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ABSTRACT In the modern world, numerous opportunities help detect electricity theft happening in
electricity grids due to the widespread shifting of people from old metering infrastructure to advanced
metering infrastructure (AMI). It is done by studying the consumers’ energy consumption (EC) readings
provided by smart meters (SM). The literature introduces a variety of machine learning (ML) and deep
learning (DL) strategies to use EC data for identifying power theft in smart grids (SGs). However, the
existing schemes provide low performance in electricity theft detection (ETD) due to the usage of imbalanced
data and using schemes individually. Moreover, the existing detectors are validated using a limited number
of performance evaluation measures, which are unsuitable for conducting the model’s comprehensive
validation. To tackle the problems mentioned above, an ML boosting classifiers-based stacking ensemble
model (MLBCSM) is proposed followed by an adaptive synthetic sampling technique (ADASYN) in the
underlying work. Data preprocessing, data balancing and classification are the three major parts of the
model introduced in this work. Besides, the EC data acquired from the consumers’ SMs is used for detecting
electricity theft. Moreover, the simulation results reveal that MLBCSM combines the benefits of adaptive
boosting (AdaBoost), extreme gradient boosting (XGBoost), histogram boosting (HistBoost), categorical
boosting (CatBoost), and light gradient boosting (LGBoost). Additionally, the model’s validation is ensured
via different metrics. It is deduced via extensive simulations that the proposed model’s outcomes are superior
to those of the individual models in terms of ETD.

INDEX TERMS AdaBoost, CatBoost, electricity theft detection, healthcare, HistBoost, LGBoost, stacking
ensemble model, state grid corporation of China dataset, smart cities, XGBboost.

I. INTRODUCTION
Electricity is one of the significant resources in human
life, which is provided to consumers by electric utilities.
In return, the electric utilities obtain benefits in the form of
money. However, electricity losses occur while dispatching
the energy from the generation side to the consumption
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side. The losses heavily disturb the economic benefits of
both utility and electricity consumers. Typically, the division
of electric losses is done into two groups: technical and
non-technical [1]. The physical state of the power system’s
devices becomes the reason for technical losses (TLs). These
losses can be reduced to some extent (but not fully) by
changing the hardware components of the power system.
Electricity theft, non-payment of energy consumption (EC)
bills, meter installation flaws, accounting errors, etc., become
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the reasons for non-technical losses (NTLs). Among these,
electricity theft is responsible for a remarkable loss [2]. Illegal
energy usage in multiple ways is referred to as stealing
electricity, also known as electricity theft [3]. The principal
reason for energy theft is tapping, which is responsible for
almost 80% of the total NTLs [1]. The rate of electricity
theft in developing countries is more than 30% [4]. Due
to energy theft, China incurs a loss as high as 20 billion
Chinese Yen per year [4]. The US loses around 6 billion
US dollars per year to electricity theft [5]. Conventionally,
technicians were hired to study the monthly meter readings
over several months to identify the abnormal energy usage.
Afterwards, they visited each consumer in-person to look
over the connection and status of each energy meter [6].
However, this method of detecting energy theft needs experts’
knowledge.

Moreover, the decisions made by the respective domain
experts are scarce in contrast to the maximization of the EC
readings on a day-to-day basis [5]. The advanced metering
infrastructure (AMI) is a significant element of the smart
grid (SG) comprising the smart meters (SMs) that record and
monitor the EC readings. With the emergence of AMI and
SG, a massive amount of EC data are available. Therefore,
a new hope is raised when employing machine learning (ML)
and deep learning (DL) algorithms for detecting abnormal
EC patterns from massive data [5]. These techniques reduce
the working load of technicians and obtain better NTLs’
detection accuracy values. Besides, ML and DL techniques
are used in other fields such as transport, healthcare,
agriculture, etc. Recently, many ML and DL-based models
have been proposed to tackle the problem of NTLs [7], [8],
[9], [10], [11]. These approaches employ the EC readings’
history of consumers to analyze the data to detect NTLs in
SGs. However, some of these techniques have low detection
accuracy. In addition, some of them give high false positive
rate (FPR) values. These bad performances are caused due
to various reasons. The ML classifiers are individually
employed in the abovementioned techniques, and no stacking
ensemble model is developed from multiple heterogeneous
techniques to achieve improved performance in electricity
theft detection (ETD). Furthermore, the imbalanced class
problem is not handled, resulting in biased results in terms
of majority class samples. Very few performance metrics
are considered in some articles for performance validation
of their models, which are not enough to perform compre-
hensive and accurate performance validation of the proposed
approaches.

To address the abovementioned limitations, we developed
an ML boosting classifiers-based stacking ensemble model
(MLBCSM) followed by an adaptive synthetic (ADASYN)
sampling technique for detecting NTLs in SGs. In addition,
the proposed MLBCSM model is comprehensively validated
using eight popular performancemeasures, namely, accuracy,
precision, receiver operating characteristic-area under the
curve (ROC-AUC), precision recall-AUC (PR-AUC), F1
score, FPR and false negative rate (FNR).

The following points highlight the vital contributions made
in the underlying research article.
• An MLBCSM stacking ensemble model for detecting
NTLs in SGs is proposed, similar to the model proposed
in [12] for financial market forecasting. It comprises five
boosting classifiers: four are considered as base learners,
and one is selected as a meta-learner.

• We tackle the data imbalance issue through anADASYN
approach. The approach is employed to oversample the
minority class samples to achieve balanced data and
avoid biased NTLs’ detection results.

• Extensive simulations are conducted on a substantial
realistic EC dataset by considering eight performance
evaluation measures for comprehensive validations of
our proposed model. Simulation results depict that our
MLBCSM followed by ADASYN provides magnifi-
cently better NTLs’ detection performance than baseline
models.

Following is the breakdown of the remaining sections of this
research paper. Section II presents the related work while the
problem statement is presented in Section III. The proposed
model’s discussion is offered in Section IV. The simulations’
findings are provided in Section V while the concluding text
is provided in Section VI.

II. RELATED WORK
The authors in [1] suggest ensemble classifiers for ETD in
SGs. They employ the EC data gathered from the smart
meters (SM) of the commission for energy regulation. The
techniques they use for ETD include adaptive boosting
(AdaBoost), light gradient boosting (LGBoost), XGBoost,
categorical boosting (CatBoost), etc. In addition, EC data
is normalized via the min-max normalization technique.
However, all the ensemble classifiers are used individually to
find FPR and TPR or detection rate (DR) for each ensemble
model. Most of the current electricity theft detection (ETD)
research is based on ML and DL classifiers because of the
development of advanced metering infrastructure (AMI) and
SGs. The authors in [4] propose an adaptive time series
recurrent neural network (TSRNN) to identify theft con-
sumers in time series EC data. To tackle the data imbalance
issue, synthetic minority oversampling technique (SMOTE)
is employed.Whereas, the grid searchmethod is leveraged for
hyperparameters’ optimization of the TSRNN. The analysis
is performed using 820 days’ EC data from 01 January
2017 to 31March 2019. Moreover, accuracy, false alarm rate,
and true positive rate (TPR)metrics are considered to validate
the TSRNN. However, these metrics are limited, and lack
in providing the model’s comprehensive and fair evaluation.
The authors in [5] propose an extreme gradient boosting
(XGBoost) classifier to detect electricity theft using EC data
from the Irish smart energy trails dataset. The preprocessing
of the EC data in terms of dealing with the missing or
not a number (NaN) values, outliers, and unscaled data is
also done. Furthermore, a data-oriented approach is proposed
in [7], in which a gradient-boosting classifier is employed as a
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data-oriented model for ETD. One new synthetic theft attack
is also added to the previously designed six theft attacks. The
authors intended to improve FPR and accuracy values using
this combined strategy. However, FPR calculation is ignored
and 88% accuracy is achieved, which is not as improved as
normally needed.

To identify energy theft in SGs, a DL model, a modified
convolution neural network (CNN), is developed [8]. Addi-
tionally, EC privacy is protected via a Paillier technique. The
data of energy consumed by the users acquired from the
state grid corporation of China (SGCC) is used to analyze
electricity theft. According to the simulation findings, the
modified CNN achieves 92.67% accuracy on the ETD task.
However, CNN is a standalone classifier that is used for
ETD. Moreover, the data imbalance problem is ignored.
Furthermore, in [9], a specialized theft detector, named as a
deep neural networkwith low FPR (LFPR-DNN), is proposed
to achieveminimumFPR. The data imbalance issue is tackled
with the help of the focal loss; the extension of cross_entropy
function. In addition, to optimize the FPR value, the particle
swarm optimization (PSO) technique is leveraged. LFPR-
DNN model’s hyperparameters are tuned via grid search
method. Moreover, recall or TPR, FPR, AUC, and bayesian
detection rate (BDR) performance measures are used for the
LFPR-DNN model’s validation. However, the performance
measures selected for the proposed model’s validation prove
insignificant to performing proper and extensive validation.
In addition, a comparatively poor recall value is obtained,
which needs to be improved. Moving further, a stacked
sparse denoising autoencoder (SSDAE) is used to identify
electricity theft in [10]. To enhance the robustness and
feature extraction abilities of the SSDAE, noise and sparsity
parameters are added to the autoencoder. In addition, the
PSO technique is used to optimize of both sparsity and noise
hyperparameters. Moreover, only DR and FPR measures
are selected to validate SSDAE, which are not enough to
conduct fair and comprehensive performance validation of
SSDAE. A CatBoost based theft detector is used in [13]
to classify honest and dishonest consumers. In addition,
k nearest neighbors (KNN) imputation and min-max scaler
methods are used to fill in the missing data and normalize
the unscaled data in EC dataset, respectively. Furthermore,
SGCC dataset is used for theft analysis. The proposed model
obtains 92% TPR, 93% accuracy, and 95% precision values
in ETD.

A gradient-boosting theft detection model is proposed
in [14], based on three modern gradient-boosting models:
LGBoost, XGBoost, and CatBoost. The Irish EC data is
used two Irish organizations release that: (1) electric Ireland,
which is an Irish gas and electricity utility company, and (2)
electric Ireland and sustainable energy authority of Ireland
(SEAI), which is an Irish governmental agency. In addition,
since the dataset contains all the honest consumers’ EC
data, revised synthetic six theft attacks are proposed and
employed to generate the theft class data synthetically.
Afterwards, SMOTE is used to balance the data. However,

the three boosting classifiers are employed individually.
Furthermore, in [15], a pattern-based context-aware ETD
(PCETD) strategy is introduced. KNN and dynamic time
warping are used to check the consumers’ anomalousness
and examine the relationship between two different EC
patterns, respectively. In addition, seven novel theft attacks
are introduced in this work to address the imbalanced data
problem. A stacked autoencoder (SAE) and under-sampling
and resampling-based RF (UaRe-RF) ETD approach is put
forward in [16]. The extraction of essential features is done
via SAE. At the same time, data balancing and ETD are
performed via UaRe-RF. Furthermore, for identifying energy
theft in the transformers installed at the distribution side, the
authors in [17] put forward an efficient approach that used
EC curve comparison for the designated task. It is achieved
by a static state estimator of EC data obtained from SM.
In addition, self-organizing maps and multilayer perceptron
artificial neural network are leveraged to identify energy theft
users. The Irish EC dataset released by electric Ireland and
SEAI is employed. The results depict the model’s inferior
energy theft detection capability.

III. PROBLEM STATEMENT
Electricity theft is a hazardous activity for electric grids,
such as economic destruction, energy scarcity, and grid’s
instability. Besides, the main goal of an electricity thief is
to underpay the amount of the consumed energy. Therefore,
efficient detection of electricity theft in the SGs is crucial
as it saves the utilities from major loss and helps avoid
all the abovementioned issues. Conventionally, individual
classifiers were deployed for detecting energy theft in
SGs. However, low classification results were obtained [1].
In addition, the proportion of the theft consumers in most
cases is tiny. The existing EC datasets are often imbalanced.
As a result, the class with more samples is given more
consideration in the training stage. The prediction results
are negatively affected and biased results are obtained [18].
Furthermore, in most cases, very few validation metrics are
considered for the proposed models’ evaluation. Moreover,
using fewer validation metrics does not yield accurate,
appropriate, fair, and detailed validation of a model. It proves
to be inefficient in terms of detecting electricity theft in the
SGs.

IV. PROPOSED SYSTEM MODEL
In the underlying work, an ETD approach is put forward to
identify electricity consumption abnormalities. Data prepro-
cessing, balancing, and classification make up the proposed
ETD approach. A comprehensive view, in Fig. 1, presents
the proposed system model. All of these components are
comprehensively discussed in the subsequent subsections.

A. DATA PREPROCESSING
The SGCC data [19] is used for performing ETD in SGs.
The SGCC dataset’s metadata is being provided in in
Table 1. 38757 honest (non-theft) consumers’ EC data and
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FIGURE 1. Proposed system model.

3615 dishonest (theft) consumers’ EC data for the duration of
two years and ten months, which is equivalent to 1034 days
is present in the dataset. The original dataset contains a large
amount of NaN data, outliers, and unscaled data. It is not
suitable to train a model using a dataset having missing
values, outliers and unscaled data. So, we need to preprocess
the dataset first.

EC data contains missing data due to various reasons,
such as signal communication errors and hardware device
malfunction [20]. To compute the missing data and impute
it into the dataset, a simple imputer method (SIM) is used
in this article. SIM is implemented using SimpleImputer
class with strategy = mean through the scikit-learn library
in Python [21]. In addition, as previously mentioned, the
dataset also contains some outlier values, which affect the
model’s predictive performance. Therefore, outliers are reset
via three sigma rule of thumb [22], implemented using
Equation 1 [22].

f (xi,a) =

{
Xavg + 3.Xσ , xi,a > Xavg + 3.Xσ
xi,a, Otherwise.

(1)

where xi,a indicates the EC related to the i-th electricity
consumer at a-th time slot (i.e., day). In our scenario,
i = 42373 and a = 1034. X is a dataframe created in
Python that contains several xi,a EC values. Xσ represents
the standard deviation of the dataframe X . Moreover, Xavg
represents the average value of X . After dealing with the
outliers and missing values, it is time to deal with data
diversity. Thus, min-max scaler is employed for normalizing
the data [23] via Equation 2 [23].

f (xi,a) =
xi,a − Xmin
Xmax − Xmin

, (2)

where the minimum and maximum values of X are denoted
by Xmin and Xmax .

B. DATA BALANCING
In this subsection, the data balancing component is exploited
to tackle the severe class imbalanced issue existing in the
SGCC dataset. Generally, the ETD datasets are severely
imbalanced. It means there are many honest users’ samples
in them while theft users’ samples are limited. This work
employed ADASYN [24] to deal with data imbalanced
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TABLE 1. SGCC dataset’s metadata.

problems. In real-life, examples of everyday consumers
can be numerously found. On the other hand, theft of
consumers’ data can be rarely found. It is the reason why
the class imbalance problem exists in the ETD datasets.
In such a scenario, if we train our ML or DL classifiers
with the original ETD dataset, in the prediction process,
classifiers generate results biased towards the majority
(normal) class and generate very bad results on the minority
(theft) class examples, which are very significant to be
correctly classified. For example, suppose you are classifying
the credit card fraud users and there are only five fraud
transactions out of one million transactions. It means the
dataset is severely imbalanced. If you train your model on this
imbalanced dataset, in testing phase, your model classifies
all the examples as negative (non-fraud transactions). As a
result, the model achieves an accuracy of 99.9995%. In this
way, the model arguably learns to classify and predict the
non-fraud transactionswithout caringwhat the input is, which
is fully purposeless [25]. To fight this problem, data balancing
is needed. The data must be balanced with the similar or same
frequency of fraud and non-fraud samples.

To perform data balancing, traditionally, oversampling
and undersampling techniques are employed. In undersam-
pling techniques, most examples are deleted until they
are equivalent to the minority samples. However, it is
data inefficient. The deleted data may contain important
information regarding the majority (non-fraud) class. To deal
with this data inefficiency issue, oversampling is employed.
In oversampling, the examples of theminority (theft) class are
duplicated (copied) N-times until its sample count becomes
similar or equivalent to the majority class sample count.
However, the model overfits the minority class due to
multiple sample copies in such cases. Therefore, to combat
both the abovementioned issues created due to oversampling
and undersampling techniques, ADASYN [25] is introduced.
It is a data balancing method that creates synthetic examples
by not copying the same minority class’ data samples, but,
it generates more synthetic data for harder-to-learn samples.
The steps to be taken for creating synthetic data using
ADASYN are given below [25].

1) Compute the ratio between minority and majority data
samples using Equation 3.

R =
Smin
Smaj

, (3)

where the numbers of majority and minority class
samples are denoted by Smaj and Smin.

2) Compute the total number of the synthetic minority
class data samples to be generated. This is done using
Equation 4.

TM = (Smaj − Smin)β, (4)

where β represents the desired post-ADASYN imple-
mentation ratio of minority:majority data samples.
β = 1 denotes the post-ADASYN perfectly balanced
dataset. TM indicates the total number of minority class
samples to be generated.

3) Find the K nearest neighbours (KNNs) for each
minority sample and compute ri. ri is calculated using
Equation 5.

ri =
Nmaj
K

(5)

whereNmaj is the number of majority samples in KNNs
of a specific minority sample. K shows the number of
nearest neighbours to be chosen for a specific minority
example. ri shows the dominance and superiority of the
majority class in KNNs of a specific minority sample.
The maximum value of ri comprises the majority of
samples that are hard to learn.

4) Normalize and scale ri values using Equation 6

.r̂i =
ri∑
ri
, (6)

5) Compute the number of synthetic samples to be
generated per each neighborhood using Equation 7.

TMi = TMr̂i, (7)

if the value of ri is maximum, it means that the
neighbourhood of a specific minority sample is largely
composed of the majority class samples. So for such
a situation, more artificial minority samples will be
generated. In this way, we can say ADASYN has an
adaptive nature; more minority samples were created
for difficult to learn minority samples.

6) Generate TMi samples for every single minority
neighbourhood. First select the minority sample xi.
Afterwards, select another minority sample in the
neighbourhood of xi randomly. Then, create the new
sample using Equation 8

NXi = xi + λ(rxi − xi), (8)

where λ represents a random value between 0 and
1. NXi shows the newly generated minority sample.
rxi and xi are the minority samples in the same
neighborhood area.

Using the above steps, the dataset is now balanced and the
balanced data is then passed to the proposed MLBCSM for
accurate detection of electricity theft with low FPR value.
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C. CLASSIFICATION
After completing the data preparation and balancing steps,
data classification is performed to detect electricity theft
using the proposed MLBCSM. Electricity theft and non-theft
consumers are classified using the proposed MLBCSM.
We selected the stacking ensemble strategy in this article for
the reason that the stacking ensemble strategy outperforms
the techniques employed in the literature. Moreover, stacking
ensembles recently won many data science competitions
specifically Kaggle and Netflix for classification prob-
lems [26]. Hence, stacking ensembles are considered the
best of all classifiers. Therefore, we chose the stacking
ensemble strategy to obtain maximum ETD performance
accuracy. The stacking ensemble strategy is an efficient
strategy that comprises multiple standalone classifiers at
two levels (level-0 and level-1), where level-0 and level-
1 classifiers are also called base-learners and meta-learner,
respectively. Our proposed MLBCSM consists of multiple
ML boosting classifiers as base andmeta-learners. AdaBoost,
XGBoost, HistBoost, and CatBoost are selected as level-0
learners while LGBoost is chosen as a level-1 learner for
our proposed MLBCSM. The pseudo-code of the proposed
MLBCSM for theft and non-theft consumers’ classification is
given in Algorithm 1. More in-depth details about these base
andmeta-learners are provided in the subsequent subsections.

Algorithm 1MLBCSM Algorithm
Input: ADASYN based balanced dataset
Output: Predict consumers’ labels
1: Create HistBoost (first level-0 learner):
2: HistGB = HistGradientBoostingClassifier()
3: Create AdaBoost (second level-0 learner):
4: ADB = AdaBoostClassifier()
5: Create CatBoost (third level-0 learner):
6: CB = CatBoostClassifier()
7: Create XGBoost (fourth level-0 learner):
8: XG = XGBClassifier()
9: Create a dictionary namely Base_estimators that contains

all level-0 learners:
10: Base_estimators = [(‘HB’,HB), (‘ADB’, ADB), (‘CB’,

CB), (‘XG’, XG)]
11: Create LGBoost (level-1 learner):
12: LGB = LGBMClassifier()
13: Create a stacking classifier and pass the Base_estimators

dictionary and level-1 learner:
14: Stacking_model = StackingClassifier( estimators =

Base_estimators, final_estimator = LGB)
15: Train the stacking model:
16: Stacking_model.fit(X_train, y_train)
17: Predict labels by the stacking model:
18: SM_test=Stacking_model.predict(X_test)

1) LEVEL-0 LEARNERS
Level-0 learners, i.e., CatBoost, AdaBoost, HistBoost,
and XGBoost, are trained using the training dataset.

The predictions along with the original labels are then passed
to the level-1 classifier for training [27].

A detailed description of each of the four base-learners is
provided below.
• Adaptive boosting
AdaBoost [28] is a popular model in data science. It was
developed for the first time by Freund and Shapire in
1996 [29]. It is built based on the concept of boosting
type ensemble strategy where the main idea of boosting
is that multiple weak learners can be combined to create
a robust algorithm using voting strategy. The learner that
slightly surpasses a tossing coin in terms of prediction
result is regarded as a weak learner. Such a learner
achieves 55% or any other value close to 50% accurate
results. In other words, a classifier with the loss of less
than but close to 50% is called a weak learner. In this
scenario, the in-sample loss rate is the count of wrongly
classified samples, i.e., (yi 6= G(xi)), divided by the total
data samples’ size (N ), as given in Equation 9 [28].

error =
1
N

N∑
i=1

I (yi 6= G(xi)) (9)

In boosting, multiple weak learners are trained sequen-
tially using a consecutive modified version of data
points. It means that in the first boosting cycle, a weak
learner (G1(x)) is trained and prediction results are
generated, in which we can observe that some of the
examples are misclassified. In the second boosting
cycle, some weight (Wi) is assigned to each of the
examples; however, the previously misclassified records
are weighted more than correctly classified records to
force the second weak learner to learn and correctly
classify them. Now, the second weak learner correctly
classifies the previously misclassified observations.
However, it may misclassify the previously correctly
classified observations. After iterating this process forM
times, weak learners are combined using a robust meta-
learner (G(x)). The final meta-learner now assigns a
prediction label to each record using aweightedmajority
voting mechanism provided in Equation 10 [28].

G(x) = sign

(
M∑
m=1

αmGm(x)

)
, (10)

where α is the weight of the weak learners in the
final majority voting mechanism. In AdaBoost, multiple
weak learners (i.e., stumps in AdaBoost) are trained
sequentially. These weak learners create a meta-learner
that obtains prediction results employing a weighted
majority voting strategy. In every boosting round,
more weights are assigned to the previously wrongly
predicted samples. This process is wrapped up using
Algorithm 2 [28].

• Extreme gradient boosting
XGBoost [30] was introduced by Tianqi Chen and Car-
los Guestrin at the Washington University. In gradient
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Algorithm 2 AdaBoost Algorithm
1: Initialize the same weights to all records Wi=1/N, i=1,

2, 3, . . . ,N.
2: for m = 1 to M do
3: Train a weak learner Gm(x) on training data usingWi
4: Calculate

errorm =

∑N
i=1WiI (y 6= Gm(xi))∑N

i=1Wi

5:

6: Calculate αm = log((1− errorm)/errorm)
7: Put Wi=Wi.exp[αm.I (y = Gm(xi))], i =

1, 2, 3, . . . ,N .
8: end for
9: Final output is obtained using Equation 10

boosting, the weak learners are trained using a gradient
descent optimizer and a differentiable loss function.
Therefore, it is called gradient boosting algorithm.
XGBoost is a computationally faster and extremely
effective-type of gradient boosting algorithm [31].
As XGBoost is fast to execute and obtains better
predictive results, we chose it as one of the base-learners
in our proposed MLBCSM. In XGBoost, we train a
learner using the gradient of the loss from the previous
learner. Moreover, in XGBoost, the gradient boosting
technique is modified to make it able to work with
any of the differentiable loss functions [32]. XGBoost
integrates the decision trees with a gradient boosting
mechanism. At each training round of a tree (weak
learner), the residual of the previous tree is used in the
next tree to minimize the loss function [33]. XGBoost
also avoids overfitting problems and minimizes compu-
tational complexity. The final classification result, in the
end, is acquired by combining all the weak learners,
i.e., decision trees. The final output is predicted using
Equation 11 [33].

G(Xi) =
M∑
m=1

gj(Xi) (11)

where gj(Xi) represents the output generation function of
each weak learner. Xi denotes the data given to a weak
learner. The algorithmic description of the XGBoost is
given in Algorithm 3 [34]. Compared with the LGBoost
and CatBoost, XGBoost cannot deal with the categorical
data and only handles numerical data like a random
forest bagging classifier. However, if someone wants to
process categorical data using XGBoost, some encoding
methods, such as one-hot encoding, label encoding, etc.,
must be applied first.
In Algorithm 3, fm(xi) is the best weak learner in m-
th iteration. ŷ(m−1)i is the current classification model.
Whereas, ŷ(m)i is the new classification model. ε is the
shrinkage parameter used to avoid overfitting. objm is

Algorithm 3 XGBoost Algorithm
Input Features: X ; labels: Y ; loss function: l(y, f (x)); total
number of trees: M
1: for i = 1 to M do
2: Initialize m-th decision tree fm(xi)
3: Calculate gi=∂ŷ(m−1)i

loss
(
yi, ŷ

(m−1)
i

)
4: Calculate hi=∂2

ŷ(m−1)i

loss
(
yi, ŷ

(m−1)
i

)
5: Employ the statistics to grow a new decision tree

greedily fm(xt ): objm=− 1
2

∑M
j=1

G2
j

Hj+λ
+ γM

6: Add the best tree fm(xt ) into current model based on:
ŷ(m)i =ŷ

(m−1)
i + εfm(xi)

7: end for
8: Until all M weak learners are executed
9: Create a strong classification model based on weak trees.
10: Result in a prediction value, i.e., 0 or 1

the objective of XGBoost algorithm. Besides, gi is the
loss function and hi is the second derivative of the loss
function used to define a loss calculation function that is
twice differentiable.

• Histogram boosting
The gradient-boosting decision tree algorithm requires
more training when dealing with a big dataset, and
sometimes the prediction accuracy is compromised.
HistBoost is an effective model for dealing with a huge
dataset [12]. HistBoost minimizes the training time
without degrading the accuracy. Consequently, it can
be stated that HistBoost is an algorithm that rapidly
trains weak learners in a gradient-boost framework. The
HistBoost’s splitting procedure is different from other
gradient boosting methods. Instead of determining the
splitting points on feature values, the HistBoost buckets
the continuous values of features into discrete bins, using
which multiple feature histograms are created. As Hist-
Boost is both training time and memory-consumption
efficient algorithm, we select it in our proposed
MLBCSM as one of the base (level-0) classifiers.
More details about how histogram-based algorithm
works can be found in Algorithm 4 [35]. Furthermore,
the gradient-boosting decision trees ensemble training
process is expedited in the proposed work. Big training
datasets containing tens of thousands of rows or even
more lead to a deadly slow creation of decision trees
as splitting points on each value, for each dimension,
must be taken into account while creating the trees
[36]. Moreover, the training process of weak learners,
usually the decision trees, appended into the ensemble
model can be expedited due to binning (discretizing)
the continuous input features to only a few hundred
unique values. Thus, the gradient boosting ensemble
models, which implement this (binning) method and
adjust (tailor) the training model over the input features
that follow the transform made by binning, is known
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as histogram-based gradient boosting ensemble models.
Furthermore, suitable data structures like histograms can
be employed to represent data discretization. In this
way, the decision trees’ creation algorithm can be
further adjusted for histograms’ effective and efficient
employment in creating every decision tree. Hence,
from the above discussion, it is concluded that a
gradient-boosting technique supporting histogram data
structures is referred to as the HistBoost technique.

Algorithm 4 HistBoost Algorithm
Input Training set: X ; Maximum depth: d ; Feature dimen-
sion: m; Nodes set: {0}; Row set: {0, 1, 2, . . .}
1: for i = 1 to d do
2: for Node in NodeSet do
3: UsedRows = RowSet[Node]
4: for k=1 to m do
5: H = newHistogram()
6: Create histogram
7: for j in UsedRows do
8: bin = X .f [k][j].bin
9: H [bin].y = H [bin].y+ X .y[j]

10: H [bin].n = H [bin].n+ 1
11: end for
12: Find the optimal split on H
13: end for
14: end for
15: Update the Node set and Row set based on the

optimal splitting points
16: end for

• Categorical boosting
CatBoost was introduced by Yandex (a technology
company in Russia) in 2018 [37]. It is a better
technique than other gradient-boosting models due
to its ability of directly tackle categorical features
(without applying any encoding scheme) and faster
training [12]. Besides, categorical features, it can also
handle textual and numerical features as well. However,
it has a better handling method for categorical data [38].
As CatBoost directly supports the categorical features
(without using any encoding method), therefore, it is
called CatBoost [39]. Generally, gradient boosting based
models perform better in huge and small datasets. The
algorithmic details of the CatBoost are provided in
Algorithm 5 [40]. XGBoost and LGBoost are the widely
employed ensembles; however, CatBoost is the most
modern ensemble model. CatBoost is the successor
of MatrixNet model that is broadly employed within
the Yandex company for forecasting, recommendations,
and ranking tasks. The CatBoost uses Algorithm 5 to
update base predictors and compute model values for the
gradient calculation.
Based on Algorithm 5, for each sample Xk , we train an
independent modelMk that is not updated by a gradient

Algorithm 5 CatBoost Algorithm
Input Features set: Xk ; Labels: Yk , where k = 1, 2, . . . , n
ordered based on σ ; Number of trees: I
Mi = 0 for i = 1, . . . , n
1: for iteration = 1 to I do
2: for i = 1 to n do
3: for j = 1 to i−1 do
4: gj= d

da loss(yj, a), a=Mi(xj)
5: end for
6: M=LearnOneTree((Xj, gj) for j = 1 to i− 1)
7: M=Mi +M
8: end for
9: end for
10: return M1,M2, . . . ,Mn; M1(X1),M2(X2), . . . ,Mn(Xn)

estimation for this sample. Using Mk , we compute
(estimate) gradient on Xk and leverage this computed
gradient to get the output tree. loss(yj, a) is the loss
optimization function in which y is the label (target)
value and a represents the formula (predicted label)
value.

2) LEVEL-1 LEARNER
In order to make the final classification decision based on the
results generated by the level-0 learners, the level-1 learner
is selected. LGBoost is chosen as level-1 classifier for the
proposed MLBCSM.
• Light gradient boosting
LGBoost is one of the widely used classifiers. It was
introduced by Guolin Ke in 2017 [41]. Basically,
LGBoost enhances the basic gradient boosting technique
by appending the ability to focus on samples with com-
paratively huge gradients and feature selection, which
lead to faster training as well as enhanced prediction
results of the classifier [42]. Exclusive feature bundling
(EFB) is an automatic feature selection technique, used
for bundling the sparse (i.e., mostly zero and rarely
nonzero) mutually exclusive features. Gradient-based
one-sided sampling (GOSS) focuses on the training
samples that comparatively have higher gradients and
exclude the notable portion of the samples with low
gradients to estimate (compute) the information gain.
As the data samples having large gradient values play
a significant role in information gain’s computation,
GOSS can yield accurate computation of the information
gain with a smaller dataset. Since GOSS focuses on
examples with larger gradients, it results in faster
learning and minimizes the computational speed of
the algorithm. Together, the two modifications above
expedite the training time of the model upto 20 times.
Due to these significant qualities, we selected LGBoost
as a meta-learner for our proposed MLBCSM. It can be
concluded that LGBoost consists of a gradient-boosting
algorithm combining EFB and GOSS. The algorithm of
LGBoost is shown in Algorithm 6 [43].
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Algorithm 6 LGBoost Algorithm

Input Training set: D=(x1, y1), (x1, y1), . . . , (xN , yN ); Loss
function: L(y, θ(x)); Maximum Iterations: M
High gradient data sampling ratio: a; low gradient data
sampling ratio: b
1: Combine mutually exclusive features using EFB method
2: Put θ0(x) = argminc

∑N
i=1 L(yi, c)

3: for m=1 to M do
4: Compute absolute gradient values:

ri =

∣∣∣∣∂L(y, θ(x))∂θ (xi)

∣∣∣∣
θ (x)=θm−1(x)

, i = 1, 2, . . . ,N

5: Resample the data using GOSS:

TopN = a× len(D);RandN = b× len(D);

Sorted = GetSortedIndices(Abs(r));
6: A = Sorted[i : TopN ];
7: B=RandPick(Sorted[TopN : len(D)],RandN );
8: D′ = A+ B;
9: Compute information gains using:

Vj(d) =
1
n

((∑
xi∈Al ri +

1−a
b

∑
xi∈Bl ri

)2
njl(d)

+

10: (∑
xi∈Ar ri +

1−a
b

∑
xi∈Br ri

)2
njl(d)

)
11: Build a new decision tree θm(x)′ on D′

12: Update θm(x)=θm−1(x)+ θm(x)
13: end for
14: return θ ′(x)=θM (x)

InAlgorithm 6, step 5 shows that GOSSfirst sorts out the
data samples based on absolute value of their gradients
and choose top a × len(D) or 100% of the samples. D
represents the training data. frac1− ab is the constant
value that is multiplied with the summation of absolute
gradient values when computing the information gain in
step 6 of the algorithm.

V. SIMULATION RESULTS AND DISCUSSION
The proposed model’s simulations’ settings, the performance
evaluation measures, and the simulation results of the
proposed and baseline (individual) classifiers with respect
to eight various performance measures are discussed in
this section. More details are available in the subsequent
subsections.

A. SIMULATIONS’ SETTINGS
The proposed model for ETD employs the EC readings
obtained by the SGCC [19] for analyzing electricity theft.
Moreover, the simulations are performed using the DELL
Intel core i5-2450M system with a 500 GB hard drive

and a total 8 GB RAM in two slots. Python programming
language with scikit-learn, lightboost, xgboost, and catboost
ML libraries is used to implement the proposed MLBCSM.
Google Colab is employed to execute Python’s code on cloud
servers owned by Google. By default, the SGCC dataset
contains 42372 data instances and 1034 columns (features).
From 42372 instances only 3615 instances belong to the theft
(abnormal) class and the rest, i.e., 38757 instances belong
to the non-theft (normal) class. The classes’ distribution
ratio is 8.53% and 91.47%. It is clear from the distribution
ratio that the dataset is severely imbalanced. To balance
the dataset, ADASYN is used. It oversamples the minority
class (theft class) instances to raise the total number of
instances from 42372 to 77050. As a result, the classes’
distribution ratio becomes almost equal. Hence, the dataset is
balanced.

B. PERFORMANCE EVALUATION MEASURES
This subsection provides a detailed discussion of the selected
performance. In supervised ML algorithms, the data with
the proper labels and features are passed to the algorithm
for training purposes. Afterwards, the trained classifier
is tested to evaluate its ability to predict and generalize
unlabeled data. The said models’ are assessed via accuracy,
F1 score, FPR, FNR, ROC-AUC, precision, recall, and PR-
AUC metrics [44], [45] are considered the most appropriate
and reliable metrics that can be employed for a fair and
comprehensive evaluation. However, in [7], [9], and [10],
very few inappropriate performance evaluation metrics are
employed, which are not enough for fair and comprehensive
evaluations of their models. Therefore, to conduct a fair and
extensive evaluation of our proposed MLBCSM, accuracy,
ROC-AUC, F1 score, FPR, FNR, precision, recall, and
PR-AUC are considered. The calculation of all the selected
metrics is based on the confusion matrix [26], which consists
of four unique values defined below.
• False positives (FP): if an honest (non-theft) electricity
consumer is classified as dishonest (theft) by the model.

• False negatives (FN): if the classifier predicts a theft
consumer as non theft.

• True positives (TP): if a theft consumer is predicted as
theft by the model.

• True negatives (TN): if an honest consumer is classified
as honest by the classifier.

The performance measures are elaborated on below.

1) ACCURACY
It is one of the most often used performance measures. It can
be regarded as the proportion of all categorized samples
that were correctly classified [46]. It is suitable to employ
when there is an equal frequency of samples from all classes.
Accuracy is calculated via Equation 12 [26].

Accuracy =
TP+ TN

TP+ FN + TN + FP
(12)
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TABLE 2. Comparison of the proposed MLBCSM with standalone models.

2) ROC-AUC
The ROC curve, where the y-axis displays the TPR and
the x-axis displays the FPR, illustrates how well a binary
classifier performs on the positive class. Recall or sensitivity
are other names for TPR [45]. The TPR and FPR are
calculated as follows [26], [45].

TPR or Recall =
TP

TP+ FN
(13)

FPR =
FP

FP+ TN
(14)

A model is considered to have no discriminative ability
between theft and non-theft classes if it forms a diagonal line
between TPR of 0 and FPR of 0, i.e., (coordinate(0, 0) or
classify all negative (honest)) to a TPR of 1 and FPR of 1, i.e.,
(coordinate(1, 1) or classify all positive (theft)). Thus, ROC-
AUC shows a classifier’s discriminative power between TPR
and FPR.

3) PR-AUC
Precision calculates the number of correctly predicted
positive results by a classifier. It is calculated by following
formula [26], [45].

Precision =
TP

TP+ FP
(15)

Precision’s output is between 0 and 1 where 1 shows perfect
precision and 0 shows no precision. Furthermore, out of all
positive (theft) predictions, recall measures the proportion of
true (correct) positive predictions. The computation formula
for the recall is given in Equation 13. Its output also ranges
between 0 and 1. 1 means perfect recall and 0 means no
recall. Both recall and precision focus only on the theft
samples [45]. Consequently, in the precision-recall (PR) plot,
recall is shown on the abscissa and precision is presented
on the ordinate. A no-skill classifier, having equal values
of precision and the count of positive (minority) samples,
is illustrated by a horizontal line. Contrarily, the curve given
by the perfect (skillful) classifier inclines towards the (1,1)
coordinate, and is denoted by PR-AUC. The PR curve value
is 0.5 in the balanced case of data. The most appropriate mea-
sure for binary classification techniques based on imbalanced
data is the PR curve since it pays attention to the positive
class [45].

4) F1 SCORE
For binary classification models’ evaluation, F1 score is a
widely used metric [47]. It is computed using precision and
recall scores. Its value ranges between 0 and 1. The said
metric is computed using Equation 16 [26].

F1 score = 2 ∗
R ∗ P
R+ P

(16)

where R denotes Recall and P denotes Precision.

5) FNR
It is another important performance metric that is rarely
employed in evaluating the models designed for ETD in
SGs. But, it is very significant to consider it for evaluating
ETD models. A high FNR leads to a vast and considerable
problem as compared to a high FPR. It is risky and
threatening to wrongly classify a theft consumer as an honest
consumer [48]. The high FNR value leads to high electricity
loss, financial loss, energy supply quality loss, and grid
safety loss to the electric utility. The mathematical formula
to calculate FNR is provided in Equation 17 [49].

FNR =
FN

FN + TP
(17)

C. PROPOSED MLBCSM’s PERFORMANCE RESULTS
Table 2 and Fig. 2 show the performance comparison of
the proposed MLBCSM and another baseline (individual)
models. All the individual classifiers are chosen and imple-
mented with their default parameters. Moreover, individual
or standalone classifiers with default parameters are then
combined using a stacking ensemble mechanism to develop
our proposedMLBCSM for detecting electricity theft in SGs.
The dataset split is performed using train_test_split class in
scikit-learn library in Python. The split ratio for testing and
training data is 20% and 80%.

Table 2 and Fig. 2 present that our proposed MLBCSM
outperforms the standalone models, CatBoost, HistBoost,
XGBoost, AdaBoost, and LGBoost, for different perfor-
mance measures, given in Table 2 and Fig. 2. However,
in terms of recall and FNR, CatBoost generates slightly
better results than our proposed model. Since CatBoost has
an overfitting detection mechanism by default, its results
are slightly better in terms of recall and FNR than all the
models used in the paper. It is concluded that our proposed
model achieves poor performance in terms of FNR and recall.
However, better performance is achieved in accuracy, F1
score, ROC-AUC, precision, PR-AUC, and FPR. Moreover,

VOLUME 10, 2022 121895



Pamir et al.: Employing a Machine Learning Boosting Classifiers Based Stacking Ensemble Model

FIGURE 2. Comparison of the proposed MLBCSM with other benchmarks.

two key characteristics enable CatBoost to provide better
results than our proposed and other baselines with respect
to FNR and recall. The first one is building balanced
trees, which helps CatBoost control overfitting and leads
to improved performance. The second one is that CatBoost
employs the concept of ordered booting (a permutation-
based approach to fit a technique on a subset of data while
computing the residuals on another subset), which protects
CatBoost from overfitting and target leakage problems. Thus,
resulting in improved theft detection in terms of all the
above mentioned performance metrics. Furthermore, the
reason for the improved results generated by our proposed
model is that our proposed MLBCSM exploits and take
benefits from the multiple good-performing individual clas-
sifiers (i.e., CatBoost, AdaBoost, HistBoost, LGBoost, and
XGBoost).

After our proposed model and CatBoost, LGBoost pro-
vides promising results, as seen in Table 2 and Fig. 2. This
classifier generates good results because it has some unique
properties over the other boosting models, i.e., abilities to
keep full attention on data samples with higher gradients
and feature selection, which are achieved using GOSS and
EFB methods, respectively and these unique properties make
LGBoost able to produce better predictive results with
faster training. On the other hand, AdaBoost is the worst-
performing classifier. Its sensitivity to distorted (noisy) data
and it can only perform better on a quality dataset (dataset
free of outliers and noisy data). With noisy data, AdaBoost is
prone to overfitting and provides poor classification results.
SGCC dataset may contain some noisy data due to which
AdaBoost gets prone to the overfitting issue and generates the
worst results among other models implemented in this article.

Fig. 3 shows the ROC curves of the proposed MLBCSM
and baselines. The proposed scheme achieves a 0.92396
ROC-AUC value, which is better than all the baselines,
HistBoost, AdaBoost, CatBoost, LGBoost, and XGBoost.
It simply means that our proposed model very effectively

FIGURE 3. ROC-AUC results’ comparison.

FIGURE 4. PR-AUC results’ comparison.

differentiates, and separates the normal and abnormal classes,
as it can exploit multiple individual classifiers and perform
better than single learners. Furthermore, the PR-AUC is
presented in Fig. 4. In the case of ETD, both precision
and recall are crucial for utility companies. The maximum
PR-AUC score shows the efficiency of the model. The
proposed MLBCSM yields a PR-AUC value of 0.94129,
which is the maximum as compared to all the baselines
under consideration. This proves that our proposed model is
advantageous to electric utilities in pinpointing the energy
fraudsters and saving maximum energy losses.

FNR is also thought as an important metric. In FNR, the
abnormal energy consumers are predicted as normal by the
classifier, which is very dangerous and negatively affects the
power utilities in terms of financial loss, energy loss, energy
supply quality, and power system safety. Thus, FNR is needed
to be minimized. Therefore, we considered and calculated
this metric, as shown in Fig 5. The proposed model yields the
FNR value of 0.06778, which is theminimumvalue among all
the baseline classifiers. On the other hand, AdaBoost achieves
the FNR value of 0.25753, which is the highest value among
all employed classifiers.

FPR is an important performance measure in which the
non-theft energy consumers are considered as theft, which
maximizes the misclassification rate of the classifier. There
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FIGURE 5. FNR results’ comparison.

FIGURE 6. FPR results’ comparison.

exists a direct relation between FPR score and the on-site
inspection cost. One of the key objectives of ETD is to
reduce this cost. Therefore, FPR is considered a significant
measure for ETD in SGs. We computed FPR in this work
and is shown in Fig. 6. Our proposed MLBCSM obtains
the minimum FPR value of 0.08405. Whereas, AdaBoost
has the maximum FPR of 0.29932. It is worth mentioning
that in stacking ensemble models, the performance of the
meta-learner is dependent upon the level-0 (base) learners and
therefore, we select powerful boosting classifiers for level-0,
which provide accurate predictions to the meta-learner that
have a positive impact on classification results of the overall
stacking ensemble model. This is why our proposed stacking
model obtains better results than the baselines. Moreover,
AdaBoost’s worst performance in terms of FPR is that it needs

a good-quality dataset to perform well. Otherwise, it faces an
overfitting problem due to noisy data.

Finally, our proposed MLBCSM’s superiority in terms of
having the highest accuracy, ROC-AUC, F1 score, PR-AUC,
precision, and the lowest FPR values as compared to the
baselines is proved through extensive simulations.

VI. CONCLUSION
In the work performed in this research, an MLBCSM is
introduced as a binary classifier for electricity consumers’
classification. The publicly available SGCC data is used in
this study.Moreover, ADASYN is leveraged as a data balance
for oversampling the minority samples that are difficult
to learn. For performing classification, the data balanced
through ADASYN is forwarded to MLBCSM. The results
generated by the proposed MLBCSM are compared with
five standalone classifiers. The proposedmodel is extensively
validated using eight performance evaluation measures and
compared with the standalone models. The proposed model
achieves 92.395% accuracy, 92.396% ROC-AUC, 91.458%
precision, 92.332% F1 score, 94.129% PR-AUC, 8.405%
FPR, 6.778% FNR, and 93.222% recall scores. We conclude
from the simulations that our proposed model obtained
enhanced performance compared to its baselines in terms of
ETD. Thus, our proposed MLBCSM followed by ADASYN
proved well-suited for correctly classifying all the actual
positive theft cases.
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