands [15], [41], [121], [122], as well as variability in the
price of logs and lumbers in wood markets [86], [123].

To deal with multiple types of uncertainties, research stud-
ies primarily use probabilistic tools to accommodate uncer-
tainty into various sawingmodel scenarios, product demands,
and logs and lumbers prices to provide a level of robust-
ness against changes, making a profitable plan in dynamical,
disturbance-prone wood production systems [8], [15], [41],
[87], [120], [121], [122], [123], [124], [125].

Despite the importance of existing modeling methods in
wood production planning within uncertain environments,
developing efficient algorithms that are able to deal with the
large number of possible scenarios under uncertainty and
the associated computational burdens are usually difficult
in practice [120]. In addition, most of available approaches
require knowledge of the distribution of the uncertain data,
which is generally unknown or difficult to obtain. Thus,
despite the availability of theoretical methods, there have
been very few practical applications of stochastic approaches
dealing with uncertainty. Moreover, in general, there is still
a lack of efforts that provide a comprehensive practical
evaluation and demonstration of these approaches and their
assessment in terms of robustness and computational testing
through real-world implementations.

C. A GENERAL MATHEMATICAL MODEL FOR
SUPPORTING EFFICIENT PRODUCTION IN SAWMILLS
In order to provide readers with insight into how the discussed
topics can be connected to a corresponding mathematical
model, we formulate a general optimization problem inwhich
introduced opportunities are considered as problem objec-
tives and introduced challenges are considered as problem
constraints:

max
x

(fep(x), fta(x), fei(x))

subject to x ∈ X (1)

where x is the vector of decision variables, X is the con-
straint set (or feasible set), and fep(x), fta(x), and fei(x) are
the objective functions related to the economic profits (e.g.,
value or volume of finished products), technical achieve-
ments (e.g., grade/diversity of products), and environmental
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incentives/penalty avoidance (e.g., carbon emission reduction
in production process and transportation), respectively.

To accommodate the constraints and the decision variables
domains, the constraint set X can be defined as the following
functional form:

X = {x ∈ Rn
| gfl(x) ≤ bfl, hfl(x) = cfl, gtf (x) ≤ btf ,

htf (x) = ctf , gcs(x) ≤ bcs, hcs(x) = ccs,

gu(x) ≤ bu, hu(x) = cu, xlb ≤ x ≤ xub} (2)

where n is the number of decision variables, gfl , gtf , gcs, gu,
and hfl , htf , hcs, and hu respectively define sets of inequality
and equality constraints related to the financial limitations
(e.g., capital budget limit), technical feasibility (e.g., geomet-
rical constraints related to the sawing problem, storage limits,
etc.), customer satisfaction (e.g., lead time satisfaction), and
uncertainty (e.g., demand and price variations). Additionally,
bfl , btf , bfl , bu, and cfl , ctf , cfl , and cu are respectively the
corresponding vectors of inequality and equality constraints’
parameters. Two vectors xlb and xub represent lower and
upper bounds of decision variables, respectively.

Ideally, many economic, technical, and environmental
profitability aspects should be maximized while respecting
various groups of constraints. However, a comprehensive
modelling and formulation of the sawmill profit maximiza-
tion problem can turn into a very large and complicated
problem that is challenging to solve. Therefore, many stud-
ies focus only on a limited set of objectives and constraints
(e.g., only increased value yields of log sawing consider-
ing geometrical constraints - see the use case discussed in
Section IV-A). The problem of sawmill operation optimiza-
tion can be approached in a variety of ways depending on
scales and types of the problem, such as linearity or non-
linearity, and numbers and types of decision variables and
constraints. The following section provides an overview of
the literature on the relevant methodological aspect.

III. METHODOLOGIES
Despite of rapid advances in information and communi-
cation technologies that have provided an unprecedented
opportunity to change the paradigm of decision-making pro-
cesses in the forest industry and more specifically, in the
wood processing step, the realization of dynamic, automated
decision-making systems requires careful design and testing
of advanced control and optimization techniques [22].

In fact, there are several interrelated steps to turn rawmate-
rials into finished goods and delivering them to costumers or
distribution centers, in which a variety of decisions should be
made for optimizing economic, technical, and environmental
performances of the production process [4]. Over these steps,
different constraints regarding financial, technical, customer-
oriented, and uncertainty aspects should be taken into account
and results need to be calculated within a short period of
time [2].

To achieve efficient production, sawmill decision mak-
ers need to properly 1) model decision-making processes

and 2) use appropriate decision-making strategies. In fact,
the behavior of each physical system and decision sup-
port process such as those discussed in Section II should
be firstly described using mathematical concepts and equa-
tions to examine how changes within the framework may
affect results. Once corresponding mathematical models are
obtained, in the second step, a variety of analytical and
computational techniques can be applied for optimization,
analysis, and synthesis purposes. The typical activities associ-
ated with modeling decision-making processes and applying
decision-making strategies include optimal bucking of har-
vested logs, machinery design, equipment locations, cutting,
trimming, and drying of logs, and logistics for transporting
finished products to customers or distribution centers [6],
[25]. Thus far, a large number of approaches have been pro-
posed and developed in the literature to support decisionmak-
ers.Most of these approaches are based on stating and solving
constrained optimization problems.

Among all operational decision-making steps in a sawmill,
themost critical and discussed problem is theway of selecting
and cutting logs with varying qualities and sizes into a set
of predefined shapes, so as to achieve the highest product
yields and the least losses, while meeting a group of con-
straints such as technical limitations of automation systems,
customer demands, environmental obligations, and order lead
times [17]. This problem can be seen as the problem of cutting
stock materials into smaller pieces with a view to maximize
yields and minimize waste, which is well known in the lit-
erature as cutting stock problem (for more detail, see the
interesting review presented in [126]). In the wood industry,
this problem is characterized by cutting certain lumbers from
stock circular logs, which is commonly termed sawing prob-
lem [109]. In fact, the sawing problem can be viewed as a
variant of multi-dimensional, rectangular (in most cases), and
multiple-size cutting stock problem [112].

Apart from the sawing problem, log bucking as a
pre-processing decision before sawing [56], [88], optimal
decisions of wood processing after sawing such as trimming
and drying operation planning [77], [78], [80], [91], [92],
[118], [119], upgradedmachinery design for having a fast and
compact process [43], [95], and transport decisions including
routing and scheduling [8], [13], [34], [117] have been among
highly-explored topics of decision-making optimization in
sawmills.

This section seeks to provide a guideline for researchers
and manufacturers for a better understanding of how the
opportunities described in the previous section can be
achieved through applying intelligent optimization and con-
trol techniques, and how the associated roadblock can be
tackled efficiently. For this purpose, this section brings
together findings of essential literature focusing on the
methodological point of view. By investigating the selected
papers (see Table 2), we aim at answering the following
research questions: Q1) What innovative decision-making
approaches can be applied to the wood production process
to ensure the optimal performance of a sawmill, and thereby
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improve its profitability?, and Q2) How can the complexi-
ties associated with designing an automated decision-making
system in the wood production process be addressed? To
answer these questions, we present a general overview of the
most popular topics of research in the field, classified into:
algebraic model-based mathematical programming, search
algorithms, and artificial intelligence approaches.

A. MODEL-BASED MATHEMATICAL PROGRAMMING
In order to formulate decision-making problems in sawmills,
a vast majority of existing studies relies on algebraic math-
ematical models to provide a precise solution to the corre-
sponding constrained optimization problem.

In the following, we discuss some of the highly-explored
mathematical models available in the literature for modeling
and formulating decision-making processes to support smart
production in sawmills.

1) LINEAR PROGRAMMING (LP) MODELS
LP has been among the most prominent methods for mod-
eling decision-making processes in sawmills including saw-
ing optimization problems [59]. The earliest optimal sawing
solutions proposed in the literature are typically based on LP
algorithms [60], [61]. For example, LP applications are pri-
marily developed in [60] to select optimal log sawing policies
for wood waste minimization. A simple LP model is later
extended in [61] to maximize possible lumber volume yields
considering a number of logs in different size groups. Next,
other studies such as [37] and [109] establish linear models
for the sawing problem, while taking into account more real-
istic considerations and a wider range of technical and oper-
ational constraints related to sawing features and feasibility
issues. As a more comprehensive study, the work in [109]
minimizes the total number of logs cut while considering the
constraints of demand satisfaction, the dimensional features
of the logs, log stock capacity, and the decision variables’
domains.

Decision optimization goals throughout different steps of
a sawmill are also modeled as multi-objective optimization
problems with linear objective functions and linear con-
straints, which can be solved by LP algorithms. A promising
related example is presented in [37], where the authors formu-
late a multi-objective optimization problem dealing with five
objectives for the sawmill planning, namely minimizing the
total cost of production, maximizing the net income from sell-
ing the ordered products and extra by-products, minimizing
waste wood regarding sawing recovery factors, minimizing
the number of logs needed to satisfy order demands, and last
but not least, minimizing the time needed to complete the
production task.

Furthermore, in some cases, LP is used to solve the sawing
problem in combination with other decision-making prob-
lems, in particular bucking decision optimization [56], trans-
port decisions and post-sawing decisions optimization [13],
[117] in a supply chain context. The study in [56] developed
an LP model in combination with an iterative algorithm to

generate the optimal bucking of tree length stems and sawing
pattern. In [117], a linear objective function is established for
a sawmill operation optimization problem which takes into
account production, transport, drying, and inventory costs.
An agent-based sawmill operation planning is instead pro-
posed in [13] which relies on linear system models and linear
objective functions. Wherein, LP is developed for optimal
sawing, drying and grading considering various production,
feasibility, inventory, and demand constraints.

An interesting review paper on the applications of LP to
the optimization of automated wood production processes is
provided in [59] where a special focus is given to the eco-
nomic profits, i.e., the minimization of expected production
cost through optimal sawing strategies.

Modeling sawmill decision systems using linear methods
can provide accurate optimal solutions in a tractable manner,
particularly when dealing with problems of smaller sizes and
with fewer product orders and diversities, so that they can be
solved by commercial math programming solvers in a rea-
sonable time. However, in real sawmill production systems,
linearity is often an unrealistic assumption. In fact, an LP
model assumes a linear relationship between problem input
and output, production and cost, production and total revenue,
and problem technical and feasibility constraints, which is
rarely the case in practical implementations.

Moreover, due to the nature of sawing problems that com-
monly require the introduction of integer variables (due to
the combinatorial optimization properties of sawing prob-
lems [127]), the use of linear functions with continuous
variables or linear approximations may lead to inaccurate
results which are far from optimal. This can result in sub-
optimal lumber production where the potential value of logs
is wasted [17].

2) MIXED-INTEGER LINEAR PROGRAMMING (MILP) MODELS
As the main objective of a wood production plan, the raw
material optimization can be mathematically regarded as a
combinatorial optimization problem on the basis of choosing
the best solution among a discrete set of feasible solu-
tions [18], [127]. Therefore, MILP approaches are gener-
ally better suited to such problem structure compared to LP
approaches. For this reason, model-based MILP approaches
are another popular class of techniques employed in the liter-
ature for obtaining optimal decisions of wood sawing [4].

An interesting example is presented in [43], where a MILP
model is developed for an optimal sawing problem by intro-
ducing integer decision variables related to the possible saw-
ing patterns that the model can choose from, and the number
of finished products with predefined dimensions. The authors
use this MILP model in combination with a simulation tool
to maximize the volume recovery of the sawing process and
to increase the sawmill’s profit. However, in the proposed
model, quality aspects such as defects are not considered,
which simplifies the problem significantly.

Instead, a MILP model is formulated in [5] to determine
optimal production planning in a sawmill by incorporating
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all the cutting patterns possible for different log diame-
ters, given by an exhaustive generation algorithm. In this
case, a large number of decision variables are simultane-
ously calculated, including daily logs procurement, suppli-
ers selection, quantity of processed logs, cutting pattern
assignment, log and lumber inventories, and operation times.
In [4], the same authors state the optimal daily production
planning of sawmills as the problem of packing a set of
rectangles into the circle surface, while applying an MILP
algorithm to solve it and to achieve the maximum sawmill
profit.

The application of multi-objective optimization problems
in the form of integer programming is also studied in some
related papers. For instance, multiple objectives for support-
ing decisions in the daily production planning of a sawmill are
pursued in [31], addressing sawmill profit maximization, raw
material loss minimization, inventory control, and demand
satisfaction as objectives, where the overall problem is stated
using an MILP formulation.

Another group of research works emphasizes post-
processing stages of lumber production such as lumber drying
operation planning, with the goal of enhancing energy effi-
ciency and maintaining the quality of finished products [92],
[118]. A successful processing of these steps requires the
fulfillment of different operational conditions while mul-
tiple decisions must be made to accomplish these tasks.
In order to facilitate the relationship among these decisions,
MILP formulations are extended in [118] and [92] for the
simultaneous optimization of drying operations, including
the scheduling of kilns and filling them with packages of
lumbers.

In general, solving such complex integer programming
problems in large-scale systems, in particular combinato-
rial problems with many decision variables using conven-
tional exact algorithms can be computationally challenging,
rendering the approach inefficient in practical implementa-
tions [128]. Although LP and MILP models are widely used
to formulate decision optimization problems in planning for
the wood processing – which necessitate both objective and
constraint functions to be linear with continuous or integer
variables – finding their solution using exact algorithms with
exponential computational complexity are rarely applicable
in real world scenarios. On the other hand, studies such as
the one in [129] find that the relationship between sawing
yields and lumber quality is not linear in most of the cases.
In fact, the majority of scenarios examined by this study does
not prove to have a linear relationship between sawing yield
and lumber quality. Therefore, the authors argue that linear
modelsmay not provide trueminimum cost solutions for saw-
ing problems with realistic constraints such as lumber grade
requirements, and the industry may be sometimes ill-advised
to rely on those models.

3) NONLINEAR PROGRAMMING (NLP) MODELS
Mathematically, a more realistic modeling of decision sup-
port systems in sawmills for the complex conversion process

of logs into finished lumbers gives rise to optimization prob-
lems in nonlinear forms. Apart from the nonlinear nature of
optimization models in a wood production system, such as
the relationship between yields and lumber grades [129]
and the cost of energy bought from open electricity mar-
kets [130], the most distinguished non-linearity in the system
iswith regard to the geometric complexity of the sawing prob-
lem [109]. This non-linearity is associated with the problem
of packing a subset of rectangles (or other irregular shapes)
into a circular surface as a convex region (see the example
presented in Fig. 9) while minimizing the remaining volume,
or maximizing the volume used/product values [109], [112].
Solving this problem is challenging primarily due to the com-
putational complexity in satisfying feasibility constraints [7].

The non-linearity in the sawing optimization problem is
addressed in the literature through several approaches. For
instance, a mixed-integer NLP model for the sawing opti-
mization problem is developed in [7], which however, is only
solvable for very small-scale problems. A value-based cant
sawing optimization problem with nonlinear constraints is
instead studied in [109] which is later reduced to a set
partitioning problem to simplify the original optimization
problem.

Some other nonlinear modeling of the sawing optimization
problem are detailed in [9] and [21], however, they are then
converted into simpler forms of linear programming through
approximation strategies.

Another type of operational planning problem, described
in [78], [79], and [80] deals with optimizing the energy con-
sumption of lumber drying systems, where thermal models
of the kiln system are represented in nonlinear forms. In [80],
by modeling total heat demands in batch kilns during the dry-
ing scheme, increasing energy efficiency of the sawmill along
with obtaining high quality lumbers after drying process are
intended. Wood types, lumber dimensions and kiln types are
taken into account. In the studies presented in [78] and [79],
optimization of the sawmill drying process for different wood
species using solar kiln with thermal storage is extensively
discussed.

In general, exact mathematical algorithms can only find
the solution of NLP problems in very small-scale scenar-
ios, or alternately, such problems need to be converted into
linear forms. Even in small-scale systems with low number
of variables, commercial solvers are rarely able to provide a
tractable solution to such problems in an efficient way [1].
For example, in the case study presented in [7], where only
nine rectangles are involved as required lumber sizes, the
software takes more than one hour to calculate the optimal
solution. This stays in contrast to decision optimization mod-
els in real wood production systems that need to calculate a
large number of decision variables during a short period of
time. These issues are driving researchers towards develop-
ing more computationally efficient algorithms which provide
reasonable near-optimal solutions in shorter computation
times, such as dynamic programming (DP) or approximation
algorithms [62].
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FIGURE 9. A sample sawing problem for obtaining optimal feasible
sawing pattern solution by extracting a set of ordered lumbers from a
circular log cross section.

4) DYNAMIC PROGRAMMING (DP) APPROACHES
Having considered the computational complexity of cal-
culating a large number of continuous and integer deci-
sion variables based on different mathematical optimization
models, the concept of DP is essentially suitable for solv-
ing such combinatorial problems using recursive program-
ming [88]. In fact, DP provides an alternative strategy for
solving large-scale and complexmanufacturing problems that
can be discretized and sequenced [131]. By the use of this
approach in wood production planning, the original sawing
problem can be divided into simpler sub-problems, and the
solutions obtained for each sub-problem are used to achieve
an optimal solution for the original sawing problem [17].
By saving the solutions of overlapping smaller sub-problems,
a DP algorithm can significantly reduce computation times
by avoiding re-computation due to the use of prior saved
solutions. As DP is able to solve linear or nonlinear problems
with discrete or continuous variables, it has been successfully
applied to a variety of sawmill decision planning problems.

An early application of DP for addressing a wood process-
ing problem is presented in [49], where a DP algorithm is
developed to determine the optimal one-dimensional cross-
cutting pattern of a log into shorter logs.

Later on, capabilities of DP algorithms for dealing with
various types of optimization problems in a tractable manner
allowed them to be applied to different sawing types, such
as live sawing (i.e., a log is cut into flitches using sawing
planes that are parallel to each other), cant sawing (i.e., a log
is cut into three portions along the initial sawing orientation),
and grade sawing (i.e., a log is cut into four portions at the
small end for a given sawing orientation, where two paral-
lel portions have the same series of parallel cuts which are
orthogonal to the cuts of two other portions), see Fig. 10.
An example of a DP application for the optimization of live
sawing and cant sawing with two-dimensional perspectives
is considered in [63] to maximize volume lumber yield from
cylindrical logs. This model for the first time provides the
possibility of considering a variety of board thicknesses with
a guarantee of optimal volume yield, showing that DP can
be an efficient method to solve sawing problems with larger
scales and higher number of decision variables in a reason-
able time. However, in [63], the sole focus is on maximizing
cross-section area while no quality aspect and value yields

are considered. Following this work, an extended DP model
for optimal sawing of logs is detailed in [64] by performing
a parametric analysis to find all optimal sawing patterns as
a function of log diameter. Such early applications of DP in
sawing operations are still in use today. However, these meth-
ods are now commonly combined with more advanced tech-
nologies, such as advanced scanning and image processing
systems, to address quality-based grade sawing with added
values [1].

Whereas mentioned studies do not address the presence of
defects in logs, another group of studies applies DP algo-
rithms to more complex sawing problems having a better
understanding of the log’s inner and outer characteristics,
thereby allowing consideration of the finished product qual-
ity. A primary related effort is made in [20] focusing on the
application of DP to quality-based sawing strategies, which
accounts for the impacts of defects in finished products val-
ues. By using a defect scanner and an image-processing sys-
tem, this study extends the log’s model to a three-dimensional
model with cross-section and length optimization for various
grades. The flexibility and computational efficiency features
of DP is further utilized in [88] for dealing with a combined
problem of optimal log bucking and sawing as a coordinated
production system taking into account lumbers’ quality. The
sawing optimization is modelled as the well-known standard
knapsack problemwith integer variables, which is then solved
by a DP algorithm.

A wider class of quality factors such as partial wane
allowance in lumbers is studied in [95], where the sawing
problem is formulated as a set packing problem with the
objective of maximizing total products’ value. Some interest-
ing results through a comparison between the DP approach
and a heuristic algorithm is presented in [95], showing that
DP can find solutions with a higher quality than the one of
the heuristic approach, while the former has a lower solution
speed as expected.

Among more recent works, DP is frequently used for
optimizing log grade sawing according to the positions and
shapes of internal log defects, which can be scanned or pre-
dicted [1], [16], [40], [53], [58]. A substantial increase in lum-
bers’ value are observed in the results presented in [53] when
DP is used for a grade sawing problem defined as two nested
longest path problem. This promising work combines pri-
mary sawing and secondary sawing processes by a two-stage
sawing strategy. By first determining the optimal pattern for
cutting a slab into boards through an inner optimization prob-
lem, and then calculating the optimal pattern for cutting a log
into slabs by a master problem, the method eliminates the
need for expensive internal scanning capabilities. This feature
can be very interesting for companies with limited budgets.

A comprehensive study on mathematical models and prob-
lem formulations of the sawing optimization problem with a
variety of sawing types is conducted in [17] based onDP algo-
rithms, which laid the foundation for a large group of later
studies (for instance, the works in [16], [32], [56], and [65]).
The study in [17], and following that, the studies in [16],
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FIGURE 10. Three major sawing patterns in wood processing.

[32], [56], and [65] extend DP methodologies to the most
commonly used primary sawing strategies in real sawmills,
i.e., live sawing, cant sawing, and grade sawing (see Fig. 10),
such that the value of the lumber products obtained from the
log is maximized in all cases. Moreover, the computation
complexity for finding optimal solutions of each sawing type
is discussed. The work in [17] interestingly reports that the
execution times of the DP algorithms for determining optimal
sawing strategy, as well as the methods for defect recognition
and modeling, and automated lumber grading are not yet
suited to real-time applications in a real sawmill. The authors
contend, however, that by taking advantage of parallel com-
puting at different stages of the automated decision-making
process, the execution times could be improved significantly.
Nevertheless, due to the fact that DP algorithms use stored
sub-solutions to be faster in computation, they require a large
deal of memories to store the result of each sub-problemwith-
out ensuring that the stored values will be utilized. Conse-
quently, their use in large-scale sawmills could still be expen-
sive and challenging, particularly if parallel computing is
intended. Hence, if memory is scarce, the implementation of
DP for wood processing optimizationmay become infeasible.

B. SEARCH ALGORITHMS
Although a significant number of existing approaches for
addressing decision-making problems in sawmills are formed
using model-based mathematical programming methods
which are deterministic, recent studies are increasingly mov-
ing towards faster alternativemethods due to concerns regard-
ing the complexity of more advanced production systems and
memory limitations. These methods mainly rely on search
algorithms. Search algorithms generally reduce the accu-
racy of problem solutions in order to increase problem-
solving speed, however, they typically return solutions that
are close to optimal, which is usually sufficient for obtaining
a satisfactory yield in most industrial applications [132]. In
situations where problem-solving speed is a critical require-
ment, search algorithms can consequently be very useful.
It is precisely the situation that can arise in optimizing the
decision-making performance of a sawmill, especially if the
scale of the problem is large (e.g., the problem contains vari-
ous continuous and integer decision variables, the presence of
uncertainty, significant variety of orders, and a cluster of logs
to be optimally cut instead of a single log) [122]. Moreover,
a majority of mentioned deterministic model-based methods

assumes that all input data for the decision-making opti-
mization problem are accurately known in advance. How-
ever, this assumption is rarely valid in real-world scenarios.
Ignoring input uncertainty often leads to poor estimates of
the system performance [8]. To cope with this challenge,
search algorithms usually track and characterize stochastic
behaviors of the random input parameters to provide a real-
istic decision-making in uncertain manufacturing environ-
ments [122]. Hence, relevant approaches based on search
algorithms are largely applied to the production optimization
in manufacturing, including wood production systems.

The following is a discussion of some of the widely-
explored search algorithms for supporting smart optimal pro-
duction processes in sawmills.

1) STOCHASTIC APPROACHES
A great deal of attention has been paid to stochastic
approaches in recent years as a result of their extensive the-
oretical and practical applications in industrial manufactur-
ing. In particular, stochastic optimization is the process of
optimizing the value of a mathematical or statistical function
when some parameters are subject to randomness [133]. It can
generally handle systems with a high degree of nonlinearity,
dimensionality, and uncertainty in parameters, so that classi-
cal deterministic model-based methods cannot address them
efficiently [87].

Stochastic approaches are especially relevant when differ-
ent sources of uncertainty are present in the input data of
decision-making processes (such as demand, raw material
and product prices, and raw material quality). Although there
are some deterministic robust approaches for accommodating
uncertainty in sawmill production system models [9], [24]
(where solutions are robust if input data varies slightly within
predefined ranges), most relevant research uses stochastic
algorithms where uncertain coefficients are represented by
random variables with a probability distribution. For instance,
the stochastic characteristics of logs are taken into account
in a group of studies using multi-stage stochastic program-
ming [8], [15], [87], [120]. To develop production scenarios
based on log attributes such as length and diameter, studies
in [124] and [125] use discrete-event simulations. Another
application of stochastic optimization is developed in [15] for
addressing multi-period, multi-product production planning
under uncertainty in the products’ demands and the quality
of raw materials. The authors describe demand uncertainty
as a dynamic stochastic data process, while raw material
quality uncertainty is defined as scenarios with stationary
probabilities. Using a sawmill production planning scenario
as a case study, the authors demonstrate that the stochastic
approach can produce near-optimal results while being com-
putationally efficient. The study in [120] takes into account
non-homogeneous characteristics of logs by modeling ran-
dom yields as scenarios with discrete probability distribu-
tions. A two-stage stochastic programmingmodel is proposed
to solve this sawmill operation optimization problem. In this
example, by considering a moderate number of scenarios
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among the huge number of possible scenarios for random
yields, the authors obtained an acceptable optimality gap, less
than 1% of the actual optimal value, within a short calcu-
lation time. In a different work, the study in [8] considers
short-term uncertainty in the supply of raw materials, such as
when harvesting is not in sync with demand or when logistics
considerations and transportation schedules cause changes to
harvesting. Hence, only an estimate can be made as to how
many and what types of logs can be collected. This work
then establishes an interesting coordination between different
planning decisions in a sawmill using a two-stage stochastic
optimization formulation with the aim of satisfying demands
at the lowest possible cost. Logs and lumbers inventories, raw
material purchase and production capacities, and number of
working hours are further considered in this work.

Stochastic models are further used to address another
common source of uncertainty involved in predicting final
demands [15], [41], [121], [122]. In [122], a stochastic
model with random yields and a monthly planning horizon
is solved with accelerated scenario. The prices of raw mate-
rials, finished products, and energy can be considered as
other important factors influenced by uncertainty, which are
often modeled through stochastic approaches and scenario
analyses [123].

Stochastic approaches are successfully employed to ana-
lyze technical efficiency of some real sawmills in [134],
[135], and [136] using statistical analysis techniques. The
works in [134] and [135] treat sawmills as a single out-
put production system with lumbers as their sole product,
while the study in [136] incorporates multiple-output nature
of sawmills by considering both lumbers and wood chips
as output products. These studies in [134], [135], and [136]
report interesting analyses of technical inefficiencies in pro-
duction processes of small and medium-scale sawmills, and
stressing potential improvements in their performance by
increasing capacity utilization and optimal use of raw mate-
rials, meeting governmental policies of forest resource con-
servation, and preventing environmental degradation and
desertification.

Another use of stochastic approaches are developed in [91]
and [119] for optimal sorting of lumbers into different mois-
ture content groups before drying stage in kilns. Both studies
argue that lumber sorting optimization in sawmills can reduce
the drying time to a considerable extent and avoid lumbers’
over-drying or under-drying which negatively affect lumbers
grade recovery.

A comprehensive comparison between the performance of
stochastic and deterministic production planning models in
sawmills is presented in [66]. In this comparison, system
performance is evaluated both with and without uncertainty
considerations. Under different combinations of planning
horizon, re-planning frequency, and average and variation
of demand, the authors present a decision framework guid-
ing managers to choose between deterministic and stochastic
approaches considering backorder and inventory costs as key
performance indicators.

Even though literature reports interesting applications of
stochastic approaches in supporting sawmill decision-making
processes within uncertain environments, a wide range
of scenarios can be expected for process yields in these
systems due to the variety of decisions during multi-
ple processing stages [120]. This therefore leads to the
important questions of how to handle random scenarios
for real-world applications and how to efficiently estimate
the probability distribution of different uncertain parame-
ters while still preserving the obtained solutions reasonably
close to optimal values. Despite the availability of theo-
retical methods, there have been very few practical appli-
cations of stochastic approaches dealing with uncertainty
of wood production systems. Thus, research on these top-
ics should be expanded through industrial validations in the
future.

2) HEURISTIC AND METAHEURISTIC APPROACHES
Heuristic and metaheuristic approaches attempt to find rea-
sonably fast solutions for optimization problems, however,
without a clear indication at the outset on when they
may succeed or fail, and without any guarantee if the
solution returned is optimal [137]. Nevertheless, knowing
some information on previous processes and ranking alter-
natives in search algorithms usually allow heuristics and
metaheuristics to find ‘‘good’’ approximate solutions in an
acceptable computing time without having to exhaustively
search every possible solution [62]. Whereas heuristics are
problem-dependent algorithms for specific given problems,
metaheuristics do not require particular knowledge on spe-
cific problems to be solved, so that they can be consid-
ered as general problem-solving frameworks for a broad
range of problems [138]. For real-world complex systems
with numerous decision variables, a great deal of data,
and nonlinear models, both heuristics and metaheuristics
are very attractive for providing fast, feasible, near-optimal,
and inexpensive (due to their low memory requirement)
solutions [127]. Hence, the use of these approaches is
very popular for supporting fast decisions in manufacturing
planning.

In wood production industry, heuristics and metaheuristics
are mainly used for addressing complex large-scale sawing
problems wherein the use of exact methods or exhaustive
search algorithms can be very time-consuming [7], [16].

Regarding heuristics, an interesting relevant effort is made
in [122] on a realistic large-scale sawing problem. This study
models the sawing problem as amulti-stage stochastic mixed-
integer optimization problemwith uncertainty in rawmaterial
quality and product demand. Solving this problem efficiently
within a reasonable time frame is generally not possible for
existing commercial solvers. Hence, the authors develop a
heuristic approach to tackle this problem by considering a
subset of scenarios at each iteration rather than consider-
ing all possible scenarios. Using a scenario selection rule
and a scenario updating method, this work enhances the
convergence rate of the algorithm and the quality of the
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approximate solution for the sawing problem significantly.
The study in [7] uses a heuristic approach to solve the saw-
ing problem defined as packing of rectangles into a circular
container. The proposed heuristic is based on two stages.
First, it makes a list by sorting product orders as rectangular
lumbers in terms of their width and height. Second, the estab-
lished list is used to construct a feasible solution, adding rect-
angles constructively to the circular log until the list is empty,
or until no further rectangles can be added. The authors
argue that the heuristic method is favorable for large-scale
sawing problems with reference to computation time and
sawing recovery loss. This study, however, does not con-
sider any product value recovery. An analysis of the results
obtained from the implementation of a heuristic approach
and a DP algorithm for sawing problems in [16] shows that
heuristic approaches can more efficiently handle complex
constraints in sawing problems, such as log grade sawing
operations, in comparison to deterministic approaches. This
work develops a heuristic approach for the sawing problem,
and reports that this approach can determine opening face
and near-optimal grade sawing patterns in a reasonable com-
puting time while no significant difference is observed in
obtained mean lumber values between heuristic and the DR
approach. A further comparison and evaluation of the qual-
ity of solutions obtained from a heuristic and a determin-
istic mathematical model formulated as an MILP problem
in scheduling and production planning of a real sawmill is
provided in [128]. As compared to the study in [16], the
study in [128] takes a broader perspective, taking into account
not only raw material costs, but also inventory and back-
log costs. Considering these three cost factors, the authors
argue that the deterministic model outperforms the heuris-
tic approach in terms of solution optimality and computa-
tional complexity, especially for high product demand close
to the production capacity. However, this work does not report
any evaluation on whether these results are valid for more
complicated scenarios with many constraints, such as grade
sawing.

In another group of studies, the use of metaheuristic
approaches are investigated to address production planning
problems in sawmills. An interesting attempt to solve a com-
plex sawing problem with multiple objectives and a variety
of realistic constraints is presented in [62]. This work con-
siders different types of raw materials and final products.
It aims to minimize excess production and rawmaterial waste
within an operative time constraint while meeting demand
and preferably using stored raw materials in the warehouse.
In this case, the optimization problem is formulated as a
multi-objective MINLP problem for which an efficient exact
solution method is not available. Hence, this problem is
solved using the well-known scatter search metaheuristic.
The method is evaluated through a realistic case study and
is shown to be efficient in addressing the defined objectives
and constraints within a required deadline. In [112], two dif-
ferent approaches with the integration of two metaheuristic
algorithms are formed for maximizing the volume yield of

logs during the operational planning of a sawmill. According
to the authors’ report, even the worst average computation
time was less than two minutes for this approach applied
to different scenarios, which is fast enough for a computer
tool to facilitate daily sawmill operations. In addition, meta-
heuristic approaches enhance the integration of traditionally
isolated stages in sawmill operations. For example, in [43],
a metaheuristic algorithm is used to combine the primary
sawing and ripping stage of logs while minimizing the cost
of production and satisfying demand.

A comparison between the performance of a heuris-
tic approach and a metaheuristic approach in address-
ing a large-scale nonlinear sawing problem is presented
in [7]. The metaheuristic approach, which is based on the
well-known simulated annealing concept, employs a con-
struction function to generate geometrically feasible solu-
tions while searching within the space of feasible solutions
to yield results for the packing of rectangles into contain-
ers of various shapes. The heuristic approach, on the other
hand, sorts the product orders based on their dimensions,
and accordingly, fits the rectangles constructively inside the
circular container. According to this work, both methods pro-
vide complementary computational results. However, when
dealing with smaller problems, the metaheuristic approach
provides better results. For larger problems, both approaches
are almost equally effective. There are, however, signifi-
cant differences in computation time depending on the prob-
lem scale, namely, the metaheuristic approach requires a
long computation time when addressing large-scale prob-
lems, which makes the heuristic approach more suitable
in such cases. Instead, the study in [112] shows that the
sawmill operation planning can be significantly improved
by combining metaheuristics and heuristics when selecting
logs and generating sawing patterns. Another combination
of heuristics and metaheuristics is further developed in [81],
which examines the problem of drying lumbers in conven-
tional kilns under real-world conditions. Accordingly, the
heuristic approach solves scheduling and loading problems
by calculating lumber packages’ positions, times, and kilns.
The solution of the heuristic is further improved by a meta-
heuristic, thereby minimizing the overall tardiness of dried
lumber packages by optimal scheduling and loading of dry
kilns.

In summary, considering the large number of possible
scenarios to be incorporated in different stages of sawmills’
decision making processes, for example, generated sawing
patterns in sawing problems, it is of utmost importance
to further study the interesting features of heuristics and
metaheuristics in tackling large-scale sawmill production
optimization problems to reach efficient solutions within a
reasonable time frame. However, due to the fact that such
approaches cannot guarantee that the optimal solution will be
found, and the time required for finding a good near-optimal
solution can be lengthy in an unfortunate circumstance, fur-
ther research should focus on developing efficient algorithms
that remain reliable in terms of optimality and computational
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efficiency while taking into account complex contributing
factors in real-world industrial systems.

C. ARTIFICIAL INTELLIGENCE APPROACHES
Recent years have witnessed a significant migration from
conventional model-based mathematical programming and
search algorithms towards artificial intelligence and in par-
ticular, learning-based approaches for decision and con-
trol targets in smart manufacturing systems [139]. This
tendency stems from the need for intelligent solutions
and near real-time decisions that can flexibly address the
increasing complexity of modern manufacturing processes in
dynamic and uncertain industrial environment [140]. In fact,
intelligent learning algorithms can predict new output val-
ues by learning from historical data using data-driven mod-
els, and can make use of this strategy to improve systems
performance [35].

In large-scale manufacturing systems, analyzing and
managing a large amount of data generated by new tech-
nologies, such as internet-of-things and advanced metering
infrastructures, can be very challenging. These challenges can
be addressed by artificial intelligence technologies thanks to
their ability for developing computer programs to perform a
variety of tasks, and to simulate the intelligent way of prob-
lem solving [139].

Despite the fact that artificial intelligence approaches can
be very useful for automating and semi-automating systems
supporting decision-making in sawmills, the related litera-
ture regarding their use in the sawmill operation optimiza-
tion seems relatively sparse compared to the other discussed
approaches.

A short review on the application of artificial intelligence
in the optimization of sawmill operation planning appears
in [22]. However, the review mainly focuses on supply chain
logistics and transportation. According to another literature
review in [140], data analysis and learning-based approaches
will be the core of Industry 4.0 applications for increasing the
productivity of future smart sawmill production systems.

Most often, artificial intelligence technologies are used
in conjunction with simulation tools in the relevant context.
An example of this strategy is presented in [67], where the
authors develop four machine learning algorithms to train
the model of a sawmill simulator to simplify data compu-
tation of the sawing problem for converting logs into lum-
bers. The study in [68] focuses on generating metamodels
for sawing simulation using machine learning algorithms.
This work uses some problem-specificmetrics and traditional
machine learning metrics to evaluate the fitted metamodels
which can compliment the sawing simulator. By incorpo-
rating machine learning within simulators, studies in [69]
and [70] propose the use of neural networkmodels to simplify
and accelerate the simulation of sawmill operation planning
problems. Based on the results presented by these studies,
the proposed integration strategies can increase efficiency
and reduce computational complexity of the decision-making
simulations.

There have been significant recent explorations of using
artificial intelligence in log quality evaluation and defect
detection along with advanced scanning and image process-
ing systems to achieve an efficient grade sawing. For exam-
ple, the authors in [113] demonstrate that neural networks can
automatically classify and locate wood surface knots faster,
more accurately, and more reliably compared to conventional
slow and expensivemethods. Another similar study presented
in [114] focuses on automated wood defect detection to opti-
mize operation of sawmills and find effective log processing
solutions. In this study, a machine learning technique is used
to develop a high precision and fast method for detecting
the types of defects in logs even with a very small amount
of initial data from CT images. This allows improvement
of existing software applications for scanning-based grade
sawing.

To summarize, artificial intelligence approaches allow for
intelligent analysis of data, enabling online decisions and
predicting phenomena that are difficult tomodel with conven-
tional approaches [139]. Hence, artificial intelligence algo-
rithms can be used very effectively to manage complex
systems with uncertainty and material variability, as they
are widely used in manufacturing optimization under uncer-
tain industrial conditions [35]. In spite of this, there have
been no significant contributions in literature to the use of
artificial intelligence approaches for tackling uncertainty in
sawmill operation planning. Moreover, recent technological
advancements on the Internet of Things (IoT), digital sens-
ing, and big data analytics can enable wood production pro-
cesses to employ advanced techniques already used in other
smart manufacturing sectors, such as interactive data analy-
sis based on data collection and real-time analysis to guide
the subsequent data collection steps [141], dynamic feature
extraction/selection-based algorithms to identify the most
important features/operations in production data [142], and
big data quality improvement by suppressing noisy features
and managing issues related to data collection, data security,
data transformation, and storage [143]. Nevertheless, in artifi-
cial intelligence and data analytics, it is imperative to practice
and test on real systems, as well as to collect training data in
sufficient quantities and of high quality. Although real-world
implementation and data analysis are vital for validating com-
plex problems with numerous variables and nonlinearities,
yet only a limited number of practical sawmill decision sup-
port systems have been implemented through artificial intel-
ligence approaches.

IV. USE CASES
In this section, we discuss two use cases from literature to
illustrate how to model and implement different decision-
making processes in real sawmill production systems. These
examples can help readers to gain a clearer understanding
of how the optimization approaches and automation systems
discussed relate to their modelling and applications. Each
case is examined for its objectives, constraints, methodolo-
gies, and evaluation results.
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TABLE 2. An overview on the state-of-the-art methodologies for automated decision-making in wood processing systems.

A. OPTIMAL SAWING PROBLEM
A realistic modeling of sawing decision optimization in
sawmills for converting logs into finished lumbers results

in nonlinear optimization problems. An interesting mathe-
matical formulation and modeling of a sawing problem is
presented in [7], in which geometric complexity of feasible
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sets and combinatorial properties of the problem enforce non-
linearity and computational complexity. This work defines
the sawing problem as arranging rectangles into a circular
container in two dimensions (see Fig. 9). The study focuses
on an economic profit objective (see the objective function
defined in (3)) along with technical feasibility constraints
(see the dimensional and geometric constraints defined
in (4)-(11)). More precisely, the aim is to pack a subset of
rectangular lumbers into a circular cross-section of a log
while maximizing the total cutting yield. Given that N ,
{1, . . . , n, . . . ,N } is the set of lumbers where N is the total
number of lumbers that can be selected, the N -dimensional
vector p , (p1, . . . , pi, . . . , pN )> represents the selection
of lumbers for consideration in the optimal sawing pattern.
Then, the model is described by a MINLP as follows:

max
p

N∑
i=1

LiWipi (3)

subject to: (vllix , v
ll
iy) = (cix − Li/2, ciy −Wi/2),

∀i ∈ N (4)

(vlrix , v
lr
iy) = (cix + Li/2, ciy −Wi/2),

∀i ∈ N (5)

(vulix , v
ul
iy ) = (cix − Li/2, ciy +Wi/2),

∀i ∈ N (6)

(vurix , v
ur
iy ) = (cix + Li/2, ciy +Wi/2),

∀i ∈ N (7)

(vkix − X0)
2
+ (vkiy − Y0)

2
≤ R20pi,

∀i ∈ N ,∀k ∈ {ll, lr, ul, ur} (8)

(Li/2+ Lj/2)pipj −
∣∣cix − cjx ∣∣ ≤ 0,

∀i, j ∈ N , i 6= j
or
(Wi/2+Wj/2)pipj −

∣∣ciy − cjy∣∣ ≤ 0,
∀i, j ∈ N , i 6= j

(9)

pi ∈ {0, 1}, ∀i ∈ N (10)

X0,Y0 ≥ R0, (11)

where Li and Wi are respectively the length and the width
of the ith rectangular lumber, R0 is the radius of the log’s
circular cross-section, (X0, Y0) are the coordinates of the
center of the log’s circular cross-section, (cix , ciy) are the
coordinates of the gravity center of the ith rectangular lum-
ber, and (vkix , v

k
iy) for ∀k ∈ {ll, lr, ul, ur} is the index set

of four vertices of the ith rectangular lumber. The formula-
tion defines fep(p) =

∑N
i=1 LiWipi as an economic objective

function, while there are geometrical linear equality con-
straints (4)-(7) for the definition of vertices, and nonlinear
inequality constraints (8) and (9) as technical feasibility con-
straints (see Section II-C). By introducing new binary vari-
ables (zij) and a large positive number (M ), the conditional
‘‘or’’ constraint (9) can be converted into the following sim-
pler equivalent constraints:∣∣cix − cjx ∣∣+ (Li/2+ Lj/2)pipj ≤ Mzij,

∀i, j ∈ N , i 6= j, zij = 0, 1 (12)∣∣ciy − cjy∣∣+ (Wi/2+Wj/2)pipj ≤ M (1− zij),

∀i, j ∈ N , i 6= j, zij = 0, 1 (13)

The main computational difficulty of this problem arises
from the satisfaction of the nonlinear constraints. To solve
this optimization problem, three methods are presented and
compared, one using model-based mathematical program-
ming discussed in Section III-A (by a NLP model) and two
using search algorithms discussed in Section III-B (a heuris-
tic algorithm named ordering heuristic, and a metaheuristic
algorithm called simulated annealing). The ordering heuris-
tic method involves sorting lumber in decreasing order by
dimension, and then, fitting rectangles constructively inside
circular containers until the list is empty or there is no more
room to pack the following rectangle. Instead, the simulated
annealing is a useful metaheuristic for finding global opti-
mum in an extensive search space with many local optima.
A variety of lumber sets were used in this study to evaluate
the performance of these three methods.

On the one hand, it was shown by the exact model that
a yield of about 70% of the log area can be achieved in a
reasonable time (471s) when there are only eight lumbers.
However, when the number of lumbers is increased to nine,
the method fails to find an optimal solution within the 3600s
computational time limit. This shows the limitations of the
exact nonlinear model in solving large-scale problems.

On the other hand, with problems where there is a greater
number of lumbers, both the ordering heuristic and the simu-
lated annealing algorithms provide solutions of similar qual-
ity with more than 90% of the total yields. As the problem
size grows, however, the ordering heuristic outperforms sim-
ulated annealing in terms of computation time significantly.
For example, when solving a problem with 200 lumbers and
a log with a radius of 50 measuring units, the result obtained
by the ordering heuristic shows a sawing yield of 96.23% in
3.20s computation time, which almost has the same sawing
quality but is much faster than the result obtained by the
simulated annealing with a sawing yield of 96.24% in 573.7s
computation time.

B. SAWMILL OPERATION OPTIMIZATION WITH
INVENTORY/BACKORDER CONSIDERATION
A multi-product, multi-period production planning problem
considering uncertainty in raw material quality and product
demand is examined on a realistic scale prototype sawmill
in [15].

This study examines economic profit objectives in terms
of raw material costs as well as expected inventory and
backorder costs (see the objective function defined in (14)).
The problem includes technical feasibility constraints such as
machine capacities (as in (16)) and storage limits and inven-
tory balancing (as in (15) and (17)), as well as customer satis-
faction constraints by defining different quality classes of raw
materials in both objective (14) and constraint (15). Further-
more, the proposed model takes into account uncertainty in
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demand and non-homogeneous characteristics of raw mate-
rials by defining a stochastic process and random variables
with stationary probability distributions defined in (14) for
uncertain parameters during the planning horizon.

Themain objective is to reduce log consumption cost while
considering inventory holding and backorder costs.

This problem is solved using search algorithms discussed
in Section III-B by a multistage stochastic model. A dynamic
stochastic process presented as a scenario tree is used to
model the uncertain demand, while a static random variable
with a stationary probability distribution is used to model
the uncertain yield. The work considers the production plan,
inventory, and backorder sizes as decision variables of the
problem. The multi-stage stochastic programming problem
is then formulated as:

min
∑
n∈T

P(n)

(∑
t∈tn

∑
c∈C

∑
a∈A

Mctφaceat (n)

)

+

∑
n∈T

P(n)

 S∑
i=1

Pi
(∑
t∈tn

∑
p∈P

(
Hptzipt (n)+Bptb

i
pt (n)

))
(14)

subject to: zct (n) = zct−1(m)+ sct −
∑
a∈A

φaceat (n),

n ∈ T , t ∈ tn, c ∈ C,

m =

{
a(n), t − 1 /∈ tn
n, t − 1 /∈ tn

(15)∑
a∈A

δareat (n) ≤ Qrt , n ∈ T , t ∈ tn, r ∈ R

(16)

zipt (n)− b
i
pt (n) = zipt−1(m)− b

i
pt−1(m)

+

∑
a∈A

ρiapeat (n)− dpt (n), n ∈ T , t ∈ tn,

p ∈ P, i = 1, . . . , S,

m =

{
a(n), t − 1 /∈ tn
n, t − 1 /∈ tn

(17)

eat (n) ≥ 0, zct (n) ≥ 0, zipt (n) ≥ 0, bipt (n) ≥ 0,

n ∈ T , t ∈ tn, c ∈ C, p ∈ P, a ∈ A,

i = 1, . . . , S, (18)

where the decision variables ea(n), zp(n), zc(n), and bp(n)
represent the number of times each process a should be run,
inventory size of product p, inventory size of raw material
with the quality class c, and backorder size of product p,
respectively. The indices S, i, (n,m), t , p, c, a, r respectively
denote the total number of scenarios, scenario of the random
yield, node of the scenario tree, time period, product, raw
material class, production process, and machine. Set T rep-
resents the scenario tree and dp(n), P(n), Pi, Mr , and δa are
the parameters related to demand of product p, probability of
node n, and probability of scenario i for the random yield,
the capacity of machine r , and the capacity consumption of
machine r by process a, respectively.

In the objective function (14), the first term addresses the
expected rawmaterial costs for demand nodes, and the second
term represents the expected inventory and backorder costs
for demand nodes and yield scenarios within the planning
horizon. In models (14)-(18), the decision variables including
production plans (i.e., ea(n)) and state variables of inventory
and backorders (i.e., zp(n), zc(n), and bp(n)) are indexed both
for nodes and for time periods.

It is assumed that at each stage of the demand scenario
tree, the decision-maker is capable of adjusting the pro-
duction plan ea(n) to maximize the sawmill profitability.
The presented numerical results indicate that the multi-stage
stochastic model provides better solutions than other methods
compared, including a deterministic model which neglects
the uncertainty in processes yields and products demands.
For instance, based on the results provided by the presented
method, production costs and inventory/backorer costs are
nearly 30% and 70% lower than those from a mean-value
linear programmingmethod. However, this method requires a
significantly longer computation time than the other methods
compared (almost 29% more than the time for mean-value
linear programming method), so an improvement strategy in
terms of computational complexity is necessary.

In summary, considering the importance of yields and
demands variations on production plans, as well as customer
orientation, which is a priority in sawmills that rely on export
markets, obtaining production plans with aminimal inventory
and backorder sizes can benefit sawmills significantly.

V. DISCUSSIONS, CONCLUSION AND
RECOMMENDATIONS
In this paper, we presented a comprehensive survey of exist-
ing studies on automated decision-making in wood pro-
cessing systems. This review started from identifying how
the automatization of production processes and development
of automated decision support systems can bring poten-
tial benefits to sawmills and the forest supply chain as a
whole. We then discussed the most-identified challenges and
roadblocks ahead of this automatization. In the next step,
we focused on methodological aspects of designing and
implementing advanced control and optimization techniques
for the realization of automated decision support systems
throughout different steps of wood processing to achieve
potential opportunities and tackle corresponding challenges,
resulting in efficient production in sawmills.

Although we highlighted some specific outcomes and
research directions within each subsection of Sections II
and III, the following paragraph summarize some more gen-
eral conclusions and insights that emerged from this review in
terms of potential opportunities, challenges, andmethodolog-
ical aspects considering the current state and future research
directions.

A. CURRENT STATE
Considering the papers reviewed, the following can be sum-
marized as the current state of progress in the research topic:
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• Regarding potential opportunities identified as a result
of implementing automated decision-making systems in
the wood production process, three main aspects were
recognized in the selected papers, namely economic
profits, technical achievements, as well as environmen-
tal incentives and penalty avoidance. Among the total
papers reviewed, 58% focus on economic profits, which
is noticeably higher than papers discussing techni-
cal achievements and environmental incentives/penalty
avoidance, which account for 27% and 15% of the total
papers reviewed respectively. On the one hand, these
results can demonstrate that economic factors are the
primary motivation for the automation of manufacturing
processes, as this aspect has also been the main objective
of the earliest related works in this area dating back to
the 60s. In this regard, a major emphasis of research
has been on production efficiency improvement through
improved output product yields (36% of all related
papers), however, energy efficiency and space saving
have also been other important research areas contribut-
ing to upgrading economic profits in sawmills through
developing automated decision-making systems. On the
other hand, these results can further reveal gaps in
research for the other two aspects, in particular, environ-
mental incentives and penalty avoidance. This is while
legal controls and measures for preventing industries
from negatively impacting the environment is increasing
rapidly. In light of the direct use of forest resources in
wood production, as well as the use of energy-intensive
and polluting machinery and drying kilns, sawmills are
increasingly regulated and supervised by governments.
So far, however, environmental goals have seldom been
examined as an independent objective at the sawmill
level when it comes to designing automated decision-
making strategies.

• As for challenges in the automation of sawmills’ pro-
duction processes, four major aspects were recognized
in the literature, namely financial limitations, techni-
cal challenges, customer satisfaction, and uncertainty.
Among them, technical challenges are by far the most
popular topic, accounting for 54% of the total number
of related papers reviewed. This popularity is due to
the critical importance of processing speed and response
accuracy in advanced automated wood processing sys-
tems for providing more flexible operations with a better
control of raw materials and finished products. The next
highly-explored challenge in the literature is dealing
with financial limitations that include initial investment
costs for upgrading machinery and equipment, as well
as operating and maintenance costs. There are, how-
ever, other expected costs that have not been taken into
account in most of the papers reviewed. For instance,
a rise in energy rates can directly affect the final price
of most automated machines and equipment powered by
electricity. The process of tracking these costs requires
updating revenue projections and calculations over time,

which involves a deeper understanding and more inves-
tigation on the entire production process. In addition,
although significant studies report that wood product
manufacturers broadly face the challenge of making
decisions on the basis of unreliable or incomplete infor-
mation, it is surprising that only about 11% of papers
reviewed address the challenge of uncertainty in produc-
tion system parameters and decision-making models,
when compared to technical challenges and financial
limitations. Finally, there has been relatively little atten-
tion paid to the customer satisfaction aspect. As the
wood industry faces a competitive market, sawmills are
concerned about keeping and even strengthening their
customer-centric environment as part of their processing
renovation. Hence, it is necessary to ensure that sawmill
operations planning can be automatedwhile maintaining
a high level of services with low order lead time and
being efficient with respect to the company’s financial
targets.

• Regarding methodologies for facing various decisions
over several interrelated steps to transform rawmaterials
into finished goods and deliver them to customers or
distribution centers, three major categories of methods
were identified, namely model-based mathematical pro-
gramming, search algorithms, and artificial intelligence.
These methods are typically chosen according to types
of decisions, problem sizes, and the level of solution
speed and accuracy required. Although recent studies
are increasingly focusing on fast search algorithms or
artificial intelligence techniques due to concerns regard-
ing the complexity of advanced production systems and
memory limitations, deterministic model-based mathe-
matical programming methods -with 62% of the total
number of papers reviewed- still remain a prominent
class of approaches for addressing decision-making
problems in sawmills. On this line, dynamic program-
ming (DP) is the most-widely used model-based math-
ematical programming method which has commonly
applied to sawing and bucking operations optimization.
The DP algorithms, however, require a large memory
to store the results of each sub-problem due to the
fact that they use stored sub-solutions in order to be
faster in computation. Therefore, their use in large-scale
sawmills could be costly and challenging, especially if
parallel computing is intended. In the situation that can
arise in optimizing the decision-making performance
of a sawmill, especially if the scale of the problem is
large, problem solving speed is a critical requirement.
Many studies have concluded that stochastic, heuris-
tic, and metaheuristic search algorithms can be very
helpful in such situations, in particular when multiple
complex objectives need to be tackled (see Table 2).
Last but not least, artificial intelligence has been used
in another class of approaches for analyzing data and
enabling online decisions in sawmill operation planning.
Nevertheless, artificial intelligence has so far been a
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very small contributor to the wood processing automa-
tion, accounting for only 9% of all methods reviewed.
Additionally, although artificial intelligence algorithms
are often capable of managing complex systems with
uncertainty and material variability, there have been no
significant contributions to literature describing their
application to uncertainty management in sawmill oper-
ation planning. On the other hand, a large number of
studies and review papers discussed that for validating
the effectiveness of the designed approaches for com-
plex problems with numerous variables and nonlinear-
ities, practice and testing on real systems, collecting
sufficient quantities and high-quality data, and evaluat-
ing decision support system performance by real-world
implementations are crucial. There are, however, only
a few available practical implementation of approaches
for sawmill decision support systems. In fact, despite the
existence of some small-scale practical tests, the num-
ber of successful large-scale industry applications is still
rare in the literature.

B. FUTURE RESEARCH DIRECTIONS
There are still other important and challenging research topics
which have not received much attention yet. The following
are some of the future research directions briefly summa-
rized:

• Even though there are a large number of relevant stud-
ies supporting automated decision-making in sawmills,
most of them only focus on improving a sole aspect
such as economic profits from improved sawing yields.
Although sawing is a very important stage over
wood processing, future studies should also incorpo-
rate other potential opportunities to increase overall
sawmill profitability, in particular energy aspects and
environmental-friendly production. Sawmills may be
able to widely integrate energy-efficient pre-processing,
processing, and kiln drying methods into automated
decision-making systems to reduce energy consump-
tion costs and degree of unwanted carbon dioxide emis-
sion, while developing the use of renewable energy
resources for their internal energy uses. In fact, a well-
designed decision planning can result in benefits over-
lapping from different categories of opportunities. The
sawmill industry is therefore encouraged to identify its
potential development paths to maximize its profitabil-
ity on all levels, including the economic, technical, and
environmental perspectives. However, seeking a greater
number of opportunities requires a consideration of mul-
tiple objectives and corresponding constraints, which
can lead to a significant increase in the size and com-
plexity of the decision-making problems, requiringmore
advanced control and optimization strategies. A thor-
ough examination of these aspects needs to be conducted
in future research.

• As one of the most challenging aspects of wood pro-
cessing, random characteristics of raw materials impose

significant uncertainty into the wood processing prob-
lem. Having more detailed and accurate information
on logs’ characteristics is essential for eliminating this
uncertainty from the model and contributing to more
efficient production performance and higher production
yields. Hence, a timely topic for future research should
be the development of advanced scanning systems (such
as CT and MRI scanners), smart sensors, new informa-
tion and communication systems, and computer process-
ing and image analysis with specific application to wood
processing systems.

• Although advanced scanning systems offer obvious
advantages to sawing decisions, evaluating the potential
productivity increase before investing in these high-cost
technologies is necessary (economic evaluations of the
purchase of scanners versus possible returned yields).
In fact, as many sawmills operate as independent
small and medium-sized businesses, moving towards
advanced scanning systems can be challenging to them
due to their high initial costs, long payback periods, and
the need for significant modifications to current opera-
tions. To survive in the highly competitive wood market-
place under current turbulent economic conditions, more
economic alternative solutions should be also explored
to allow smaller production companies to take advantage
of economic opportunities. An example of such methods
is the use of online optimization and control approaches
which can observe the condition of the log after each
cut and dynamically update the sawing model without
having knowledge of the logs’ internal characteristics in
advance. Another relevant alternative method could be
to separate the sawing phases, so that there is no inter-
nal scanning at the primary sawing phase, and internal
defect scanning is only applied to the secondary sawing
phase by simpler scanning systems. Nevertheless, each
of these methods may have its own limitations including
control complexity, high computation time, and the need
for appropriate sawing equipment. So far, existing stud-
ies do not provide comprehensive and effective solutions
to address these issues. These gaps in research should
therefore be filled by future studies.

• Whereas some decision-making problems such as
transportation and routing optimization, and energy
scheduling are frequently formulated by model-based
mathematical programming in the form of continu-
ous and integer linear programming problems, more
complex problems such as quality-based grade sawing
and kiln drying optimization with numerous decision
variables, a great deal of data, and nonlinear models
can be more efficiently addressed through search algo-
rithms since the use of exact methods can be very
time-consuming or even intractable. Nevertheless, when
a multi-objective decision-making problem is intended
across different stages of a sawmill in which different
forms of objectives and constraints may exist, multi-
stage approaches and the combined use of deterministic
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and search algorithms may offer the most efficient solu-
tion quality and speed. There is still much to be learned
about the ability of these methods to deal with large
real-world challenges in the future.

• Since sawing optimization is the primary objective
for improving sawmill operation planning, an empha-
sis should be placed on further improving physical
modelling of logs and the sawing algorithms perfor-
mance. The following are some future improvement
directions that have not been sufficiently addressed so
far: 1) enhancing logs’ model accuracy by using more
realistic cross-sections in three-dimensional log mod-
elling such as elliptical instead of circular cross-sections,
2) developing length and taper sawing optimization
throughout the trunk for various grades, 3) producing
lumbers with different dimensions and irregular shapes
(not just the cubic lumbers) to satisfy a wider range
of customers from different dependent industries, and
4) extending efficient approaches for accommodating
different sources of uncertainty such as various defect
sizes and types, irregularity in log shapes, and variable
products demand in the system modelling.

In summary, the presented review and discussion on the cur-
rent state and the future directions of research can provide a
foundation for researchers and practitioners to further explore
the topic.
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