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ABSTRACT In this paper, we propose and study a type of tuple-level constraint that arises from the
selection operator σ of relational algebra and that closely resembles the concepts of tuple-level denial
constraints. We call this type of constraint selection rules and study their concepts and properties in the
setting of data consistency management. The main contribution of this paper is the study of rule implication
with selection rules in order to solve the error localization problem by means of the set cover method.
It turns out that rule implication can be applied more easily if the representation of selection rules is
extended in order to allow gaps between attribute values. We show that the properties of selection rules
allow to improve the performance of rule implication. Evaluation of our approach compared to HoloClean
on four real-world datasets shows promising results. First, repair with selection rules is often faster and less
memory-consumable than HoloClean, especially when the amount of work that rule implication has to do
is limited. Second, in terms of precision and recall of error detection and correction, repair strategies with
selection rules almost always outperform HoloClean.

INDEX TERMS Data quality, relational algebra, consistency, rules.

I. INTRODUCTION
Data quality has become a crucial part of data management
over the past decades. Apart from tackling completeness, acc-
curacy or currency problems, one of the main problems is to
safeguard consistency of data [1], [2], [3], [4], [5]. A popular
approach to handle this is the rule-based approach, where
rules (or constraints) model how consistent data should look
like. Examples of data quality rules are functional dependen-
cies and relatives [6], [7], [8], [9], [10], inclusion dependen-
cies [7], denial constraints [11] and edit rules [12], which all
differ in terms of expressiveness. With this in mind, choosing
the type(s) of rules that one can use poses a difficult, yet
fundamental problem. On the one hand, types of rules that
are more expressive are able to capture more types of errors.
On the other hand, more expressive types of rules come with
a higher complexity in terms of fundamental problems like
discovery, implication and repair.

In this paper, we focus on tuple-level constraints in rela-
tional databases. Although more expressive types of rules
exist, it has been stated that these types of rules can capture
a large portion of inconsistencies in real-world datasets [13].
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FIGURE 1. Schematic overview of the contributions presented in this
paper.

More specifically, we investigate a type of tuple-level con-
straints that arises from the selection operator σ of relational
algebra [14]. We call these constraints selection rules or,
for short, σ -rules and show that these types of rules are a
generalization of edit rules [12] and have the same expressive
power as tuple-level denial constraints [11].

A schematic overview of our contributions presented in this
paper is given in Figure 1. As a first contribution, we study
the concepts and properties of σ -rules and investigate how
the concepts and properties of edit rules and tuple-level denial
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constraints relate to them. A second contribution is the pro-
posal of an efficient algorithm for the implication of σ -rules
based on these properties, in order to compose a so-called
sufficient set. This algorithmwill be an extension of the impli-
cation algorithms for regular edit rules [15], [16], [17] based
on the implication procedure proposed by Fellegi&Holt [12].
The purpose of a sufficient set is to find minimal-cost repairs
of inconsistent tuples easily. More precisely, if the cost of
making a change to an attribute in a relation is fixed, then
minimal-cost repairs can be found by searching for minimal
set covers of failing rules in a sufficient set. Because of
this property, repairing dirty data in a guaranteed minimal
way is much faster than other procedures that rely on more
expressive constraints, such as Llunatic [18] and HoloClean
[19]. A remarkable result is that when domains are ordinal,
the construction of a sufficient set is more difficult, because
it is necessary to model gaps between attribute values to
keep the number of implied rules manageable. The selection
operator of relational algebra lacks the expressiveness to
model such gaps easily. However, we propose a solution to
this problem by extending the expressiveness of the selection
σ to σ+, where gaps between data values can be enforced that
indicate how large the difference between two attribute values
can(not) be. Interestingly, it does not matter whether we start
from σ -rules or σ+-rules: the implication procedure of both
of them can be described in terms of σ+-rules. As a third and
final contribution, we assess the usefulness of selection rules
by evaluating their capability to detect and correct erroneous
data in real-world datasets.

The remainder of this paper is structured as follows.
In Section II, we recall some basic concepts and notations
related to the relational databasemodel and relational algebra.
In Section III, we formally define σ -rules and σ+-rules, and
state their concepts and properties. After this, in Section IV,
we exploit these properties in a σ+-rule implication algorithm
that can be used to generate sufficient sets. In Section V,
an overview is given of state-of-the-art literature related to
the concepts and approaches studied in this paper, together
with a positioning of our contributions within this literature.
We evaluate our contributions in practical settings and discuss
the results in Section VI. Finally, we state our conclusions and
view on future research in Section VII.

II. PRELIMINARIES
In this paper, we assume the relational model for
databases [14]. For a countable set of attributesA, we denote
for each a ∈ A, the domain of a by A. For each a ∈ A,
we assume that the domain A is of one of the following types.
• Nominal: A is finite and features the equality relation=.
• Ordinal: A is equipped with an order ≤ and an order
isomorphism exists from (A,≤) to (Z,≤).

• Continuous: A is equipped with an order≤ and operator
+ and an order isomorphism exists from (A,≤,+) to
(R,≤,+).

When A is ordinal, it automatically comes with a successor
function S. A successor function S defined on an ordinal

domain A, applied on a value vi ∈ A (i.e., S(vi)), returns an
element vj ∈ A, such that vi < vj and @vk ∈ A : vi < vk < vj.
In words, a successor function S returns the closest element
greater than its argument that exists in the domain on which
S is defined. If we apply a successor function S, n times on a
value v ∈ A, i.e.,

Sn(v) = S ◦ S ◦ . . . ◦ S(v)︸ ︷︷ ︸
n times

,

the n-th closest element greater than v in A is returned. If
n = 0, the successor function S is not applied on value v
and returns v, i.e., S0(v) = v. Moreover, if n < 0, the inverse
function is applied of which the outcome is the n-th closest
element lower than v in A.

A relation schemaR = {a1, . . . , ak}, or schema for short,
is defined by a non-empty and finite subset of A. A relation
R over R is defined by a finite set R ⊆ A1 × . . . × Ak . Each
element t of a relation R with schema R is called a tuple
over R. For any R with schema R and X ⊆ R, we will
denote the projection of R over X by R[X ]. Note that, in this
work, we always assume only one relation over one schema,
but our contributions are not limited to a certain number of
relations of schemata, because they can easily be applied
when considering each of the relations/schemata separately.

A propositional formula ϕ over a schema R =

{a1, . . . , ak} is defined as a well-formed formula consisting
of a set of propositional predicates and the Boolean operators
∧, ∨ and ¬. Each propositional predicate (or predicate in
short) P in ϕ is either

• a constant predicate a θ v, where a ∈ R, v ∈ A and
θ = {≤, <,=, 6=, >,≥} an operator on A, or

• a variable predicate ai θ aj where ai, aj ∈ R with Ai =
Aj, and θ = {≤, <,=, 6=, >,≥} an operator on both Ai
and Aj.

Evaluation of a predicate P for a given tuple t overR is then
obtained by replacing the attributes in P with the projection
of t over those attributes. In other words, for a tuple t , we test
whether t[a] θ v (resp. t[ai] θ t[aj]) is true or false. The
generalized selection σϕ (R) with selection operator σ and
propositional formula ϕ applied on relation R, is defined by
{t | t ∈ R ∧ ϕ(t)}.

III. SELECTION RULES
A. BASIC DEFINITIONS AND PROPERTIES
Now the necessary concepts and notations related to the
relational database model and relational algebra are recalled,
we can formally introduce σ -rules.
Definition 1 (σ -Rule): A σ -rule over a schema R is

defined (and denoted) by a propositional formula ϕ. A tuple
t satisfies (or is consistent against) the rule (denoted by
t |H ϕ) if ϕ(t) evaluates to false. Else, the tuple fails (or is
inconsistent against) the rule (denoted by t 6|H ϕ).

From Definition 1, it follows that each σ -rule describes a
set of tuples that are not allowed in a consistent relation. If a
σ -rule ϕ contains at least one variable predicate, it is called
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TABLE 1. Operators and inverse operators.

TABLE 2. Example relation over stock schema.

TABLE 3. Example σ -rules stock schema.

a variable σ -rule. Otherwise, it is called a constant σ -rule.
As any propositional formula, ϕ can always be (re)written
in disjunctive normal form (i.e. disjunction of conjunctions,
DNF in short) and if the DNF of ϕ consists of more than
one conjunctive clause (i.e., ϕ = ϕ1 ∨ . . . ∨ ϕn), we can
rewrite ϕ as a set of σ -rules 8 = {ϕ1, . . . , ϕn}. Doing so,
a tuple t then fails8 if any of the conjunctive clauses ϕi ∈ 8
evaluates to true. Furthermore, the set {≤, <,=, 6=, >,≥}
includes for each operator θ the inverse operator ¬θ so that
Boolean negations of predicates can always be rewritten (cfr.
Table 1). By these two facts, we can define a normal form of
σ -rules, in which ϕ is restricted to a conjunction of predicates
without negations. From now on, we assume that ϕ always
has this normalized form, unless stated otherwise. Also, for
easy notation, it is convenient to consider a third type of
predicate, called a set predicate. A set predicate is of the
form a θ V , where a ∈ R, V ⊆ A and θ = {∈, /∈}. It can
easily be verified that when a σ -rule contains a set predicate,
it can always be rewritten as a set of rules that do not use
set predicates. Set predicates are therefore only a tool for
convenience of notation.
Example 1: An example relation that we will use regularly

in the remainder of this work is the relation over the stock
schema1 given in Table 2. This relation consists of tuples
representing the daily changes of stock prices. The schema
consists of four attributes2 with domainR, which are previous
close (PC, price of the stock on the latest daily transaction
on the previous day), last trading price (LTP, price of the
stock on the latest daily transaction on the current day),

1https://lunadong.com/fusionDataSets.htm
2Note that attributes change_in_dollar and change_percentage contain

derived data, which is, strictly speaking, not allowed in a well-designed
relational database. However, in this paper, we do allow it in order to make
it more easy to explain certain concepts and techniques.

change in dollar (CID = LTP− PC) and change percentage
(CP = CID∗100

PC ). Although it is not possible to represent all
constraints on this relation exactly by means of σ -rules (e.g.,
the formula to calculate CP), a set of 10 σ -rules (in normal-
ized form) is given as an example in Table 3 to solve some
consistency problems.3 Examples are that it is not permitted
that PC (resp. LTP) is strict negative (ϕ1, resp. ϕ2), that LTP
is greater than or equal to PC andCP is strict negative (ϕ3) or
that CP equals zero and CID does not (ϕ9). ϕ1, ϕ2 and ϕ7-ϕ10

are constant σ -rules, whereas ϕ3-ϕ6 are variable σ -rules.
In the data shown in Table 2, t1 and t2 are the only tuples that
are consistent against the given set of rules, because t3 fails
ϕ3 and ϕ7, t4 fails ϕ1 and ϕ3, and t5 fails ϕ2, ϕ6 and ϕ9. Note,
however, that, although t2 is consistent against the given set of
rules, it does not follow the (linear) relationship to calculate
CID and CP.

In terms of expressiveness, σ -rules are a generalization
of regular edit rules, introduced for categorical data in the
framework of Fellegi and Holt [12] and extended to ordi-
nal data in [17]. Indeed, each edit rule can be written as a
set of (constant) σ -rules (and even one σ -rule if we allow
set predicates), but the advantage of σ -rules, in terms of
expressiveness, comes from the fact that one (variable) σ -
rule can vouch for a set of infinitely many edit rules. Besides
that, we can also state that σ -rules are a less expressive
subclass of linear edit rules [20], because they are represented
by linear (in)equalities involving one or two attributes with
coefficients equal to 1. Also, σ -rules are a special case of
denial constraints (DCs) where predicates are limited to a
single tuple [4], [11], [21]. This makes σ -rules equivalent to
tuple-level DCs and therefore, the concepts and properties of
tuple-level DCs also apply for σ -rules. As we will explain in
the following, the main virtue of these observations is that σ -
rules come with a procedure for attribute elimination based
on Fourier-Motzkin elimination, which helps to reduce the
complexity of solving the error localization problem.

With this in mind, we will redefine the concepts and prop-
erties of edit rules and denial constraints within the setting
of σ -rules. We say that an attribute is involved in a σ -rule
if it appears in at least one of its predicates. The set of
attributes involved in a σ -rule ϕ is denoted by I(ϕ). If the
cardinality |I(ϕ)| = 1, then the rule provides a constraint on
the domain of that attribute and we call such rules domain
constraints. Thereby, we will denote the set of predicates in
ϕ involving (resp. not involving) an attribute a by means ϕa
(resp. ϕā). Also, the concepts of redundancy, tautologies and
contradictions can be formally defined in the setting of σ -
rules.
Definition 2 (Redundancy): A σ -rule ϕr is redundant to

a σ -rule ϕd (or ϕd dominates ϕr ), both defined over R =
{a1, . . . , ak}, if ϕr ⇒ ϕd . Semantically, this means that,
∀t ∈ A1 × . . .× Ak , t 6|H ϕr ⇒ t 6|H ϕd .

3For simplicity and clarity, this set does not necessarily contain all poten-
tial σ -rules that can be composed on the relation.

125214 VOLUME 10, 2022



T. Boeckling et al.: Cleaning Data With Selection Rules

Definition 3 (Tautology): A σ -rule ϕ defined over R =
{a1, . . . , ak} is a (logical) tautology if ϕ ≡ ⊥ (with ⊥
representing ‘always false’). Semantically, this means that,
∀t ∈ A1 × . . .× Ak , t |H ϕ.
Definition 4 (Contradiction): A σ -rule ϕ defined over

R = {a1, . . . , ak} is a (logical) contradiction if ϕ ≡ > (with
> representing ‘always true’). Semantically, this means that,
∀t ∈ A1 × . . .× Ak , t 6|H ϕ.
Note that a tautology is redundant to each σ -rule, and that
each σ -rule is redundant to a contradiction.
Example 2: The values that attribute PC (resp. LTP) of the

stock schema can take are limited by the domain constraint
ϕ1 (resp. ϕ2). Indeed, I(ϕ1) = {PC} (resp. I(ϕ2) = {LTP}).
Moreover, I(ϕ3) = {PC, LTP, CP}. Besides that, PC < −1 is
redundant to ϕ1, PC ≤ 0 ∧ LTP ≥ 0 ∧ CP < 0 is redundant
to ϕ3 and CID ≥ 0 ∧ CP < 0 ∧ PC ≤ LTP is redundant
to ϕ3 and ϕ7. Finally, PC ≤ LTP ∧ PC > LTP and CP <
0 ∧ CID > 0 ∧ CP > CID are logical tautologies.

B. MINIMAL-COST REPAIRS
Now σ -rules are formally defined and their related concepts
and properties are stated, we can use them as a tool to detect
and repair inconsistent tuples. In the remainder, the problem
of finding correct repairs for inconsistent tuples is introduced,
and we will propose a solution to this problem for σ -rules,
which is in line with the solution introduced by Fellegi &Holt
for regular edit rules [12].

To do this, suppose that a set of σ -rules 8, defined over
schema R, and an inconsistent tuple t against 8 are given.
By definition, t fails a set of σ -rules 8′ ⊆ 8, i.e., ∀ϕ ∈ 8′,
t 6|H ϕ. Any set of attributes S ⊆ R for which different values
can be assigned in t to construct t ′, such that t ′ is consistent
against 8, is called a solution. For this matter, we call t ′ a
repair4 of t based on solution S. If weights are assigned to
each attribute (e.g., to represent the cost of changing the value
for this attribute), we can search for a solution with a minimal
cost. A specific case is when all attributes receive equal
weights, which implies solutions that are minimal in terms
of set cardinality. Repairs based on minimal solutions are
called minimal-cost repairs. Straightforwardly, a (minimal)
solution S should contain at least one involved attribute for
each failing rule in 8′. Indeed, rules for which no involved
attribute is added to S will remain failed after repair. We say
that, if this condition is met, S is a (minimal) set cover of
8′ as it covers all failing rules and therefore, all (minimal)
solutions are also (minimal) set covers.
Example 3: Assume that all attributes of the stock schema

receive equal weights. For t3 failing ϕ3 and ϕ7, the set {PC} is
not a correct solution, because we cannot construct a proper
repair t ′ as ϕ7 remains failed. The set S = {PC, CP} is a
correct solution, because we can construct a repair t ′ by e.g.,
changing the value of PC to 675 and flipping the sign of CP.
Moreover, the set S ′ = {CP} ⊂ S is a minimal solution,

4We will not go into detail about repair strategies because this is out of
scope.

because, to construct a proper repair t ′, flipping the sign of
CP suffices and no solution with less attributes (i.e., an empty
solution) exists (because t3 is initially inconsistent).
Although the strategies to find minimal-cost repairs are

quite simple and there is, initially, no guarantee that all (min-
imal) set covers are also (minimal) solutions (i.e., we cannot
properly rely on the set cover method to find all correct
(minimal) solutions), it comes with a great benefit in terms
of finding solutions. Indeed, as we know for regular edit
rules, it is guaranteed that all (minimal) set covers are also
(minimal) solutions if we extend the initial set of rules8with
implied rules [12]. Fortunately, because the properties of edit
rules still hold in the setting of σ -rules, the same solution(s)
can be applied.
Definition 5 (Implied σ -Rules): Given a set of σ -rules

8c = {ϕ
1, . . . , ϕn} defined over R = {a1, . . . , ak}, a σ -rule

ϕ∗ overR, for which

ϕ∗ ⇒ ϕ1 ∨ . . . ∨ ϕn (1)

is called an implied σ -rule, if ϕ∗ is not a tautology. Semanti-
cally, this means that, ∀t ∈ A1 × . . . × Ak , t 6|H ϕ∗ ⇒ t 6|H
ϕ1 ∨ . . . ∨ t 6|H ϕn. We will call 8c a contributing set of ϕ∗.
Definition 5 provides a method based on propositional logic
for validating whether a given σ -rule is implied or not. A pro-
cedure for generating implied rules from a given contributing
set will be studied extensively in Section IV. Note, thereby,
that each rule ϕr that is redundant to at least one ϕ ∈ 8c (with
all ϕ ∈ 8c as special cases) is also an implied rule of8c.With
this made clear, it is straightforward to see from Definition 5
that implied rules do not forbid combinations of values that
are not already forbidden by 8c, but they are indispensable
in the sense that they guarantee correct error localization by
means of the set covermethod. Indeed, Fellegi &Holt proved,
initially, that one needs to generate all implied rules in order
to apply the set cover method properly [12], but generating
all implied rules is a task of exponential complexity, because
each combination of rules can potentially lead to the genera-
tion of many implied rules. Fortunately, the number of rules
to imply can be limited, as implied rules are only necessary
to adopt when they are (1) new and (2) non-redundant (NNR
or necessary rules in short) [12], [15], [16], [22].
Definition 6 (New σ -Rules): An implied σ -rule ϕ∗ defined

over R = {a1, . . . , ak}, with contributing set 8c =

{ϕ1, . . . , ϕn}, is new if an attribute ag ∈ R exists that is
involved in each rule ϕ ∈ 8c, but not in ϕ∗. We will call
attribute ag the generator of ϕ∗.
Definition 6 states that generating new rules comes down
to a procedure of attribute (i.e., generator) elimination. The
state-of-the-art algorithm for generating all necessary rules
is the Field Code Forest (FCF) algorithm [15], [16]. This
algorithm repeats two steps during execution, which are (1)
the selection of a generator ag and a corresponding set of
rules 8ag involving ag (called candidate contributors), and
(2) the generation of all necessary rules with generator ag
and contributing sets 8c ⊆ 8ag . Eventually, the algorithm
returns a set of rules that is sufficient to properly solve the
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error localization problem by means of the set cover method.
Taking these notes into account, we will propose and study
an algorithm to apply as the second step of FCF, specifically
for σ -rules, in Section IV.
Example 4: The σ -rule PC 6= LTP ∧ CID ≥ 0 ∧ CP ≤

0 defined over the stock schema, is an implied rule with
contributing set {ϕ6, ϕ7}. The σ -rule LTP ≤ 0∧CP > 0 is a
new rule with contributing set {ϕ1, ϕ4}. The generator of this
latter rule is attribute PC.

C. EXTENSION TOWARDS σ+-RULES
To end this section, we will extend the expressiveness of
the selection operator σ , used by σ -rules (cfr. Definition 1),
to σ+. This extension should allow to enforce gaps between
attribute values, modelling the smallest (e.g., a1 > a2+ c) or
largest (e.g., a1 < a2+c) prohibited difference c between the
values of the two involved attributes a1 and a2. Regular edit
rules, σ -rules and denial constraints lack the expressiveness
to model such gaps easily. Take, for example, a constraint
on the stock schema that only permits an increase of at least
1 from PC to LTP. Until now, at least one rule per value of
R or infinitely many rules in total were needed to represent
this (e.g., for value 0 of PC, a potential σ -rule that models
this is PC = 0 ∧ LTP < 1). In the remainder, we will
show that this constraint can be represented by means of only
one σ+-rule.
Definition 7 (σ+-Rule): A σ+-rule over a schema R =
{a1, . . . , ak} is a σ -rule in which each variable predicate in
the propositional formula ϕ is of the form

• ai θ aj, in case Ai = Aj are nominal domains, or
• ai θ Sn(aj), with n ∈ Z, in case Ai = Aj are ordinal
domains with successor function S, or

• ai θ aj + c, with c a constant, in case Ai = Aj are
continuous domains.

For a tuple t over R = {a1, . . . , ak}, evaluation of a variable
predicate of the form ai θ Sn(aj) (resp. ai θ aj + c) with
ai, aj ∈ R, is done by testing whether t[ai] θ Sn(t[aj]) (resp.
t[ai] θ t[aj] + c) is true or false. Variable predicates of the
form ai θ Sn(aj) are called successor predicates.

With the definition of σ+-rules set, we can make two
interesting remarks. First, it is clear that the definition of σ+-
rules exactly matches the definition of σ -rules when domains
are nominal. Second, each σ+-rule can be written as a set of
(sometimes infinitely many) σ -rules and each σ -rule can be
converted to one σ+-rule. Indeed, a σ -rule is a special kind of
σ+-rule in which each variable predicate is, depending on the
domain type of Ai and Aj, of the form ai θ aj, ai θ S0(aj) or
ai θ aj+0. A direct implication of this is that the concepts and
properties of σ -rules can easily be transferred to the setting
of σ+-rules.
Example 5: All σ -rules given in Table 3 are also σ+-rules

(with c = 0 in the variable predicates). Now, we can use σ+-
rules to represent the example constraint which is stated in
the beginning of this section and only permits an increase of
at least 1 from attribute PC to attribute LTP by PC > LTP−1.

IV. σ+-RULE IMPLICATION
Now we have introduced two types of selection rules (σ and
σ+-rules), we can shift our attention to rule implication for
these types of rules. Because σ -rules are a special subclass of
σ+-rules and, therefore, the properties of σ+-rules also hold
for σ -rules (cfr. III-C), we will mainly focus on implication
of σ+-rules.

A. THE IMPLICATION FUNCTION
Before going into detail about rule implication, we will first
define an implication function that is fundamental in the
process of attribute elimination. This function should allow
to find all possible constraints implied by ϕ on all attributes
(except 1) involved in ϕ.
Definition 8 (Implication Function): Given a proposi-

tional formula ϕ defined over R = {a1, . . . , ak} and an
attribute ag ∈ R, the implication function

Imp(ϕ, ag) (2)

returns a propositional formula, written as ϕ∗ = ϕ∗1 ∨ . . .∨
ϕ∗m in DNF, that captures all ϕ∗i (with 1 ≤ i ≤ m) such that
ϕ ⇒ ϕ∗ and ϕ∗ does not involve ag.

With this implication function set, an important question
that remains to be answered is how to construct ϕ∗ as the
result of Imp(ϕ, ag) correctly and completely. To answer this
question, we can point out some observations. First, we can
rely on the transitivity property of the operators {≤, <,=,
6=, >,≥} for finding all possible constraints implied by ϕ.
Indeed, exploiting this property for all pairs of predicates
that are connected by a conjunction in ϕ, features a set of
predicates representing these (potentially hidden) constraints.
As an example, the conjunction of predicates {ai ≤ ag, ag ≤
aj}, with Ai,Aj = R reveals a constraint ai ≤ aj on both
attributes ai and aj, in which ag is eliminated, because ai ≤
ag ∧ ag ≤ aj ⇒ ai ≤ aj. Second, we can state that exploiting
the transitivity property on a pair of predicates may imply a
propositional formula consisting of the conjunction of more
than one (and potentially infinitely many) predicate(s). How-
ever, this formula automatically reduces, such that only the
most restrictive implied predicate remains. Following the
previous example, ai ≤ ag ∧ ag ≤ aj ⇒

∧
c≥0 ai ≤ aj + c,

but because
∧

c≥0 ai ≤ aj + c ≡ ai ≤ aj, the only (and most
restrictive) implied predicate that follows from this is ai ≤ aj.
Now, with this made clear, note that the maximal number of
(hidden) predicates not involving ag that are generated by
the implication function, with ϕ = ϕ1 ∨ . . . ∨ ϕn in DNF,
for each ϕi ∈ ϕ with ki predicates, equals

(ki
2

)
, which grows

exponentially with increasing ki.
In Table 4 and 5, we have provided an overview of the

most restrictive predicates, not involving generator ag, that
are constructed after exploiting the transitivity property on
each possible pair of predicates connected by a conjunction
(depending on the operators), both involving ag. Note that
Table 4 accounts for ordinal domains and Table 5 accounts
for continuous domains and (in limited version) for nominal
domains. Each cell in these tables contains two predicates,
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depending on the fact whether we start from a pair of variable
predicates (e.g., ag < ai + c1 ∧ ag = aj + c2 ⇒ ai >
aj + c2 − c1) or from a pair consisting of one variable
and one constant predicate (e.g., ag < ai + c1 ∧ ag =
v ⇒ ai > v − c1). > represents a tautology, following
from the fact that exploiting the transitivity property on the
corresponding pairs of predicates will not reveal any more
restrictive constraints on the involved attributes other than
ag. For example, ag < ai + c1 ∧ ag < v only implies
that ai can take any value in its domain. An interesting
observation is that exploiting the transitivity property on the
pairs {ag < Sm(ai), ag > Sn(aj)} and {ag > Sm(ai), ag <
Sn(aj)} results in predicates involving ai and aj with a ‘self-
expanding’ gap (indicated by resp.+1 and−1 in the resulting
predicates in Table 4). Indeed, if we consider these pairs, the
constraint on both ai and aj should account for the fact that
the gap between these attributes should be large enough such
that ag can take values meeting the original constraints in
the pairs. For predicates involving attributes with continuous
domains, this is not a problem, as there always exists a value
for ag meeting these original constraints. Note, hereby, that
for some σ -rules involving attributes with ordinal domains,
the result potentially contains an infinite number of σ -rules,
because these gaps cannot be represented. This reveals an
additional and important benefit of introducing σ+-rules for
rule implication. Finally, note that two trivial cases are not
listed in the tables, which are the following. If a pair consists
of any predicate that does not involve ag, this predicate is
automatically implied (e.g., ag < ai ∧ aj > 0 ⇒ aj > 0).
If a pair consists of two predicates involving no other attribute
than ag, applying the transitivity property results in either a
tautology (e.g., ag ≥ 0 ∧ ag ≤ 1 ⇒ >) or a contradiction
(e.g., ag ≤ 0 ∧ ag ≥ 1⇒ ⊥).

B. GENERATING NECESSARY σ+-RULES
As explained in III-B, generating necessary rules is crucial in
order to properly execute the FCF algorithm for generating
a sufficient set. Because we have generalized edit rules to
σ+-rules, we need an extension of the implication procedure
proposed in [12] that works correctly and completely for
(contributing) sets of σ+-rules. In order to generate all new
rules from a given set of σ+-rules by means of generator ag,
we can rely on the following theorem.
Theorem 1: Consider a set of σ+-rules 8ag =

{ϕ1, . . . , ϕn} that are defined over R = {a1, . . . , ak} and
involve attribute ag ∈ R. Applying

¬Imp(ϕ, ag), (3)

with ϕ = ¬ϕ1∧ . . .∧¬ϕn, results in a propositional formula,
written as ϕ∗ = ϕ∗1 ∨ . . . ∨ ϕ∗m in DNF, capturing all new
σ+-rules ϕ∗i (with 1 ≤ i ≤ m) that can be generated with
any 8c ⊆ 8ag as contributing set and ag as generator.

Proof: See Appendix. �
Example 6: Consider again the σ -rules (or σ+-rules)

defined on the stock schema (cfr. Table 3). As we validated
in III-B, the contributing set {ϕ1, ϕ4} and generator PC can

be used to construct a new σ -rule LTP ≤ 0∧CP > 0. Indeed,

¬Imp(¬ϕ1 ∧ ¬ϕ4,PC)

≡ ¬Imp(PC ≥ 0 ∧ (PC < LTP ∨ CP ≤ 0),PC)

≡ ¬Imp((PC ≥ 0 ∧ PC < LTP) ∨ (PC ≥ 0 ∧ CP ≤ 0),PC)

≡ ¬(LTP > 0 ∨ CP ≤ 0)

≡ LTP ≤ 0 ∧ CP > 0

Remark that passing any superset of {ϕ1, ϕ4} as first argu-
ment to the implication function will also result in a proposi-
tional formula ϕ∗ in which one of the conjunctive clauses ϕ∗i

equals LTP ≤ 0 ∧ CP > 0.
Now, we point out three important remarks following from

the construction procedure given in Theorem 1. First, if you
want to generate all implied rules (including rules that are
not new) from a set8, you can apply Theorem 1 and keep all
resulting predicates (so not only the ones that do not involve
ag). We will denote this by Imp(ϕ,−) in the following.
Second, repeatedly applying Theorem 1, together with the
observations listed above, ensures that all necessary σ+-rules
certainly will be generated, as stated in the beginning of this
section. The reason for this is that the proposed implication
procedure is a special case of Fourier-Motzkin elimination to
eliminate attributes in linear edit rules [23], [24], [25]. Fel-
legi & Holt proved that repeatedly applying Fourier-Motzkin
elimination on pairs of linear edit rules from a given set
eventually results in a complete (and thus, sufficient) set [12].
In order to avoid a repeated application of this method, the
proposed optimizations to generate sufficient sets (e.g., the
FCF algorithm) can also be used [15], [16], [20], [22]. Third,
note that it might be the case that the result of the proposed
procedure contains (many) new rules that are redundant to
other rules generated during executing the FCF algorithm.
To resolve this, it is possible to test each generated rule for
being redundant to all other rules on each completion of the
implication procedure and treat redundant rules properly as
described in [16].
To end this section, we will state the following corollary

of Theorem 1, which gives the upper bound on the number
of new σ+-rules that can be generated when applying the
proposed procedure.
Corollary 1: Consider a set of σ+-rules 8ag =

{ϕ1, . . . , ϕn} that are defined over R = {a1, . . . , ak} and
involve attribute ag ∈ R. The maximal number of new
σ+-rules captured by the result of ¬Imp(ϕ, ag), with ϕ =
¬ϕ1 ∧ . . . ∧ ¬ϕn, is (

n
2

)|ϕ1|·...·|ϕn|
, (4)

with |ϕi| the number of predicates in ϕi.
Proof: See Appendix. �

With this corollary stated, it is clear that it is sufficient to
apply Theorem 1 in order to generate all necessary σ+-rules
with a given generator ag (i.e., to adopt as the second step of
the FCF algorithm). However, the number of generated new
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TABLE 4. Overview of the most restrictive predicates, not involving ag, constructed after exploiting the transitivity property on each possible pair of
predicates, involving ag. This overview accounts for ordinal domains.

TABLE 5. Overview of the most restrictive predicates, not involving ag, constructed after exploiting the transitivity property on each possible pair of
predicates, involving ag. This overview accounts for continuous domains. For nominal domains, only consider operators = and 6= and c1, c2 = 0.

rules can rapidly become unmanageable when the number of
(predicates in the) candidate contributors increases. For two
or three candidate contributors, this is not directly a problem,
but when considering, for example, the five rules defined on
the stock schema (cfr. Table 3) involving PC and generator
PC as input parameters, the upper bound on the number of
new rules with generator PC equals 108. The main reason
for this is that the procedure will not exploit any strategy
to avoid generating rules that are new, but not necessary
(i.e., redundant). In the following section, we will investigate
techniques in order to overcome this problem.

C. A σ+-RULE IMPLICATION ALGORITHM
To overcome the potential performance problem of using
the implication function when searching for all necessary
rules, we will investigate some useful properties of σ+-rule
implication (cfr. IV-C1) and exploit these properties in an
optimized σ+-rule implication algorithm (cfr. IV-C2).

1) PROPERTIES
σ+-rules come with some useful properties that can be
exploited during the implication algorithm.
Proposition 1: Consider
• two σ+-rules ϕr and ϕd , defined overR, and
• two contributing sets 8r = {ϕ

r , ϕ} and 8d = {ϕ
d , ϕ},

with ϕ any σ+-rule, defined over R, which lead to the
generation of resp. ϕ∗r and ϕ∗d , i.e.,
â ϕ∗r ≡ ¬Imp(¬ϕr ∧ ¬ϕ,−), and

â ϕ∗d ≡ ¬Imp(¬ϕd ∧ ¬ϕ,−).

If ϕr ⇒ ϕd , then ϕ∗r ⇒ ϕ∗d .
Proof: See Appendix. �

Proposition 1 states that a contributing set8r that contains
a redundant rule ϕr will always lead to the generation of rules
ϕ∗r that are redundant. This implies that we should never test
combinations of rules containing redundant rules during the
implication algorithm, reducing the number of combinations
to test. Moreover, due to this fact and the fact that redundant
rules are not necessary, we can always ignore rules that are
redundant to one of the candidate contributors and that are
captured in the result of the implication function. Note that
tautologies are special cases in this regard, because they are,
by definition, redundant to all σ+-rules.
Example 7: Consider again the σ -rules (or σ+-rules)

defined on the stock schema (cfr. Table 3), with ϕ = ϕ1 and
ϕd = ϕ4. Moreover, consider an additional rule ϕr =
PC > LTP ∧ CP > 0, such that ϕr ⇒ ϕd . Now, applying
¬Imp(¬ϕd ∧ ¬ϕ,−) results in ϕ∗d = ϕ ∨ ϕd ∨ (LTP ≤
0 ∧ CP > 0) and applying ¬Imp(¬ϕr ∧ ¬ϕ,−) results in
ϕ∗r = ϕ ∨ ϕr ∨ (LTP < 0 ∧ CP > 0), such that ϕ∗r ⇒ ϕ∗d

(cfr. Proposition 1).
Proposition 2: Consider two σ+-rules ϕ1 and ϕ2, defined

over R = {a1, . . . , ak}. If ϕ1ag ⇒ ϕ2ag (with ag ∈ R), then
¬Imp(¬ϕ1 ∧ ¬ϕ2,−) results in ϕ∗ = ϕ∗1 ∨ . . . ∨ ϕ∗m with
for each ϕ∗i

• ϕ∗i ⇒ ϕ1, or
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• ϕ∗i ⇒ ϕ2, or
• ϕ∗i a new rule with a generator ag′ ∈ R other than ag.
Proof: See Appendix. �

Proposition 2 states that we should only test combinations
of rules in which each σ+-rule contributes to the elimination
of ag, again reducing the number of combinations to test.
Concretely, this means that for any two rules ϕ1 and ϕ2 in
a combination, ϕ1ag 6⇒ ϕ2ag and ϕ2ag 6⇒ ϕ1ag . Otherwise, the
combination will either lead to the construction of redundant
rules or new rules with a generator ag′ other than ag, in which
we are not interested. A first special case in this regard is
when ϕ1 ⇒ ϕ2 (or ϕ2 ⇒ ϕ1), which automatically implies
that ϕ1ag ⇒ ϕ2ag (or ϕ

2
ag ⇒ ϕ1ag ). This means that combina-

tions should not contain pairs of rules in which one rule is
redundant to the other. A second special case is when ag is
not involved in ϕ1 (or ϕ2), because other rules will never con-
tribute to the elimination of ag in combinationwith such rules.
First, this means that only combinations of rules in which the
generator is involved (i.e., candidate contributors) should be
tested, which confirms the necessary condition in the defini-
tion of new rules (cfr. Definition 6). Second, once a combi-
nation of rules leads to the generation of a new rule ϕ∗ with
generator ag, we should never add ϕ∗ in a combination to test
for leading to the generation of new rules with generator ag.
Example 8: Consider the σ -rules ϕ7 and ϕ10 defined on

the stock schema and listed in Table 3. For this pair of
rules, it is the case that ϕ7CP ⇒ ϕ10CP and ϕ10CID ⇒ ϕ7CID,
such that the result of applying ¬Imp(¬ϕ7 ∧ ¬ϕ10,−) will
only contain σ -rules matching one of the options stated in
Proposition 2. Indeed, ¬Imp(¬ϕ7 ∧ ¬ϕ10,−) ≡ ϕ7 ∨ ϕ10

(cfr. Proposition 2).

2) ALGORITHM
Below, we will propose a σ+-rule implication algorithm
exploiting the properties stated above in order to reduce the
number of combinations to test, which serves as an alternative
to the general implication procedure (cfr. IV-B) in case this
procedure may result in a large number of implied σ+-rules.
As we already mentioned in the previous, the algorithm will
be a generalization of the implication algorithm for regular
edit rules, proposed in [17]. Specifically, the algorithm will
keep a list of implied σ+-rules that still can lead to the gen-
eration of a necessary rule by combining it, in an optimized
way (i.e., by exploiting Proposition 1 and Proposition 2), with
one or more other σ+-rules. If it is certain that a rule cannot
lead in any case to the construction of a necessary rule, the
rule is ignored. The pseudocode of the σ+-rule implication
algorithm is given in Algorithm 1.
As first input parameter, the algorithm expects a generator

ag for which necessary rules will be generated. As second
input parameter, the algorithm expects any set8ag consisting
of candidate contributors for ag. Combinations of rules in8ag
will be tested for contributing to the generation of necessary
rules with generator ag. From Proposition 2, we know that no
other rules (i.e., rules in which ag is not involved) should be

Algorithm 1 σ+-Rule Implication Algorithm
1: function getNecessaryRules(ag, 8ag )
2: if

∨
ϕ∈8ag

ϕag 6≡ > then
3: return ∅
4: Q← [ϕ | ϕ ∈ 8ag ]
5: 8c← {ϕ : {ϕ} | ϕ ∈ 8ag}

6: 8∗← ∅

7: while Q 6= ∅ do
8: ϕq← Q.dequeue()
9: 8q← 8c[ϕq]
10: for all ϕk ∈ 8ag \8q do
11: if ϕkag ⇒ ϕ

q
ag ∨ ϕ

q
ag ⇒ ϕkag then

12: continue
13: 8∗q ← ¬Imp(¬ϕq ∧ ¬ϕk ,−)
14: for all ϕ∗q ∈ 8∗q do
15: if ∃ϕi ∈ 8c : (ϕ∗q ⇒ ϕi) then
16: continue
17: 8c[ϕ∗q ] = 8q ∪ {ϕ

k
}

18: if ag /∈ I(ϕ∗q ) then
19: 8∗← 8∗ ∪ {ϕ

∗q}

20: continue
21: Q.enqueue(ϕ∗q )
22: return 8∗

considered as they will not account for this matter. In the first
step of the algorithm, it is verified whether the set of selected
candidate contributors can eventually lead to the elimination
of ag (line 2). If this is not the case, an empty set is returned
(line 3). Then, before searching for necessary rules, three
variables are initialized (line 4-6), which are used throughout
the execution and which are listed below.
• Q: Queue used to keep track of all implied rules that
are not new and not redundant (i.e., that can still lead to
the generation of a necessary rule). Initially, this queue
contains all rules of 8ag .

• 8c: Map of implied rules of which each is mapped to its
contributors. Initially, this map contains all rules of 8ag
that are mapped to singletons containing themselves.

• 8∗: Set containing all necessary rules with generator
ag and any contributing set 8 ⊆ 8ag . This set will be
returned upon completion (line 22).

After the initialization phase, the algorithm continues to test
combinations of rules for generating necessary rules with
generator ag, until Q is empty (line 7-21). In each loop,
a certain rule ϕq is dequeued from Q (line 8), and its con-
tributors are stored in 8q (line 9). Then, any rule ϕk that did
not already contribute to the construction of ϕq (line 10) and
contributes to the elimination of ag with ϕq (line 11-12) is
tested for generating implied rules 8∗q in combination with
ϕq (line 13). Each implied rule ϕ∗q can either be (1) redundant
to any of the previously generated (or given) rules, in which
case it is ignored (line 15-16), (2) not redundant, but newwith
generator ag, in which case it is added to 8∗ (line 18-20),
or (3) not redundant and not new, in which case it should be
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tested further and is, therefore, added toQ (line 21). Note that
in the last two cases, the algorithm adds ϕ∗q together with its
contributors to 8c (line 17).
Example 9: Consider again the σ -rules (or σ+-rules)

defined on the stock schema (cfr. Table 3), and ag = PC and
8ag = {ϕ

1, ϕ3, ϕ4, ϕ5, ϕ6} passed as input to Algorithm 1.
When applying the implication function on combinations of
two of the given rules, we get ϕ∗1 ≡ LTP < 0 ∧ CP > 0
(contributors ϕ1 and ϕ4) and ϕ∗2 ≡ LTP < 0 ∧ CP = 0
(contributors ϕ1 and ϕ6) as new rules with generator PC.
Moreover, ϕ∗3 ≡ PC < LTP ∧ CP ≤ 0 (contributors
ϕ3 and ϕ6) and ϕ∗4 ≡ PC > LTP ∧ CP ≥ 0 (contributors
ϕ4 and ϕ6) are implied, but not redundant and not new, and,
therefore, added to Q. All other combinations only lead to
redundant rules. After this, only the combination of ϕ1 and
ϕ∗4 (contributors ϕ1, ϕ4 and ϕ6) leads to the generation of a
necessary rule ϕ∗5 ≡ LTP < 0 ∧ CP ≥ 0, which dominates
both ϕ∗1 and ϕ∗2 .
To end this section, we focus shortly on the performance

of the σ+-rule implication algorithm, which highly depends
on the number of implied rules that are added to the queue.
Therefore, it is possible to count, in a worst-case scenario,
the number of rules in 8∗q each time ¬Imp(¬ϕq ∧ ¬ϕk ,−)
is executed, assuming that all rules in8∗q can be added toQ.
This count can be determined in a similar way as done in the
proof of Corollary 1. Although, one should take into account
that, each time, only two σ+-rules (ϕq and ϕk ) are used in
the implication function at the cost of generating all implied
rules (and not only new rules). In the end, we can state that
each 8∗q contains at most

3|ϕ
q
|·|ϕk | (5)

σ+-rules. Now, the theoretical, worst-case complexity of exe-
cuting the entire σ+-rule implication algorithm, assuming
that all rules are added to Q, is often worse than the theo-
retical, worst-case complexity of Theorem 1. However, the
strength of the algorithm is that a very large share of the
generated implied rules that are captured in 8∗q are either
new or redundant, and are not added to the queue for further
extension. Indeed, if we consider Example 9 again, we can
see that, when only taking into account the number of rules
generated by means of two given rules, 1044 implied rules
are generated in total, of which 2 are necessary (i.e., ϕ∗1 and
ϕ∗2 ), and 2 are not redundant and not new, and therefore
added to the queue (i.e. ϕ∗3 and ϕ∗4 ). Further, 342 implied
rules are generated by extending ϕ∗3 or ϕ∗4 , of which only
1 is necessary (i.e., ϕ∗5 ) and all others are redundant. After
this, the algorithm terminates, such that only 1386 implied
rules are tested instead of 108 when using Theorem 1. Later,
in VI-B, we will analyze the effects of Algorithm 1 compared
to Theorem 1 by evaluating it in a more practical setting and
give a recommendation on when to use which procedure.

V. DISCUSSION AND RELATED WORK
One of the most important aspects in data quality han-
dling research is the study of methods to resolve data

inconsistencies by means of data quality rules in a (semi-)
automated way [4], [22], [26], [27]. The problem of resolv-
ing data inconsistencies can be tackled as a process with
two steps: error detection/localization (i.e., determining the
attribute values in error) and error correction (i.e., estimating
correct values for the attribute values in error). Because our
contributions mainly focus on error localization, we will give
an overview of state-of-the-art contributions in this regard and
position our work among these contributions in the remainder
of this section.

The last decades, many error localization techniques have
been proposed (cfr. Table 6). Examples include vertex gen-
eration methods [28], [29], branch-and-bound methods [28],
[30], [31] and holistic [19], [32] and probabilistic meth-
ods [33], [34], [35], [36]. However, one of the most elegant
and easy to understand methods to solve the error localiza-
tion problem is the set cover method, which is proposed by
Fellegi & Holt for regular edit rules [12]. Confirmed by the
lifting property, this method only works on sufficient sets of
rules [12], [15], [16], which can be constructed by means of
rule implication, exploiting attribute elimination. For many
types of data quality rules that are typically more expres-
sive than edit rules (e.g., (conditional) functional dependen-
cies [6], [7], [8], [9] and denial constraints [11]), the lifting
property does not hold [37]. In such cases, it is not possible
to solve the error localization problem by means of the set
cover method. Because of this, other error detection and
repair frameworks, such as Llunatic (based on the Chase
algorithm) [18] and HoloClean [19], have been proposed to
repair data failing more expressive data quality rules. How-
ever, these frameworks may have scalability problems when
used in combination with a mix of different types of rules,
with a large number of rules or when a large amount of
data to repair is passed as input. As a solution, they rely
on heuristics or estimates, in order to complete successfully.
In this regard, data quality rules that (i) have expressiveness
in between edit rules and denial constraints and (ii) come
with an efficient rule implication and set cover repair method,
provide an appealing trade-off between expressiveness and
efficiency. This resulted in the introduction of σ -rules, which
are based on the selection operator σ of relational algebra and
to which the concepts and properties of edit rules and edit rule
implication can easily be transferred.

A similar trade-off in complexity has also been observed
for linear edit rules. In [22], it was stated that there are
problems with edit rule implication featuring integer-valued
data. Indeed, the properties, methods and algorithms for rule
implication with nominal data [12], [15], [16] and continu-
ous data [20] are quite straightforward. However, for integer
data (or mixed data), linear edit rules encounter the same
problems with gaps as stated in III-C and, thereby, it is not
guaranteed that an integer solution always exist. Therefore,
one has to rely on a complex post-processing step in terms of
shadow regions during Fourier-Motzkin elimination in which
this is verified [22], [30], [31]. In our work, we overcome
this problem by generalizing σ -rules to σ+-rules (being a
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TABLE 6. Positioning of selection rules among state-of-the-art methods for error localization in data restricted by data quality rules.

simplification of linear edit rules), which have the option
to easily represent gaps between attribute values and for
which, as a direct consequence, no verification step is needed
because an integer solution always exists (if the rules in the
set do not contradict to each other). In other words, rule impli-
cation as the basis of solving the error localization problem
by means of the set cover method for σ+-rules is guaranteed
to work correctly and completely.

Finally, with regard to the efficiency of rule implication,
many optimizations for edit rules were studied and proposed
in previous works. These optimizations are related to the
properties of edit rules that can help in applying rule impli-
cation more efficiently. The main reason for this is that the
initial implication procedure proposed by Fellegi & Holt
can become very labour intensive when many edit rules are
passed as input. Contributions to this are due to Liepins [38],
[39], [40], Garfinkel et al. [15], [20], Winkler [41], [42],
Boskovitz [16], Chen [43], [44] and Boeckling [17].With this
in mind, our final contribution in this paper is the study of
these optimizations adapted to the setting of σ+-rules and
the proposal of an efficient σ+-rule implication algorithm
exploiting these optimizations.

VI. EVALUATION
In the following, we evaluate the scalability and the error
detection/correction ability of using selection rules (σ+-rules
in particular) over a set of experiments. More specifically,
we try to provide an answer to the following questions.

• What is the scalability of repairing data with selection
rules?

• What is the impact of the proposed optimizations on the
σ+-rule implication algorithm?

• What is the ability of selection rules to detect and correct
erroneous data?

• What is the impact of repairing data with selection rules
on the amount of erroneous data?

All experiments are executed on amachine runningUbuntu
21.04, with an Intel Core i9-10920X CPU (3.50 GHz,
12 cores) and 64 GB of RAM.

A. EXPERIMENTAL SETUP
In order to answer the questions stated above, we consider
six different approaches to evaluate on four different datasets.
Details about the setup of the experiments are given below.

1) APPROACHES
In the experiments, we use three different repair strategies
for σ+-rules and compare the results of these strategies with

three different configurations of HoloClean [19]. The rea-
son to choose HoloClean to compare with is because it is,
to the best of our knowledge, one of the best repair engines
in terms of error detection/correction based on data quality
rules. Other well-performing, state-of-the-art repair engines,
such as Raha/Baran [34], [35] and Spade [36], are not based
on data quality rules and are, therefore, not taken into account.

a: σ+-RULE-BASED REPAIR STRATEGIES
For evaluating σ+-rules, we consider three constant-cost
repair strategies. By this, we mean that the cost to change
a value v into v′ is a constant, positive integer, fixed per
attribute, and, therefore, does not depend on v or v′. Although
this is a very simple approach and it is not so flexible
as non-constant cost strategies, which have the ability to
account for a rich variety of repair strategies, potentially tak-
ing into account certain error mechanisms (e.g., single digit
errors, rounding errors, phonetic errors,. . . ), the advantage of
constant-cost repair strategies is that the set cover method
can be applied to find minimal-cost repairs (cfr. III-B). This
makes constant-cost strategies easy to understand and quite
fast compared to non-constant cost strategies. The three repair
strategies for σ+ rules are listed below. Note that they all
three are closely related to the strategies for regular edit rules,
introduced by Fellegi & Holt [12].

• Sequential repair (σ+-rules (S)): With this strategy, one
minimal solution is picked at random out of all poten-
tial minimal solutions. Attributes in this solution are
repaired one at a time in random order. This is done by
choosing, for each attribute, one repair value from the set
of permitted values, which is created based on the values
of the attributes that do not need a repair and the values
of the attributes that are already repaired.

• Joint repair (σ+-rules (J)): Again, a minimal solution is
picked at random. The difference with sequential repair
is that all attributes in the solution are repaired jointly,
in order to preserve joint distributions. This is done by
picking a donor-tuple among the consistent tuples for
which the values of the attributes to repair are covered
by the set of permitted values of these attributes. The
values of the attributes to repair are then copied from
the donor-tuple to the inconsistent tuple. One problem
with this strategy is that, sometimes, no donor-tuple is
found. If this is the case, we will fall back on sequential
repair.

• Conditional sequential repair (σ+-rules (CS)): This
strategy is an extension of the sequential repair strategy,
but chooses a minimal solution in a more intelligent,
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less random way, which is based on the lift (a notion
of correlation) that would be observed if the values of
some attributes are kept. The reason for this is that
random selection of a (minimal) solution has been crit-
icized, because it can lead to repairs that would be very
infrequent and thereby inflate the frequency of such
improbable value combinations [22].

Note that we did not yet elaborate on strategies to pick
one particular repair value (in case of the sequential repair
approaches) or donor-tuple (in case of joint repair) if multiple
possibilities exist. The reason for this is that thismight depend
on the characteristics of the relation schemata or the datasets.
More information on this matter is given in VI-D. Moreover,
we used custom implementations of all concepts and algo-
rithms related to σ+-rules in Java 8, of which the source code
is provided in the open-source ledc-sigma package.5

b: HoloClean CONFIGURATIONS
HoloClean is a framework for holistic data repairing driven by
probabilistic inference exploiting different types of data qual-
ity (integrity) constraints [19]. It can make use of three differ-
ent error detection mechanisms, which are the NullDetector
(HoloClean (N)), the ViolationDetector (HoloClean (V)) and
a combination of the NullDetector and the ViolationDetector
(HoloClean (NV)). In the experiments, we will use three
different configurations of HoloClean, each using a different
error detection mechanism. For the other parameters, we kept
the default values as provided. HoloClean is written in Python
3.6, using a PostgreSQL (version 9.4+) database in the back-
end. The source code of HoloClean is also provided as open-
source software.6

2) DATASETS
a: CHARACTERISTICS
The experiments are conducted on four real-world datasets
(referred to as Al, Eu, St1, St2) over three schemata: allergen,
eudract and stock. Moreover, each dataset comes with a
set of correct tuples, which forms the golden standard of
the dataset. The subset of tuples in the dataset for which
correct tuples are provided in the golden standard is called
the overlap. The characteristics of these schemata (name and
value type), corresponding datasets (id, number of tuples
|R| and number of attributes |R|), golden standards (|R| and
|R|) and overlaps (|R| and |R|) are provided in Table 7. For
|R|, we distinguish between the number of attributes that is
considered for repair and the number of remaining attributes
(shown between brackets).
• allergen: The dataset over this schema captures data
related to food products and their allergens. Detailed
information about the construction of the dataset and
golden standard is given in [45]. We use a slightly mod-
ified version in our experiments in which we combine,
for each food product, the information provided by the

5https://gitlab.com/ledc/ledc-sigma
6https://github.com/HoloClean

Alnatura7 webshop and the Open Food Facts8 registry
in one tuple.

• eudract: The dataset over this schema captures data
related to the design of clinical trials as reported
by the EudraCT registry.9 Detailed information about
the construction of the dataset and golden standard
is given in [46]. Note that the golden standard does
not contain correct values for attributes placebo and
active_comparator. Still, we decided to consider these
attributes for repair, as they are involved in the set of
σ+-rules and, therefore, may contribute to the repair of
other attributes.

• stock: The datasets over this schema capture data
related to daily prices of 1000 stocks, reported by
54 sources. Detailed information about (the construc-
tion of) the dataset and golden standard can be con-
sulted and downloaded freely on the web.10 For our
experiments, we used a subset of the available data,
in which we only considered continuous attributes with
constraints (in the form of σ+-rules) defined on and
in which we only considered tuples capturing data of
the first week of July 2011. An important remark is
that the values of two attributes (change_percentage
and change_in_dollar) can be calculated based on (lin-
ear) relationships between the attributes previous_close
and last_trading_price (cfr. Example 1). We will show
later (cfr. VI-D) that these (linear) relationships can be
exploited for calculating repair values. In the provided
golden standard, tuples that were inconsistent against
these relationships were manually corrected, if possible.
Otherwise, the tuples were left out. Note, also, that we
will use a second dataset over this schema, only consist-
ing of tuples that appear in the overlap for which the date
is July 6th, 2011. The reason for this is that HoloClean
was unable to execute successfully on the larger dataset,
because themachine ran out ofmemory resources during
execution. The smaller dataset was, therefore, used to
obtain an estimate of the performance of HoloClean.

b: QUALITY
In Figure 2, an overview is given of the relative number of
errors in the overlap of each dataset compared to the golden
standard, both on cell-level and on tuple-level. On cell-level,
the relative number of NULL-values and the relative number
of cells of which the values in the overlap differ from the
values of the corresponding cells in the golden standard (i.e.,
diff-values) are shown. On tuple-level, the relative number of
tuples with NULL-values, the relative number of tuples with
diff-values, and the relative number of tuples with either a
NULL-value or a diff-value (i.e., an error) are shown.

7https://www.alnatura.de/de-de/
8https://world.openfoodfacts.org/
9https://www.clinicaltrialsregister.eu/
10https://lunadong.com/fusionDataSets.htm
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TABLE 7. Characteristics of three schemata with their datasets, golden standards and overlaps. For the number of attributes |R|, we distinguish between
the number of attributes that is considered for repair and the number of remaining attributes (shown between brackets).

From Figure 2, we can notice the following. First, the
allergen-based dataset (Al) does not contain any NULL-
values. This implies that error detection can only rely on
the σ+-rules defined over this schema, which makes it more
difficult to correctly localize the errors. Moreover, HoloClean
without ViolationDetector is not applicable on Al. Second,
Al contains, relatively speaking, the highest number of erro-
neous tuples, but the lowest number of erroneous cells. This
means that, in relative terms, the Al dataset has few errors, but
the errors are highly distributed across the tuples. Third, the
stock-based datasets (St1 and St2) have the highest number of
erroneous cells. Also, the distribution of errors in St1 and St2
is more or less the same and, therefore, we can state that St2 is
quite representative for evaluating error detection/correction
on the stock schema, although it consists of far fewer tuples
than St1.

c: DEFINED σ+-RULES
In Table 8, an overview is given of the number of σ+-rules
defined over each relation schema. Note that, for each
schema, a distinction is made between domain rules (which
are always constant, because, by definition, there is always
only one attribute involved in) and non-domain rules (both
variable and constant). Moreover, to give a notion of the work
that needs to be done to generate a sufficient set (by applying
the FCF algorithm), a distinction is made between the number
of rules in the sufficient set and the number of rules that are
initially defined (shown between brackets).

With respect to the information provided in Table 8,
we can say the following. First, for the allergen schema
and the eudract schema, a domain rule is defined for each
attribute that is considered for repair. This is not the case
for the stock schema, because attributes change_percentage
and change_in_dollar are allowed to take any value in their
domain. Regarding the non-domain rules, we can see that
only variable σ+-rules are defined over the allergen schema
and only constant σ+-rules are defined over the eudract
schema. The stock schema features a combination of constant
and variable σ+-rules. Moreover, note that, for the eudract
schema, the number of σ+-rules in the sufficient set equals
the number of σ+-rules in the initially given set, which is not
the case for the other schemata. This is because the sufficient
set defined over the eudract schema equals the initially given
set.

B. SCALABILITY
In a first set of experiments, we evaluate the scalabil-
ity of repairing with σ+-rule-based approaches compared

TABLE 8. Overview of the number of σ+-rules in the sufficient set and
the number of initially given σ+-rules defined over each schema (shown
between brackets). A distinction is made between domain rules, variable
and constant non-domain rules.

to repairing with HoloClean. First, we measure, for each
approach and dataset, the repair execution time. Second,
we evaluate the effectiveness of the σ+-rule implication algo-
rithm compared to applying Theorem 1.

The execution times that the different approaches need
to repair the datasets entirely are listed in Table 9. Note
that, for the HoloClean-based approaches, we distinguish
between error detection and error correction and, for the
σ+-rule-based approaches, we distinguish between sufficient
set generation with FCF and repair. First, the execution times
for error detection and correction in case of HoloClean, and
repair in case of σ+-rules are directly proportionate to the size
of the dataset. Moreover, the number of attributes, initially
given rules and rules in the generated sufficient set impacts
the execution time of the FCF algorithm, as expected. Second,
we can state that, in general, HoloClean takes (much) more
time to execute, especially if the time to generate a sufficient
set is limited and the size of the dataset tends to increase.
We already stated earlier that, in this regard, we did not
manage to execute HoloClean successfully on the St1 dataset,
because the machine ran out of memory resources. Only for
the Al dataset, HoloClean performs better, which is due to the
fact that generating a sufficient set takes quite long, because
of the high number of attributes, rules and implicit relations
between these rules and because of the very small number
of rows. Although this is the case, note that generating a
sufficient set should typically be done only once and it can be
reused afterwards each time that one wants to repair a dataset
over this schema with any of our approaches. This is because
the set of rules depends on the schema and not on the datasets.
On the other hand, in an ideal case, HoloClean should be
executed entirely every time a dataset changes, because it
exploits the value distributions in these datasets for training.
Third, if we only consider the σ+-rule-based approaches,
joint repair needs, generally speaking, most time to execute
(but has the better error correction ability, cfr. VI-D), whereas
(conditional) sequential repair is (much) faster.

To test the effectivity of the properties exploited by the
σ+-rule implication algorithm compared to the procedure
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FIGURE 2. Overview of the relative number of errors in the overlap of each dataset compared to the golden standard,
both on cell-level and on tuple-level. A distinction is made between NULL-values and cells of which the values differ from
the values of the corresponding cells in the golden standard (i.e., diff-values).

TABLE 9. Overview of the repair execution times (in seconds). For the HoloClean-based approaches, we distinguish between error detection and error
correction and, for the σ+-rule-based approaches, we distinguish between sufficient set generation with FCF and repair. N/A indicates that the approach
is not applicable. N/E indicates that the approach could not be executed successfully due to limitations in resources.

proposed in Theorem 1, we count the number of implied
rules that will be generated by both methods when pass-
ing a given generator as input. For the stock schema,
we already stated in IV-C2 that the σ+-rule implication
algorithm has a large advantage over Theorem 1. Especially
for the attributes involved in many σ+-rules (e.g., previ-
ous_close, change_percentage,. . . ), the number of generated
implied rules is highly reduced.When considering the eudract
schema, only attributes open, single_blind and double_blind
can lead to necessary rules, because the other attributes can-
not be eliminated. Each of these attributes is involved in four
σ+-rules, of which one is featuring one predicate, two are
featuring two predicates and one is featuring three predicates,
resulting in an upper bound of 612 ≈ 2 · 109 new rules
(see (4)). When executing Algorithm 1 with each of these
attributes as input, merely around 5000 implied rules are
generated (and tested). Only for the allergen schema, The-
orem 1 is better performing in terms of number of generated
rules. The main reason for this is that all σ+-rules feature
only one predicate, resulting in an exponent in (4) that is
always equal to 1, and few candidate contributors per attribute
exist, resulting in a low base. Therefore, we can conclude
that the choice of procedure highly depends on the number of
candidate contributors and the number of predicates involved
in the candidate contributors. As a general rule of thumb,
we recommend to use Algorithm 1 when the number of
candidate contributors is larger than 2 (resulting in a base
equal to at least 3) and the average number of predicates per
candidate contributor is at least 2.

C. ERROR DETECTION
In a second set of experiments, we will evaluate the error
detection ability of σ+-rules compared to the HoloClean-
based approaches. More specifically, we will evaluate how
well the different approaches perform in detecting erroneous
tuples and erroneous cells in the overlap of each of the
datasets. The reason to distinguish between error detection
and error correction is that, if an approach performs well
in detecting errors but performs poorly in correcting errors,
we can still rely on other approaches (e.g., domain experts,
deductive (i.e., certain) repairs,. . . ) to find correct values.

1) DETECTING ERRONEOUS TUPLES
First, we evaluate the ability to detect erroneous tuples in
the overlap of each of the four datasets. In other words,
we evaluate how well the different approaches perform in
finding tuples in which they are going to change at least
one value (i.e., which they consider as erroneous). For this,
we report on the following evaluation metrics for each dataset
and approach.

• Precision (P): the number of tuples correctly identified
as erroneous divided by the number of tuples identified
as erroneous.

• Recall (R): the number of tuples correctly identified as
erroneous divided by the number of erroneous tuples.

• F1-score (F1): harmonic mean of precision and recall.

In Table 10, an overview of the results is given. Note that
we did not make a distinction between the σ+-rule-based
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TABLE 10. Overview of the results regarding the ability to detect erroneous tuples. N/A indicates that the approach is not applicable. N/E indicates that
the approach could not be executed successfully due to limitations in resources.

approaches. The reason for this is that error detection with
σ+-rules only depends on the expressiveness of the σ+-rules
and does not depend on the repair strategy (cfr. VI-A1).
Indeed, each tuple failing any of the σ+-rules or containing
a NULL-value is detected as erroneous. Besides that, the
precision is 1 for each approach and dataset. If this was not the
case, tuples would exist in the golden standard that fail any of
the σ+-rules or that contain NULL-values. For the recall and
F1-score, the σ+-rule-based approaches always outperform
the HoloClean-based approaches, especially on the Al and Eu
datasets.

2) DETECTING ERRONEOUS CELLS
Second, we evaluate the ability to detect erroneous cells in
the overlap of each of the four datasets. In other words,
we evaluate how well the different approaches perform in
finding cells which value they are going to change (i.e., which
they consider as erroneous). Note that, for the σ+-rule-based
approaches (i.e., the constant-cost repair strategies), this
depends on the cost assigned to each attribute to change
its value (i.e., the cost model). In order to give a notion
of the error detection ability of these approaches and for
simplicity reasons, we only consider one cost model for each
schema. For the allergen and eudract schema, an equal cost
is assigned to each attribute. For the stock schema, a lower
cost is assigned to these attributes which value can potentially
be determined in a deductive way, because of the (linear)
relationships that exist between these attributes, or which
contain derived data. More specifically, we assigned cost
1 to change_percentage and change_in_dollar, cost 2 to pre-
vious_close and last_trading_price and cost 3 to the other
attributes. We report on the following evaluation metrics for
each dataset and approach.

• Precision (P): the number of cells correctly identified as
erroneous divided by the number of cells identified as
erroneous.

• Recall (R): the number of cells correctly identified as
erroneous divided by the number of erroneous cells.

• F1-score (F1): harmonic mean of precision and recall.

In Table 11, an overview of the results is given. Note that
we did not make a distinction between the sequential and
joint repair strategy, because of the fact that these approaches
search for attributes to repair in the same way (cfr. VI-A1).
First, a straightforward insight is that, when errors are due
to NULL-values rather than due to erroneous values, error
detection is more easy, because cells with NULL-values will
always be identified correctly as erroneous. Second, although

the σ+-rule-based approaches score best for detecting erro-
neous tuples in the Al dataset, they score worst in detecting
erroneous cells in this dataset compared to applying the σ+-
rule-based approaches on the other datasets. This is because
of the high number of attributes and σ+-rules, the lack
of NULL-values, and the relative high number of inconsis-
tent tuples. Indeed, we noticed that, for each inconsistent
tuple, the approaches can choose between a high number
of minimal solutions (in terms of attributes to repair) for
this dataset. Although this is the case, we can safely state
that, for all datasets, the σ+-rule-based approaches (espe-
cially the σ+-rules (CS) approach) generally outperform the
HoloClean-based approaches. Only for the Eu dataset, the
HoloClean (N) approach is slightly better in terms of preci-
sion. For the Al dataset, σ+-rules (S/J) slightly outperforms
σ+-rules (CS). Also, note that the results shown in Table 11
serve as upper bounds for the error correction results dis-
cussed below.

D. ERROR CORRECTION
In a third and final set of experiments, we evaluate the error
correction ability of σ+-rules compared to the HoloClean-
based approaches. First, we evaluate how well the different
approaches perform in finding correct values for erroneous
cells in the overlap of each of the four datasets. Second,
we check howmany erroneous tuples still exist after finishing
the repair process.

Before discussing the results, we elaborate on which
selection strategy has been used to pick a particular repair
value (in case of the sequential repair approaches) or donor-
tuple (in case of joint repair) if multiple possibilities exist.
For the Al and Eu datasets, the (conditional) sequential
repair approach picks a value in a frequency-driven way.
From the consistent tuples, the frequency of each of the
permitted values is measured and each of these values
can be chosen with a probability proportionate to their
observed frequency. For the stock-based datasets, if it is
possible to determine a value deductively (i.e., for attributes
change_percentage, change_in_dollar, previous_close and
last_trading_price) due to the (linear) relationships between
them and if this value is permitted, it is chosen. If not, we fall
back on the frequency-driven strategy. Regarding joint repair,
donor-tuples are, also, picked in a frequency-driven way,
with more frequent donors more likely to be chosen. For
the Eu, (resp. St1 and St2) datasets, a donor is chosen in a
frequency-driven way from the set of consistent tuples that
refer to the same clinical trial (resp. stock-date combination),
if possible.
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TABLE 11. Overview of the results regarding the ability to detect erroneous cells. N/A indicates that the approach is not applicable. N/E indicates that the
approach could not be executed successfully due to limitations in resources. For all σ+-rule-based approaches, the results are shown as averages over
10 executions.

TABLE 12. Overview of the results regarding the ability to correct erroneous cells. N/A indicates that the approach is not applicable. N/E indicates that
the approach could not be executed successfully due to limitations in resources. For all σ+-rule-based approaches, the results are shown as averages
over 10 executions.

TABLE 13. Overview of the percentage of erroneous tuples in the repaired datasets compared to the original datasets. N/A indicates that the approach is
not applicable. N/E indicates that the approach could not be executed successfully due to limitations in resources.

The results regarding the ability to correct erroneous tuples
are listed in Table 12 and we report on the following metrics.

• Precision (P): the number of correctly repaired cells
divided by the number of repaired cells.

• Recall (R): the number of correctly repaired cells divided
by the number of erroneous cells.

• F1-score (F1): harmonic mean of precision and recall.

We can state that the results are more or less in line with the
results regarding error detection on cell-level. For the Al and
Eu datasets, the σ+-rule-based approaches outperform Holo-
Clean for all metrics and approaches. Only for the St2 dataset,
HoloClean is better. The reason for this is that there are many
(up to 54) sources reporting on the same stock and Holo-
Clean is able to learn repairs based on correlations between
attributes (values). For the St1 dataset, we cannot compare
with HoloClean, because it did not execute successfully due
to limited memory resources (cfr. VI-A2). If we only consider
the σ+-rule-based approaches, we can see that σ+-rules (J) is,
generally speaking, the better one. Especially for the Eu, St1
and St2 datasets, the difference with the other approaches is
quite big, because of the ability to use an optimized donor
selection strategy, as stated earlier. The difference in per-
formance between the sequential and conditional sequential
repair strategy is negligible and depends on the dataset (with
a small overall advantage for σ+-rules (CS)). Based on these
findings, we can conclude that the performance of error cor-
rection highly depends on the performance of error detection
and the ability to use optimized value selection strategies, but,

also, on the number of permitted values/donors. Indeed, take,
for example, a continuous attribute not containing derived
data (e.g., today_low in the stock schema). For these kinds
of attributes, you may be allowed to choose from a huge set
of permitted values and choosing a value from this set is often
done quite arbitrarily because a more intelligent strategy does
not exist.

To finish this section, we would like to point out that,
an important property of all σ+-rule-based approaches is that
they guarantee error-free correction. This, however, is not the
case with HoloClean. Indeed, in Table 13, we have listed,
for each approach and dataset, what percentage of tuples
in the repair still fail any σ+-rule or contain a NULL-value
compared to the original dataset. We can see that the overall
number of erroneous tuples decreases when applying Holo-
Clean in general (with HoloClean (NV) performing the best),
but for the Al and Eu datasets, this is only slightly. Also,
for the HoloClean (N/NV) approaches, it is not guaranteed
that all original NULL-values will contain a non-NULL-value
after repair (cfr. Eu dataset). Moreover, for the HoloClean
(N) approach, the number of errors against σ+-rules can even
increase, which is as expected, because the approach does not
take into account any constraints.

VII. CONCLUSION
In this paper, we investigated the concepts and properties of
two types of tuple-level constraints, which we called σ - and
σ+-rules (selection rules in short) and which arise from the
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selection operator σ of relational algebra. First, σ -rules are
an extension of regular edit rules, in the sense that they allow
more operators in their representation and they allow vari-
able and constant comparison instead of constant comparison
only. Regardless of the increase in expressivity, it was stated
that the concepts and properties of edit rules can easily be
transferred to the setting of σ -rules. A particularly interesting
result is that rule implication with σ -rules, in order to solve
the error localization problem by means of the elegant set
cover method, can, in most cases, properly be applied. Only
when attribute domains are ordinal, we have to rely on a
representation that allows gaps between attribute values to
keep the number of rules manageable, which is the rea-
son why we proposed σ+-rules as an extension of σ -rules.
In order to assess the usability of selection rules in practical
settings, we evaluated the scalability and error detection and
correction ability of selection rules compared to HoloClean,
which is a state-of-the-art repair engine, over a set of exper-
iments on four real-world datasets. The results show us that
our approach outperforms HoloClean in terms of scalability,
especially when datasets are very large and the work that FCF
has to do is limited. Although, ideally, FCF has to be executed
only once per schema, whereas HoloClean is supposed to
train its model again after each modification to the data.
Moreover, also in terms of error detection and in terms of
error correction, our approach outperforms HoloClean, if the
number of sources describing an entity in a dataset is limited.

Still, some research questions remain to study in future
work. First, although it is possible to capture many errors
by means of selection rules, other types of (more expressive)
data quality rules (e.g., functional dependencies) exist, which
also have proven their utility in the past. Therefore, one
might wonder to what extent (implication with) selection
rules can account for more expressive constraints without
highly increasing the complexity of the repair engine. Besides
that, one can also investigate the benefit of using selection
rules and other types of constraints jointly. Second, as is the
case for many types of data quality rules, an efficient strat-
egy to automatically discover selection rules can be useful.
A potential solution to this could be to study and simplify
the strategy to discover (tuple-level) denial constraints. Third,
instead of restating the properties of edit rules that help in
optimizing rule implication to the setting of σ -rules, one can
study additional properties (e.g., of variable rules in particular
or related to rule folding) that help to reduce the number of
combinations to test. Fourth, although the implication-based
method with selection rules proofs to perform quite well in
terms of error detection, there might exist better (perhaps
more complex) strategies for error correction. One poten-
tial way of research can, therefore, focus on error correc-
tion mechanisms for selection rules depending on different
schema (or dataset) characteristics.

APPENDIX. PROOFS
Proof: [Proof of Theorem 1] First, as we are inter-

ested in generating new rules with generator ag, consider a

set of σ+-rules 8ag = {ϕ
1, . . . , ϕn}, defined over R =

{a1, . . . , ak}, in which ag ∈ R is involved (cfr. Definition 6).
Second, consider a propositional formula, written as ϕ∗ =
ϕ∗1 ∨ . . . ∨ ϕ∗m in DNF, defined over R, in which ag is not
involved and for which ϕ∗ ⇒ ϕ1∨. . .∨ϕn. FromDefinition 5
and 6, we can state that ϕ∗ is a propositional formula that is
implied and new (with generator ag), and can be generated by

ϕ∗ ⇒ ϕ1 ∨ . . . ∨ ϕn

≡ ¬(ϕ1 ∨ . . . ∨ ϕn)⇒ ¬ϕ∗

≡ ¬ϕ1 ∧ . . . ∧ ¬ϕn ⇒ ¬ϕ∗

from which it follows that

ϕ∗ ≡ ¬Imp(ϕ, ag),

with ϕ = ¬ϕ1∧. . .∧¬ϕn. Now, because ϕ∗ = ϕ∗1∨. . .∨ϕ∗m ,
ag is not involved in any ϕ∗i and ϕ∗ captures all ϕ∗i such
that ϕ ⇒ ¬ϕ∗ (cfr. Definition 8), we can conclude that ϕ∗

captures all new σ+-rules ϕ∗i that can be generated with any
8c ⊆ 8ag as contributing set and ag as generator. �

Proof: [Proof of Corollary 1] Consider a set of σ+-
rules 8ag = {ϕ

1, . . . , ϕn}, defined over R = {a1, . . . , ak},
in which ag ∈ R is involved. Theorem 1 states that, with these
considerations, (3) is applied with ϕ = ¬ϕ1 ∧ . . . ∧ ¬ϕn (ϕ
can be considered as a propositional formula in conjunctive
normal form (CNF)) and attribute ag as input parameters.
First, in order to find the number of (hidden) predicates not
involving ag and implied by ϕ, ϕ should be rewritten in
DNF by applying the distributive law of Boolean algebra on
ϕ = ¬ϕ1 ∧ . . . ∧ ¬ϕn. From this, we can state that the DNF
of ϕ consists of at most

m = |ϕ1| · . . . · |ϕn|

conjunctive clauses with, at most, n predicates each. In this
formula, |ϕi| denotes the number of predicates in ϕi. Now,
from IV-A, we know that each of the m conjunctive clauses
in the DNF of ϕ results in at most

(n
2

)
(hidden) predicates

not involving ag when applying Definition 8. Applying the
final negation in (3) results then in a propositional formula
with, in CNF, at most m disjunctive clauses consisting of at
most

(n
2

)
predicates. Finally, in order to find all new rules, the

result of (3) should again be rewritten in DNF by applying the
distributive law of Boolean algebra, resulting in at most(

n
2

)|ϕ1|·...·|ϕn|
conjunctive clauses not involving ag (i.e., new σ+-rules with
generator ag). �

Proof: [Proof of Proposition 1] Consider

• two σ+ rules ϕr and ϕd , defined overR, for which ϕr ⇒
ϕd , and

• two contributing sets 8r = {ϕ
r , ϕ} and 8d = {ϕ

d , ϕ},
with ϕ any σ+-rule, defined over R, which lead to the
generation of resp. ϕ∗r and ϕ∗d .
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From Definition 5 and Theorem 1, we know that

ϕ∗d ⇒ ϕd ∨ ϕ

such that

¬Imp(¬ϕd ∧ ¬ϕ,−) ≡ ϕ∗d

and

ϕ∗r ⇒ ϕr ∨ ϕ

such that

¬Imp(¬ϕr ∧ ¬ϕ,−) ≡ ϕ∗r .

Moreover, because ϕr ⇒ ϕd is true by assumption,

ϕ∗r ⇒ ϕr ∨ ϕ

≡ ¬ϕ∗r ∨ ϕr ∨ ϕ

≡ ¬ϕ∗r ∨ (ϕr ∧ (ϕr ⇒ ϕd )) ∨ ϕ

≡ ¬ϕ∗r ∨ (ϕr ∧ (¬ϕr ∨ ϕd )) ∨ ϕ

≡ ¬ϕ∗r ∨ ((ϕr ∧ ¬ϕr ) ∨ (ϕr ∧ ϕd )) ∨ ϕ

≡ ¬ϕ∗r ∨ (ϕr ∧ ϕd ) ∨ ϕ

≡ ϕ∗r ⇒ (ϕr ∧ ϕd ) ∨ ϕ

and, because of Theorem 1, we can say that

ϕ∗r ≡ ¬Imp(¬(ϕr ∧ ϕd ) ∧ ¬ϕ,−)

≡ ¬Imp((¬ϕr ∨ ¬ϕd ) ∧ ¬ϕ,−)

≡ ¬Imp((¬ϕr ∧ ¬ϕ) ∨ (¬ϕd ∧ ¬ϕ),−)

≡ ¬(¬ϕ∗r ∨ ¬ϕ∗d )

≡ ϕ∗r ∧ ϕ∗d

⇒ ϕ∗r ∧ ϕ∗d

From this, it follows that

ϕ∗r ⇒ ϕ∗r ∧ ϕ∗d

≡ ¬ϕ∗r ∨ (ϕ∗r ∧ ϕ∗d )

≡ (¬ϕ∗r ∨ ϕ∗r ) ∧ (¬ϕ∗r ∨ ϕ∗d )

≡ (¬ϕ∗r ∨ ϕ∗d )

≡ ϕ∗r ⇒ ϕ∗d

�
Proof: [Proof of Proposition 2] Consider two σ+-rules

ϕ1 and ϕ2, defined over R = {a1, . . . , ak}, for which ϕ1ag ⇒
ϕ2ag (with ag ∈ R). Now, we can say that

¬Imp(¬ϕ1 ∧ ¬ϕ2,−)

≡ ¬Imp(¬(ϕ1ag ∧ ϕ
1
āg ) ∧ ¬(ϕ

2
ag ∧ ϕ

2
āg ),−)

≡ ¬Imp((¬ϕ1ag ∨ ¬ϕ
1
āg ) ∧ (¬ϕ2ag ∨ ¬ϕ

2
āg ),−)

≡ ¬Imp((¬ϕ1ag ∧ ¬ϕ
2
ag ) ∨ (¬ϕ1ag ∧ ¬ϕ

2
āg )

∨(¬ϕ1āg ∧ ¬ϕ
2
ag ) ∨ (¬ϕ1āg ∧ ¬ϕ

2
āg ),−)

Because ϕ1ag ⇒ ϕ2ag , ¬ϕ
1
ag ∧ ¬ϕ

2
ag ≡ ¬ϕ

2
ag , such that we can

rewrite this as

¬Imp(¬ϕ2ag ∨ (¬ϕ1ag ∧ ¬ϕ
2
āg )

∨(¬ϕ1āg ∧ ¬ϕ
2
ag ) ∨ (¬ϕ1āg ∧ ¬ϕ

2
āg ),−)

Besides that, we can assume that ϕ1ag and ϕ
2
āg (resp. ϕ

1
āg and

ϕ2ag ) have no attributes in common, because if they do, ϕ1ag 6⇒
ϕ2ag . Therefore, ¬Imp(¬ϕ1ag ∧ ¬ϕ

2
āg ,−) ≡ ϕ1ag ∨ ϕ

2
āg (resp.

¬Imp(¬ϕ1āg∧¬ϕ
2
ag ,−) ≡ ϕ

1
āg∨ϕ

2
ag ), such that we can rewrite

this as

ϕ2ag ∧ (ϕ1ag ∨ ϕ
2
āg ) ∧ (ϕ1āg ∨ ϕ

2
ag )

∧¬Imp(¬ϕ1āg ∧ ¬ϕ
2
āg ,−)

≡ ((ϕ2ag ∧ ϕ
1
ag ∧ ϕ

1
āg ) ∨ (ϕ2ag ∧ ϕ

1
ag )

∨(ϕ2ag ∧ ϕ
2
āg ∧ ϕ

1
āg ) ∨ (ϕ2ag ∧ ϕ

2
āg ))

∧¬Imp(¬ϕ1āg ∧ ¬ϕ
2
āg ,−)

Again, because ϕ1ag ⇒ ϕ2ag , this is equivalent to

((ϕ1ag ∧ ϕ
1
āg ) ∨ ϕ

1
ag ∨ (ϕ2ag ∧ ϕ

2
āg ∧ ϕ

1
āg )

∨(ϕ2ag ∧ ϕ
2
āg )) ∧ ¬Imp(¬ϕ1āg ∧ ¬ϕ

2
āg ,−)

≡ (ϕ1ag ∨ ϕ
2) ∧ ¬Imp(¬ϕ1āg ∧ ¬ϕ

2
āg ,−).

From Theorem 1, we know that ¬Imp(¬ϕ1āg ∧ ¬ϕ
2
āg ,−)

results in σ+-rules that are redundant to ϕ1āg or to ϕ
2
āg , or in

σ+-rules that are implied from ¬ϕ1āg ∧ ¬ϕ
2
āg and do not

involve an attribute ag′ ∈ R other than ag, because ag is
initially not involved. From this and the initial assumptions,
the stated follows automatically. �
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