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ABSTRACT This paper is devoted to the issue of computationally efficient and robust nonlinear model
predictive control (NMPC) for ship dynamic positioning (DP) systems subjected to input constraints and
unknown environmental disturbances. The Laguerre functions, typically applied to the linear systems, are
introduced to the constrained NMPC design of the nonlinear DP system to reduce the computational burden.
The unscentedKalman filter is adopted to estimate the unknown disturbances and states; thus, the disturbance
estimates are utilized as the cancellation signal to achieve robust offset-free control. Simulations of the
proposed Laguerre function-based NMPC scheme are implemented and compared with the performance
of typical Laguerre function-based linear model predictive control (LMPC) for the DP system. Simulation
results well demonstrate the effectiveness, robustness and superiority of the proposed controller.

INDEX TERMS Laguerre functions, nonlinear model predictive control, input constraints, ship dynamic
positioning.

I. INTRODUCTION
Marine vessels equipped with dynamic positioning (DP) sys-
tem can automatically maintain the predefined position or
trajectory through its thruster system. DP system has been
extensively used in offshore operations, such as drilling, pipe
laying, offloading and diving support [1], [2]. The control
system is the core of the DP system. Grøvlen and Fossen
firstly applied the nonlinear observer backstepping control
to ship DP systems [3]. In recent years, many nonlinear
advanced control methods, such as neural networks con-
trol [4], adaptive control [5], [6], and robust control [7],
have been proposed in many literature. Considering that
the thruster physically limits the control force in practical
application, and the model predictive control (MPC) meth-
ods have the advantages of explicitly handling the physical
constraints [8], [9], lots of attentions have been paid to MPC
methods.
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MPC refers to a multivariable control strategy that uses
the predictive model to predict its future response and gain
the control actions by online solving the constrained finite
horizon optimal problem at each time step [10]. MPC meth-
ods have been extensively applied in different fields. In [11],
[12], and [13], the linear MPC was implemented using the
linearized state-space DP model based on the vessel parallel
coordinate.

In the application of MPC, one of the challenges is
its increased computational complexity for high-order sys-
tems [14]. In traditional MPC, a predefined optimization
problem is online solved over the control horizon Nc, using
the output over the predictive horizon NP predicted based on
the current states. By solving the optimization problem, the
optimal control sequence over the future Nc time steps will
be applied to obtain, and the first element of the sequence
will be implemented in the system. To reduce the computa-
tional complexity, a shorter Nc with regard to NP is gener-
ally adopted. Thus, the control increment signal over Nc is
assumed to be zero. However, the ignored control increments
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may change a little bit such that they are not zero, which may
affect the MPC control performance [15], [16], [17]. Another
method to increase the efficiency of online optimization is to
parameterize the control signal with a set of orthogonal poly-
nomial functions [18]. Laguerre functions are a set of typical
orthogonal exponential basis functions. By using Laguerre
functions, the decision variables of the MPC problem will
change to the Laguerre coefficients, and the numbers will
be much smaller [19]. Rossiter et al. and Wang designed
MPC using Laguerre functions and verified its superiority
in computational efficiency [19], [20]. Furthermore, since
the exponential decay factors are included in the Laguerre
network, the increments of control signals expressed by
Laguerre functions will converge to zero. Recently, the appli-
cation of Laguerre function-based MPC (Lag-MPC) have
received significant attention in various areas, e.g., perma-
nent magnet synchronous machine [21], stratospheric airship
trajectory tracking [22], non-minimal state space model [18],
vehicle automation [23], [24], and autonomous underwater
vehicle [25].

It can be seen from the above literature that the standard
Laguerre functions can only deal will the linear system, thus
it is generally combined with the linear MPC. Considering
that the DP system is nonlinear, the effect of linear MPC
may not be satisfactory. Thus the nonlinear model predic-
tive control (NMPC) was applied to DP, and its superior
performance had been verified [26], [27]. To this end, it is
essential to combine Laguerre functions with the NMPC to
solve its computation complexity problem. Reference [28]
introduced Laguerre polynomials into NMPC scheme to per-
form the air path control of a turbocharged gasoline engine,
and verified that it is easier to fine-tune the NMPC scheme.
However, current researches about Laguerre based MPC (or
NMPC) in literature rarely consider the effect of disturbances.
DP ships are disturbed by wind, waves and current forces,
which will make the ship deviate from its required position.
Thus, designing a robust nonlinear model predictive con-
troller with anti-disturbances ability is crucial. Many robust
control methods have been proposed to eliminate the effect of
disturbances. In [27], two offset-free MPC strategies, includ-
ing the target calculator formulation strategy and the delta
input formulation strategy, were proposed. Both strategies
utilized the UKF to estimate the unknown disturbances or
the integrating input variables, and then took the estimates as
inputs of the MPC algorithm to achieve the robust offset-free
control. Comparing with the two strategies, the disturbance
observer (DO) based control is regarded as one of the most
promising approaches for disturbance rejection, and is rela-
tively easy to solve and stabilize the system. To compensate
for environmental disturbances, the disturbance observer has
been proposed to estimate the unknown disturbances, and it
has been combined with NMPC to directly remove the distur-
bance estimates as a cancellation signal [29], [30], [31], [32].
Yang et al. applied the disturbance observer-based NMPC
(DO-NMPC) method to the DP system and verified its effec-
tiveness, and robustness [30]. However, the implementation

of DO-NMPC needs to assume that all the state variables are
measurable or can be accurately estimated. Thus, considering
the truth that only the position and heading can be measured
for the DP system. The DP ship will oscillate around its equi-
librium position due to the high-frequency first-order waves;
the unscented Kalman filter (UKF) can be utilized to estimate
the environmental disturbances and the unknown states and
to filter out the wave-frequency motions [15]. Adopting the
principle of disturbance observer, the disturbances estimated
by UKF can be used as the cancellation signal to eliminate
the effects of disturbances. The following points conclude the
contributions of this work:
• To reduce the computational complexity, the Laguerre
function is introduced into the NMPC design to param-
eterize the control signal, which can reduce the calcu-
lation amount of the controller, improve the efficiency
of the online solution and accelerate the optimization
process. In addition, this paper compares the proposed
Laguerre function-based NMPC schemewith the typical
Laguerre function-based linear model predictive control
(LMPC). It proves that the nonlinear model predictive
control method can improve the control accuracy of the
DP system.

• The external disturbances are taken into account; they
are eliminated by using of unscented Kalman filtering,
thus the robustness of the novel Laguerre-based NMPC
method is ensured.

The remainder of this paper is organized as follows. The
Mathematical model and problem formulation of the DP
system are described in Section II. In Section III, the NMPC
using Laguerre functions is designed. Section IV presents
simulation analysis and results discussions. The conclusions
are described in Section V.

II. MATHEMATICAL MODEL AND PROBLEM
FORMULATION
For DP surface vessels, the heave, roll and pitch motions in
the vertical direction are neglected, and only the surge, sway
and yaw in the horizontal plane are considered. To describe
the motion of DP vessels, two reference frames are applied.
One is the inertial earth-fixed frame oxyz, and another is the
body-fixed frame obxbybzb attached to the moving vessel.
Refer to [33], for low-speed DP vessels with xz-symmetry,
the nonlinear damping and the Coriolis-centripetal terms are
neglected by accumulating these unmodeled dynamics into
the bias disturbance terms. Thus, the mathematical model for
DP vessels can be expressed as:

η̇ = R(ψ)v, (1)

Mv̇ = −Dv+ τ + RT (ψ)d, (2)

where η = [x, y, ψ]T is the low-frequency position and
heading vector, v = [u, v, r]T is the velocity vector, and
η and v are described in the earth-fixed and body-fixed
frame, respectively. R(ψ) is the transfer matrix between the
earth-fixed frame and the body-fixed frame, M is the mass
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matrix composed of rigid body mass and added mass, and D
is the damping matrix. The matricesR(ψ),M andD are given
as:

R(ψ) =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ,
M

m− Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg − Yṙ Iz − Nṙ

 ,
D =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr


where m is the mass of the ship, Iz is the ship’s inertia about
zb-axis, xg is the xb coordinate of the center of gravity, X (·),
Y (·), N (·) are hydrodynamic derivatives.
In addition, d = [du, dv, dr ]T is the unknown disturbance

vector described in the earth-fixed frame, including the envi-
ronmental disturbance caused by second-order waves, ocean
current, wind and model uncertainties caused by unmodeled
nonlinear dynamics; τ = [τu, τv, τr ]T is the control input
vector representing the generalized forces and moment gen-
erated by thrusters. The control input satisfies the thruster
saturation constraints [34]:

τmin ≤ τ ≤ τmax , (3)

1τmin ≤ 1τ ≤ 1τmax (4)

where τmin and τmax represent the minimum and maximum
control forces and moment provided by the thruster system.
1τmin and 1τmax are the minimal and maximal input incre-
ments constraints, respectively.

Considering that only position (x, y) and the heading angle
ψ can be measured, the state-space model for the DP system
can be described as:

ẋ(t) = A(t)x+ B(t)u+ Bd (t)d(t), (5)

y(t) = C(t)x, (6)

where x = [ηT , vT ]T is the state vector, u = τ is the control
input vector, y(t) is the output vector, and

A(ψ) =
[
03×3 R(ψ(t))
03×3 −M−1D

]
,B(t) =

[
03×3
−M−1

]
,

Bd (t) =
[

03×3
M−1RT (ψ(t))

]
,C(t) =

[
I3×3 03×3

]
.

The aim of this paper is to operate the disturbed DP system
(1) and (2) to follow the predefined reference trajectory in
the presence of input saturation and unknown disturbances.
In specific, for the demanded reference trajectory ηr (t) =
[xr (t), yr (t), ψr (t)]T , the control input shall be determined to
achieve:

lim
t→∞
‖y(t)− ηr (t)‖ = 0 (7)

III. CONTROL FORMULATION
In this section, by representing the NMPC optimization prob-
lem with Laguerre functions, an improved nonlinear predic-
tive control scheme is proposed to realize the control mode
of setpoint regulation and trajectory tracking for DP systems.
The Laguerre functions are used to parameterize the control
sequence. It is possible to reduce the number of constraints
in the prediction horizon; thus, the number of parameters
that exist in each optimization step will be reduced, and
consequently increase the computational efficiency. Further-
more, the UKF estimator is adopted to estimate the unknown
disturbances and states. Herein, based on the principle of
disturbance observer, the disturbance estimates can be used as
a cancellation signal to eliminate the effects of disturbances.
The control scheme of the proposed robust Laguerre-based
NMPC with UKF estimator is shown in Figure 1.

FIGURE 1. Control scheme of Laguerre-based NMPC with UKF estimator.

A. DISCRETE-TIME NMPC SCHEME
Based on the idea of feedforward control, the influence of
interference is directly eliminated in the control signal. Thus,
the controller is designed according to the determined nomi-
nal model of the DP system, which is:

ẋ(t) = A(t)x+ B(t)u, (8)

y(t) = C(t)x (9)

In general, MPC is designed using the discrete-time state-
spacemodel. Hence, theDPmodels (8) and (9) are discretized
at the current operating point using the sampling time Ts as
follows:

x(k + 1) = A(k)x(k)+ B(k)u(k), (10)

y(k) = C(k)x(k), (11)

where k =
t
Ts
, x(k) =

[
η(k)T , v(k)T

]T indicates
the state variable vector of the plant at the sample
time k, u(k)= [τu(k), τv(k), τr (k)]T is the control signal,
y(k)= [x(k), y(k), ψ(k)]T is the system output, respectively.
To remove steady state errors, it is meaningful to embed

integrators into (10) to deal with the control increment
1u(k) = u(k) − u(k − 1). Supposing that the DP system
has nu inputs and ny outputs and the number of states is
equal to nx , defining the new state variable vector as xa(k) =[
1x(k)T y(k) T

]T
, then the augment state-space model with
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an integrator is established as:

xa(k+1)︷ ︸︸ ︷[
1x(k + 1)
y(k + 1)

]
=

Aa︷ ︸︸ ︷[
Ak 0Tny×nx
CAk Iny×ny

] xa(k)︷ ︸︸ ︷[
1x(k)
y(k)

]
(12)

+

Ba︷ ︸︸ ︷[
Bk
CBk

]
1u(k)

y(k) =

Ca︷ ︸︸ ︷[
0ny×nx Iny×ny

] xa(k)︷ ︸︸ ︷[
1x(k)
y(k)

]
(13)

where 1x(k) is the state increment and 1x(k) = x(k) −
x(k− 1), Aa, Ba and Ca are corresponding augmented model
state-space matrices. Given Nc and NP the control and the
prediction horizons, respectively, the NMPC optimization
problem can be defined as:

min
1U

J =
∑NP

i=1

∥∥∥(ηr (k)− y(k + i))T∥∥∥2wy
+

∑Nc−1

i=0
‖1u(k + i)‖2w1u

s.t. xa(k + i) = Aaxa(k + i)+ Ba1u(k + i),

i = 1, 2, . . . ,NP,

y(k + i) = Caxa(k + i),

i = 1, 2, . . . ,NP,

1umin ≤ 1u(k + j) ≤ 1umax,

j = 1, 2, . . . ,Nc − 1

umin ≤ u(k + j) ≤ umax,

j = 1, 2, . . . ,Nc − 1. (14)

where x(k + i), y(k + i) and 1u(k + i) represent
the ith step future predictive state, output and con-
trol increment variables of the current instant k , respec-
tively, they can be computed based on the current state
x(k); 1U= [1u(k)1u(k + 1) · · · 1u(k + Nc − 1)]T is
the future control sequence to be determined by solving the
optimization problem; wy and w1u are weights for the system
outputs and control increments, respectively.
Remark 1: The discretized model (10) is nonlinear, and

however, considering the DP ship’s sailing state changes
slowly, it is presumed that state matrix A(k), B(k), and the
augmented matrix Aa(k), Ba(k) remain unchanged in the
prediction horizon NP. Thus, the future prediction output
y(k + i) for i = 1, 2, . . . ,NP can be calculated as a linear
model.
Remark 2: To reduce the computational complexity, the

classical NMPC often letsNc < NP, and theNMPCoptimizer
only gives the optimal solution within the horizon Nc, while
the control increments over Nc are assumed to be zero, that
is 1u(k + i) = 0 when i = Nc,Nc + 1, . . .NP. However, the
ignored control increments may have a small change but are
not zero, which may influence the MPC control effect. Con-
sidering that the control signal1u(k+i) can be parameterized

using a set of orthogonal polynomial functions, i.e., the typi-
cal orthogonal basis functions named Laguerre functions, the
NMPC optimization problem is going to be expressed using
Laguerre functions to increase the computational efficiency.

B. PARAMETERISATION USING DISCRETE-TIME
LAGUERRE FUNCTIONS
Laguerre functions are a set of orthonormal basis func-
tions which can be adopted to reconstruct the NMPC online
optimization problem. The z-transform of the discrete-time
Laguerre networks can be written as:

0k+1(z, a) = 0k (z, a)
(
z−1 − a
1− az−1

)
, k = 1, 2, . . . ,N − 1

(15)

with 01(z, a) =
√

1−a2

1−az−1
,where N is the number of terms, a

is the scale factor representing the pole of the Laguerre
functions. For stability, it is necessary to set 0 ≤ a < 1.
Let l1(k), l2(k), · · · , lN (k) represent the inverse z-transform
of 01(z, a), 02(z, a), · · · , 0N (z, a), respectively, the set of
discrete-time Laguerre function can be rewritten as a vec-
tor form of L(k) = [ l1(k) l2(k) · · · lN (k) ]T . Considering
Laguerre networks (15), it is derived that L(k) satisfies the
following relation:

L(k + 1) = AlL(k) (16)

where Al is a N×N matrix about parameters a and β=1−a2.
Its definition is

Al =



a 0 0 · · · 0
β a 0 · · · 0
−aβ β 0 · · · 0

a2β −aβ
. . .

. . .
...

...
...

. . . a 0
(−1)N−2aN−2β (−1)N−3aN−3β · · · β a


and

L(0)T =
√
β[ 1 −a a2 −a3 · · · (−1)N−1aN−1 ] (17)

It is obvious that when a = 0, the Laguerre functions
reduce to a set of pulses, which becomes equivalent to the
traditional MPC method. Thus, it is important to set a >

0 to achieve performance improvements. The orthonormal
property of Laguerre functions can be shown as follows:

∞∑
k=0

li(k)lj(k)
{
=0 for i 6= j
=1 for i = j

(18)

Considering the single-input system, the control increments
1u(k),1u(k+1), . . . ,1u(k+Nc−1) at time k are equivalent
to the impulse response of a stable dynamic system. Thus,
a set of Laguerre functions along with a set of Laguerre
coefficients can be applied to describe the dynamic responses
of the control increment as:

1u(k + i) =
N∑
j=1

cj(k)lj(i) (19)
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where k is the initial time of the moving horizon, i is
the future sample instant, cj(k), j = 1, 2, · · · ,N are the
Laguerre coefficients for corresponding Laguerre function
l1(i), l2(i), · · · , lN (i). Eq.(19) shows that the number of terms
N instead of the control horizon Nc is used to describe the
complexity of control increment. To reduce the compute
complexity, a larger value of scale factor a with a smaller
number of terms N , i.e., N < Nc, can be selected to achieve
the performance with a long control horizon.

Further defining the Laguerre coefficient vector as γ (i)=
[c1(i) c2(i) · · · cN (i)]T , Eq.(19) can be rewritten as:

1u(k + i) = L(i)T γ (i) (20)

For the multi-input system with an input number of
nu, each element in the control trajectory will be an 1 ×
nu vector that 1u(k)=

[
1u1(k) 1u2(k) · · · 1unu (k)

]T .
By assigning a specific scaling factor ap and number
Np for the pth control signal 1up(k), we can describe
the particular control input as 1up(i) = Lp(i)T γ p(i)
with Lp(i) = [ lp1(i) lp2(i) · · · lpN (i) ]T , γ p(i) =[
cp1(i) cp2(i) · · · cpN (i)

]T , where Lp(i) and γ p(i) are the
individual Laguerre function and efficient vector for the pth
control input, respectively. Thus, for the multi-input system,
the control signal 1u(i) can be expressed using the Laguerre
network as:

1u(k + i) =


L1(i) o1 · · · o1
o2 L2(i) · · · o2
...

...
. . .

...

onu onu · · · Lnu (i)


T

γ (i)

= L(i)T γ (i) (21)

with γ (i) = [ γ 1(i)
T γ 2(i)

T
· · · γ nu (i)

T ]T , where op, p =
1, 2, · · · , nu represents a zero block column vector with iden-
tical dimension to Lp(i).
Remark 3: In the design of the model predictive con-

troller, the Laguerre function is used to represent the future
control increment trajectory of the system. Noting that for
LMPC and NMPC, the Laguerre function have the same
representations for the control increment trajectory. However,
since the LMPC is implemented using the linear dynamic
model derived by the vessel parallel coordinate system, the
control accuracy will be affected. While the NMPC adopts
the nonlinear dynamic model and linearizes the nonlinear
model near the operating point at each time step when solving
the nonlinear optimization problem, which will improve the
control performance of DP.

C. LAGUERRE FUNCTION-BASED NMPC WITH INPUT
SATURATION CONSTRAINTS
Applying the Laguerre network expression Eq.(21) to the
augmented state-space model (12) and (13), the ith step
predicted state variables xa(k + i) and the output variable
y(k + i) within the prediction horizon at sample time k can

be expressed as:

xa(k+i) = Aiaxa(k)+
i−1∑
j=0

Ai−j−1a BaL(j)T γ , (22)

y(k+i) = CaAiaxa(k)+ Ca

i−1∑
j=0

Ai−j−1a BaL(j)T γ (23)

Substituting (23) into the NMPC optimization problem
defined in (14), the Laguerre function-based NMPC opti-
mizer for theminimization of the errors between the reference
signal and the output signal could be reformulated using the
Laguerre coefficient vector γ :

J = γ T

 Np∑
i=1

φ(i)QLφ(i)
T
+ RL

 γ
+2γ T

 Np∑
i=1

φ(i)QLA
i
a

 xf (k) (24)

where the data matrix φ(i)T =
∑i−1

j=0 A
i−j−1
a BaL(j)T , the

new state xf (k) =
[
1x(k)T y(k)− r(k)

]T , the weighting
matrix QL = CT

aCa is used for the purpose of minimizing
the reference tracking errors, RL is a diagonal matrix with
dimension equal to the dimension of γ .

It can be observed from (24) that the decision variables
have been changed from the control increment 1u to the
Laguerre coefficient γ . Thus, the control constraint of the
control increment signal 1u(i) and the control signal u(i)
shall be expressed as an inequality about γ . Noting that the
increment of the control signal is u (i) =

∑i− 1
j= 01 u (j) and

the Laguerre expression (22), the control constraints of the
future sample time k can be expressed as (25) and (26), shown
at the bottom of the next page, where u(k−1) is the control
signal of k − 1, oTp is the zero row vector. In practical, the
constraints (25) and (26) need to be transferred into a standard
inequality expression of γ , which can be written as:

G︷ ︸︸ ︷
G1U
−G1U
GU
−GU

 γ ≤
σ︷ ︸︸ ︷

1Umax

−1Umin

Umax
− U k−1

−Umin
+ U k−1

 (27)

where U k−1
=

[
u1(k − 1) u2(k − 1) . . . uq(k − 1)

]T is
the vector containing the previous u for each input, 1Umin

=[
1umin

1 (k − 1) 1umin
2 (k − 1) . . . 1umin

q (k − 1)
]T

,Umin
=[

umin
1 (k − 1) umin

2 (k − 1) . . . umin
q (k − 1)

]T
, and 1Umax

=

[1umax
1 (k − 1) 1umax

2 (k − 1) . . . 1umax
q (k − 1)]T , Umax

=[
umax
1 (k − 1) umax

2 (k − 1) . . . umax
q (k − 1)

]T
are the mini-

mum and maximum values for each input, respectively. G1U
and GU are control increment and control signal constraint
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matrices, respectively. It can be computed as:

G1U=


P(1)
P(2)
...

P(Nsum)

 , GU=


P(1)
P(1)+ P(2)

...∑Nsum
i=1 P(q)


where P(q), q = 1, 2, . . . ,Nsum is the block matrix consist-
ing of Laguerre functions, it can be computed by:

P(k) = 
(Ak−1

l1
L1(0))T oT2 · · · oTnu
oT1 (Ak−1

l2
L2(0))T · · · oTnu

...
...

. . .
...

oT1 oT2 · · · (Ak−1
lnu

Lnu (0))
T

 ,
where oTp p = 1, 2 . . . , nu are all zero row vectors with
dimensions Lnu (0)

T . The Nsum = N1 + N2 + . . . + Nnu is
equal to the sum of the order of the Laguerre network, and
Nsum is also the number of future samples for constraints
to be imposed, which is used to predict the future control
trajectory. Further defining �=

∑Np
i=1 φ(i)QLφ(i)

T
+ RL and

9=
∑Np

i=1 φ(i)QLA
i
a, the Lag-NMPC optimization problem

can be expressed as:

min J = γ T�γ + 2(9xf (k))T γ

s.t. Gγ ≤ σ (28)

where G and σ are constraints matrix of γ , they are com-
puted according to (27). Thus, the Lag-NMPC optimization
problem (29) is a quadratic programming problem solved by
the active set or interior point method. Given that the optimal
Laguerre coefficient solved out is γ ∗(k), then the optimal
control increment at the current time k can be determined by:

1u∗(k + i) = L(i)T γ ∗(i) (29)

D. DISTURBANCE ESTIMATION AND WAVE FILTERING
USING UKF
A tracking error will occur if disturbances caused by the envi-
ronment interfere and model uncertainties are not considered
in the controller design. Since the disturbances are usually
priori unknown, it is necessary to estimate the disturbance.
Furthermore, for the DP system, it is generally considered
that only the ship position and heading can be measured, and
the other states, such as ship velocities, can not be measured.

The first-order wave force will cause the vessel to produce
high-frequency oscillation (wave frequency motion) with the
same frequency as the wave. However, from the point of
reducing energy consumption and the wear and tear of the
thrusters, there is not necessary for the controller to respond to
them. Hence, the wave-frequency motion needs to be filtered
out by wave filtering. To this end, the UKFmethod is adopted
herein to obtain the unknown disturbance estimates and ship
velocities and to filter out the wave-frequency motions simul-
taneously. Motivated by the principle of disturbance observer
control for disturbance rejection, the estimated disturbances
will be fed back as a cancellation signal to eliminate the track-
ing errors and achieve offset-free control directly. To achieve
the objective of unknown disturbance estimation and wave
filtering, the DP observer model is established as follows:

ξ̇ = Aωξ + Eωw1, (30)

η̇ = R(ψ)v, (31)

ḋ = −T−1d d + w2, (32)

Mv̇ = −Dv+ τ + R(ψ)d + w3, (33)

y = η + ηω + ς (34)

where ηω = Cωξ is the wave-induced high-frequencymotion
with state vectors ξ ∈ R 6, Aω ∈ R 6×6 and Eω ∈ R 6×3,
which are constant sea state matrices, wi(i = 1, 2, 3) are
zero-mean Gaussian noise vectors, and ς ∈ R3 is the mea-
surement noise vector, d ∈ R3 is the disturbance vector.
The observer model (30)-(34) can be described in the form
of state-space as follows:

χ̇ = Aoχ̇ + Bou+ Ew, (35)

y = Hχ̇ + ς (36)

where χ =
[
ξT , ηT , dT , vT

]T
∈ R15 is a 15th-order state

vector, w =
[
wT1 ,w

T
2 ,w

T
3

]T
∈ R9 is the process noise vector.

In order to carry out UKF state estimation and filtering,
(35) and (36) need to be rewritten as the following standard
discrete-time state-space form:

χ̇(k + 1) = Aodχ (k)+ Bodu(k)+ Edw(k), (37)

y(k) = Hχ (k)+ ς (k) (38)

where χ (k) ∈ R15 is the observation state vector, w(k) and
ς (k) are Gaussian zero-mean process noise of process. The
state observation and filtering of the DP vessels are designed

1umin ≤ L(k + i)T γ ≤ 1umax (25)

umin ≤


∑i−1

j=0 L1(k)
T oT2 · · · oTnu

oT1
∑i−1

j=0 L2(k)
T
· · · oTnu

...
...

. . .
...

oT1 oT2 · · ·
∑i−1

j=0 Lnu (k)
T

γ + u(k − 1)

≤ umax (26)
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as:

χ̂ (k + 1) = Aodχ (k)+ Bodu(k)+ Kod (y(k)−Hχ̂ (k))

(39)

where Kod is the observer gain matrix which can be deter-
mined using UKFmethod. Given the covariance matrix of the
process and measurement noises are Q and R, respectively,
initializing mean and covariance as χ̂ (0) and P(0), then the
matrix composed of 2n+1 sigma points can be computed as:

µ(k − 1) =
[
χ̂ (k − 1), χ̂ (k − 1)+

√
(n+ λ)P(k − 1),

χ̂ (k − 1) −

√
(n+ λ)P(k − 1)

]
(40)

thus the transformation points of the process and measure-
ment model for each sigma point can be obtained as:

X i(k) = Aodµi(k − 1)+ Bodu(k − 1),

i = 0, 1, . . . , 2n, (41)

Y i(k) = Hµi(k − 1), i = 0, 1, . . . , 2n, (42)

Based on the Kalman filter principle, the transformed
points are used to calculate the predicted mean χ̂−(k − 1)
and its associated covariance P−(k − 1), the predicted mea-
surement ŷ−(k−1), the innovation covariance Pyy(k) and the
cross-covariance Pχy(k). And then, the state and covariance
estimates can be computed as:

χ̂ (k) = χ̂−(k)+ Kod (ŷ(k)− ŷ
−(k)), (43)

P(k) = P−(k)− KodPyy(k)KT (k) (44)

where the Kalman gain Kod is calculated by:

Kod = Pχy(k)(Pyy(k))−1 (45)

Formore details onUKF, see [35]. Therefore, when designing
the nonlinear model predictive controller, it is only necessary
to replace the system state with the state estimation value to
realize the output feedback control. In the solving process of
nonlinear model predictive control constrained optimization
problem (14), the current state variable x(k) is replaced by its
estimated value x̂(k).

E. IMPLEMENTATION OF ROBUST LAG-NMPC
The Lag-NMPC optimization problem (14) is designed based
on the nonlinear state-space DP model (5) and (6) in the
presence of environmental disturbance. Disturbance esti-
mates d̂(t) can be obtained using UKF state observation
and filtering (39). We can acquire the optimal control law
τ (k) =1u∗(k)+u(k−1)−d̂(k) by taking the disturbance esti-
mates d̂(t) as a feedback signal in the outer loop control. Fig-
ure 2 shows the workflow of the proposed robust lag NMPC
with UKF.

IV. SIMULATION ANALYSIS AND RESULTS DISCUSSIONS
In order to verify the performance of the proposed Lag-
NMPC strategy, the reference tracking performance of Cyber-
ship II (CSII) under saturation constraints and unknown

FIGURE 2. Flow chart of the offset-free Lag-NMPC scheme.

TABLE 1. CSII ship parameters [35].

disturbances is simulated. CSII ship is a 1:70 scale model of
a supply ship, and its prior identified dynamic parameters for
CSII are shown in Table 1. The minimal and maximal input
constraints are τmin=[−2.0 N ,−2.0 N , −1.5 N · m]T and
τmax=[2.0 N , 2.0 N , 1.5 N · m]T , respectively. The input
increments constraints are set as 1τmin=[−1.0 N ,
−0.5 N ,−0.5 N · m]T and 1τmax= [1.0 N , 0.5 N ,
0.5 N · m]T , respectively. A computer with AMD Ryzen 7
3700X 8-Core Processor (3593 MHz) CPU and 16.00 GB
(3200 MHz) memory is used to simulate and verify the
designed controller.
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FIGURE 3. The simulation results of scenario 1 (setpoint regulation): (a) North-east position and heading (x, y, ψ); (b)Ship’s horizontal trajectory.

FIGURE 4. The simulation results of scenario 2 (trajectory tracking): (a) North-east position and heading (x, y, ψ); (b)Ship’s horizontal trajectory.

A. SIMULATION SCENARIO AND PARAMETERS SETTING
In order to verify the control performance for different modes
of the DP system, two scenarios are defined as follows
for simulations. Scenario 1 simulates the setpoint regula-
tion mode. It is the most basic mode of the DP system.
In this mode, the DP ship is demanded to keep at a pre-
defined position and heading or sail slowly from the initial
position to another required position. In the simulation, the
initial states, including the position, heading, and veloci-
ties of the ship is x(0)=[0 m, 0 m, 0 deg, 0 m/s, 0 m/s, 0
deg/s]T . The required position and heading are set as
ηd=[1 m, 0.5 m, 20 deg]

T . The reference input is set as
ηr=

1
10s+1ηd to achieve a smooth control. Scenario 2 simu-

lates the trajectory tracking mode. In this mode, the DP vessel

is required to track a predefined smooth trajectory ηr . In this
paper, the reference trajectory is set as:

xr (t) = 4 sin(0.025 ∗ t)

yr = 3− 3 ∗ cos(0.025 ∗ t), t ≥ 0

The reference heading ψ r (t) is choosen as the direc-
tion of the tangent vector along the path (xr (t), yr (t)). The
disturbance is modelled as a first-order Markov process:
ḋ= −T−1d d+Rbξ , with Td = diag(100, 100, 100), d(0) =
[0 N , 0 N , 0 N · m]T and Rb = diag(0.1, 0.05, 0.025) in
both scenarios.

The Laguerre functions were utilized together with the
linear MPC algorithm for most applications for DP sys-
tems. Herein this scheme is expressed as Lag-LMPC.
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FIGURE 5. Position-heading root mean square error (RMSE) comparison of Lag-NMPC-UKF and Lag-MPC-KF:(a)scenario 1,(b)scenario 2.

FIGURE 6. Results comparison between actual disturbances and their estimates for scenario1: (a) actual and estimated disturbance of UKF, (b) actual
and estimated disturbance of KF.

In Lag-LMPC, assuming that the yaw rate is approximated
to zero (ψ̇ = r = 0) and Ṙ(ψ) = 0, the nonlinear DP model
can be approximated to a linear state-space form, that the
linear MPC together with the Kalman filtering (KF) method
can be adopted for controller and state estimator design.
To demonstrate the effectiveness of the proposed Lag-NMPC
strategy, the Lag-LMPC strategy is also simulated. For the
convenience of description, the two controller design meth-
ods are expressed as ‘‘Lag-MPC- KF’’ and ‘‘Lag-NMPC-
UKF’’ in the following discussions.

In both two methodologies, parameter settings for the
controller and the state estimator are identical. The sample
time is Ts = 0.1s, the prediction horizon isNP = 50, the scale
factor and the number of terms are set as a = [0.5, 0.5, 0.5]T

and N = [10, 10, 10]T , and the weighting matrices RL is a
diagonal matrix Nsum×Nsum and QL = CT

aCa, respectively.

The parameters for UKF and KF estimator are set as: χ̂ (0) =
015×1, P(0) = I15×15, R = diag {0.02, 0.02, 0.001}, Q =
diag {0.09, 0.09, 0.001, 0.01, 0.01, 0.001, 0.01, 0.01, 0.001}.

B. RESULTS AND DISCUSSIONS
In order to verify the calculation efficiency of the designed
controller, the calculation time for NMPC (and MPC) with
(and without) the Laguerre function are listed in Table 2.
It can be seen from Table 2 that compared with the algo-
rithms without the Laguerre function in the setpoint regu-
lation mode, the online calculation time for both MPC and
NMPC with the Laguerre function are significantly reduced,
which can well prove that the introduction of the Laguerre
function can reduce the calculation complexity of the system.
In addition, since NMPC needs to linearize the nonlinear
model near the operating point at each time step when solving
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FIGURE 7. Results comparison between actual disturbances and their estimates for scenario 2: (a) actual and estimated disturbance of UKF, (b) actual
and estimated disturbance of KF.

TABLE 2. Comparison of mean computation time in the setpoint
regulation mode.

the nonlinear optimization problem, the online calculation
time of Lag-NMPC is higher than that of Lag-MPC, but the
calculation time is significantly reduced compared with the
traditional NMPC controller.

The simulation results of the two scenarios are shown in
Figs 3–4. Among them, the simulation results of Lag-NMPC-
UKF are represented by red solid lines, the results of Lag-
MPC-KF are described by blue dotted lines, and solid black
lines describe the reference trajectory. First, find the results of
the setpoint regulation scenario in Fig. 3. Fig. 3(a) shows the
change curve of ship position (x, y) and heading ψ . It can be
seen from the figure that when the Lag-NMPC-UKF method
is adopted, the ship position can better track the required
position with a small tracking error. When the Lag-MPC-KF
method is adopted, the position deviation is larger, but the
heading tracking error is small. The control performance can
also be seen from Fig. 3(b), which shows the ship’s motion
trajectory in the horizontal plane. Results demonstrate that
the Lag-NMPC-UKF method has higher control accuracy
in the setpoint regulation scenario. Fig. 4 shows the result
comparisons of scenario 2. Fig. 4(a) and (b) indicate that the
ship can precisely track the predefined trajectory by using
the Lag-NMPC-UKF scheme, while when the Lag-MPC-KF
scheme is adopted, there is a huge overshoot at the initial
stage, and the ship deviates significantly from the predefined
trajectory. Identical with the setpoint regulation scenario, the
results verify the control efficiency of the proposed Lag-
NMPC-UKF scheme. To quantitatively compare Lag-MPC-
KF and Lag-NMPC-UKF, the following root mean square

TABLE 3. Comparison control error of Lag-NMPC-UKF and Lag-LMPC-KF.

error (RMSE) was defined to evaluate the control accuracy:

RMSE =

√√√√ 1
Nk

Nk∑
k=1

(y− ηr)

where Nk is the sample time, y is the actual position and
heading, ηr is the reference position and heading. Fig.5 shows
the position-heading RMSE comparison results of Lag-MPC-
KF and Lag-NMPC-UKF schemes in the two scenarios.
In addition, the average RMSE values of the two control
schemes in the simulation are listed in Table 3 for com-
parison. It can be seen from Fig.5 and Table 3 that the
control error of the system when adopted the Lag-NMPC-
UKF scheme is significantly smaller than the Lag-MPC-
KF scheme. This further proves the feasibility and effective-
ness of the proposed Lag-NMPC-UKF scheme. In addition,
Figs. 6-7 shows the comparison curves of the real disturbance
d and its estimated value d̂ under the two scenarios using
UKF and KF, respectively. It can be seen from the figure
that the estimated disturbances under the two scenarios can
well reflect the real disturbances. Through comparison, it can
be seen that when using UKF, the estimation error can be
controlled in a small range. In contrast, when using KF, the
disturbance estimates fluctuate obviously. It shows that the
UKF algorithm performs better state estimation and filtering.
Therefore, through the analysis of simulation results, we can
conclude that the proposed lag-NMPC-UKF control scheme
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has superior control performance and robustness for DP ships
under unknown disturbances and input saturation.

V. CONCLUSION
In this paper, the NMPC controller is designed using Laguerre
functions for dynamic positioning ships in the presence
of input constraints and unknown disturbances. The use
of Laguerre functions simplifies the NMPC design and
reduces the number of parameters required in the optimiza-
tion algorithm, which brings great flexibility to the design
of the controller. The disturbance estimates obtained by
UKF are utilized as the cancellation signal to eliminate the
effects of disturbances and achieve robust offset-free con-
trol. In order to verify the superiority of the control per-
formance of the designed Laguerre function-based NMPC
(Lag-NMPC) scheme, two scenarios of setpoint regulation
and trajectory tracking are simulated and compared with the
performance of typical Laguerre function-based linear MPC
(Lag-LMPC) scheme. Simulation results demonstrated the
effectiveness, robustness and superiority of Lag-NMPC. The
proposed Lag-NMPC scheme shows minor control variances
and consequently contributes to less power consumption;
furthermore, it provides a novel solution of extending the
Laguerre function to the nonlinear system with constraints
and unknown disturbances.
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