
Received 31 October 2022, accepted 11 November 2022, date of publication 17 November 2022,
date of current version 23 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222849

Dynamic Routing and Failure Recovery
Approaches for Efficient Resource Utilization
in OpenFlow-SDN: A Survey
BABANGIDA ISYAKU 1,2, KAMALRULNIZAM BIN ABU BAKAR1, (Member, IEEE),
FUAD A. GHALEB 1, AND ABDULAZIZ AL-NAHARI 3
1Department of Computer Science, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
2Department of Computer Science, Sule Lamido University, Kano, Jigawa 700271, Nigeria
3UNITAR Graduate School, UNITAR International University, Petaling Jaya 47301, Malaysia

Corresponding authors: Babangida Isyaku (isyaku.babangida@utm.my) and Abdulaziz Al-Nahari (abdulaziz.yahya@unitar.my)

This work was supported in part by the Universiti Teknologi Malaysia under Grant R.J130000.7709.4J561, and in part by the Post-Doctoral
Fellowship Scheme under Grant Q.J130000.21A2.06E03.

ABSTRACT Software Defined Networks (SDN) is a new network paradigm that emerged to offer better
network management by separating network control logic and data forwarding element. This separation
speeds up network innovation without relying on the vendor-proprietary interface for network element
configuration to forward packets. However, SDN is flow driven network; for each arrived flow, a feasible
path is computed to deliver the flow to its destination. Afterwards, the SDN control logic process the
corresponding routing rules and instruct the set of data forwarding elements to install them on their Flowtable
to guide the routing process. Unfortunately, the network changes more frequently in dynamic large-scale
networks, and the Flowtable is a constraint with limited space. These challenges require the SDN controller
to compute paths more often, which may also require many flows routing rules. In addition, the frequency of
communication link failures has increased lately. The successful deployment of SDNheavily depends on how
it satisfies the reliability requirement with uninterrupted services. Several studies were conducted to compute
the optimal path for data forward to meet their Quality-of-Service demand. Other studies focus on reducing
the frequency of link failure. Some studies were conducted to manage the constraint Flowtable resources.
This survey focuses on Routing rules placement, unoptimized routing, link, and switch load balancing, failure
detection, and recovery. The paper extensively discusses each issue and analyses the weakness of the current
solutions. Finally, it highlights potential challenges that need future research attention.

INDEX TERMS SDN, OpenFlow, route path selection, load balancing, failure recovery.

I. INTRODUCTION
The rapid growth of data centres and the emergence of
the Internet of Things (IoT) have increased the number of
network-connected devices. Integrating these heterogeneous
devices enables humans to interact easily with their surround-
ing physical world, boosting business growth. Network traffic
control in these modern networks is a very complex task
that requires incorporating the dynamicity of time-varying

The associate editor coordinating the review of this manuscript and

approving it for publication was Adamu Murtala Zungeru .

changes in the network environment over a heterogeneous
network. Traditionally, network operators constantly used a
command line interface using vendor software to config-
ure the network devices. For any subtle network changes,
operators struggle too much with the manual reconfigur-
ing processes, which could account for around 40% of the
most typical network operational issues [1]. Unfortunately,
the architecture is not well designed to enable fine-grained
and Quality of Service (QoS) aware traffic engineering over
the network. Integrating the network control element with
the data forwarding entities complicates the network traffic

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121791

https://orcid.org/0000-0002-3820-3378
https://orcid.org/0000-0002-1468-0655
https://orcid.org/0000-0003-4616-453X
https://orcid.org/0000-0003-2412-6559


B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 1. Comparison of previous survey scope and their contributions.

monitoring process, leading to less QoS-aware flow con-
trol. As a result, inefficient network resource utilization is
unavoidable, and network management is quite challenging,
hindering network innovation.

Software Defined Networks (SDN) emerged to simplify
network management and speed up innovation by separat-
ing the control plane from the data plane. SDN moved
the network state and intelligence to a logically central-
ized controller. The data plane becomes a simpler forward-
ing entity that forwards packets to the desired destination.
The controller extracts the high-level network application
through the northbound interface and manages the network
devices through the southbound protocol [2]. This way, net-
work managers leverage SDN controllers to implement new
dynamic routing strategies, customized traffic management,
dynamic allocation of network resources, and many other
programmable functionalities. An OpenFlow is the most pop-
ular protocol that hides the network devices’ complexity and
exposes a simple Application Programming Interface (API)
to the network operators. This way, operators are relieved
from the manual configuration of devices and resource man-
agement. Thus, accelerating network management and inno-
vation and reducing the risk of an error that may arise
during the network manual configuration time. The merit
of SDN made it to be considered under the deployment in
Carrier-Grade Networks (CGNs). It has attracted the atten-
tion of academia and commercial industries, such as Google,
Microsoft, Deutsche Telekom, and Verizon [3].

Despite the advantages of separating the network control
logic and data forwarding entities introduced by SDN, there
have been various concerns about network resource utiliza-
tion and performance issues. The communication channel
between the control logic and data forwarding element intro-
duced extra processing delay and increased the amount of
control traffic managed by the network controller. As the net-
work increases, a high traffic volume is exchanged between
the two entities. The data forwarding entities also intro-
duced another concern of shortage of storage to accommodate
the required traffic flows. QoS flows have stringent routing

requirements, which must comply for optimal performance.
Fault tolerance is a crucial property for computer network
availability. Unfortunately, an increased communication link
failure at the SDN data plane was recently reported.

Many studies have been proposed to compute feasible
paths while meeting the demand of flow QoS and preserving
the network resource [4], [5], [6]. Similarly, when a failure
occurs on the selected path, several works addressed the
failure recovery in SDN [7], [8], [9]. Other studies survey the
existing failure recoverymanagement. Fonseca et al. [10] pre-
sented an overview of fault management threats focusing on
each layer in SDN and a threat by each interface between the
layers. They further discussed trade-offs between approaches
and their stabilities for different SDN applications. To ensure
SDN reliability, Yu et al. [2] also presented a systematic
survey of SDN fault management by evaluating the existing
works, and their weaknesses were noted. In-depth analyses
focusing on detecting, localizing, correcting, and preventing
faults were among the issues noted and discussed extensively.
Issues of fault monitoring, diagnosis, recovery, and repair
were also touched up.

On the other hand, Rehman et al. [11] focus on SDN
fault tolerance and classify it into four phases: Error Detec-
tion, damage confinement and assessment, error recovery,
and fault treatment and service continuation. These phases
were extensively discussed. Error detection highlight how
failure is detected. The error recovery phase explained how
to restore the system and maintain a failure-free network. The
extent of damage caused by faulty components is presented
in damage confinement and assessment. Fault treatment and
service continuation discussed how faults are either repaired
or the system is reconfigured to avert further fault damage.
Finally, additional research gaps were identified. Other works
by Ali et al. [12] review schemes for link failure recovery;
their work investigates open research questions posed by
centralized network architecture. Restoration and protection
recovery were analyzed. Performance gains for the former
and latter are highlighted, and research directions are pre-
sented. In a similar effort, Malik also surveys fault tolerance

121792 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

related [3] and emphasizes the need to investigate restoration
mechanisms.

However, research is better with time, and SDN fault toler-
ance issues are still in their infancy [11]. There is still a wide
range of research opportunities with unanswered questions by
the research community. This survey investigates routing and
failure recovery issues. Failure recovery is greatly affected
by several design factors: computing a reliable primary path
while meeting different flow demands with efficient resource
utilization, the controller’s operation mode, and the failure
path’s recovery range. Overlooking these factors may lead
to poor network resource utilization, high communication
overhead, and poor network performance. Moreover, after
the occurrence of network failure, Quality of Service (QoS),
load balancing, and post-recovery congestion are other cru-
cial issues that may affect the network performance in a
large-scale network. Dynamic load balancing and multipath
forwarding to solve the problem of congestion control are also
discussed in this survey.

Transmissionmedium requires high throughput, resilience,
and reliability for efficient data transmission. Multimedia
applications such as live video streaming, video gaming, and
other delay and throughput-sensitive flows require an optimal
path for routing. To cope with these multimedia services
demands, optimal dynamic routing is usually computed to
achieve better network resource utilization, leading to higher
network throughput and better QoS. Unfortunately, commu-
nication networks are prone to failure, and the selected path
may not always guarantee service availability. Furthermore,
the link failure between the chosen route may negatively
influence network performance because it may interfere with
some of its tasks, such as routing. Therefore, a dynamic
routing decision is required to incorporate link quality to min-
imize link failure occurrence. Unfortunately, there is a lack of
sufficient literature to include routing problems with failure
recovery in SDN for efficient resource utilization and better
QoS. Table 1 summarizes the scope of the related existing
survey. This further motivates us to investigate the SDN’s
dynamic routing schemes and failure recovery approaches.
This paper surveys routing problems and failure recovery
management for efficient resource utilization.

The rest of the paper is organized as follows: Section II
presents an overview of Software Defined Network and
discusses its widely used standard protocols. Section III
explained the research challenges and problem background
related to routing and failure recovery. In addition, routing
problems and related works are also discussed. Section IV
surveyed failure detection and recovery approaches. Future
research directions are discussed in Section V. Finally,
Section VI concludes the paper.

II. OVERVIEW OF SOFTWARE DEFINED NETWORKS
The SDN is a composition of different planes, such as the
Application Plane (AP), the Control Plane (CP), and the
Data Plane (DP); other layers are NBI and SBI, as shown
in Figure 1. Each of the planes and layers has its specific

functions. AP is a set of applications such as routing policy,
Quality of Service (QoS), access control list, load balancing,
and others. These applications leverage the NBI to implement
network control and operational logic at the CP. The CP
mediates between the AP and the DP, thereby managing the
entire network through programmability features using the
plug-in. This way, it generates a network control function
based on defined policies by the network operator from AP
into a set of instructions inform of flow entries into DP
to guide the network management. However, a single CP
can manage significant traffic in a small network setting.
Distributed controllers can also manage the network when
a single controller fails. Details about distributed controllers
can be found in [1]. The DP is a set of networking equipment,
such as switches and routers, similarly used in the conven-
tional network. The main difference is that DP is now simply
forwarding entities without any embedded control logic to
take an independent decision. The network intelligence has
been removed while focusing only on delivering traffic flows.
Therefore, for any control function DP consults the CP for
further action. In return, it generates a set of flow entries and
instructs DP to be installed in its Flowtable through SBI.

FIGURE 1. SDN architecture.

The SBI served as a critical component for separating CP
from DP through programmability. Typically, the manufac-
turing of a new hardware switch can take an average of
two years to be ready for commercialization, with upgrade
cycles of up to nine months [13]. Developing a new software
product may take six months to one year [14]. Therefore, this
process takes a lot of time with high investment risk, which
may slow network innovations. As such, the SDN SBI API
emerged to offer programmable to provide flexible network
management. Forwarding and Control Elements (ForCES),
Open v Switch Database (OVSDB), and Protocol-Oblivious
Forwarding (POF) were among the early SBI API propos-
als [1]. ForCES provides flexibility compared to conventional
network management without changing the network architec-
ture. However, the CP is potentially maintained in the same
network element.

VOLUME 10, 2022 121793



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

In contrast, OVSDB provides more advanced manage-
ment features for Open v Switches. POF is among the SBI
APIs aimed at enhancing the forwarding performance of DP.
However, these SBI APIs rely on modifying DP to support
Flowtables [1]. This way, the remote entity can flexibly con-
figure the DP through operations such as adding, removing
or modifying flow entries in the Flowtable at DP. OpenFlow
is another SBI API that emerged to facilitate network and
control management without altering the SDN architecture.
The SDN controller has direct access and control of the
DP through a logical data structure called Flowtable. The
flexibility of OpenFlow attracted not only research com-
munities but including an industry [13]. As a result, Open-
Flow is widely considered the most SBI API to achieve the
benefit of SDN. Although, OpenState [15] was proposed as
an extended version of OpenFlow with more programmable
features aimed at making the DP devices act independently
without consulting the controller. However, OpenState has
not been standardized as an acceptable SDN SBI. As such,
OpenFlow implements the concept of SDN by abstracting
network communications in the form of flows to be processed
by the OpenFlow switches with a set of instructions, in other
words, flow entries.

III. CHALLENGES AND BACKGROUND
various types of SDN Applications in large-scale networks
generate different traffic flows, such as throughput, delay-
sensitive, and bandwidth-sensitive flows. Some flows are
generated by network protocols such as (ARP and DNS), and
interactive applications usually generate latency-sensitive
flows. Conversely, scientific computing, MapReduce, and
machine migration applications formed throughput-sensitive
flows. The recent proliferation of the Internet of Things (IoT)
devices required network architecture to react in real-time
and be scalable for many traffic flows. Forwarding devices
are also required to present efficient data delivery for both
types of traffics flows with an acceptable delay to meet the
demand of CGNs. This way, for every arrived flow, a feasi-
ble primary path is computed considering available network
resources. The shortest Path Algorithm (SPA) is widely used
to select feasible paths [16] to achieve efficient network
resource usage. The most common way for a SPA to achieve
resource efficiency is to limit resource consumption and to
keep the network load balanced. However, traffic flows differ
with a variety of Quality of Service (QoS) requirements, and
SPA may not meet the demand of some flows. As such,
additional constraints must be imposed to meet the needs
of different flows while achieving efficient network resource
utilization. To achieve this, the controller needs to i) gain and
maintain accurate global network knowledge, ii) compute the
feasible path that meets the demand of given flows while effi-
ciently utilizing the underlying network resource, and finally,
iii) install the corresponding rules in the switch Flowtable to
guide the routing process. Therefore, the efficiency of path
selection heavily depends on how the controller gain and
maintain accurate Link State Information (LSI). The existing

SPA used static LSI (i.e., hop count, distance, link capacity)
to compute a path [17], [18]. Others considered dynamic LSI
(e.g., link utilization, available link capacity) [19], [20]. This
way, dynamic routing periodically requests LSI information
from underlying network devices. Static LSI significantly
reduces communication overhead because the controller does
not have to query the network state regularly. However, as the
network increases in size, it will cause congestion because
it always calculates the same path. In contrast, dynamic LSI
yields better performance but at the cost of periodic network
state overhead.

Conversely, reliability is another issue affecting smooth
data transmission after computing the feasible path. Link or
switch failure is reported to have occurred frequently, on aver-
age, every 30 min [7]. In addition, some links are likely to
fail due to software bugs or hardware malfunctions. Upon
failure occurrences, all traffic flows affected by the failure
must be rerouted through backup paths as soon as possible
for continued service provisioning. For CGNs, the failure
recovery process must be completed within a predefined time
interval [18]. The recovery mechanism in SDN is divided
into two categories: restoration and protection. In the case of
restoration, the backup path is deployed on-demand. As for
protection, the backup path is always pre-planned in advance
before occurrences of failures. As a result, disrupted traffic
flows can immediately be redirected without incurring extra
signaling overhead. Therefore, protection approaches can
meet the demand for delay-sensitive application requirements
of CGN. However, the switch Flowtable storage Ternary
Content Addressable Memory (TCAM) is a constraint with
limited space [21]. Typically, a Flowtable is populated with
correlated primary and backup path rules for fast-forwarding.
Unfortunately, the corresponding forwarding rules is rela-
tively higher than the TCAM capacity.

In contrast, the restoration approach reduced the number of
forwarding rules and can adapt to frequent network changes.
However, the merit comes at the cost of communication
overhead and sometimes longer computing paths. Finding
the fastest path could be expensive in terms of the time
it takes to compute a new route and modify the relevant
switches Flowtable [22], [23]. The number of forwarding
rules in the Flowtable can contribute to higher update opera-
tions. Switches with many forwarding rules in their Flowtable
experienced higher update operation, which may extend the
routing convergence time. Latency is critical for some appli-
cations such as VoIP (Voice over IP). Traffic from delay-
sensitive application flows must arrive at their destination
without considerable flow setup latency, typically within
25milliseconds [24]. Therefore, path computation and failure
recovery approaches using either restoration or protection
still face various challenges in the static or dynamic routing
and failure recovery process [25].

For the routing issues, network unbalances and conges-
tions are among the issues that affect static routing, although
they can be overcome by dynamic state routing. How-
ever, it required substantial overhead to obtain accurate

121794 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

FIGURE 2. Routing and failure recovery challenges under dynamic and large-scale network conditions.

dynamic link state information. In addition, link cost needs
to be regularly recomputed based on the new network state,
while a prior study has shown network state changes every
1.5 sec [26]. This could lead to extra pre-computation costs
before the actual path computation. In full protection cover-
age, network topology density differs, making full protection
very hard when multiple components fail. Typically, failure
can be categorized into two parts in SDN: 1) at the con-
troller and 2) at the data plane. At the controller, master
and slave controller failure problems occur when one of the
controllers runs out of the assigned capacity [27]. Several
controller failure problem solutions have been introduced
over the years [28], [29], [30]. However, multiple controller
failure problems are out of the scope of the present docu-
ment. We focus on the failure at the data plane; this way,
component failure can be categorized into four types: single-
link failure, single-node failure, multiple-link failure, and
multiple-node failure. In highly dense network topology,
some flows may not always have a valid alternative path for
multiple component failures; forcing the controller to reroute
the affected flows may lead to routing loops. Hence, such
flows may not have full protection coverage, recovery can be
pretty challenging when alternative path is not provisioned
efficiently.

Unfortunately, an alternative path may not always be
available when needed and could fail earlier than the pri-
mary path [26]. The alternative path performance is usually
affected by many factors. The most notable one reflects on
bandwidth utilization, delay, and packet loss rate, and the
worst case is chosen path, which correlates with the primary.
Failure on such path may significantly affect many paths in
dense network topology. Therefore, when selecting an alter-
native path, it is essential to consider the current performance
of links and the service availability as the traffic evolves.

Additionally, the switch Flowtable storage constraint is
another factor that affects rerouting during failure recovery
convergence time. Most recovery approaches provisioned
flow entries to protect each flow; however, such decisions
lead to many entries, which consumed Flowtable storage
space. As a result, some Flowtable entries will be removed
when the storage usage crosses the threshold or is exhausted,
leading to a Flowtable scalability concern, especially in large-
scale networks. This survey organized these challenges into
four categories, as illustrated in Fig. 2. Routing rules place-
ment, unoptimized routing, link and switch load balancing,
failure detection, and recovery.

A. ROUTING RULES PLACEMENT
SDN is flow-based routing instead of destination-based,
which is widely used in traditional networks. The correspond-
ing flow rule is installed in the switch Flowable memory for
each arriving traffic flow. It is a logical data structure used in
OpenFlow switches to handle flows. This data structure used
special high-speed memory to called Ternary Content Mem-
ory Addressable (TCAM) on switches to ensure matching
flexibility and high lookup performance in constant time [31].
However, although TCAM has a high speed of searching for
flow rules, it is 400 timesmore expensive with limited storage
space than RAM-based storage. Besides, the size of each flow
rule is 356 bits, much larger than the 60-bit entries used in
conventional switches [31].

Conversely, per-flow routing required many dedicated
rules placement to efficiently route flows to various destina-
tions. As a result, the data forwarding entities need a large
TCAM memory size to accommodate many flow entries.
To overcome this shortcoming, the SDN controller can reac-
tively install the forwarding rules on demand upon arrival
of each traffic flow. Unfortunately, in dynamic large-scale

VOLUME 10, 2022 121795



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

networks where traffic flows frequently change, the number
of flow setup requests will augment rapidly, increasing the
processing load on the SDN controller, which causes extra
packet processing delay [32]. This overhead and delay can
significantly affect the real-time application and degrade net-
work performance.

Software switches based on commodity servers have
recently gained popularity. These switches have a large stor-
age capacity and can handle packets quickly (e.g., 40 Gbps on
a quad-core machine) [33]. However, software switches are
more constrained in forwarding and lookup rate than com-
modity switches [34], because they employ general-purpose
CPUs for forwarding. In contrast, commodity switches used
Application-Specific Integrated Circuits (ASICs) designed
for high-speed throughput. In addition, software switches
stored routing rules in computer Random Access Memory
(RAM) which has a larger capacity; unfortunately, the lookup
speed in the Flowtable is slow. In contrast, the lookup rate
in TCAM-based Flowtable is faster at the cost of a small
space. Furthermore, the proliferation of IoT devices further
aggravates the TCAM storage problem because of the large
number of traffic flows generated by different devices.

To overcome the storage limitation, the SDN controller
configures flow rules with an idle timeout with a small
value [35]. It is the inactive period, after which the flow rule
will be evicted from the switch Flowtable. Unfortunately,
traffic flows exhibit some variables with different inter-arrival
times and duration, which make the idle time value ineffi-
cient. Alternatively, the controller configures flows with a
hard timeout value [36]. It is the total life span of flows
after which the rule is declared invalid and removed from the
Flowtable. However, a hard timeout may be too long for some
flows, mainly with less or no packet to match. As such, flows
will stay in the Flowtable longer than necessary, occupying
precious space. Therefore, the diversity and heterogeneity of
IoT devices and the traffic flows generated with different
variabilities can easily overwhelm the timeout-based flow-
rules placement mechanism [1]. Various schemes have been
proposed to address these challenges. For example, the work
in [37] proposed a timeout scheme based on flow inter-arrival
time and duration to manage the switch Flowtable efficiently.
Another proposal explores the impact of timeout settings on
Flowtable [38]. Therefore, we extensively survey the various
schemes proposed in the literature to address the Flowtable
table memory limitation in the context of the routing rules
placement problem.

B. UNOPTIMIZED ROUTING PROBLEM
SDN controllers make routing decisions on behalf of the data-
forwarding entities using a set of policies. These policies
are converted to instructions and sent to forwarding elements
such as switches and routers. The endpoint policy determines
each flow’s source and destination nodes based on the sup-
plied high-level design requirements, while the routing policy
determines the flow path. This way, the shortest-path rout-
ing policy asks the network forwarding element to forward

packets along the shortest path between two given nodes.
To efficiently route flows, the SDN controller must regularly
monitor and gain accurate knowledge of Network State Infor-
mation (NSI). Such knowledge is used to compute the best
path to meet the requirement of given flows while efficiently
utilizing the network resource. Afterwards, place the routing
rules on the switches Flowtable to guide the routing process.
The ability to compute a feasible path heavily depends on
how fast the controller obtains the NSI. To obtain the NSI,
the existing routing algorithms used either static or dynamic
link state information [39]. The former calculates the link
state information once during the topology discovery state
and computes a feasible path based on hop count, distance,
and link capacity. While the latter considered available link
capacity, link utilization, or the number of processed flows.
This way, the controller periodically queries the underlying
network device to obtain updated network information. Static
routing has less overhead because it does not always request
updated information from switches. However, it always finds
the same path for all flows, making it infeasible for some
flows with special QoS demands. Besides, it causes con-
gestion in some links while others will be underutilized.
As a result, researchers improved the routing algorithm using
dynamic routing. Although dynamic routing may adapt to
real-time traffic having different QoS demands, there is sig-
nificant overhead in frequently querying switches to obtain
updated network information. Besides, it is very challenging
to get an accurate NSI because of the delay and message
exchange overhead. An inaccurate NSI may lead to accept-
ing more flows than the network resource can handle, and
significant packet loss is unavoidable.

Over the past years, several routing schemes have been
introduced to improve dynamic routings while efficiently
utilizing network resources. Unicast and multicast are widely
used as the two classes of routing. A unicast routing problem
is defined as given source s to destination t , with a set of
best effort/ QoS constraint C, and possibly an optimization
goal to find the feasible path from s to t while optimizing C.
Multicast routing problem, given a set of R destinations and
set of X constraint such that source s, and all set of R desti-
nation satisfy X constraint. This way, residual bandwidth is
considered one of the main problems for QoS route compu-
tation. We classified the existing routing problems into three
categories, as shown in Fig. 3.

Other researchers leverage machine and deep learning
models to devise routing schemes [40]. Several proposals
were introduced to incorporate a deep learningmodel on SDN
[41], [42], [43], [44], [45]. Unfortunately, this paper does not
cover machine and deep learning approaches.

1) ROUTING WITH LINK COST AWARE
The minimum Hop Count Algorithm (MHCA) [46] selects
the path with the shortest distance between the given source
and the destination.MHCAmaintains information about each
link; only those with enough resources to meet the user’s
needs are considered for routing. MCHA is a straightforward

121796 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

FIGURE 3. Routing schemes taxonomy.

algorithm and can easily be implemented. However, it might
easily lead to a bottleneck for upcoming requests due to
inefficient use of network resources. Widest Shortest Path
Algorithm (WSPA) was presented in [47]; it is a modified
version of MHCA which chooses the path with the highest
amount of bandwidth from the set of available paths. MHCA
exhibits a trade-off between load balancing and resource
consumption. Shortest Widest Path Algorithm (SWPA) [48]
is another variant of MHCA, it computes the widest possible
path among N paths, and the path with the smallest number
of hops is considered optimal. However, most static routing
assumes the controller has full knowledge of the network
topology and overlooks the dynamic link state information.
The controller can calculate the shortest path based on dis-
tance or hop count using the discovered topology information
at time t1. Unfortunately, such an assumption may not yield
optimal performance, especially in dynamic large-scale net-
works. Dynamic link state information routing was devised
to overcome the challenges of static routing. In this way,
several schemes were introduced to optimize the Quality of
Service (QoS) parameters [39], [49], [50], [51]. State-of-the-
art dynamic routing focused on minimizing the interference
among the flows [16]. The authors developed a heuristic path
selection algorithm to avoid routing flows through critical
links. It is heavily loaded links that consume a significant
amount of bandwidth, and routing flows through a path with
such features would make it quite challenging to satisfy
the future demand of certain flows. Although the scheme
outperforms minimum hop and widest routing algorithms.
However, traffic flows are often unevenly distributed, bypass-
ing critical links at time t1, and routing flows through another
path may not always guarantee the network load balance. The
selected path may be overloaded at time t2 and, consequently,
be problematic to multimedia applications that require certain
QoS demand. As such, it is desirable to incorporate more
routing metrics to maximize network resource utilization
since it is the primary concern of the infrastructure provider.

The works in [19], [52], and [52] examined the effective-
ness of various routing algorithms for dynamically estab-
lishing performance-guaranteed traffic while considering
bandwidth and path latency besides bandwidth rejection ratio.
The scheme proved that bandwidth-constrained algorithms
using source-to-destination pair information could consid-
erably improve network performance. However, it chooses
long routes regardless of network load, which could affect
delay-sensitive applications. Their extended work in [53]
classified flows based on their level of delay sensitivity aimed
at optimizing resource utilization while providing absolute
bandwidth and delay guarantees. However, multicast applica-
tions require high bandwidth and lower delay while maintain-
ing low controller computational overhead. Unfortunately,
their solution exhibits high complexity as the number of
delay-sensitive application flows increases and consequently
declines the system throughput. If the network fails to dis-
tribute bandwidth for flows correctly, the performance of
delivering and processing data will be degraded due to exces-
sive network congestion. To fulfil the bandwidth and delay
requirements of multicast applications and apply QoS param-
eters based on the current availability of network resources.
The work in [51] and [54] presents a uni-cast and multi-
cast request to increase network throughput under critical
and user-requested bandwidth. An application-aware routing
was presented in [55], [56], and [57]. The schemes compute
the link load at a regular time interval. After the arrival of
flows, they examine the flow’s connection type and band-
width requirement. This way, they allocate paths accordingly.
Dynamic and adaptive multi-path [20] is another application-
based routing that computes paths based on packet loss, time
delay, and bandwidth for multimedia applications. In con-
trast, the work in [58] argues that the composite routing
metrics may not yield better forwarding performance, the
greater the probability that the device will send flows over
the most optimal path. This way, they devised an adaptive
routing scheme considering delay, packet loss, and jitter.

VOLUME 10, 2022 121797



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

The model adaptively routes flows based on their QoS
demand. Although there was forwarding performance gain,
calculating the metric values may induce another overhead as
the network increases in size. Other solutions [59] compute
paths based on link load to avoid congestion. A critical switch
and link routing scheme was presented in [60] and [61] to
compute the path based on link and switch features. This
way, flows are routed through a path with minimum critical
switches and links to improve the packet delivery ratio and
throughput.

Although, the aforementioned literature has significantly
made a difference compared to static routing. However, Inac-
curate network information and protocol overhead are among
the pressing issues that affect dynamic routing [62], [63].
The references [19] and [64] evaluate static and dynamic
routing under two scenarios 1) where the accurate network
state information is available as assumed in the literature
and 2) considering the practical case where the controller
periodically gathers the network state information with inac-
curacy. Although the authors noted the former is impossi-
ble in reality. However, dynamic link routing outperforms
static in the number of accepted flows and total throughput.
In addition, they observed that the performance of every
algorithm is adversely affected by the inaccuracy of network
state information. Other researchers argued that flows were
overrated by only considering their QoS requirement. The
common approach of routing flows based on bandwidth,
delay, throughput, loss, and other routing metrics, may not
always be realistic. However, flows on the internet exhibit
variabilities; some network applications generate flows with
a large number of packets others contain a small number
of packets. Flows are typically classified into two types:
elephant flows and mice flows. The former are not many,
but they have high traffic quantities, contributing significantly
by increasing link utilization. While the latter are large, they
dominate the switch Flowtable entries.

Therefore, managing the influence of both flows could go a
long way in balancing Flowtable or link resource utilization.
Hedera [65] introduced a dynamic flow scheduling approach
to minimize conflict between elephant and mice flows while
improving resource utilization. An OpenFlow-based archi-
tecture was devised to dynamically modify flows according
to their traffic load. Similarly, MiceDCER was introduced
in [66] to promote mice flows by assigning internal Pseudo-
MAC (PMAC) addresses to the edge switches and hosts.
Mice flows are typically associated with latency-sensitive
and bursty applications like VoIP and search results. They
contained a small number of packets but many flows live for
a short time. The authors leverage wildcard features to aggre-
gate flows to reduce the number of corresponding forwarding
rules. This way, the number of rules was optimized with high
throughput.

Similarly, DIFFERENCE was presented in [67] to dynam-
ically sets up paths for elephant and mice flows sepa-
rately. DIFFERENCE estimates residual link utilization at
regular intervals. This way, mice flows are routed based

proactively approach, while elephant flows are forwarded
through the least congested path. Although, path search space
was improved while guaranteeing bandwidth requirements.
However, aggregated routing metrics were not considered for
optimal network performance. In addition, switch Flowtable
resource and link utilization were overlooked. Imbalances
of these resources could potentially harm network perfor-
mance [68]. A DIFF was introduced [69] to differentiate
flows based on their impact on a network resource aimed at
balancing switches, Flowtable occupancy and link utilization.
This way, DIFF adaptively selects routes for elephant flows
based on current link utilization in the network to achieve
high network throughput.

However, these approaches are Dijkstra-based based rout-
ing solutions. The complexity of the Dijkstra algorithm is that
the number of nodes and edges in the network affects the
algorithm’s efficiency [70]. Alternatively, Researchers apply
meta-heuristic techniques within the routing optimization
algorithms in SDNs to solve this complexity. Ant Colony
Optimization (ACO) is the most well-known meta-heuristic
and is widely used for routing optimization. Interestingly, its
performance was tested and outperformed other traditional
routing techniques. ACO methodologies also support flow-
based routing strategies as used in SDNs. The references [71],
[72], and [73] were introduced to manage an elephant and
mouse flow based on ACO. Link delay and bandwidth are
employed as reference indicators of the transmission path.
Mice and elephant flows are routed through the best path that
meets their flow demand.

Similarly, the work in [73] presents QoE-centric flow rout-
ing. Their work focus on identifying the best available routes
for various multimedia services. QoE depends on QoS, and
link resource constraints such as delay, jitter, and packet
loss were incorporated in path computation for audio, video,
and file transfer. Each flow was routed according to their
requirements while considering the network limitation. The
works in [71], [72], and [73] may perform well in a small
network. However, due to time and space complexity, they
may not guarantee the same performance in a dynamic large-
scale network.

In contrast, Hybrid Ant Colony Optimization (HACO)
algorithm [50] was proposed to address the issue of time
and space complexity. A box-covering and k-means clus-
tering methods were used to divide the network into the
small subnet. As a result, flows are routed to the best path
while optimizing the computation time. Although, there was
performance gain in terms of loss ratio and delay. However,
their solution and [71], [72], and [73] may impose some
extra processing load on the controller because the network
changes more often. For every subtle change, the heuristic
algorithm has to be triggered, which in turn may not only
affect the performance of the SDN controller but will also
throttle the switch update operations.

Therefore, different approaches were proposed to improve
routing efficiency in SDN, as summarized in Table 2; some
schemes generalized flows to achieve QoS requirements.

121798 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 2. Comparison of routing schemes.

Other literature leverage a heuristic algorithm to improve
time and space complexity. However, these approaches do not
relate to switch resource constraints like switch updating time
while devising their schemes. It is an important parameter that
directly impacts the routing algorithm because corresponding
forwarding rules need to be placed on the switch routing table
to guide the routing process. Therefore, overlooking such
metrics may directly affect the routing convergence time.
In the following, we have discussed other related works that
considered the switch resource.

2) ROUTING WITH SWITCH COST AWARE
Routing policies required corresponding forwarding rules
installed in the SDN switchmemory to route flows efficiently.
In contrast, the number of routing rules in dynamic large-
scale networks keeps increasing. It leads to poor resource
utilization, which needs urgent attention to meet the demand
of users. Several solutions have been proposed to improve
this precious resource utilization over the years. In the fol-
lowing sections, we divide the existing literature into two
categories Routing with Flow operations and Energy aware-
ness to enhance the switch memory utilization. In addition,
we summarized the most related work in Table 3.

A. ROUTING WITH FLOWS OPERATIONS AWARE
Since SDN is flow driven network, forwarding devices regu-
larly carry out update operations in their routing table to guide
the routing process. Several approaches were introduced
over the years to incorporate the switch cost during routing
decisions. In a dynamic large-scale network, thousands of
flows could easily be disrupted, such flows must be restored
within the shortest possible time, and the time required to
perform such operation is significant and, therefore, must be

optimized to maintain a carrier-grade network status.
STAR [74] is an online routing scheme to efficiently uti-
lizes limited Flowtable resources while maximizing network
performance. STAR frequently detects switches’ real-time
utilization of Flowtable and intelligently removes inactive
forwarding rules to accommodate more new flows. This way,
routing paths for new flows are computed based on switches
real-time Flowtable usage. The references in [75] and [76]
formulate a problem to find an optimal path with the lowest
path cost and update operation. They compute N number
of paths and compare it with their operation cost. The path
with fewer operations and a threshold value is chosen to
forward flows. Although the selected path may speed up
routing convergence time. There is a lack of information on
how they arrived at operational cost estimation. In addition,
computing threshold values more often may not guarantee
the feasibility of an end-to-end path in a large-scale network
[22]. The work in [23] finds a reliable path based on a disjoint
path aimed at reducing the number of update operations. They
select the path with a set of nodes frequently shared by many
paths. This way, the number of forwarding will be reduced.
However, such a design may not guarantee the reliability of
the link as the network evolves, some switches could easily be
overloaded, leading to high congestion. RAF [77] calculates
link reliability and installs minimum flow rules for multiple
paths based on the reliability value of the path. Such value
is appended to N paths, and the path with a higher value is
chosen. However, this approachmay involve higher reliability
value computation costs in large-scale networks.

In contrast, the approach in [22] noted switch update oper-
ation is proportional to the length of the selected path; the
longer the path, the higher the operation cost. They devised an
approach based on the graph theory for E2E path computation

VOLUME 10, 2022 121799



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 3. Comparison of routing with switch cost aware related work.

to divide the network into communities. Suppose any part
of the network is disrupted due to link failure. In that case,
only the forwarding rules of the affected community will
be updated, and the rest of the forwarding rules will remain
intact. This has minimized the flow operations cost. However,
their solution does not secure the shortest path from source to
destination, and the process of detecting the affected commu-
nity and the failed link may incur an extra processing delay.
A multicast routing model for multiple multicast requests to
reduce the number of rules was presented in [78]. The authors
formulate an ILP model to concurrently determine several
multicast tree paths to share a single flow entry stored in a
forwarding element set up for a single receiver. Although,
the approach can reduce the number of operations. However,
sharing a single entry for many flows may introduce con-
gestion, and changes in flow behaviours may affect many
paths. To address this challenge, reference in [79] formulates
a problem to minimize the number of rules to redirect flows.
The former examines link capacity, and congested links are
bypassed, while the latter group multiple flows and merges
their forwarding rules. This way, they routed flows with-
out incurring much flow operation. There was performance
gain for these solutions in terms of reducing the number of
flows operation. However, it is quite challenging for SDN
controllers to regularly have global network knowledge with
flow aggregation techniques. Because flows are treated using
wildcard rules, its additional features in OpenFlow which
may not be supported by some switches [13], [31].

Therefore, most current solutions take a long time to min-
imize the update operation or introduce controller overhead,
making them impractical for large-scale high-dynamic net-
works. To overcome these challenges, FLUS was presented
in [80]; a Segment Routing (SR) based strategy was intro-
duced for fast and lightweight path update operations. For
any change in the network, FLUS immediately uses SR to
develop a new path by joining some parts of existing and new

paths. Afterwards, the actual path for the data transmission
will take place. This way, flows are shifted to the newly
computed path. Unfortunately, this strategy is constrained
by the bandwidth limit function. The references in [81] and
[82] proposed an ILP model for a real-time delay-optimized
flow route algorithm. The approach separates the forwarding
strategies of various flows based on their sensitivity to delay.
The authors claimed to reduce route update operation by 60%
compared to benchmarking work. However, the solution may
require a large solver to converge in a large-scale network.

Other solutions [83], [84], and [85] focus on aggregat-
ing the number of flows with similar features going to
the same destination to reduce the number of flows oper-
ation. For example, an Integer Linear Programming model
(ILP) was introduced in [84] to minimize the total cost.
First, it assigned predefined weights to differentiate, there-
after, aggregate flows with similar features. Afterwards, they
dynamically route flows to their destination. However, an ILP
solution is not scalable for dynamic large-scale networks.

B. ROUTING WITH SWITCH ENERGY SAVING AWARE
It is worth noting that routing rules are stored in the switch
memory, usually implemented in TCAM. It is good in terms
of look-up rate and forwarding performance. However, it’s
known for its high cost and power-hungry. Therefore, the
proliferation of traffic flow load on communication links
influences the energy consumption of links. Similarly, the
hardware constraint of TCAM further argument the power
consumption of forwarding elements in SDN. To overcome
these challenges, various Energy Aware Routing (EAR)
was introduced over the years to minimize the energy con-
sumption of these resources while preserving connectivity
and QoS, as summarized in Table 4. Energy Aware Rout-
ing with Compression (EARC) was proposed in [86] and
[87]. It’s an ILP that uses a greedy heuristic to optimize
switch resource energy consumption using a software switch.

121800 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

High cost was eliminated with faster Flowtable update opera-
tion up to 10 times faster than harder ware switches. However,
the scheme is associated with packet processing delay.

MINNIE [83] was introduced to reduce the extra delays for
routing lookup rules while reducing TCAM energy. It pro-
vides a two-phase solution: the compression and the rout-
ing phase. The former uses a heuristic method to compress
forwarding rules with the same feature, while the latter pro-
vides a heuristic based on the shortest path algorithm with
adaptive metrics. This way, it reduced the number of rout-
ing rules by 50%. However, MINNIE will experience the
same weakness as the works in [86] and [87] due to their
architectural design of hardware and software switches. The
processing of exchanging packets between the switches will
no doubt introduce packet processing delay. Reducing routing
rules reconfiguration cost is another way to optimize switch
TCAM power consumption. Reference [88] presented an LP
optimization model to reduce the cost of re-configuring flow
tables when traffic demand changes. An LP model was used
to formulate the problem while considering the obsolete flow
entries that must be removed and the new flow rules that must
be installed. Furthermore, a Genetic Algorithm has been pre-
sented for decreasing network power usage while minimizing
the number of updated forwarding rules in a Flowtable.

Since switch TCAM power consumption is correlated with
the flow’s arrival, other solutions focus on devising traffic-
aware energy saving. The key idea is to turn on or off network
components (for instance, some switches) based on the traffic
load. For example, when traffic loads are low (especially at
night), this strategy can save up to 50% of overall energy
utilization, like thework in [89]. Typically, an elastic structure
is used to depict network components that can expand and
contract in response to dynamic traffic loads. The main prob-
lem is deciding which components to switch on and which
one to turn off without compromising the desired level of
QoS [90]. Elasticity, topology awareness, queue engineer-
ing, and smart sleep on and off are desirable qualities of a
traffic-aware controller. The ability to dynamically increase
or decrease the number of network components employed in
response to traffic is referred to as elasticity.

Topology awareness adds the advantage of using formu-
lations and solvers to customize to any given topology. The
hierarchically arranged fat-tree architecture is the most com-
monly employed in data centres. Knowing how the com-
ponents are grouped and their capacities allow us to take
alternative path that avoid energy-intensive paths. The work
in [91] presents an EAR by devising four modules on the
SDN controller using fat-tree topology: optimizer, routing,
flow monitoring, and power control. It periodically receives
input information from flow monitoring and finds the most
energy-efficient subnet that satisfies current traffic demand.
Afterwards, the optimizer provides the active topology to
the routing and power control module. Thereafter, the power
control module changes the power state of the switches and
link cards while the routing selects the optimal path for flows.

This strategy improved the power-saving level with efficient
network resource usage.

Queue Engineering approaches provide extra port-level
trafficmonitoring functionality. Flow size and link bandwidth
could be obtained at regular time intervals. This way, the end-
ing time of flow can be deterministically calculated to sched-
ule unallocated flows in queues to increase the flexibility of
the flow scheduling method. The references in [92] and [93]
presented a routing strategy that combines exclusive routing
and flow scheduling to achieve efficient energy saving. The
scheme expands flow scheduling to the time dimension and
considers energy consumption during flow transfer time. The
active and suspended flow sets are used to schedule and
transfer flows as part of a heuristic search for the flow group
solutions that use the least energy. Another solution in [94]
reduced network power by taking Flowtable size and link
bandwidth into account for a single flow per user. This study
employs Dijkstra’s method to minimise network power upon
flow arrival while considering link bandwidth and Flowtable
size. They employs ACO to determine the optimum path and
minimize network power for all flows. However, the flow
arrival in a dynamic large-scale network is beyond single
flows. Hence, such a solution may not be applicable in dif-
ferent network settings.

Moreover, link bandwidth and Flowtable size are not ade-
quately considered while employing the ACO. To overcome
this limitation, reference [95] modified and considered link
bandwidth and Flowtable size while routing every flow.
Instead of relying on ACO, it selects several routes per
flow and computes network power usage while considering
bandwidth and Flowtable size. However, the performance
gain was observed compared to [94]. However, the routing
decisions are subjected to bandwidth and delay only. The
dynamic large-scale network contains different applications
with various flow QoS requirements. Diverse routing metrics
make it more flexible to meet the demand of other flows.
The Minimum Criticality Routing Algorithm (MCRA) is
proposed [96], along with an energy-efficient optimization.
MCRA determines the available paths based on the end-
to-end request. Suppose the discovered paths do not satisfy
specific requirements, such as the maximum latency and link
utilization ratio. In that case, the rerouting process is initi-
ated using the Energy-Efficient Multi-constraint ReRouting
(E2MR2) protocol. However, network changes more often,
as such the model needs to run each time when there is
network changes. This may introduce unnecessary delay,
especially for delay-sensitive applications.

However, topology-aware and queue engineering
approaches are most tailored toward a specific topology, such
as a fat tree. Unfortunately, such solutions cannot be applied
to other topological structures. While individual heuristics
work well for a specific case and cannot be generalized, broad
heuristics do not fully grasp energy capacities [97]. Other
solutions focus on a smart sleep approach to improve energy-
aware routing. Smart sleep and off refers to the capacity to

VOLUME 10, 2022 121801



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 4. Comparison of energy-aware routing-related works.

turn on/off switch ports, links, or the complete switch in
response to traffic. In [98] a routing method based on the
shortest path is proposed for incoming flows to reduce the
number of active OpenFlow switches in an SDN. This tech-
nique focus on meeting the demand of throughput-sensitive
flows while considering the implicit link capacity limits. This
way, they analyzed the network’s night-time traffic, and the
number of flows is considered negligible. This technique
assumes no QoS constraints other than bandwidth for path
selection. Even though energy usage was improved, limiting
QoS routing metric decisions to only bandwidth may not be
a valid assumption.

In [99] an energy-aware routing algorithm for SDN-based
carrier Ethernet networks was proposed. It presents a binary
linear programming approach for the EAR problem that opti-
mizes the number of network switches that can be turned
off while considering traffic demand and rule space limits.
Unfortunately, this method is time-consuming due to the use
of the Integer Linear Programming (ILP) model, a set of
first-fit heuristic algorithms to reduce computation time is
also offered. Interestingly, it balances energy savings and
connection utilization while ignoring the application flows’
QoS requirements. However, the method is less promising
for large real-world networks with traffic patterns variabil-
ities due to high temporal complexity. The work in [100]
presents a two-phase SDN-based routing technique that min-
imises energy usage while maintaining a given degree of QoS

for user flows. A minimal graph-based Ant Colony Opti-
mization (ACO) technique reduces network energy usage.
It prunes and optimizes the network tree by shutting off
unneeded switches and providing an energy-efficient sub-
graph in charge of routing the current flows.

3) LOAD BALANCING SCHEMES
The heterogeneity of the current network devices and the
number of internet-connected users increases the traffic flows
generation. Since SDN is a flow-driven network, many rout-
ing rules will be placed on the set of switches to guide the
routing process. However, path roles differ, some paths are
frequently used others are underutilized. As a result, forward-
ing entities on the frequently used path may be overloaded
with many routing rules, while others may have a minimum
and therefore cause a load in balance. Similarly, the links con-
necting these sets of forwarding entities are constrained with
limited bandwidth, while bandwidth demand is increasing
due to the surge of traffic demand. As a result, frequently used
links consume a significant amount of bandwidth. There-
fore, effective load balancing is required to improve net-
work resource usage. The load balancing technique manages
incoming traffic flows, thereby distributing and sharing the
traffic load fairly among the network forwarding element
to improve network service availability. This way, traffic
bottlenecks on data forwarding entities and communication
links could be avoided. Several efforts have been made

121802 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

lately to balance the network on either link load or switches
Flowtable [101], [102]. For example, the approach [103]
devised an Automatic Re-routing with Loss Detection archi-
tecture. Packet loss is detected with the queue stat message
of OpenFlow protocol, and then the re-routing module tries
to find a bypass path and applies it to Flowtables to balance
the load on the switches better. However, the approach may
require significant bandwidth resources in a network with
varying traffic patterns.

Moreover, flow rerouting without considering the cur-
rent network statistics, may results in congestion propaga-
tion [104]. In contrast, the work in [105] proposed a scalable
congestion control protocol to reduce Flowtable overflow,
thereby reducing queuing delay under busty traffic. The num-
ber of TCP flows passing through each switch port was mon-
itored to ensure total bandwidth utilization does not exceed
the bandwidth-delay. This information was eventually passed
to each TCP source by updating the advertisement window
field in the TCP header. The proposed algorithm transfers
the minimum number of flows from the congested link to
the backup path, resulting in improved QoS and congestion
control. To alleviate the congestion and improve application
performance. Multi-path routing algorithms can distribute
traffic over diverse paths optimally than simple solutions like
ECMP. This way, Kanagavelu et al. [106] proposed a local
rerouting mechanism in SDN-based Data Centre networks
to effectively manage congestion in the event of link con-
gestion or failure. SDN controller periodically gathers port
and flow statistics from all switches at a fixed time inter-
val. Afterwards, the routing engine computes a less loaded
path between pairs of demand. Link congestion was checked
periodically based on a threshold value; once link conges-
tion exceeded the T value, the SDN controller re-routed the
affected flows along an alternative path.

Similarly, the work in [107] proposes an effective routing
mechanism for link congestion avoidance in SDN. The con-
troller observes the current traffic of switches and updates
the topology according to the weight assigned based on
computed bandwidth usage. Traffic from congested links
is instantly redirected to the available links to enhance the
efficiency of link usage. Interestingly, the method effectively
allocates and utilizes the network bandwidth but at the cost
of monitoring overhead. Another solution in [108] lever-
ages the flow parameter to devise an algorithm for avoiding
congestion. The network state is monitored by calculating
the link utilization periodically and redirecting the newly
arrived flows to a congestion-free path. Congested paths
are obtained through threshold values. If the average link
utilization exceeds a threshold, the controller predicts the
congestion on the link and calculates the load to be redi-
rected to other backup paths. This way, flows are rerouted to
the proper backup path without much congestion. However,
Sminesh et al. [104] argue that congestion is far beyond
balancing the network on either link or path; therefore,
most load-balancing schemes overlook addressing conges-
tion propagation. The authors proposed a method that

categorized links for efficient load balancing. Toward this
goal, the scheme monitors the utilization of each link, and
over-utilized links that cause network congestion and packet
loss are identified as bottleneck links. Afterwards, iden-
tified largest and bottleneck links are redirected through
lightly loaded paths to achieve better network load balancing.
However, most of the existing scheme load balancing focuses
on reducing network congestion; therefore, their methods
heavily rely on the monitoring mechanism to obtain the
flow of statistical information. Thus, the drawback of these
schemes depends on the polling interval value to get the
statistics. If a flow lasts longer than the statistics polling
interval, obtaining such statistics at the regular interval
requires an extra processing load. This process can poten-
tially be resource-intensive for the SDN controller and intro-
duce another scalability concern, mainly when the traffic
flows increase and the number of switches to be moni-
tored increases. Conversely, when the polling interval value
is short, it increases the communication overhead switch–
controller. Therefore, entirely depending on the controller to
pull the data of total active flows to obtain the usage of the
Flowtable may not be the best solution [36].

IV. FAILURE RECOVERY APPROACHES
Generally, failure management approaches can be divided
into failure detection and recovery phases, each has its imple-
mentation mechanism and execution time. Failure recovery
must be established immediately after link or switch failure
detection. Afterwards, the recovery process is initiated. Most
of the existing failure recovery proposals can be catego-
rized based on their link, switch, or path recovery scope.
This way, the configuration of the backup path could be per
switch, link, or every disrupted flow using local and path
protection or restoration mechanism. Other works focus on
the hybridization of protection and restoration to achieve the
maximum benefit of both. Intuitively, the recovery schemes
are categorized into four (4) categories; This includes TCAM
memory aware, load balancing aware, Quality of Service
(QoS) aware, and rule update operation awareness based on
either restoration, protection, or hybrid as presented in Fig. 4.
This section discusses and analyses these approaches and
highlight their weaknesses.

FIGURE 4. Failure recovery management taxonomy.

A. FAILURE DETECTION APPROACHES
The most crucial role of the SDN Controller is to maintain
a real-time state and consistent network topology. Due to

VOLUME 10, 2022 121803



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 5. Failure detection approaches.

frequent network changes, links state changes more often.
In this regard, the link discovery process is initiated to
detect the link failure between connected OpenFlow switches
and to efficiently detect changes to the network topology.
Delay in link failure detection increases packet loss and
increases failure recovery convergence time. Table 5 sum-
marizes some of the existing detection schemes. Inefficient
link failure detection can significantly affect the network
operation that depends entirely on the SDN controller [109].
The fast failover group type was introduced in OpenFlow 1.1
to handle link failures locally without controller intervention.
This can be achieved by configuring the failover predefini-
tion of failure recovery policies on the OpenFlow devices
to support forwarding behaviors that depend on the local
states of OpenFlow switches. Toward this goal, references
in [110], [111], and [112] leverage on failover scheme and
use Bidirectional Forwarding Detection (BFD) to detect indi-
vidual link failure. Each switch established a BFD session
with its neighbor using a three-way handshake. Afterwards,
the switches exchange echo messages to monitor the link
state. If link failure occurs, the switch before the affected
switches will detect the failure through an echo message and
immediately communicate to the controller. In return, the
controller instructs the affected switches to remove the link
from its Flowtable.

In contrast, the work in [113] presents a link detection
mechanism based on outgoing packets. The installed flow
rules on the linkwere tagged andmonitored, and packets were
counted at the destination. Send packets are recorded, and the
difference between sent and received packages is compared
with the threshold value used to calculate the error rate. If the
error rate is greater than a threshold value for each given
link, the link is assumed to have failed. However, frequent
threshold value computation may introduce extra processing
load on the controller.

Other solutions used the concept of a monitoring cycle
to detect failure location. The reference in [114] proposes
a lightweight software-based failure detection scheme by
exchanging alive packets between neighboring switches and
controllers. Each switch that received the packet will create
two copies, one to the controller and the other to the next
switch. When the controller does not receive the packet from
the expected switch for some time, it will be declared down.
A similar concept was introduced in [115].

To some extent, BFD can help to detect failure quickly;
however, this may be more applicable in a small-scale net-
work. The presence of large applications may result in net-
work traffic congestion, especially in a large-scale network.
An alternative path needs to be established on time upon
occurrences of failure; backup entries and BFD packets
may easily congest the network and overflown the switch
Flowtable. The proposal in [116] devised a centralized probe
mechanism to detect link failures in the network. Even
though, the minimum interval between probe packets is
shown to have affected the failure recovery time. However,
centralizing the failure detection may flood the network with
probe packets, which can further exhaust the limited storage.
Different from previously mentioned work. Reference [117]
includes detection logic at the switch known as Switch Failure
Detection (SFD). SFD detects failures by discovering the host
connected to the switch and computing the packet loss ratio.
If the loss ratio is 100 %, the switch is assumed to have failed
else no failure. However, this scheme is limited to switch
failure, and the frequency of link failure outweighs switch
failure [118].

B. LOCAL AND PATH RESTORATION APPROACHES
Several proposals were made to configure the backup path for
every disrupted flow [119], [121], as summarized in Table 6.

121804 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

The works in [112] and [122] argued that periodic link
monitoring to detect failure before establishing a backup path
might considerably introduce controller overhead. To over-
come these challenges [112], offload Operation Administra-
tion andMaintenance (OAM) linkmonitoring capability from
the controller to the OpenFlow switch. OAM leverages on
general message generator and processing function in the
switches, and extension in OpenFlow 1.1 protocol to support
the monitoring function. However, offloading some of the
control functions to switches violates SDN’s promise [123].
Alternatively, the approach in [124] presents a fault man-
agement scheme without modifying the SDN architecture.
In this regard, a topology discovery module was devised to
periodically collect the link state event. Afterwards, the route
planning module used the gathered information to calculate
multiple route paths based on the topology information. Upon
failure, The VLAN switch configuration module configures
multiple switch ports with relevant VLAN IDs to enforce
each routing path. However, the scheme only focuses on
recovering from failure, but consequences after a failure,
such as potential failure or post-recovery congestion, were
overlooked. A local reroute congestion-aware failure scheme
was proposed in [106]. The scheme considered flows type and
established path based on its requirement. When congestion
occurs, re-routing is applied to the elephant while the mice
flow packet forwarding continues. In this case, rerouting
is performed locally at the point of congestion instead of
re-diverting affected flows through available paths. However,
triggering rerouting at a point of congestion can increase
packet losses after failure. In addition, round trip time may
also augment, affecting the failure convergence time. To over-
come this limitation, the work in [125] devised a local fast
reroute (LFR) to achieve faster recovery with less controller
operation. After failure, all disrupted flows are aggregated
into a new ‘‘big’’ flow. VLAN ID values are set to the aggre-
gate flow; every packet is stampedwith a new label and stored
in VLAN ID. Thereafter, the local reroute path is dynamically
deployed by the controller for the aggregated flows. In their
follow-up work Cheng et al. [127] an integer linear program-
ming model with heuristic model congestion awareness was
introduced to avert link post-recovery congestion.

Similarly, the scheme in [128] introduced CAFFE to detour
the affected flows as soon as the failure is detected to avoid
potential congestion. Furthermore, CAFFE jointly consid-
ered knowledge of network topology, failure states, and net-
work load distribution to formulate an Integer Linear Pro-
gram (ILP) model to protect against potential future failure.
However, their solutions heavily rely on aggregation and
VLAN to perform fast rerouting, making computation expen-
sive due to aggregation and may disenable the actual usage
of VLAN [3].

Unlike the previously mentioned works, [120] argue that
a reliable and scalable failure recovery scheme should min-
imise the controller’s processing load and react even when
the controller is not reachable. Toward these goals, the
authors formulate a Mixed Integer Linear Programming

Model (MILP) for precomputed backup recovery paths con-
sidering Quality of service (QoS) metrics. The scheme
leverages on crank back signal to ensure instantaneous recov-
ery times and aims at zero packet loss after failure detection,
regardless of controller reachability, even when OpenFlow’s
‘‘fast-failover’’ feature cannot be used. However, heavily
relying on crank back routing may result in long backup paths
and extra link usage. Their follow-up work SPIDER [115]
implements the respective failure rerouting mechanism using
MPLS tags. Furthermore, the scheme heavily depends on
an extension of OpenFlow (Open state) to perform cus-
tomized failure detection and data plane switching, making it
incompatible with existing networks and available hardware
switches [111].

In contrast, the previously mentioned works focus on
reducing congestion, while others try reducing the con-
troller’s processing load. However, the authors consider the
correlation between the switch Flowtable update operation
and the recovery speed, which impacts the network con-
vergence time. The reference in [125] presented Local Fast
Reroute (LFR) flow aggregation techniques to a minimized
number of flow operations. Once link failure occurs, the
affected flows are aggregated into a single flow. Afterwards,
the local reroute path will dynamically reroute the com-
pressed flows using fast failover. Therefore, LFR can achieve
faster failure recovery while minimizing flow operation.
However, the merit depends on fast failover local reroute
availability. Therefore, the availability of local reroute can
affect the scheme convergence time. Moreover, LFR may
also lead to larger packet drops when an end-to-end path is
applied.

In contrast, [76] presented a failure restoration technique
for minimizing the recovery cost. An ILP model was for-
mulated to find a path with the lowest cost requiring up
to a number of operations. Some path requires the fewest
possible operations, and Dijkstra-like path cost requires min-
imum operations. The lowest possible operations, like that
of the Dijkstra algorithm, are used to optimize the recovery
time of failure. For all the sets of paths, a threshold value
property was used to minimize the set of resulting paths.
However, such a property may not always guarantee the
feasibility of an end-to-end path [22]. An end-to-end fast link
failure recovery approach based on the shortest was intro-
duced in [117]. Packets are categorized into high and low-
priority packets. When failure occurs, high-priority packets
are rerouted through minimum delay. Other packets are for-
warded through an alternative path; thus, the later and former
traffic flows are distributed equally over the available paths to
avoid congestion. However, the solution is tested in a small
network setting, which may not be feasible in a large-scale
network because the algorithm’s complexity augments as the
network’s size increases [12]. The work of [129] proposed
a mechanism to avoid frequent contacting the controller and
take local corrective measures. In this regard, two methods
were devised to store bypass paths on all pairs of nodes
and others on some selected nodes. When a failure occurs,

VOLUME 10, 2022 121805



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 6. Summary of local and path restoration approaches.

the switch can act locally. However, installing two sets of
flow rules bypass in the switch Flowtable beside the primary
path rules will lead to load imbalance and cause congestion.
Besides, this will further slow down the network reconfigu-
ration because of the large number of updates.

Although restoration recovery schemes offer a more flex-
ible way to handle verse flows in real-time, the cost of
end-to-end computation is very high [26]. In this case, the
restoration scheme is time-consuming as the SDN controller
needs to calculate the new end-to-end path for each affected

121806 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

flow and reconfigure the network. Therefore, the time to
reconfigure the networks includes new path calculation and
switch update time. To reduce these issues, [130] introduced
the principle of a community detection scheme. If a failure
occurs, the affected community is detected, and a backup
path is established within the affected community without
tampering with packet forwarding in other communities. This
recovery is faster, thereby improving the network fault tol-
erance capability. However, removing the old flow entries
in the affected path and re-installing the new entries for the
alternative can be costly, especially when the path length
is long. This concern has been addressed in their follow-
up works [130], [26]. When failure occurs, the scheme only
searches the new path from the point of failure down to
the destination switch and removes the old flow entries of
the affected switches only; the remaining flow entries on the
path are preserved. Therefore, the scheme has significantly
reduced the update operation and end-to-end computation
time. However, the scheme neither guarantees the shortest
path nor considers congestion.

C. LOCAL AND PATH PROTECTION APPROACHES
Failure recovery range can be divided into a path or local
recovery. In the protection mechanism, rules must be prein-
stalled in advance for path and local recovery approaches.
Due to the proliferation of network flows per second, the
number of forwarding rules in the switch flow table may
quickly escalate, leading to large switch memory TCAM con-
sumption. To minimize the TCAM consumption, the refer-
ences [7], [132] proposed a set of algorithms: Forward Local
Re-routing(FLR) and Backward Local Rerouting (BLR) to
compute backup paths for a primary path for faster failure
recovery. Local re-routing of the failed traffic from the point
of failure enables speedy recovery. FLR and BLR backup
paths improved sharing of forwarding rules at the switches,
thereby choosing a backup path with the least number of
additional switches. However, the solution neither considers
post-recovery congestion nor the potential future failure of
the selected link. The references [133], [134], [135] lever-
age VLAN tagging to present a new protection method to
aggregate the disrupted flows. This way, many flow rules for
rerouting the affected flows are reduced, thereby improving
the recovery time of carrier-grade recovery requirements.
However, the aggregation technique may reduce flow visi-
bility which in turn may be challenging for the controller to
maintain the global view of the network. Their fellow upwork
implements two algorithms; Local Immediate (LIm) recovery
strategy, in which the controller will utilize the fast failover to
locally switch to an alternative path using the VLAN tagging
feature to tag the arriving packets with the outgoing link
ID. While Immediate Controller Dependent (ICoD) recovery
required controller intervention to establish an alternative
path. This way, recovery timemay be faster because of the fast
failover, which allows the quick and local reaction to failures
without the need to resort to the central controller.

Several attempts have been made to achieve faster recov-
ery using fast failover to avoid controller involvement
in detouring the affected flows. Table 7 summarizes the
related works. The reference in [136] proposed fast failover
link failure with a congestion-awaremechanism. Fast failover
is preconfigured with multiple paths to redirect the disrupted
flows to a failure state. Based on the mechanism configu-
ration, the controller periodically monitors the status of the
switch port to perceive the failure on time. The protection
scheme resulted in an average recovery time of around 40 ms.
However, constant controller monitoring can introduce extra
processing load on the controller. A scalable multi-failure fast
failover was presented in [137]. Their work dynamically com-
pressed the alternate path’s flow entries of the incoming flows
with the existing flow entries on the backup path. In this way,
the total number of rules was significantly reduced. However,
such a dynamic procedure may lead to extra processing load
on the controller to configure the primary and backup path
for every new arrival flow.

Moreover, the number of backup path rules augment as
the flow arrival increases [138]. An efficient fault-tolerant
memory management aware approach was proposed [133].
The scheme computes path protection per link instead of
rules per flow by configuring VLAN tagging for each link
failure. This way, A VLAN tagging is provided for each link
identification while defining backup path rules. Therefore,
the number of rules would be proportional to the network
setting. However, in a large-scale network, the overhead
would be non-trivial [9]. Another solution [139], [139] con-
sidered the switch Flowtable storage constraints to devise a
recovery scheme. A Fault-Tolerant Forwarding Table Design
(FFTD) was introduced to group the flows using group
entries and aggregates the flows using a tagging mechanism
for rapid recovery from the dual failures. This way, FFTD
satisfies the GCN’s 50 ms recovery requirement, reducing
the backup path flow storage requirement. However, neither
[133] nor [139] considered post-recovery congestion after
the localized recovery. A shared ring was proposed as yet
another solution to reduce the consumption of a backup
resource [140]. The authors devised a ring-based single fail-
ure recovery approach to reduce the number of entries.

A ring circle in the network topology is selected to act
as a share backup path, based on the all-backup path is
introduced to improve the Flowtable utilization. Although
recovery time and backup resource consumption could be
improved, network post-recovery congestion may occur.
Therefore, efficient congestion and memory-aware failure
recovery (SafeGuad) were presented [118]. SafeGuard iter-
ates through a backup path of the impacted flows to ensure
that the rerouting switches have enough space to accom-
modate the backup path rules. In addition, residual link
capacity is checked to avoid post-recovery congestion. This
way, impacted flows are deployed efficiently. However, Safe-
guard may be expensive because it requires two paths to
be installed for each flow, which could overwhelm critical
network resources such as switch TCAM [26].

VOLUME 10, 2022 121807



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 7. Summary of local and path protection approaches.

Most of the previously mentioned work heavily depends
on fast failover local reroute to achieve faster failure recovery.
Other solutions considered VLAN tagging with aggregation.
Fast Failover (FF) local reroute approaches provide an effi-
cient means of achieving fast failure recovery. FF can handle
failure locally, thereby detouring the affected flows around
the failed link using preconfigured alternative without the
need to consult the controller. However, fast failover local
reroute can only be used to define local detour mechanisms
when alternative paths are available from the node that
detects the failure. Therefore, the unavailability of a path may
still require controller intervention, increasing the processing
load.

Moreover, the FF group feature is optional in OpenFlow;
these solutions’ applicability depends on the FF group’s
actual hardware support [138]. Thus, several works have
devised various recovery approaches to meet the recovery
requirement. Other works attempt to reduce the number of
flow entries due to many flow rules configured per switch
in FF. However, decreasing service disruption, unavailabil-
ity, and increasing availability to speed up the end-to-end
convergence process time is being overlooked, unlike the
existing works. For example, the work in [141] proposed
Smart Routing (SR), which enabled the controller to receive
early failure signs and avoid risky paths before the occurrence
of the failure. SR predicts link failure events and formulates

121808 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

an alternative path for some links. The risky path is a bypass
to avoid future failure, leading to higher packet loss and
decreased service availability. The mean time between fail-
ure and mean time to recover for evaluating the availabil-
ity and reliability are considered. However, SR overlooks
post-recovery congestion of the selected path, which may
lead to more packet loss; the solution does not consider the
system throughput or round trip time after failure conver-
gence time.

D. HYBRID RESTORATION AND
PROTECTION APPROACHES
Several attempts have been made lately to address the issues
of failure, either restoration or protection. However, it is
evident both approaches inherent some defects due to time
and storage space gaps which need further investigation.
Therefore, some solutions have been proposed to allocate
backup rules flexibly by combining the restoration and pro-
tection modes to fulfil different application requirements
without paying for their drawback, as summarized in Table 8.
The work in [145] divided flows into Gold, Silver, and
Bronze and provisioned different backup path strategies.
Bronze flows provision backup paths reactively, while sil-
ver and bronze flow enjoyed proactive backup paths. The
priorities of backup and the primary path of gold flows are
the same. Gold flows are sent to the destination along two
paths simultaneously. This way, better load balancing could
be achieved. However, such a procedure may decline the
system throughput and increase the chances of congestion,
leading to switch Flowtable memory overflow. To optimize
the Flowtable storage, [146] considered the switch Flowtable
storage constraints to devise a recovery scheme. The authors
derived link importance metrics and classified links based
on the number of flows passing and bandwidth utilization
ratio. Three backup strategies are introduced: double-path
protection, single-path protection, and the reactive mode.
Double path protection is deployed for high importance and
links others through a single path. In this way, the limited
switch storage resources are used to protect more essential
links. However, provisioning a double path may affect the
system throughput. Motivated by [147], [146], their recovery
approaches considered delay during back path selection and
flow classification received little attention. The impact of
failure varies with respect to flows, and losses caused by
failure differ from other flows. In this regard, efficient failure
recovery is required to consider flows. This way, the authors
formulate a formula to derive link importance and provision
backup path based on flow importance. Neither [147] nor
[146] consider post-recovery congestion nor potential failure
as the result of the selected path.

In contrast, Revive [148] was introduced to proactively
install alternative routes on a subset of switches between a
given source-designation pair. Other switches are installed
backup rules along with primary reactively on demand.
However, this approach requires additional path computation

for backup paths along the primary path, and the implication
of the selected path was overlooked.

A flexible recovery mechanism (BOND) was presented [9]
to deal with a link failure. BOND preconfigured backup path
rules in the switch Flowtable to establish an alternative path
in case of failure. A Hash table was used to quickly recover
link failure. However, if a switch fails to operate, the system
will lose all the routing path information of the network.
References [149], [150] present another solution for efficient
and flexible link fault tolerance (FTLink). A collection of
the backup path was generated for primary links. This way,
FTLink maintained a matching table for maintaining an alter-
native path entries at the controller. When the system detects
failures, it enables the backup path link as the new primary
link for the affected link. Flow rules are installed in the
switch after they are matched from the generated table using
the controller. However, FTLink overlooks a link’s criticality
before enabling the backup path link as the new primary
link for the affected [150]. Such a procedure may lead to
future failure since the backup path may fail earlier than the
primary path.

V. RESEARCH CHALLENGES AND FUTURE DIRECTION
FOR DYNAMIC ROUTING AND FAILURE RECOVERY
Existing studies have proposed different routing and failure
recovery solutions for various use cases. However, dynamic
routing based on applications requirement and efficient fail-
ure recovery while managing resource utilization is still a
challenging research area with several unanswered questions.
This section discussed some of the unaddressed challenges
and suggested future research direction.

A. OPTIMIZED ENERGY-AWARE ROUTING WITH
SWITCH UPDATE OPERATION
Most of the existing Energy-Aware Routing focuses on
topology awareness, queue engineering, or smart sleep-on
strategies to optimize network resource energy consumption
during the routing process. However, update operation in
SDN switch TCAM is very slow, while traffic flow changes
more often with the large number of flows arriving in a
dynamic large-scale network. This process affects the switch
updating time with significant processing delay besides
power consumption. It would be an interesting research direc-
tion to devise a dynamic energy-aware routing while incor-
porating switch TCAM update operation and link processing
power

B. DYNAMIC ROUTING WITH QOS AWARE
Traffic flows exhibit variabilities with different Quality of
Service requirements. Some flows are delay-sensitive, others
require sufficient link bandwidth, throughput sensitive flows
are among flows with special needs. Some flows required
multiple routing constraints for optimal performance. Simi-
larly, routing paths differ, some paths are very critical with
limited bandwidth, and others have smaller path latency. It is

VOLUME 10, 2022 121809



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

TABLE 8. Summary of hybrid recovery approaches.

challenging to find a path with both properties in both terms.
Although several dynamic routings have been presented, they
overlooked incorporating multiple routing metrics for opti-
mal routing. Therefore, how to aggregate various routingmet-
rics using fuzzy logic while efficiently utilizing the limited
Flowtable resource is still an open question.

C. POST-RECOVERY CONGESTION AND INCREASE
IN SERVICE DISRUPTION
Restoration recovery schemes offered more flexibility to
cope with frequent traffic changes. However, frequent path
computation may impose an extra processing load on the
controller, and the time to update switches may also intro-
duce another bottleneck. This way, several solutions were
proposed to address these issues. Some solutions focus on
reducing the computational path time, and others introduced
path selection costing a certain number of operations. Failure
recovery with congestion was also proposed. However, these
solutions may not always ensure full service is available and
decrease disruption. In large-scale networks, path importance
differs; some paths are critical because of the shortest paths
that pass through them. Other links on paths are frequently
shared between the primary and backup paths. Therefore,
failures on either path may lead to failure on multiple paths.
Consequently, service disruption leads to significant packet
losses and a decline in throughput. Therefore, an efficient
recovery scheme with congestion awareness and path reli-
ability considering real traffic flows is required to improve
service availability and decrease system disruption with post-
recovery congestion awareness

D. HYBRID RESTORATION AND PROTECTION
RECOVERY APPROACH
Both restoration and protection have their pros and cons.
Therefore, combining the two approaches for efficient failure
recovery while meeting the requirement of different flows
would be another interesting research work. There exist
different flows with different Quality of Service require-
ments. Packets from video traffic will be required to be
redirected through a path with sufficient bandwidth to accom-
modate many affected flows upon failure occurrences. While
delay-sensitive flows such as VoIP may require paths with
small delays toward a destination. This way, it would be
interesting research to classify flows based on their quality
of service requirement and flexibly apply restoration and
protection without paying for their drawback.

VI. CONCLUSION
Software Defined Network is an emerging network with bet-
ter network management. It speeds up network innovation.
However, it has some weaknesses which require urgent atten-
tion to speed up the adoption of SDN. Several researchers
have been conducted over the years to address different chal-
lenges introduced by SDN. Route path selection and failure
recovery are among the challenges affecting the SDN. This
paper presents A survey for dynamic routing and failure
recovery approaches for efficient resource utilization. The
paper elaborates on the concepts and fundamental knowledge
of Software-defined Networks required to efficiently design
and implement reliable failure recovery. A comprehensive
review of path route selection toward better failure recovery

121810 VOLUME 10, 2022



B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

schemes was reviewed. Tables were presented to support the
study, and critical evaluations of the existing schemes were
discussed to highlight the weakness of the existing schemes.
To overcome the limitation of the existing schemes, this
research suggests a future direction to enhance the network
performance of the existing literature with efficient usage of
the switch Flowtable and less overhead.

REFERENCES
[1] M. Alsaeedi, M.M.Mohamad, and A. A. Al-Roubaiey, ‘‘Toward adaptive

and scalable OpenFlow-SDN flow control: A survey,’’ IEEE Access,
vol. 7, pp. 107346–107379, 2019.

[2] Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang,
K. Cheng, andX. Xiao, ‘‘Fault management in software-defined network-
ing: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 349–392,
2019, doi: 10.1109/COMST.2018.2868922.

[3] A. Malik, B. Aziz, A. Al-Haj, and M. Adda, ‘‘Software-defined
networks: A walkthrough guide from occurrence To data plane
fault tolerance,’’ PeerJ Preprints, vol. 7, p. e27624v1, 2019, doi:
10.7287/peerj.preprints.27624v1.

[4] J. J. Garcia-Luna-Aceves, ‘‘A minimum-hop routing algorithm based
on distributed information,’’ Comput. Netw. ISDN Syst., vol. 16, no. 5,
pp. 367–382, 1989, doi: 10.1016/0169-7552(89)90011-1.

[5] L. Chen, B. Li, and B. Li, ‘‘Barrier-awaremax-min fair bandwidth sharing
and path selection in datacenter networks,’’ inProc. IEEE Int. Conf. Cloud
Eng. (ICE), Apr. 2016, pp. 151–160, doi: 10.1109/IC2E.2016.35.

[6] S. Kotachi, T. Sato, R. Shinkuma, and E. Oki, ‘‘Multicast routing
model to minimize number of flow entries in software-defined network,’’
IEICE Trans. Commun., vol. 104, no. 5, pp. 507–518, May 2021, doi:
10.1587/TRANSCOM.2020EBP3064.

[7] P. M. Mohan, T. Truong-Huu, and M. Gurusamy, ‘‘Fault tolerance in
TCAM-limited software defined networks,’’ Comput. Netw., vol. 116,
pp. 47–62, Apr. 2017, doi: 10.1016/j.comnet.2017.02.009.

[8] A. S. Alshra’a, P. Sewalkar, and J. Seitz, ‘‘Enhanced failure recov-
ery mechanism using OpenState pipeline in SDN,’’ in Proc. 10th Int.
Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2018, pp. 104–109, doi:
10.1109/ICUFN.2018.8437006.

[9] Q. Li, Y. Liu, Z. Zhu, H. Li, and Y. Jiang, ‘‘BOND: Flexible failure recov-
ery in software defined networks,’’ Comput. Netw., vol. 149, pp. 1–12,
Feb. 2019, doi: 10.1016/j.comnet.2018.11.020.

[10] P. C. D. R. Fonseca and E. S. Mota, ‘‘A survey on fault management in
software-defined networks,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4,
pp. 2284–2321, 4th Quart., 2017, doi: 10.1109/comst.2017.2719862.

[11] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, ‘‘Fault-tolerance in the
scope of software-defined networking (SDN),’’ IEEE Access, vol. 7,
pp. 124474–124490, 2019, doi: 10.1109/ACCESS.2019.2939115.

[12] J. Ali, G. Lee, B. Roh, D. K. Ryu, and G. Park, ‘‘Software-defined net-
working approaches for link failure recovery: A survey,’’ Sustainability,
vol. 12, no. 10, p. 4255, 2020.

[13] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A com-
prehensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[14] T. Kato, M. Kawakami, T. Myojin, H. Ogawa, K. Hirono, and
T. Hasegawa, ‘‘Case study of applying SPLE to development of network
switch products,’’ in Proc. 17th Int. Softw. Product Line Conf., 2013,
pp. 198–207, doi: 10.1145/2491627.2491636.

[15] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, ‘‘OpenState: Pro-
gramming platform-independent stateful openflow applications inside
the switch,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,
pp. 44–51, 2014, doi: 10.1145/2602204.2602211.

[16] M. Kodialam and T. V. Lakshman, ‘‘Minimum interference routing with
applications to MPLS traffic engineering,’’ in Proc. IEEE INFOCOM
Conf. Comput. Commun., 19th Annu. Joint Conf. IEEEComput. Commun.
Societies, Mar. 2000, pp. 884–893.

[17] Y.-R. Chiang, C.-H. Ke, Y.-S. Yu, Y.-S. Chen, and C.-J. Pan, ‘‘Amultipath
transmission scheme for the improvement of throughput over SDN,’’ in
Proc. Int. Conf. Appl. Syst. Innov. (ICASI), May 2017, pp. 1247–1250,
doi: 10.1109/ICASI.2017.7988122.

[18] B. Isyaku, K. B. A. Bakar, M. N. Yusuf, and M. S. M. Zahid,
‘‘Software defined networking failure recovery with flow table
aware and flows classification,’’ in Proc. 11th IEEE Symp. Comput.
Appl. Ind. Electron. (ISCAIE), Apr. 2021, pp. 337–342, doi:
10.1109/ISCAIE51753.2021.9431786.

[19] E. Akin and T. Korkmaz, ‘‘Comparison of routing algorithms
with static and dynamic link cost in software defined networking
(SDN),’’ IEEE Access, vol. 7, pp. 148629–148644, 2019, doi:
10.1109/ACCESS.2019.2946707.

[20] W. Jiawei, Q. Xiuquan, and N. Guoshun, ‘‘Dynamic and adaptive multi-
path routing algorithm based on software-defined network,’’ Int. J. Dis-
trib. Sensor Netw., vol. 14, no. 10, Oct. 2018, Art. no. 155014771880568,
doi: 10.1177/1550147718805689.

[21] R. Li and X. Wang, ‘‘A tale of two (flow) tables: Demystifying rule
caching in OpenFlow switches,’’ in Proc. 48th Int. Conf. Parallel Pro-
cess., 2019, pp. 1–10.

[22] A. Malik, B. Aziz, M. Adda, and C.-H. Ke, ‘‘Optimisation methods
for fast restoration of software-defined networks,’’ IEEE Access, vol. 5,
pp. 16111–16123, 2017, doi: 10.1109/ACCESS.2017.2736949.

[23] A.Malik, B. Aziz, andM. Bader-El-Den, ‘‘Findingmost reliable paths for
software defined networks,’’ in Proc. 13th Int. Wireless Commun. Mobile
Comput. Conf. (IWCMC), 2017, pp. 1309–1314.

[24] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, ‘‘FastRule:
Efficient flow entry updates for TCAM-basedOpenFlow switches,’’ IEEE
J. Sel. Areas Commun., vol. 37, no. 3, pp. 484–498, Mar. 2019, doi:
10.1109/JSAC.2019.2894235.

[25] Y. Wang, S. Feng, H. Guo, X. Qiu, and H. An, ‘‘A single-link failure
recovery approach based on resource sharing and performance predic-
tion in SDN,’’ IEEE Access, vol. 7, pp. 174750–174763, 2019, doi:
10.1109/ACCESS.2019.2957141.

[26] A. Malik, R. D. Fréin, and B. Aziz, ‘‘Rapid restoration techniques
for software-defined networks,’’ Appl. Sci., vol. 10, no. 10, p. 3411,
May 2020, doi: 10.3390/app10103411.

[27] T. Hu, P. Yi, Z. Guo, J. Lan, and Y. Hu, ‘‘Dynamic slave controller
assignment for enhancing control plane robustness in software-defined
networks,’’ Future Gener. Comput. Syst., vol. 95, pp. 681–693, Jun. 2019,
doi: 10.1016/j.future.2019.01.010.

[28] S. Dou, Z. Guo, and Y. Xia, ‘‘ProgrammabilityMedic: Predictable path
programmability recovery under multiple controller failures in SD-
WANs,’’ in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2021, pp. 461–471, doi: 10.1109/ICDCS51616.2021.00051.

[29] S. Dou, G. Miao, Z. Guo, C. Yao, W. Wu, and Y. Xia, ‘‘Matchmaker:
Maintaining network programmability for software-definedWANs under
multiple controller failures,’’ Comput. Netw., vol. 192, Jun. 2021,
Art. no. 108045, doi: 10.1016/j.comnet.2021.108045.

[30] Z. Guo, S. Dou, and W. Jiang, ‘‘Improving the path programmability
for software-defined WANs under multiple controller failures,’’ in Proc.
IEEE/ACM28th Int. Symp. Quality Service (IWQoS), Jun. 2020, pp. 1–10.

[31] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, ‘‘Rules place-
ment problem in OpenFlow networks: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1273–1286, 2nd Quart., 2016, doi:
10.1109/COMST.2015.2506984.

[32] X. Nguyen, D. Saucez, C. Barakat, and T. Turletti, ‘‘OFFICER: A general
optimization framework for OpenFlow rule allocation and endpoint pol-
icy enforcement,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2015, pp. 478–486, doi: 10.1109/INFOCOM.2015.7218414.

[33] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, ‘‘CacheFlow:
Dependency-aware rule-caching for software-defined networks cate-
gories and subject descriptors,’’ in Proc. Symp. SDN Res., 2016,
pp. 1–12.

[34] M. Rifai, N. Huin, C. Caillouet, F. Giroire, J. Moulierac, D. L. Pacheco,
and G. Urvoy-Keller, ‘‘Minnie: An SDN world with few compressed
forwarding rules,’’ Comput. Netw., vol. 121, pp. 185–207, Jul. 2017, doi:
10.1016/j.comnet.2017.04.026.

[35] B. Isyaku, M. B. Kamat, K. B. A. Bakar, M. S. M. Zahid, and
F. A. Ghaleb, ‘‘IHTA: Dynamic idle-hard timeout allocation algo-
rithm based OpenFlow switch,’’ in Proc. IEEE 10th Symp. Com-
put. Appl. Ind. Electron. (ISCAIE), Apr. 2020, pp. 170–175, doi:
10.1109/ISCAIE47305.2020.9108803.

[36] B. Isyaku, K. A. Bakar, M. Soperi, and M. Zahid, ‘‘Adaptive and
hybrid idle–hard timeout allocation and flow eviction mechanism con-
sidering traffic characteristics,’’ Electronics, vol. 9, no. 11, p. 1983,
2020.

[37] L. Zhang, S. Wang, S. Xu, R. Lin, and H. Yu, ‘‘TimeoutX: An adaptive
flow table management method in software defined networks,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–6, doi:
10.1109/GLOCOM.2015.7417563.

VOLUME 10, 2022 121811

http://dx.doi.org/10.1109/COMST.2018.2868922
http://dx.doi.org/10.7287/peerj.preprints.27624v1
http://dx.doi.org/10.1016/0169-7552(89)90011-1
http://dx.doi.org/10.1109/IC2E.2016.35
http://dx.doi.org/10.1587/TRANSCOM.2020EBP3064
http://dx.doi.org/10.1016/j.comnet.2017.02.009
http://dx.doi.org/10.1109/ICUFN.2018.8437006
http://dx.doi.org/10.1016/j.comnet.2018.11.020
http://dx.doi.org/10.1109/comst.2017.2719862
http://dx.doi.org/10.1109/ACCESS.2019.2939115
http://dx.doi.org/10.1145/2491627.2491636
http://dx.doi.org/10.1145/2602204.2602211
http://dx.doi.org/10.1109/ICASI.2017.7988122
http://dx.doi.org/10.1109/ISCAIE51753.2021.9431786
http://dx.doi.org/10.1109/ACCESS.2019.2946707
http://dx.doi.org/10.1177/1550147718805689
http://dx.doi.org/10.1109/ACCESS.2017.2736949
http://dx.doi.org/10.1109/JSAC.2019.2894235
http://dx.doi.org/10.1109/ACCESS.2019.2957141
http://dx.doi.org/10.3390/app10103411
http://dx.doi.org/10.1016/j.future.2019.01.010
http://dx.doi.org/10.1109/ICDCS51616.2021.00051
http://dx.doi.org/10.1016/j.comnet.2021.108045
http://dx.doi.org/10.1109/COMST.2015.2506984
http://dx.doi.org/10.1109/INFOCOM.2015.7218414
http://dx.doi.org/10.1016/j.comnet.2017.04.026
http://dx.doi.org/10.1109/ISCAIE47305.2020.9108803
http://dx.doi.org/10.1109/GLOCOM.2015.7417563


B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

[38] U. Humayun,M. Hamdan, andM. N.Marsono, ‘‘Early flow table eviction
impact on delay and throughput in software-defined networks,’’ in Proc.
11th IEEE Int. Conf. Control Syst., Comput. Eng. (ICCSCE), Aug. 2021,
pp. 27–28.

[39] D. Todorov, H. Valchanov, and V. Aleksieva, ‘‘Simple routing algo-
rithm with link discovery between source and destination hosts in SDN
networks,’’ in Proc. Int. Conf. Autom. Informat. (ICAI), Sep. 2021,
pp. 188–191, doi: 10.1109/ICAI52893.2021.9639742.

[40] P. Sun, Z. Guo, J. Lan, J. Li, Y. Hu, and T. Baker, ‘‘ScaleDRL: A scalable
deep reinforcement learning approach for traffic engineering in SDNwith
pinning control,’’ Comput. Netw., vol. 190, May 2021, Art. no. 107891,
doi: 10.1016/j.comnet.2021.107891.

[41] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, ‘‘CFR-RL:
Traffic engineering with reinforcement learning in SDN,’’ IEEE J.
Sel. Areas Commun., vol. 38, no. 10, pp. 2249–2259, Oct. 2020, doi:
10.1109/JSAC.2020.3000371.

[42] J. Zhang, Z. Guo, M. Ye, and H. J. Chao, ‘‘SmartEntry: Mitigating
routing update overhead with reinforcement learning for traffic engineer-
ing,’’ in Proc. Workshop Netw. Meets AI ML, Aug. 2020, pp. 1–7, doi:
10.1145/3405671.3405809.

[43] P. Sun, J. Li, Z. Guo, Y. Xu, J. Lan, and Y. Hu, ‘‘SINET: Enabling
scalable network routing with deep reinforcement learning on partial
nodes,’’ in Proc. ACM SIGCOMM Conf. Posters, 2019, pp. 88–89, doi:
10.1145/3342280.3342317.

[44] P. Sun, Z. Guo, S. Liu, J. Lan, J. Wang, and Y. Hu, ‘‘SmartFCT: Improv-
ing power-efficiency for data center networks with deep reinforcement
learning,’’ Comput. Netw., vol. 179, Oct. 2020, Art. no. 107255, doi:
10.1016/j.comnet.2020.107255.

[45] H. Ni, Z. Guo, C. Li, S. Dou, C. Yao, and T. Baker, ‘‘Network coding-
based resilient routing for maintaining data security and availability in
software-defined networks,’’ J. Netw. Comput. Appl., vol. 205, Sep. 2022,
Art. no. 103372, doi: 10.1016/j.jnca.2022.103372.

[46] R.W. Floyd, ‘‘Algorithm 97: Shortest path,’’Commun. ACM, vol. 5, no. 6,
p. 345, Jun. 1962, doi: 10.1145/367766.368168.

[47] G. Apostolopoulos, ‘‘On the effectiveness of path pre-computation in
reducing the processing cost of on-demand QoS path computation,’’ in
Proc. 3rd IEEE Symp. Comput. Commun., Jun. 1998, pp. 42–46.

[48] Z. Wang and J. Crowcroft, ‘‘Routing algorithms for supporting resource
reservation,’’ IEEE JSAC, vol. 8, no. 3, pp. 368–379, Apr. 1990.

[49] O. A. Raouf and H. Askr, ‘‘ACOSDN-ant colony optimization algorithm
for dynamic routing in software defined networking,’’ in Proc. 14th Int.
Conf. Comput. Eng. Syst. (ICCES), 2019, pp. 141–148.

[50] N. A. El-Hefnawy, O. A. Raouf, and H. Askr, ‘‘Dynamic rout-
ing optimization algorithm for software defined networking,’’ Com-
put., Mater. Continua, vol. 70, no. 1, pp. 1349–1362, 2022, doi:
10.32604/cmc.2022.017787.

[51] M. Huang,W. Liang, Z. Xu,W. Xu, S. Guo, and Y. Xu, ‘‘Dynamic routing
for network throughput maximization in software-defined networks,’’
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM),
Apr. 2016, pp. 1–9, doi: 10.1109/INFOCOM.2016.7524613.

[52] S. Tomovic, I. Radusinovic, and N. Prasad, ‘‘Performance comparison
of QoS routing algorithms applicable to large-scale SDN networks,’’ in
Proc. IEEE Int. Conf. Comput. Tool (EUROCON), Sep. 2015, pp. 1–6,
doi: 10.1109/EUROCON.2015.7313698.

[53] S. Tomovic and I. Radusinovic, ‘‘Fast and efficient bandwidth-delay
constrained routing algorithm for SDN networks,’’ in Proc. IEEE NetSoft
Conf. Workshops (NetSoft), Jun. 2016, pp. 303–311, doi: 10.1109/NET-
SOFT.2016.7502426.

[54] Q. Ma and P. Steenkiste, ‘‘On path selection for traffic with bandwidth
guarantees,’’ in Proc. Int. Conf. Netw. Protocols, 1997, pp. 191–202.

[55] L.-W. Cheng and S.-Y. Wang, ‘‘Application-aware SDN routing for big
data networking,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2016, pp. 1–6, doi: 10.1109/glocom.2015.7417577.

[56] R. C. Ramirez, Q. T. Vien, R. Trestian, L. Mostarda, and P. Shah,
‘‘Multi-path routing for mission critical applications in software-defined
networks,’’ in Proc. Int. Conf. Ind. Netw. Intell. Syst. (Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering), vol. 257, 2019, pp. 38–48, doi: 10.1007/978-3-030-
05873-9_4.1

[57] A. Chooprateep, ‘‘Video path selection for traffic engineering in SDN,’’
in Proc. 11th Int. Conf. Inf. Technol. Elect. Eng. (ICITEE), vol. 7, 2019,
pp. 1–6.

[58] M. Beshley, M. Seliuchenko, O. Panchenko, and A. Polishuk, ‘‘Adaptive
flow routing model in SDN,’’ in Proc. 14th Int. Conf. Exper. Design-
ing Appl. CAD Syst. Microelectron. (CADSM), 2017, pp. 298–302, doi:
10.1109/CADSM.2017.7916140.

[59] M. F. Rangkuty and M. H. A. Al-hooti, ‘‘Path selection in software
defined network data plane using least loaded path,’’ in Proc. Int. Conf.
Adv. Comput. Sci. Inf. Syst. (ICACSIS), 2020, pp. 135–140.

[60] B. Isyaku, K. B. A. Bakar, F. A. Ghaleb, andM. S. M. Zahid, ‘‘Path selec-
tion with critical switch-aware for software defined networking,’’ in Proc.
IEEE Symp. Wireless Technol. Appl. (ISWTA), Aug. 2021, pp. 22–26.

[61] B. Isyaku, K. A. Bakar, M. S. M. Zahid, E. H. Alkhammash,
F. Saeed, and F. A. Ghaleb, ‘‘Route path selection optimization
scheme based link quality estimation and critical switch awareness
for software defined networks,’’ Appl. Sci., vol. 11, no. 19, p. 9100,
Sep. 2021.

[62] S. Otoum, B. Kantarci, and H. Mouftah, ‘‘Empowering reinforcement
learning on big sensed data for intrusion detection,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), May 2019, pp. 1–7.

[63] K. B. Nougnanke, M. Bruyere, and Y. Labit, ‘‘Low-overhead near-real-
time flow statistics collection in SDN,’’ in Proc. 6th IEEE Int. Conf. Netw.
Softwarization (NetSoft), Ghent, Belgium, 2020, pp. 155–159.

[64] C. Pemer and G. Carle, ‘‘Comparison of optimization goals for resilient
routing,’’ in Proc. IEEE Int. Conf. Commun. Workshops, May 2019,
pp. 1–6.

[65] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
‘‘Hedera: Dynamic flow scheduling for data center networks,’’ in Proc.
NSDI, 2010, pp. 89–92.

[66] B. Yang, X. Cao, J. Bassey, X. Li, T. Kroecker, and L. Qian, ‘‘Compu-
tation offloading in multi-access edge computing networks: A multi-task
learning approach,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,
pp. 1–6.

[67] H. Zhang, F. Tang, and L. Barolli, ‘‘Efficient flow detection and schedul-
ing for SDN-based big data centers,’’ J. Ambient Intell. Humanized Com-
put., vol. 10, no. 5, pp. 1915–1926, May 2019, doi: 10.1007/s12652-018-
0783-6.

[68] Z. Guo, Y. Xu, M. Cello, and J. Zhang, ‘‘JumpFlow: Reducing flow
table usage in software-defined networks,’’ Comput. Netw., vol. 92,
pp. 300–315, Dec. 2015, doi: 10.1016/j.comnet.2015.09.030.

[69] Z. Guo, Y. Xu, R. Liu, A. Gushchin, K.-Y. Chen, A.Walid, and H. J. Chao,
‘‘Balancing flow table occupancy and link utilization in software-defined
networks,’’Future Gener. Comput. Syst., vol. 89, pp. 213–223, Dec. 2018,
doi: 10.1016/j.future.2018.06.011.

[70] L. Zhang, Q. Deng, Y. Su, and Y. Hu, ‘‘A box-covering-based routing
algorithm for large-scale SDNs,’’ IEEE Access, vol. 5, pp. 4048–4056,
2017, doi: 10.1109/ACCESS.2017.2682501.

[71] J. Dong, C. Ma, W. Cheng, and L. Xin, ‘‘Notice of violation of IEEE pub-
lication principles: Data augmented design: Urban planning and design in
the new data environment,’’ in Proc. IEEE 2nd Int. Conf. Big Data Anal.
(ICBDA), Mar. 2017, pp. 508–512.

[72] M. M. Mulla and S. Shinde, ‘‘Ant colony optimization-based dynamic
routing in software defined networks,’’ in Proc. 11th Int. Conf. Comput.,
Commun. Netw. Technol. (ICCCNT), 2020, pp. 1–7.

[73] O. Dobrijevic, M. Santl, and M. Matijasevic, ‘‘Ant colony optimization
for QoE-centric flow routing in software-defined networks,’’ inProc. 11th
Int. Conf. Netw. Service Manag. (CNSM), Nov. 2015, pp. 274–278, doi:
10.1109/CNSM.2015.7367371.

[74] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao,
‘‘STAR: Preventing flow-table overflow in software-defined
networks,’’ Comput. Netw., vol. 125, pp. 15–25, Oct. 2017, doi:
10.1016/j.comnet.2017.04.046.

[75] S. Astaneh and S. S. Heydari, ‘‘Multi-failure restoration with minimal
flow operations in software defined networks,’’ in Proc. 11th Int. Conf.
Design Reliable Commun. Netw. (DRCN), Mar. 2015, pp. 263–266, doi:
10.1109/DRCN.2015.7149024.

[76] S. A. Astaneh and S. S. Heydari, ‘‘Optimization of SDN flow
operations in multi-failure restoration scenarios,’’ IEEE Trans.
Netw. Service Manag., vol. 13, no. 3, pp. 421–432, Sep. 2016, doi:
10.1109/TNSM.2016.2580590.

[77] S. M. Raza, S. Ahvar, R. Amin, and M. Hussain, ‘‘Reliability aware
multiple path installation in software-defined networking,’’ Electronics,
vol. 10, no. 22, p. 2820, Nov. 2021, doi: 10.3390/electronics10222820.

[78] S. Kotachi, T. Sato, R. Shinkuma, and E. Oki, ‘‘Multicast routingmodel to
minimize number of flow entries in software-defined network,’’ in Proc.
20th Asia–Pacific Netw. Oper. Manag. Symp. (APNOMS), 2019, pp. 1–6.

121812 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICAI52893.2021.9639742
http://dx.doi.org/10.1016/j.comnet.2021.107891
http://dx.doi.org/10.1109/JSAC.2020.3000371
http://dx.doi.org/10.1145/3405671.3405809
http://dx.doi.org/10.1145/3342280.3342317
http://dx.doi.org/10.1016/j.comnet.2020.107255
http://dx.doi.org/10.1016/j.jnca.2022.103372
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.32604/cmc.2022.017787
http://dx.doi.org/10.1109/INFOCOM.2016.7524613
http://dx.doi.org/10.1109/EUROCON.2015.7313698
http://dx.doi.org/10.1109/NETSOFT.2016.7502426
http://dx.doi.org/10.1109/NETSOFT.2016.7502426
http://dx.doi.org/10.1109/glocom.2015.7417577
http://dx.doi.org/10.1007/978-3-030-05873-9_4
http://dx.doi.org/10.1007/978-3-030-05873-9_4
http://dx.doi.org/10.1109/CADSM.2017.7916140
http://dx.doi.org/10.1007/s12652-018-0783-6
http://dx.doi.org/10.1007/s12652-018-0783-6
http://dx.doi.org/10.1016/j.comnet.2015.09.030
http://dx.doi.org/10.1016/j.future.2018.06.011
http://dx.doi.org/10.1109/ACCESS.2017.2682501
http://dx.doi.org/10.1109/CNSM.2015.7367371
http://dx.doi.org/10.1016/j.comnet.2017.04.046
http://dx.doi.org/10.1109/DRCN.2015.7149024
http://dx.doi.org/10.1109/TNSM.2016.2580590
http://dx.doi.org/10.3390/electronics10222820


B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

[79] R. Biswas and J. Wu, ‘‘Minimizing the number of rules to mit-
igate link congestion in SDN-based datacenters,’’ in Proc. IEEE
Int. Conf. Netw., Archit. Storage (NAS), Oct. 2021, pp. 1–8, doi:
10.1109/NAS51552.2021.9605365.

[80] L. Luo, H. Yu, S. Luo, M. Zhang, and S. Yu, ‘‘Achieving fast and
lightweight SDN updates with segment routing,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–6, doi: 10.1109/GLO-
COM.2016.7841562.

[81] H. Xu, Z. Yu, X. Y. Li, L. Huang, C. Qian, and T. Jung, ‘‘Joint
route selection and update scheduling for low-latency update in SDNs,’’
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3073–3087, Oct. 2017, doi:
10.1109/TNET.2017.2717441.

[82] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, ‘‘Real-time update
with joint optimization of route selection and update scheduling for
SDNs,’’ inProc. IEEE 24th Int. Conf. Netw. Protocols (ICNP), Nov. 2016,
pp. 1–10, doi: 10.1109/ICNP.2016.7784436.

[83] M. Rifai, N. Huin, C. Caillouet, F. Giroire, J. Moulierac, D. L. Pacheco,
and G. Urvoy-Keller, ‘‘MINNIE: An SDN world with few compressed
forwarding rules,’’ Comput. Netw., vol. 121, pp. 185–207, Jul. 2017, doi:
10.1016/j.comnet.2017.04.026.

[84] Z. Zhao, W. Yang, and B. Wu, ‘‘Flow aggregation through dynamic
routing overlaps in software defined networks,’’ Comput. Netw.,
vol. 176, Jul. 2020, Art. no. 107293, doi: 10.1016/j.comnet.2020.
107293.

[85] T. Chao and K. Wang, ‘‘In-switch dynamic flow aggregation in software
defined networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017,
pp. 1–6.

[86] F. Giroire, J. Moulierac, and T. K. Phan, ‘‘Optimizing rule placement
in software-defined networks for energy-aware routing,’’ in Proc. IEEE
Global Commun. Conf., Dec. 2014, pp. 2523–2529, doi: 10.1109/GLO-
COM.2014.7037187.

[87] F. Giroire, N. Huin, J. Moulierac, and T. K. Phan, ‘‘Energy-aware routing
in software-defined network using compression,’’ Comput. J., vol. 61,
no. 10, pp. 1537–1556, Oct. 2018, doi: 10.1093/comjnl/bxy029.

[88] J. Galán-Jiménez, M. Polverini, and A. Cianfrani, ‘‘Reducing the recon-
figuration cost of flow tables in energy-efficient software-defined net-
works,’’ Comput. Commun., vol. 128, pp. 95–105, Sep. 2018, doi:
10.1016/j.comcom.2018.07.022.

[89] H. Zhu, X. Liao, C. de Laat, and P. Grosso, ‘‘Joint flow routing-scheduling
for energy efficient software defined data center networks: A prototype
of energy-aware networkmanagement platform,’’ J. Netw. Comput. Appl.,
vol. 63, pp. 110–124, Mar. 2016, doi: 10.1016/j.jnca.2015.10.017.

[90] B. G. Assefa and Ö. Özkasap, ‘‘A survey of energy efficiency in SDN:
Software-based methods and optimization models,’’ J. Netw. Comput.
Appl., vol. 137, pp. 127–143, Jul. 2019, doi: 10.1016/j.jnca.2019.04.001.

[91] T. M. Nam, N. H. Thanh, N. Q. Thu, H. T. Hieu, and S. Covaci,
‘‘Energy-aware routing based on power profile of devices in data center
networks using SDN,’’ in Proc. 12th Int. Conf. Electr. Eng./Electron.,
Comput., Telecommun. Inf. Technol. (ECTI-CON), Jun. 2015, pp. 1–6,
doi: 10.1109/ECTICon.2015.7207042.

[92] G. Xu, B. Dai, B. Huang, and J. Yang, ‘‘Bandwidth-aware energy efficient
routing with SDN in data center networks,’’ in Proc. IEEE 17th Int. Conf.
High Perform. Comput. Commun., IEEE 7th Int. Symp. Cyberspace Safety
Secur., 2015 IEEE 12th Int. Conf. Embedded Softw. Syst., Aug. 2015,
pp. 766–771, doi: 10.1109/HPCC-CSS-ICESS.2015.12.

[93] G. Xu, B. Dai, B. Huang, J. Yang, and S. Wen, ‘‘Bandwidth-aware
energy efficient flow scheduling with SDN in data center networks,’’
Future Gener. Comput. Syst., vol. 68, pp. 163–174, Mar. 2017, doi:
10.1016/j.future.2016.08.024.

[94] A. Amokrane, R. Langar, R. Boutaba, and G. Pujolle, ‘‘Flow-based
management for energy efficient campus networks,’’ IEEE Trans.
Netw. Service Manag., vol. 12, no. 4, pp. 565–579, Dec. 2015, doi:
10.1109/TNSM.2015.2501398.

[95] M. N. Siraj, N. Javaid, Q. Shafi, Z. Ahmed, U. Qasim, and Z. A. Khan,
‘‘Energy aware dynamic routing using SDN for a campus network,’’
in Proc. 19th Int. Conf. Network-Based Inf. Syst. (NBiS), Sep. 2016,
pp. 226–230, doi: 10.1109/NBiS.2016.80.

[96] D. Jiang, P. Zhang, Z. Lv, andH. Song, ‘‘Energy-efficient multi-constraint
routing algorithm with load balancing for smart city applications,’’
IEEE Internet Things J., vol. 3, no. 6, pp. 1437–1447, Dec. 2016, doi:
10.1109/JIOT.2016.2613111.

[97] S. Hur, Y. J. Cho, J. Lee, N. G. Kang, J. Park, and H. Benn, ‘‘Syn-
chronous channel sounder using horn antenna and indoor measurements
on 28 GHz,’’ in Proc. IEEE Int. Black Sea Conf. Commun. Netw. (Black-
SeaCom), May 2014, pp. 83–87.

[98] B. Ozbek, Y. Aydogmus, A. Ulas, B. Gorkemli, and K. Ulusoy, ‘‘Energy
aware routing and traffic management for software defined networks,’’
in Proc. IEEE NetSoft Conf. Workshops (NetSoft), Jun. 2016, pp. 73–77,
doi: 10.1109/NETSOFT.2016.7502446.

[99] R. Maaloul, R. Taktak, L. Chaari, and B. Cousin, ‘‘Energy-aware
routing in carrier-grade Ethernet using SDN approach,’’ IEEE Trans.
Green Commun. Netw., vol. 2, no. 3, pp. 844–858, Sep. 2018, doi:
10.1109/TGCN.2018.2832658.

[100] S. Torkzadeh, H. Soltanizadeh, and A. A. Orouji, ‘‘Energy-aware routing
considering load balancing for SDN: Aminimum graph-based ant colony
optimization,’’Cluster Comput., vol. 24, no. 3, pp. 2293–2312, Sep. 2021,
doi: 10.1007/s10586-021-03263-x.

[101] Z. Guo, Y. Xu, Y.-F. Liu, S. Liu, H. J. Chao, Z.-L. Zhang, and Y. Xia,
‘‘AggreFlow: Achieving power efficiency, load balancing, and quality of
service in data center networks,’’ IEEE/ACM Trans. Netw., vol. 29, no. 1,
pp. 17–33, Feb. 2021, doi: 10.1109/TNET.2020.3026015.

[102] Z. Guo, S. Dou, Y. Wang, S. Liu, W. Feng, and Y. Xu, ‘‘HybridFlow:
Achieving load balancing in software-defined WANs with scalable rout-
ing,’’ IEEE Trans. Commun., vol. 69, no. 8, pp. 5255–5268, Aug. 2021,
doi: 10.1109/TCOMM.2021.3074500.

[103] S. M. Park, S. Ju, and J. Lee, ‘‘Efficient routing for traffic offloading
in software-defined network,’’ Proc. Comput. Sci., vol. 34, pp. 674–679,
Aug. 2014, doi: 10.1016/j.procs.2014.07.096.

[104] C. N. Sminesh and K. Ranjitha, ‘‘A proactive flow admission and
re-routing scheme for load balancing and mitigation of congestion propa-
gation in SDN data plane,’’ Int. J. Comput. Netw. Commun., vol. 10, no. 6,
pp. 117–134, Nov. 2018, doi: 10.5121/ijcnc.2018.10607.

[105] J. Hwang, J. Yoo, S.-H. Lee, and H.-W. Jin, ‘‘Scalable congestion control
protocol based on SDN in data center networks,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–6.

[106] R. Kanagevlu and K. M. M. Aung, ‘‘SDN controlled local re-routing
to reduce congestion in cloud data center,’’ in Proc. Int. Conf. Cloud
Comput. Res. Innov. (ICCCRI), Oct. 2015, pp. 80–88, doi: 10.1109/ICC-
CRI.2015.27.

[107] M. Kao, B. Huang, S. Kao, and H. Tseng, ‘‘An effective routing mech-
anism for link congestion avoidance in software-defined networking
get switches information record switches port translate to graph wait
3 seconds,’’ in Proc. Int. Comput. Symp. (ICS), 2016, pp. 154–158.

[108] S. Attarha, K. H. Hosseiny, G. Mirjalily, and K. Mizanian, ‘‘A load
balanced congestion aware routing mechanism for software defined
networks,’’ in Proc. Iranian Conf. Electr. Eng. (ICEE), May 2017,
pp. 2206–2210.

[109] R. Wazirali and R. Ahmad, ‘‘SDN-openflow topology discovery:
An overview of performance issues,’’ Appl. Sci., vol. 11, no. 15, p. 6999,
2021.

[110] N. L. M. V. Adrichem, B. J. V. Asten, and F. A. Kuipers, ‘‘Fast recovery in
software-defined networks,’’ in Proc. 3rd Eur. Workshop Softw. Defined
Netw., Sep. 2014, pp. 61–66, doi: 10.1109/EWSDN.2014.13.

[111] N. L. M. Van Adrichem, F. Iqbal, and F. A. Kuipers, ‘‘Comput-
ing backup forwarding rules in software-defined networks,’’ 2016,
arXiv:1605.09350.

[112] J. Kempf, E. Bellagamba, A. Kern, and A. Ab, ‘‘Scalable fault manage-
ment for OpenFlow,’’ inProc. IEEE Int. Conf. Commun. (ICC), Jun. 2012,
pp. 6606–6610.

[113] D. Gyllstrom, N. Braga, and J. Kurose, ‘‘Recovery from link failures in a
smart grid communication network using OpenFlow,’’ in Proc. IEEE Int.
Conf. Smart Grid Commun. (SmartGridComm), Nov. 2014, pp. 254–259.

[114] S. S. W. Lee, K.-Y. Li, K.-Y. Chan, G.-H. Lai, and Y.-C. Chung, ‘‘Path
layout planning and software based fast failure detection in survivable
OpenFlow networks,’’ in Proc. 10th Int. Conf. Design Reliable Commun.
Netw. (DRCN), Apr. 2014, pp. 1–8, doi: 10.1109/DRCN.2014.6816141.

[115] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sans, ‘‘SPIDER:
Fault resilient SDN pipeline with recovery delay guarantees,’’ in Proc.
IEEE NetSoft Conf. Workshops (NetSoft), Jun. 2016, pp. 296–302.

[116] B. Raeisi and A. Giorgetti, ‘‘Software-based fast failure recovery in load
balanced SDN-based datacenter networks,’’ in Proc. 6th Int. Conf. Inf.
Commun. Manag. (ICICM), Oct. 2016, pp. 95–99.

VOLUME 10, 2022 121813

http://dx.doi.org/10.1109/NAS51552.2021.9605365
http://dx.doi.org/10.1109/GLOCOM.2016.7841562
http://dx.doi.org/10.1109/GLOCOM.2016.7841562
http://dx.doi.org/10.1109/TNET.2017.2717441
http://dx.doi.org/10.1109/ICNP.2016.7784436
http://dx.doi.org/10.1016/j.comnet.2017.04.026
http://dx.doi.org/10.1016/j.comnet.2020.107293
http://dx.doi.org/10.1016/j.comnet.2020.107293
http://dx.doi.org/10.1109/GLOCOM.2014.7037187
http://dx.doi.org/10.1109/GLOCOM.2014.7037187
http://dx.doi.org/10.1093/comjnl/bxy029
http://dx.doi.org/10.1016/j.comcom.2018.07.022
http://dx.doi.org/10.1016/j.jnca.2015.10.017
http://dx.doi.org/10.1016/j.jnca.2019.04.001
http://dx.doi.org/10.1109/ECTICon.2015.7207042
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.12
http://dx.doi.org/10.1016/j.future.2016.08.024
http://dx.doi.org/10.1109/TNSM.2015.2501398
http://dx.doi.org/10.1109/NBiS.2016.80
http://dx.doi.org/10.1109/JIOT.2016.2613111
http://dx.doi.org/10.1109/NETSOFT.2016.7502446
http://dx.doi.org/10.1109/TGCN.2018.2832658
http://dx.doi.org/10.1007/s10586-021-03263-x
http://dx.doi.org/10.1109/TNET.2020.3026015
http://dx.doi.org/10.1109/TCOMM.2021.3074500
http://dx.doi.org/10.1016/j.procs.2014.07.096
http://dx.doi.org/10.5121/ijcnc.2018.10607
http://dx.doi.org/10.1109/ICCCRI.2015.27
http://dx.doi.org/10.1109/ICCCRI.2015.27
http://dx.doi.org/10.1109/EWSDN.2014.13
http://dx.doi.org/10.1109/DRCN.2014.6816141


B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

[117] V. Muthumanikandan and C. Valliyammai, ‘‘Link failure recovery using
shortest path fast rerouting technique in SDN,’’Wireless Pers. Commun.,
vol. 97, no. 2, pp. 2475–2495, Nov. 2017, doi: 10.1007/s11277-017-
4618-0.

[118] M. Shojaee and M. Neves, ‘‘SafeGuard: Congestion and memory-aware
failure recovery in SD-WAN,’’ in Proc. 16th Int. Conf. Netw. Service
Manag. (CNSM), Nov. 2020, pp. 1–7.

[119] S. Sharma and D. Staessens, ‘‘Fast failure recovery for in-band OpenFlow
networks,’’ in Proc. 9th Int. Conf. Design Reliable Commun. Netw., 2013,
pp. 52–59.

[120] A. Capone, C. Cascone, A. Q. T. Nguyen, and B. Sanso, ‘‘Detour planning
for fast and reliable failure recovery in SDN with OpenState,’’ 2014,
arXiv:1411.7711.

[121] Y. Yu, L. Xin, C. Shanzhi, and W. Yan, ‘‘A framework of using
OpenFlow to handle transient link failure,’’ in Proc. Int. Conf.
Transp., Mech., Electr. Eng. (TMEE), Dec. 2011, pp. 2050–2053, doi:
10.1109/TMEE.2011.6199619.

[122] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
‘‘OpenFlow-based segment protection in Ethernet networks,’’
J. Opt. Commun. Netw., vol. 5, no. 9, pp. 1066–1075, 2013, doi:
10.1364/JOCN.5.001066.

[123] B. Isyaku, M. Soperi, M. Zahid, and M. B. Kamat, ‘‘Software defined
networking flow table management of OpenFlow switches performance
and security challenges: A survey,’’ Future Internet, vol. 12, no. 9, p. 147,
2020.

[124] S. Kim and S. Lumetta, ‘‘Evaluation of protection reconfiguration for
multiple failures inWDMmesh networks,’’ inOpt. Fiber Commun. Conf.,
Tech. Dig. Optica Publishing Group, 2003, pp. 1–4, 2003, Paper TuI7.

[125] X. Zhang, Z. Cheng, R. Lin, L. He, S. Yu, and H. Luo, ‘‘Local fast reroute
with flow aggregation in software defined networks,’’ IEEE Commun.
Lett., vol. 21, no. 4, pp. 785–788, Apr. 2017.

[126] Z. Cheng, X. Zhang, Y. Li, S. Yu, R. Lin, and L. He, ‘‘Congestion-
aware local reroute for fast failure recovery in software-defined net-
works,’’ J. Opt. Commun. Netw., vol. 9, no. 11, p. 934, Nov. 2017, doi:
10.1364/jocn.9.000934.

[127] C. Wang and H. Y. Youn, ‘‘Entry aggregation and early match using
hidden Markov model of flow table in SDN,’’ Sensors, vol. 19, no. 10,
p. 2341, 2019.

[128] Z. Zhu, Q. Li, S. Xia, and M. Xu, ‘‘CAFFE: Congestion-aware fast
failure recovery in software defined networks,’’ in Proc. 27th Int.
Conf. Comput. Commun. Netw. (ICCCN), Jul. 2018, pp. 1–9, doi:
10.1109/ICCCN.2018.8487363.

[129] S. Hegde, S. G. Koolagudi, and S. Bhattacharya, ‘‘Path restoration in
source routed software defined networks,’’ in Proc. 9th Int. Conf. Ubiq-
uitous Future Netw. (ICUFN), Jul. 2017, pp. 720–725.

[130] A. L. I. Malik, B. Aziz, C. Ke, H. A. N. Liu, and M. O. Adda, ‘‘Virtual
topology partitioning towards an efficient failure recovery of software
defined networks,’’ in Proc. Int. Conf. Mach. Learn. Cybern. (ICMLC),
2017, pp. 646–651.

[131] H. Kim, J. R. Santos, Y. Turner, M. Schlansker, J. Tourrilhes, and
N. Feamster, ‘‘CORONET: Fault tolerance for software defined net-
works,’’ in Proc. 20th IEEE Int. Conf. Netw. Protocols (ICNP), Oct. 2012,
pp. 1–2.

[132] P. M. Mohan, T. Truong-Huu, and M. Gurusamy, ‘‘TCAM-aware local
rerouting for fast and efficient failure recovery in software defined
networks,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2015, pp. 1–6, doi: 10.1109/GLOCOM.2015.7417309.

[133] J. Chen, J. Chen, J. Ling, andW. Zhang, ‘‘Failure recovery using vlan-tag
in SDN: High speed with low memory requirement,’’ in Proc. IEEE 35th
Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2016, pp. 1–9, doi:
10.1109/PCCC.2016.7820627.

[134] H. Liaoruo, S. Qingguo, and S. Wenjuan, ‘‘A source routing based
link protection method for link failure in SDN,’’ in Proc. 2nd IEEE
Int. Conf. Comput. Commun. (ICCC), Oct. 2016, pp. 2588–2594, doi:
10.1109/CompComm.2016.7925166.

[135] P. Thorat, R. Challa, S. M. Raza, D. S. Kim, and H. Choo, ‘‘Proactive
failure recovery scheme for data traffic in software defined networks,’’ in
Proc. IEEE NetSoft Conf. Workshops (NetSoft), Jun. 2016, pp. 219–225,
doi: 10.1109/NETSOFT.2016.7502416.

[136] Y.-D. Lin, H.-Y. Teng, C.-R. Hsu, C.-C. Liao, andY.-C. Lai, ‘‘Fast failover
and switchover for link failures and congestion in software defined net-
works,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6,
doi: 10.1109/ICC.2016.7510886.

[137] B. Stephens, A. L. Cox, and S. Rixner, ‘‘Scalable multi-failure fast
failover via forwarding table compression,’’ in Proc. Symp. SDN Res.,
2016, pp. 1–12.

[138] P. Thorat, S. M. Raza, D. S. Kim, and H. Choo, ‘‘Rapid recovery from
link failures in software-defined networks,’’ J. Commun. Netw., vol. 19,
no. 6, pp. 648–665, Dec. 2017.

[139] P. Thorat, S. Jeon, S. M. Raza, and H. Choo, ‘‘Pre-provisioning of
local protection for handling dual-failures in OpenFlow-based net-
works,’’ in Proc. 13th Int. Conf. Netw. Service Manag. (CNSM), 2017,
pp. 1–6.

[140] S. Feng, Y. Wang, X. Zhong, J. Zong, X. Qiu, and S. Guo, ‘‘A ring-
based single-link failure recovery approach in SDN data plane,’’ in
Proc. IEEE/IFIP Netw. Oper. Manag. Symp., Apr. 2018, pp. 1–7, doi:
10.1109/NOMS.2018.8406152.

[141] A. Malik, B. Aziz, M. Adda, and C.-H. Ke, ‘‘Smart routing:
Towards proactive fault handling of software-defined networks,’’
Comput. Netw., vol. 170, Apr. 2020, Art. no. 107104, doi:
10.1016/j.comnet.2020.107104.

[142] S. Q. Zhang, Q. Zhang, A. Tizghadam, B. Park, H. Bannazadeh,
R. Boutaba, and A. Leon-Garcia, ‘‘TCAM space-efficient routing in
a software defined network,’’ Comput. Netw., vol. 125, pp. 26–40,
Oct. 2017, doi: 10.1016/j.comnet.2017.06.020.

[143] H. Li, Q. Li, Y. Jiang, T. Zhang, and L. Wang, ‘‘A declarative fail-
ure recovery system in software defined networks,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), May 2016, pp. 1–6, doi: 10.1109/ICC.2016.
7510887.

[144] M. Shojaee, M. Neves, and I. Haque, ‘‘Congestion and memory-aware
failure recovery in SD-WAN,’’ in Proc. 16th Int. Conf. Netw. Service
Manag. (CNSM), Izmir, Turkey, pp 1–7.

[145] D. Adami, S. Giordano, M. Pagano, and N. Santinelli, ‘‘Class-based
traffic recovery with load balancing in software-defined networks,’’ in
Proc. IEEEGlobecomWorkshops (GCWkshps), Dec. 2014, pp. 161–165,
doi: 10.1109/GLOCOMW.2014.7063424.

[146] S. Zhang, Y. Wang, Q. He, J. Yu, and S. Guo, ‘‘Backup-resource based
failure recovery approach in SDN data plane,’’ in Proc. 18th Asia–
Pacific Netw. Oper. Manag. Symp. (APNOMS), Oct. 2016, pp. 1–6, doi:
10.1109/APNOMS.2016.7737211.

[147] W. Xin-gang, ‘‘A link performance-based failure recovery approach in
SDN data plane,’’ in Proc. 3rd Int. Conf. Multimedia Image Process.,
2018, pp. 46–51.

[148] I. Haque, ‘‘Revive: A reliable software defined data plane failure recovery
scheme,’’ in Proc. 14th Int. Conf. Netw. Service Manag. (CNSM), 2018,
pp. 268–274.

[149] T. Hu, P. Yi, J. Lan, Y. Hu, and P. Sun, ‘‘FTLink: Efficient and flexible link
fault tolerance scheme for data plane in software-defined networking,’’
Future Gener. Comput. Syst., vol. 111, pp. 381–400, Oct. 2020, doi:
10.1016/j.future.2019.11.015.

[150] R. K. Das, F. H. Pohrmen, A. K. Maji, and G. Saha, ‘‘FT-SDN: A fault-
tolerant distributed architecture for software defined network,’’ Wire-
less Pers. Commun., vol. 114, no. 2, pp. 1045–1066, Sep. 2020, doi:
10.1007/s11277-020-07407-x.

BABANGIDA ISYAKU received the B.Sc. degree
in computer science and information system from
Oxford Brookes University, in 2012, and the
M.Sc. and Ph.D. degrees in computer science
from Universiti Teknologi Malaysia (UTM), in
2017 and 2022, respectively. He works with
Sule Lamido University, Kafin Hausa, Jigawa,
Nigeria. He is currently a Researcher at Univer-
siti Teknologi Malaysia under the Post-Doctoral
Fellowship Scheme. His research interests include

software defined networks, routing, failure recovery, and flowtable manage-
ment. He was a recipient of the Best Paper Award at IEEE Symposium on
Computer Applications and Industrial Electronics, in 2020, and the Best
Postgraduate Student Award from the Faculty of Computing, UTM.

121814 VOLUME 10, 2022

http://dx.doi.org/10.1007/s11277-017-4618-0
http://dx.doi.org/10.1007/s11277-017-4618-0
http://dx.doi.org/10.1109/TMEE.2011.6199619
http://dx.doi.org/10.1364/JOCN.5.001066
http://dx.doi.org/10.1364/jocn.9.000934
http://dx.doi.org/10.1109/ICCCN.2018.8487363
http://dx.doi.org/10.1109/GLOCOM.2015.7417309
http://dx.doi.org/10.1109/PCCC.2016.7820627
http://dx.doi.org/10.1109/CompComm.2016.7925166
http://dx.doi.org/10.1109/NETSOFT.2016.7502416
http://dx.doi.org/10.1109/ICC.2016.7510886
http://dx.doi.org/10.1109/NOMS.2018.8406152
http://dx.doi.org/10.1016/j.comnet.2020.107104
http://dx.doi.org/10.1016/j.comnet.2017.06.020
http://dx.doi.org/10.1109/ICC.2016.7510887
http://dx.doi.org/10.1109/ICC.2016.7510887
http://dx.doi.org/10.1109/GLOCOMW.2014.7063424
http://dx.doi.org/10.1109/APNOMS.2016.7737211
http://dx.doi.org/10.1016/j.future.2019.11.015
http://dx.doi.org/10.1007/s11277-020-07407-x


B. Isyaku et al.: Dynamic Routing and Failure Recovery Approaches for Efficient Resource

KAMALRULNIZAM BIN ABU BAKAR (Mem-
ber, IEEE) received the B.Sc. degree in com-
puter science from Universiti Teknologi Malaysia,
Malaysia, in 1996, the M.Sc. degree in com-
puter communications and networks from Leeds
Metropolitan University, U.K., in 1998, and the
Ph.D. degree in computer science fromAston Uni-
versity, U.K., in 2004. He is currently a Professor
with the Department of Computer Science, Uni-
versiti Teknologi Malaysia, and a member of the

Pervasive Computing Research Group. His research interests include mobile
and wireless computing, ad-hoc and sensor networks, information security,
and grid computing. He is involved in many research projects and also a
referee of several scientific journals and conferences. He is a member of
ACM, the Internet Society, and the International Association of Engineering.

FUAD A. GHALEB received the B.Sc. degree
in computer engineering from the Faculty of
Engineering, Sana’a University, Yemen, in 2003,
and the M.Sc. and Ph.D. degrees in computer
science (information security) from the Faculty
of Engineering, School of Computing, Universiti
Teknologi Malaysia (UTM), Johor, Malaysia, in
2014 and 2018, respectively. He is currently a
Senior Lecturer with the Faculty of Engineering,
School of Computing, UTM.His research interests

include vehicular network security, cyber security, intrusion detection, data
science, data mining, and artificial intelligence. He was a recipient of many
awards and recognitions, such as the Postdoctoral Fellowship Award, the
Best Postgraduate Student Award, the Excellence Awards, and the Best
Presenter Award from the School of Computing, Faculty of Engineering,
UTM, as well as the best paper awards from many international conferences.

ABDULAZIZ AL-NAHARI received the B.Sc.
degree in information technology from Al-Balqa
Applied University, in 2005, the M.Sc. degree in
computer science from The University of Jordan,
in 2009, and the Ph.D. degree in computer science
from the School of Computing, Faculty of Engi-
neering, Universiti Teknologi Malaysia (UTM),
in 2018. He has been working at the Programming
Unit, Sana’a Community College, Sana’a, since
2009. He has been working as a Senior Lecturer at

the UNITAR Graduate School, UNITAR International University, Malaysia,
since June 2021. His research interests include computer networks, routing
protocols in ad-hoc networks, machine learning, and data analytics.

VOLUME 10, 2022 121815


