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ABSTRACT The availability of reliable photovoltaic (PV) power forecasting tools is an important factor for
the dissemination of this technology. This is true not only for the integration of these difficult to predict
sources in large power grids but also for small grids or standalone applications. The concept of edge
computing, through the use of small, low power and inexpensive devices can help to make predictions more
localized and feasible also in small size applications. In this article prediction methods based on Artificial
Neural Networks (ANNs) models are considered and compared, along with the possibility of reducing their
cost in terms of memory and computational power requirements possibly without increasing prediction error.
It is shown that quantization and pruning methods, implemented in the AI libraries of a common platform
for Microcontroller programming, is a viable solution of this problem. Solar panel aging effects are also
considered, and it is shown how the same system used for the prediction can be an indicator of reduced plant
efficiency.

INDEX TERMS Neural networks, forecasting, photovoltaic, microcontroller, estimation, data-driven,
TinyML, machine learning, edge computing.

I. INTRODUCTION
Photovoltaic (PV) power generation is one of the most impor-
tant renewable and sustainable energy sources. Although this
has an indisputable positive effect on the environment, the
introduction of a relatively unpredictable source, such as PV,
poses a number of challenges to the entities responsible for
distributing and controlling energy use. This is true not only
for the integration of these sources into a large grid, but also
for microgrids or, as in the case of the main target application
of this article, single panel autonomous systems.

As a general remark, the availability of tools capable of
reliable PV performance forecasting can help to create recon-
figurable systems, such as in the case of microinverters for
partial shadowing of panels [1], or to determine aging of
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panels or other forms of inefficiency. In most cases forecast-
ing is centralized, but it would make much more sense to do
it locally, through edge computing systems [2], [3] based on
low power microcontrollers.

In these cases, the implementation of algorithms requiring
a large amount of memory or computationally intensive could
be too expensive or even unfeasible. An example of this situ-
ation is given by small, off-grid, PV based power generators
with storage capabilities for rural areas in developing coun-
tries. The energy produced by these standalone units could
be used to operate different tasks with different properties
in terms of power, importance, and continuity requirements;
tasks that range from low power non critical tasks such as
phone charging to more energy-intensive and non interrupt-
ible tasks such as water purification. Prediction of power
availability is mandatory to efficiently program which tasks
should be activated and which should be postponed.

121010 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6417-3750
https://orcid.org/0000-0001-8182-7891
https://orcid.org/0000-0002-7044-0349


G. Gruosso, G. Storti Gajani: Comparison of Machine Learning Algorithms for Performance Evaluation of PV Energy Forecasting

In any case, tools capable of predicting, even in the short
term, the power output expected from a PV plant are needed,
and this need has spurred a significant number of contribu-
tions from the scientific community.

Several solutions based on different classic Machine
Learning (ML) and Deep Learning (DL) can be found in
literature, see e.g. [4] for a non-commented list of about
40 contributions up to 2016. An interesting machine learning
method for PV fault detection is presented in [5]. In [6] a
least-squares support vector machine (SVM) method is used
for short-term power prediction; the authors of this article
show that, for the application considered, their approach is
superior to autoregressive (AR) and autoregressive moving
average models (ARMA) such as those proposed in [7].
SVM models are also proposed in [8], using as input data
satellite images. In addition, in this case, the model is
compared with conventional linear models and Artificial
Neural Networks (ANNs). Fuzzy models have also been
considered; the Takagi-Sugeno fuzzy model is proposed
in [9] and a different fuzzy approach is found in [10],
where it is combined with ANNs models. Wavelet-based
methods, also used in combination with ANNs are pro-
posed in [11] with application to both wind and solar power
prediction.

A nice comparison of ANNs, SVM models, Multivariate
Linear Regression, and k-nearest neighbor methods is found
in [12], in this paper it is shown that ANNs outperform
all other algorithms. Among the relatively early uses of
ANNs for solar prediction, we have [13] and [14], where the
Radial Basis Function (RBF) networks are used to predict
daily global solar radiation. Among more recent ANN based
contributions an interesting model, based on Convolutional
Neural Networks (CNNs) and using regional data maps as
input, is found in [15] and is used to forecast potential power
output for Photovoltaic (PV) plant installation. A problem
very similar to the one presented here and also based on
the use of TinyML methods can be found in [16]. Another
interesting model, in which three different ANN architec-
tures are compared, is found in [17]. A recent comparison
of the performance of the Supervised Learning Algorithm
for solar power prediction is found in [18]; this paper con-
siders and compares both classical Machine Learning (ML)
algorithms, such as k-Nearest Neighbors (KNN), Support
Vector Machines (SVM), and Linear Regression, and a very
basic ANN model. Finally, in [19] a review and comparison
of several recent results is presented with respect to the
ML and ANN models applied to solar, wind and PV power
sources.

As can be seen, the scientific interest in this topic is
significant and, in most cases, it is shown that ANNs mod-
els perform better than the classic ML methods; however,
the limitations posed by the application considered here
require further study. In fact, Deep Neural Network (DNN)
models are generally based on a very large number of param-
eters and, correspondingly, requirements in terms of stor-
age memory. In general, a large number of parameters will

also require the same order of magnitude of computationally
intensive operations, meaning that powerful hardware plat-
forms are generally required; and this is true not only for
the initial learning phase, but also when previously trained
models are used to perform inference. The application envi-
sioned in this article requires a low-power, portable, and light
hardware implementation to be effective, and the hardware
of choice is a platform based on a Microcontroller Unit
(MCU). For this reason, after accuracy, themain requirements
of any type of control or prediction algorithm useful for
this application are in terms of memory and computational
power.

This is the perspective of Edge Computing [20] where the
computation is driven as much as possible toward the edge
of the network where the data are generated. The main idea
is thus to train the ANN on a separate platform and then
export the model on a MCU finding a way to simplify the
model without losing much in terms of accuracy [21], [22].
To do so, the tool that has been used is TensorFlow Lite
(TFLite), a framework developed by Google for embedded
devices. TFLite has been tested with good results on several
different classes of devices, ranging from Android and iOS
devices to embedded Linux; there is also a MCU version
of TFLite, the one used in this paper, that is capable of
running on small platforms with only kBs of memory. The
MCU version of TFLite has a runtime of only 18 kB and has
been tested with success on platforms such as Arduino and
other devices based on Arm Cortex-M Series or the ESP2
architectures.

The main original aspects of this work can be summarised
as follows:
• Implementation of different models and evaluation of
their performance in solving the photovoltaic energy
production prediction problem.

• The performance of neural networks is also compared in
terms of accuracy, in terms of memory and computing
power required, especially with a view to implementa-
tion on a microcontroller.

• Reduction and simplification, where possible, through
quantization and relative performance evaluation.
Indeed, this operation significantly reduces memory
requirements but, in some cases, may introduce a certain
decay in accuracy.

• Implementation of photovoltaic panel aging prediction
models.

• The paper give an original framework to test tinyML
algorithms on MCUs

In section II, the methodology used will first be described,
along with the structure of the dataset and some feature
engineering required to introduce time periodicity effects in
the data. In Section III the architecture of the neural network
models considered in this paper is presented along with a
general description of the TinyML framework. In section IV
results, including complexity reduction and ANN model
accuracy will be presented. Finally, in section V concluding
remarks are given.
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II. METHODOLOGY AND AVAILABLE DATA
A. PROBLEM DESCRIPTION
The main goal of this study is to assess the feasibility
and performance of different PV power prediction models
when implemented on low power MCUs using the TinyML
paradigm. Among all possible applications, one is given by
small stand-alone micro PV plants for regions that have
no power grid connection, this is the case of remote areas
in developing countries. In this case, PV power prediction
is needed to decide which load can be accepted or denied
depending on priority and load interruptibility versus pre-
dicted power availability.

For this type of problem, a short-term prediction model is
needed; the focus is on models that can predict 1h, 6h and
12h in the future given the past knowledge of time windows
ranging from 1h to 24h.
Another important issue to analyze is the power decay due

to aging, which, as shown below, implies having data ranging
over a significant number of years.

Since ML models often require extensive resources in
terms of memory and computing power, the main challenge
of this study is the implementation of algorithms that can be
easily reduced and made compatible to the limitations of low
power MCUs. In our case model training will be performed
offline, the trained model will then be reduced using pruning
and quantization methods and, at this point, uploaded to the
MCU for testing.

B. THE DATASET
The dataset used to evaluate the performance of the Neural
Network models that have been considered in this study
is extracted from the public data provided by DKASC
(Desert Knowledge Australia Solar Centre) [23]. The com-
plete dataset includes data from several different PV tech-
nologies, such as Monocrystalline Silicon, Polycrystalline
Silicon, Cadmium Telluride thin film, from about 40 micro
plants from different manufacturers. For each plant electrical
data is sampled every 5 minutes and, at the same time, a cen-
tral weather station samples environmental data such as solar
radiation, temperature, wind direction and speed, and relative
humidity.

In particular, the weather data in the DKASC database that
will be used includeGlobal Horizontal Radiation (GHR), Dif-
fuse Horizontal Radiation (DHR), Daily Rainfall (DR) and
temperature, and for each PV plant, Active Energyy Deliv-
ered or Received (AEDR), Current Phase Average (CPA),
Active Power (AP) and Performance Ratio (PR). In the fol-
lowing, only the AP data have been considered for each plant.
New PV elements have been gradually added to the DKASC
field since 2008; nevertheless, for most types of PV panels,
the available data span several years.

Statistical data summarizing the properties of some of the
data available in the DKASK subset chosen for this study
are shown in Table 1, where GHR and DHR are expressed
in W, DR is represented by cumulative mm of water updated
each 5’ and reset each 24h, AP is in kW, while T is in K.

FIGURE 1. Two weeks of sample data from April 2009 from the dataset
used.

TABLE 1. Some statistical data that describe the properties of GHR, DHR,
DR, AP and Temperature in the dataset used.

A graphical view of the distribution of solar radiation and
temperature data for the time period considered is shown in
the violin plots in Fig. 2 and Fig. 3 respectively. In these plots
only daytime was considered, since it is pointless to consider
also the zero radiation periods at night.

Obviously, all the data in these datasets display a strong
daily periodicity and a weaker, but still significant, annual
periodicity. For this reason, it has been decided to add,
as additional features, periodic functions of time of day and
of time of year to take into account these phenomena. These
functions are simple sine and cosine functions whose period
is one day or one year. The resulting new features are F sdp,F

c
dp

in (1) for the daily periodicity and F syp,F
c
yp in (2) for annual

effects.

F sdp = sin
(
m ∗

2π
24 ∗ 60

)
Fcdp = cos

(
m ∗

2π
24 ∗ 60

)
(1)

F syp = sin
(
d ∗

2π
365.25

)
Fcyp = cos

(
d ∗

2π
365.25

)
(2)

DKASC has been continuously collecting data since
2008, allowing for PV power decay analysis. Since the
data in DKASC contains datasets from a number of differ-
ent technologies, a dataset showing a significant difference
from 2008 to 2021 has been chosen for the power decay
analysis. To evaluate which PV dataset was best suited, active
power output was compared in pairs of days showing similar
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FIGURE 2. Violin graph for GHR and DHR in the dataset used.

FIGURE 3. Violin graph for temperature in the dataset used.

weather conditions in 2009 and 2020; specifically, by com-
paring, for each day and using the modified cosine similarity
function in (3), the values of GHR and T (Temperature) in
vectors representing 24h data windows.

S(x, y) =
xy
‖x‖‖y‖

(
1−

abs(‖x‖ − ‖y‖)
‖x‖ + ‖y‖

)
(3)

A sample result in terms of GHR and T for a pair of days with
a high similarity value is shown in Fig. 4 and Fig. 5.
Using this metric the dataset corresponding to Array 6,

Kyocera, 5.4kW, poly-Si, with dual axis tracking [23], has
been chosen for our analysis.

C. DATA PREPROCESSING
Some preprocessing of the data in the DKASK dataset was
mandatory:

1) Power data and environmental data are in separate sets,
these had to be aligned and merged in one single set.

2) Wind and humidity parameters have been discarded
since they have been shown to have a mostly irrelevant
impact on our problem.

3) Outliers and missing data has been interpolated.

FIGURE 4. GHR in Jan. 12, 2009 (solid line) and in Jan. 1, 2021 (dashed
line).

FIGURE 5. Temperature (Celsius) in Jan. 12, 2009 (solid line) and in
Jan. 1, 2021 (dashed line).

The whole dataset is then normalized in order to have zero
mean and unit variance.

III. NEURAL NETWORK ARCHITECTURES AND TinyML
A large number of different ANNmodels have been proposed
in the literature and have been used in a large number of
different fields and applications; see, e.g., [24] for a good
review and application to water quality prediction, [25] for
Convolutional Neural Networks applied to image recognition
tasks, or [26] for a general review of applications concerning
energy prediction.

In this paper a typical time series prediction problem is
considered. This means that each ANN model will be pre-
sented with a window of known ‘‘past’’ data, where Np is the
size of this window in terms of the number of data samples,
and will be required to predict the ‘‘future’’ value of AP after
a given time lapse1t corresponding to Nf data samples. The
length of the past data window Np and the time lapse Nf
will affect the final results in terms of accuracy and memory
requirements.
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In this paper three different basic ANN models will be
considered:

1) Multi Layer Perceptrons (MLPs) that are the foun-
dation of DNNs and essentially the ultimate evo-
lution of the architecture proposed by Rosenblatt
in 1958 [27].

2) CNNs based on the DNN idea, but with one or more
hidden (i.e. not directly connected to the input or out-
put) convolution layer [28].

3) Recurrent Neural Networks (RNNs) in the forms of

a) Long Short Term Memory (LSTM) first intro-
duced in [29] by Hochreiter et al.

b) Gate Recurring Unit (GRU) introduced by
Cho et al. in [30]

More details on the specific instances of these models and
how they are used in this study are given in the following
sections.

A. INPUT DATA FOR SHORT AND MID TERM PREDICTION
The features chosen for the prediction of short-term active
power are eight: GHR, DHR, DR, Temperature, F sdp, F

s
yp,

Fcdp and Fcyp while the feature that is predicted, acting as
label, is AP; thus, the total width of the input feature Fw
is nine. The data are sampled with a period of 5 minutes,
which means that each 1h data window is represented, in the
nominal case, by Nh = 12 data samples. Interesting results
have also been obtained by downsampling the data, thus
using smaller values of Nh. In the network descriptions that
follow, it is assumed that predictions are made based on a
set of different past data windows with length w ∈ W ≡

{1h, 2h, 4h, 8h, 12h, 24h} so that the total number of samples
is Np = wNh, while the predicted data are in all cases a
single sample of AP with different values of 1t at 1h, 6h
and 12h in the future corresponding to Nf = 12, 72 and 144,
respectively.

For all networks the input data shape is therefore Np×Fw,
that is, wNh × 9 and obviously varies depending on how
many past hours of data are considered. Since in this phase
only short and mid term prediction is considered, a subset of
the whole available data for the chosen PV plant has been
considered.

B. TRAINING, VALIDATION AND TEST SUBSETS
In order to train the ANNmodels, the whole dataset has to be
divided into subsets to be used for training, validation, and
testing. Training data are actually used to train the model,
validation data to check results while training in order to
avoid possible overfitting, and finally, the test subset is used
to validate the model performance on data that have not been
used in the training process.

For short term prediction the full data from years 2012 and
2013 has been extracted from the plant database and used as
train dataset, the first 182 days from 2014 have been used for
the validation subset, while the remaining portion of 2014 for
the test set.

C. BASIC MULTI LAYER PERCEPTRON NETWORK
The simplest network that has been considered is an instance
of MLP with a first flatten layer, that transforms the
two-dimensional input data in a one-dimensional vector, and
four dense hidden layers of decreasing size all using the ReLu
activation function. Each neuron of these layers computes
a simple weighted linear combination of its inputs, eventu-
ally adds a scalar value, and finally evaluates the activation
function on the result. In this case, the commonly used and
computationally simple ReLu activation function is used; this
function will simply set to zero all negative values and leave
positive ones unchanged. A final single neuron output layer,
in this case without an activation function, equivalent to a
simple linear combination of all inputs, yields the final scalar
output. The basic structure of this network is presented in
Fig. 6. As shown, the hidden dense layers have been chosen
to be composed by a decreasing number of neurons, namely
64, 32, 16 and 8 for each layer from input to output. In the
network definition dropout layers have been added between
each dense layer. These are actually pseudolayers that are
active only during training and are responsible for randomly
setting inputs to zero to a small fraction of neurons in the
layer. This action reduces the chance of overfitting i.e. having
a network that is essentially specialized on the training set
and not on more general and never before seen input data.
Tests using different layer configurations did not significantly
improve the accuracy of the results obtained.

FIGURE 6. Architecture of the MLP neural network used.

D. CONVOLUTIONAL NEURAL NETWORK
CNNs have been shown to yield good results in time series
forecasting (see e.g. [31]). The CNN implemented in this
study is composed of a first one-dimensional convolution
layer with 32 filters and a kernel size equivalent to the number
of input time steps Np, i.e. from 12 to 288 depending on the
size of the past window, and the ReLu activation function.
Two hidden dense layers with, respectively, 32 and 16 neu-
rons and again the ReLu activation follow, a final single linear
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FIGURE 7. Architecture of the CNN neural network used.

neuron output layer computes the scalar prediction. The basic
CNN network architecture considered in this paper is shown
in Fig. 7. While the behaviour of the neurons in the dense
layers is exactly as for the MLPmodel, the initial convolution
layer performs a different task. This layer builds a number of
filters, in our case 32, obtained through a cross-correlation
operation with each input batch. Each filter provides one
output value.

E. LONG SHORT TERM MEMORY NETWORK
LSTM networks, as all RNNs, are well suited for time series
prediction. Each unit in a LSTM layer has two states, one
representing long-term memory and called cell state and
a second one, called hidden state that is adjusted at each
iteration and represents a form of short-term memory. The
hidden state at the previous step and the current input are used
to adjust the cell state slowly and to determine the new value
for the hidden state. The activation function used for this layer
is the Hyperbolic Tangent and the usual linear output dense
layer yields the output. The basic LSTM network architecture
considered in this paper is shown in Fig. 8. The number of

FIGURE 8. Architecture of the LSTM neural network used.

neurons (units) in the LSTM layer is 32. Once again, larger
sizes did not significantly improve the results.

FIGURE 9. Architecture of the GRU neural network used.

F. GATE RECURRING UNIT NETWORK
GRU networks are very similar to the LSTM networks but
require a reduced number of tensor products and each unit
has only one internal state. Since in many cases GRUs yield
results as good as those of LSTMs, and that the specific
application envisioned in this paper is to be implemented
using TinyML on a small micro-controller platform, these
lighter requirements in terms of processing power are very
attractive. Also for this layer the activation function used is
the hyperbolic tangent, and a linear output dense layer is used
to compute the output. The basic GRU network architecture
considered in this paper is shown in Fig. 9.

IV. RESULTS AND EVALUATION
A. COMPLEXITY PROFILING
The trained neural networks will be embedded onto a low
power MCU, model name STM32F302VCTx, integrated on
an ad-hoc fabricated industrial board provided by SECO. The
memory embedded in the core systemMCU consists of 32kB
RAM and 256kB ROM, with an ARM Cortex-M4 Core @
72 MHz. STM32Cube.AI software tool (version 7.1.0) [32]
was used to convert pre-trained models into optimized ANSI
C code, which also provides analysis of memory usage both
on the target board and on the desktop.

The models can also be quantized to reduce memory
requirements. This operation has some effects on the qual-
ity of the prediction results. The tool used to convert
the pre-trained models was STM32Cube.AI software tool
(version 7.1.0), which automatically converts the ANN mod-
els into optimized ANSI C code for embedded MCUs, allow-
ing, at the same time, their performances analysis. Model
validation can be run on both the PC and the MCU board.

The same tool can then be used to quantize pre-trained
models based on 8 bit integers. This operation can sig-
nificantly improve memory requirements and power con-
sumption, since the ANN runtime is reduced. Specifically,
NN weights and associated activation values are converted
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from 32-bit floating-point to 8-bit integer precision, with,
as will be shown, essentially irrelevant degradation in terms
of model accuracy. The algorithm used to generate the quan-
tized values is the standard ‘‘Minmax’’ method included in
STM32Cube.AI, which bases the quantization process on the
minimum andmaximumvalues of all weights and activations.
The floating-point values of weights and activations are first
scaled and then shifted:

xI =
xF
S
+ Z

where the original floating point values are denoted by xF
while xI are the new 8-bit integer values; S is the scaling coef-
ficient, a floating point number, and Z the ‘‘zero point’’ shift
value, an 8-bit integer that corresponds to the quantized value
of floating point zero [33]. Using this algorithm the quantized
values xI are linearly distributed around Z , and final precision
depends on the scale factor. In the STM32Cube.AI imple-
mentation the weights can be asymmetric, with Z 6= 0 or
symmetric, in this second case Z = 0, activations, due to
their nature, are only asymmetric. Post-quantized TensorFlow
Lite models use the symmetric and signed integer mode
for the weights, and asymmetric and signed integer for the
activation values. The same scheme (coded as ‘‘ss/sa’’ in
the STM32 documentation) was chosen for the quantization
process. Quantization of recursive layers such as LSTM and
GRU is not supported, and therefore their execution remains
in floating-point.

1) MLP
A first analysis of complexity obtained through STM32
Cube.AI has been performed on the MLP architecture for
different values of w ∈W (i.e. hours of past data used both in
training and in evaluation). Results of this complexity analy-
sis are shown in Table 2 where the required RAM and Flash
memory are expressed in KiB and computation complexity
by number of Multiply ACCumulate (MACC) operations in
32bit floating point arithmetic.

TABLE 2. Complexity of the non-quantized MLP model for different
values of w ∈W (∗ values to large for the chosen MCU).

Note that the requirements in terms of RAM, ROM and
MACC depend essentially only on the value of w and not
of 1t; this is due to the fact that only the size of input data
influences the number of internal weights and the number of
MACC operations needed to obtain a prediction. Therefore,
these complexity results are the same for all values of 1t

that have been considered. This is true also for all other ANN
models considered.

As it can be seen in Table 2, in the non-quantized version
of the model values of w > 8 can not be implemented on
standard MCU boards.

After quantization it can be seen that, while RAM require-
ments and MACC operations vary only slightly, the amount
of ROM needed is reduced by values ranging from 74%
to 75%. The results are shown in Table 3.

TABLE 3. Complexity of the quantized MLP model for different values
of w ∈W .

Note that, in this case, all w values are compatible with the
chosen MCU board (and with most other low power boards).

2) CNN
The CNN model, as will be shown in the next section,
yields good results in terms of accuracy. Performing the
same complexity analysis in exactly the same conditions as
with the MLP just seen, results for the non-quantized CNN
model are shown in Table 4. As it can be seen the CNN
model that has been considered has lager RAM requirements
but significantly smaller Flash memory requirements with
respect to the non-quantized MLP model. With quantization,
like in the previous case, requirements in terms of RAM
and complexity in terms of MACC change very little; flash
memory requirements, on the other hand, are again drastically
reduced by values ranging from 73% to 75%.

TABLE 4. Complexity of the non-quantized model CNN for different
values of w ∈W (∗ values to large for the chosen MCU).

3) LSTM
The LSTM model is not quantizable by the STM32Cube.AI
system. The complexity related to the standard non-quantized
model is thus reported in Table 6. Note that, due to the
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TABLE 5. Complexity of the quantized CNN model for different values of
w ∈W .

TABLE 6. Complexity of the nonquantized LSTM model for different
values of w ∈W .

peculiar architecture of LSTM, the required amount of Flash
memory does not change for different values of w, on the
other hand, the complexity of the recursive layer yields very
large values for the MACC attribute.

4) GRU
Also for the GRUmodel quantization is not possible and, due
to its nature, the Flash memory requirements do not change
with w. Complexity results for this model are reported in
Table 7. As can be seen, this model also requires a large num-
ber of operations, only slightly smaller than those required
by LSTM.

TABLE 7. Complexity of the non-quantized GRU model for different
values of w ∈W .

B. EFFECTS OF QUANTIZATION
Quantization has, in general, some effect on the accuracy of
the ANN models. One would expect that, after quantization,
some decay in accuracy should be observed. In the case
here considered, if the Root Mean Square Error (RMSE) of
the MLP and CNN models are compared before and after

quantization, it can be seen that the difference is negligible,
and in some cases the quantized models even yield better
results. In Fig. 10 the RMSE for MLP in the case1t = 1h is
shown, as can be noted, the impact of quantization is not very
relevant. Similar results can be seen from the CNN model,
as shown in Fig. 11. Quantization effects on the accuracy of
predictions are negligible, and this is true also for different
values of1t; in the following, only the quantized models will
be considered for MLP and CNN.

FIGURE 10. RMSE of the original and quantized MLP model for different
values of w .

FIGURE 11. RMSE of the original and quantized CNN model for different
values of w .

C. PREDICTION ACCURACY
There are various metrics that can be used to evaluate the
accuracy of ANN. The most used are RMSE and Mean
Absolute Error (MAE). These metrics are apparently quite
similar but have some interesting and useful differences; in
fact, we have:

RMSE ≡

√√√√1
n

N∑
i=1

(y2i − ŷ
2
i )

MAE ≡
1
n

N∑
i=1

|yi − ŷi| (4)
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where ŷi are the predictions and yi the actual observations.
Both metrics are based on the sum of some function of
prediction errors, have the same dimensions as the observed
quantities, and do not consider the sign of each error value;
nevertheless, since in RMSE the sum is averaged before
taking the square root, it will always be RMSE ≥ MAE
with the difference between the two metrics related to the
variance of the distribution of error values, since RMSE is
more sensitive to large error values.

The results in terms of MAE for all ANN models for
different values of w and for 1t = 1, 6 and 12 are shown
in Fig.12, Fig.13 and Fig.14 respectively. As expected, larger
values of 1t yield larger values of MAE. As can be seen,
an interesting first result is that a value of w = 1 yields better
results than using a larger number of past samples. This effect
may seem surprising, but shows the importance of adding an
artificial feature depending on time of year and time of day,
as outlined in section II-B, effects of local perturbations, such
as clouds or temperature variations end up being more diluted
if more past data is fed to the model.

FIGURE 12. MAE of all the models for different values of w at 1t = 1.

FIGURE 13. MAE of all the models for different values of w at 1t = 6.

The second result is that the GRU model outperforms all
other models for all 1t values.

FIGURE 14. MAE of all the models for different values of w at 1t = 12.

Some sample prediction data, related to 4 consecutive
days, are shown in Fig. 15. The predictions in this figure are
related to ANNs models trained on data from October 2008
to July 2009, and tested on data from the remaining part
on 2009. As can be seen, the actual power data from the solar
field are slightly underestimated by all ANNs models.

FIGURE 15. Prediction of all ANNs trained on 2009 data compared to
measured data from the same year.

D. SOLAR PANEL AGING
To evaluate the effects of aging on solar panels, the ANNs
models have been trained on data from the early days of the
chosen solar field and used to predict power output using
recent environmental data. Recall that the dataset has been
chosen so that we could have a long span in terms of years of
data and in terms of the availability of similar irradiance and
temperature profiles.

With this approach it is expected that the available real
power output in recent times by aged panels, compared with
data predicted using just deployed ones, will show some
decay. Furthermore, the prediction accuracy is expected to be
lower.

A first qualitative idea of this performance decay can be
immediately seen by comparing Fig. 15 with similar results
shown in Fig. 16. The predictions in this figure are obtained
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FIGURE 16. Prediction of all ANNs trained on 2009 data compared to
measured data from the solar field in 2020.

FIGURE 17. MAE for all ANNs trained on 2009 and tested on 2009 data
(when the field was ‘new’) and 2020 data (when the field was ‘aged’).

using the same ANNs trained on 2008 and 2009 data and pre-
dicting power output using 2020 weather data. As expected,
all ANNs models overestimate panel performance. Due to
ageing effects the solar field considered is delivering much
less power than predicted by the models trained on the origi-
nal solar field data.

To have a more quantitative measure of this decay effect,
the MAE value for all models in the case w = 1, 1t = 1 has
been evaluated and is shown in Fig. 17. In this figure, the
prediction accuracy for new panels, i.e., the performance of
the solar field in 2009, immediately after the data used for
training is compared to aged panels, where predictions of
the original ANNs using 2020 weather data are compared to
actual power output.

V. CONCLUSION
In this article, different ANN architectures are capable of
reliable short and medium-term solar power forecasting, and
the best results are obtained using limited past data. After
training, these architectures can be made compact and imple-
mented in low cost, low-power and small MCU platforms,
allowing for distribution forecasting directly on solar plants
or to single panel applications. All architectures achieve good

results; the one showing the best performance for this appli-
cation is the one based on the GRU model.

With all models, solar panel aging has relevant effects on
prediction accuracy.
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